• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the TCP_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  *
86  * - sk->sk_state uses the TCP state constants because they are widely used by
87  * other address families and exposed to userspace tools like ss(8):
88  *
89  *   TCP_CLOSE - unconnected
90  *   TCP_SYN_SENT - connecting
91  *   TCP_ESTABLISHED - connected
92  *   TCP_CLOSING - disconnecting
93  *   TCP_LISTEN - listening
94  */
95 
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/random.h>
111 #include <linux/skbuff.h>
112 #include <linux/smp.h>
113 #include <linux/socket.h>
114 #include <linux/stddef.h>
115 #include <linux/unistd.h>
116 #include <linux/wait.h>
117 #include <linux/workqueue.h>
118 #include <net/sock.h>
119 #include <net/af_vsock.h>
120 
121 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122 static void vsock_sk_destruct(struct sock *sk);
123 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124 
125 /* Protocol family. */
126 static struct proto vsock_proto = {
127 	.name = "AF_VSOCK",
128 	.owner = THIS_MODULE,
129 	.obj_size = sizeof(struct vsock_sock),
130 };
131 
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 
137 static const struct vsock_transport *transport;
138 static DEFINE_MUTEX(vsock_register_mutex);
139 
140 /**** EXPORTS ****/
141 
142 /* Get the ID of the local context.  This is transport dependent. */
143 
vm_sockets_get_local_cid(void)144 int vm_sockets_get_local_cid(void)
145 {
146 	return transport->get_local_cid();
147 }
148 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149 
150 /**** UTILS ****/
151 
152 /* Each bound VSocket is stored in the bind hash table and each connected
153  * VSocket is stored in the connected hash table.
154  *
155  * Unbound sockets are all put on the same list attached to the end of the hash
156  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
157  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158  * represents the list that addr hashes to).
159  *
160  * Specifically, we initialize the vsock_bind_table array to a size of
161  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
164  * mods with VSOCK_HASH_SIZE to ensure this.
165  */
166 #define MAX_PORT_RETRIES        24
167 
168 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
171 
172 /* XXX This can probably be implemented in a better way. */
173 #define VSOCK_CONN_HASH(src, dst)				\
174 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175 #define vsock_connected_sockets(src, dst)		\
176 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177 #define vsock_connected_sockets_vsk(vsk)				\
178 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179 
180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181 EXPORT_SYMBOL_GPL(vsock_bind_table);
182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 EXPORT_SYMBOL_GPL(vsock_connected_table);
184 DEFINE_SPINLOCK(vsock_table_lock);
185 EXPORT_SYMBOL_GPL(vsock_table_lock);
186 
187 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)188 static int vsock_auto_bind(struct vsock_sock *vsk)
189 {
190 	struct sock *sk = sk_vsock(vsk);
191 	struct sockaddr_vm local_addr;
192 
193 	if (vsock_addr_bound(&vsk->local_addr))
194 		return 0;
195 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196 	return __vsock_bind(sk, &local_addr);
197 }
198 
vsock_init_tables(void)199 static int __init vsock_init_tables(void)
200 {
201 	int i;
202 
203 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204 		INIT_LIST_HEAD(&vsock_bind_table[i]);
205 
206 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207 		INIT_LIST_HEAD(&vsock_connected_table[i]);
208 	return 0;
209 }
210 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_bound(struct list_head *list,
212 				 struct vsock_sock *vsk)
213 {
214 	sock_hold(&vsk->sk);
215 	list_add(&vsk->bound_table, list);
216 }
217 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)218 static void __vsock_insert_connected(struct list_head *list,
219 				     struct vsock_sock *vsk)
220 {
221 	sock_hold(&vsk->sk);
222 	list_add(&vsk->connected_table, list);
223 }
224 
__vsock_remove_bound(struct vsock_sock * vsk)225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 	list_del_init(&vsk->bound_table);
228 	sock_put(&vsk->sk);
229 }
230 
__vsock_remove_connected(struct vsock_sock * vsk)231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 	list_del_init(&vsk->connected_table);
234 	sock_put(&vsk->sk);
235 }
236 
__vsock_find_bound_socket(struct sockaddr_vm * addr)237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 	struct vsock_sock *vsk;
240 
241 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
242 		if (addr->svm_port == vsk->local_addr.svm_port)
243 			return sk_vsock(vsk);
244 
245 	return NULL;
246 }
247 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)248 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
249 						  struct sockaddr_vm *dst)
250 {
251 	struct vsock_sock *vsk;
252 
253 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
254 			    connected_table) {
255 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
256 		    dst->svm_port == vsk->local_addr.svm_port) {
257 			return sk_vsock(vsk);
258 		}
259 	}
260 
261 	return NULL;
262 }
263 
vsock_insert_unbound(struct vsock_sock * vsk)264 static void vsock_insert_unbound(struct vsock_sock *vsk)
265 {
266 	spin_lock_bh(&vsock_table_lock);
267 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
268 	spin_unlock_bh(&vsock_table_lock);
269 }
270 
vsock_insert_connected(struct vsock_sock * vsk)271 void vsock_insert_connected(struct vsock_sock *vsk)
272 {
273 	struct list_head *list = vsock_connected_sockets(
274 		&vsk->remote_addr, &vsk->local_addr);
275 
276 	spin_lock_bh(&vsock_table_lock);
277 	__vsock_insert_connected(list, vsk);
278 	spin_unlock_bh(&vsock_table_lock);
279 }
280 EXPORT_SYMBOL_GPL(vsock_insert_connected);
281 
vsock_remove_bound(struct vsock_sock * vsk)282 void vsock_remove_bound(struct vsock_sock *vsk)
283 {
284 	spin_lock_bh(&vsock_table_lock);
285 	if (__vsock_in_bound_table(vsk))
286 		__vsock_remove_bound(vsk);
287 	spin_unlock_bh(&vsock_table_lock);
288 }
289 EXPORT_SYMBOL_GPL(vsock_remove_bound);
290 
vsock_remove_connected(struct vsock_sock * vsk)291 void vsock_remove_connected(struct vsock_sock *vsk)
292 {
293 	spin_lock_bh(&vsock_table_lock);
294 	if (__vsock_in_connected_table(vsk))
295 		__vsock_remove_connected(vsk);
296 	spin_unlock_bh(&vsock_table_lock);
297 }
298 EXPORT_SYMBOL_GPL(vsock_remove_connected);
299 
vsock_find_bound_socket(struct sockaddr_vm * addr)300 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
301 {
302 	struct sock *sk;
303 
304 	spin_lock_bh(&vsock_table_lock);
305 	sk = __vsock_find_bound_socket(addr);
306 	if (sk)
307 		sock_hold(sk);
308 
309 	spin_unlock_bh(&vsock_table_lock);
310 
311 	return sk;
312 }
313 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
314 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)315 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
316 					 struct sockaddr_vm *dst)
317 {
318 	struct sock *sk;
319 
320 	spin_lock_bh(&vsock_table_lock);
321 	sk = __vsock_find_connected_socket(src, dst);
322 	if (sk)
323 		sock_hold(sk);
324 
325 	spin_unlock_bh(&vsock_table_lock);
326 
327 	return sk;
328 }
329 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
330 
vsock_remove_sock(struct vsock_sock * vsk)331 void vsock_remove_sock(struct vsock_sock *vsk)
332 {
333 	vsock_remove_bound(vsk);
334 	vsock_remove_connected(vsk);
335 }
336 EXPORT_SYMBOL_GPL(vsock_remove_sock);
337 
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))338 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
339 {
340 	int i;
341 
342 	spin_lock_bh(&vsock_table_lock);
343 
344 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
345 		struct vsock_sock *vsk;
346 		list_for_each_entry(vsk, &vsock_connected_table[i],
347 				    connected_table)
348 			fn(sk_vsock(vsk));
349 	}
350 
351 	spin_unlock_bh(&vsock_table_lock);
352 }
353 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
354 
vsock_add_pending(struct sock * listener,struct sock * pending)355 void vsock_add_pending(struct sock *listener, struct sock *pending)
356 {
357 	struct vsock_sock *vlistener;
358 	struct vsock_sock *vpending;
359 
360 	vlistener = vsock_sk(listener);
361 	vpending = vsock_sk(pending);
362 
363 	sock_hold(pending);
364 	sock_hold(listener);
365 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
366 }
367 EXPORT_SYMBOL_GPL(vsock_add_pending);
368 
vsock_remove_pending(struct sock * listener,struct sock * pending)369 void vsock_remove_pending(struct sock *listener, struct sock *pending)
370 {
371 	struct vsock_sock *vpending = vsock_sk(pending);
372 
373 	list_del_init(&vpending->pending_links);
374 	sock_put(listener);
375 	sock_put(pending);
376 }
377 EXPORT_SYMBOL_GPL(vsock_remove_pending);
378 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)379 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
380 {
381 	struct vsock_sock *vlistener;
382 	struct vsock_sock *vconnected;
383 
384 	vlistener = vsock_sk(listener);
385 	vconnected = vsock_sk(connected);
386 
387 	sock_hold(connected);
388 	sock_hold(listener);
389 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
390 }
391 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
392 
vsock_dequeue_accept(struct sock * listener)393 static struct sock *vsock_dequeue_accept(struct sock *listener)
394 {
395 	struct vsock_sock *vlistener;
396 	struct vsock_sock *vconnected;
397 
398 	vlistener = vsock_sk(listener);
399 
400 	if (list_empty(&vlistener->accept_queue))
401 		return NULL;
402 
403 	vconnected = list_entry(vlistener->accept_queue.next,
404 				struct vsock_sock, accept_queue);
405 
406 	list_del_init(&vconnected->accept_queue);
407 	sock_put(listener);
408 	/* The caller will need a reference on the connected socket so we let
409 	 * it call sock_put().
410 	 */
411 
412 	return sk_vsock(vconnected);
413 }
414 
vsock_is_accept_queue_empty(struct sock * sk)415 static bool vsock_is_accept_queue_empty(struct sock *sk)
416 {
417 	struct vsock_sock *vsk = vsock_sk(sk);
418 	return list_empty(&vsk->accept_queue);
419 }
420 
vsock_is_pending(struct sock * sk)421 static bool vsock_is_pending(struct sock *sk)
422 {
423 	struct vsock_sock *vsk = vsock_sk(sk);
424 	return !list_empty(&vsk->pending_links);
425 }
426 
vsock_send_shutdown(struct sock * sk,int mode)427 static int vsock_send_shutdown(struct sock *sk, int mode)
428 {
429 	return transport->shutdown(vsock_sk(sk), mode);
430 }
431 
vsock_pending_work(struct work_struct * work)432 static void vsock_pending_work(struct work_struct *work)
433 {
434 	struct sock *sk;
435 	struct sock *listener;
436 	struct vsock_sock *vsk;
437 	bool cleanup;
438 
439 	vsk = container_of(work, struct vsock_sock, pending_work.work);
440 	sk = sk_vsock(vsk);
441 	listener = vsk->listener;
442 	cleanup = true;
443 
444 	lock_sock(listener);
445 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
446 
447 	if (vsock_is_pending(sk)) {
448 		vsock_remove_pending(listener, sk);
449 
450 		listener->sk_ack_backlog--;
451 	} else if (!vsk->rejected) {
452 		/* We are not on the pending list and accept() did not reject
453 		 * us, so we must have been accepted by our user process.  We
454 		 * just need to drop our references to the sockets and be on
455 		 * our way.
456 		 */
457 		cleanup = false;
458 		goto out;
459 	}
460 
461 	/* We need to remove ourself from the global connected sockets list so
462 	 * incoming packets can't find this socket, and to reduce the reference
463 	 * count.
464 	 */
465 	vsock_remove_connected(vsk);
466 
467 	sk->sk_state = TCP_CLOSE;
468 
469 out:
470 	release_sock(sk);
471 	release_sock(listener);
472 	if (cleanup)
473 		sock_put(sk);
474 
475 	sock_put(sk);
476 	sock_put(listener);
477 }
478 
479 /**** SOCKET OPERATIONS ****/
480 
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)481 static int __vsock_bind_stream(struct vsock_sock *vsk,
482 			       struct sockaddr_vm *addr)
483 {
484 	static u32 port = 0;
485 	struct sockaddr_vm new_addr;
486 
487 	if (!port)
488 		port = LAST_RESERVED_PORT + 1 +
489 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
490 
491 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
492 
493 	if (addr->svm_port == VMADDR_PORT_ANY) {
494 		bool found = false;
495 		unsigned int i;
496 
497 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
498 			if (port <= LAST_RESERVED_PORT)
499 				port = LAST_RESERVED_PORT + 1;
500 
501 			new_addr.svm_port = port++;
502 
503 			if (!__vsock_find_bound_socket(&new_addr)) {
504 				found = true;
505 				break;
506 			}
507 		}
508 
509 		if (!found)
510 			return -EADDRNOTAVAIL;
511 	} else {
512 		/* If port is in reserved range, ensure caller
513 		 * has necessary privileges.
514 		 */
515 		if (addr->svm_port <= LAST_RESERVED_PORT &&
516 		    !capable(CAP_NET_BIND_SERVICE)) {
517 			return -EACCES;
518 		}
519 
520 		if (__vsock_find_bound_socket(&new_addr))
521 			return -EADDRINUSE;
522 	}
523 
524 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
525 
526 	/* Remove stream sockets from the unbound list and add them to the hash
527 	 * table for easy lookup by its address.  The unbound list is simply an
528 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
529 	 */
530 	__vsock_remove_bound(vsk);
531 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
532 
533 	return 0;
534 }
535 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)536 static int __vsock_bind_dgram(struct vsock_sock *vsk,
537 			      struct sockaddr_vm *addr)
538 {
539 	return transport->dgram_bind(vsk, addr);
540 }
541 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)542 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
543 {
544 	struct vsock_sock *vsk = vsock_sk(sk);
545 	u32 cid;
546 	int retval;
547 
548 	/* First ensure this socket isn't already bound. */
549 	if (vsock_addr_bound(&vsk->local_addr))
550 		return -EINVAL;
551 
552 	/* Now bind to the provided address or select appropriate values if
553 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
554 	 * like AF_INET prevents binding to a non-local IP address (in most
555 	 * cases), we only allow binding to the local CID.
556 	 */
557 	cid = transport->get_local_cid();
558 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
559 		return -EADDRNOTAVAIL;
560 
561 	switch (sk->sk_socket->type) {
562 	case SOCK_STREAM:
563 		spin_lock_bh(&vsock_table_lock);
564 		retval = __vsock_bind_stream(vsk, addr);
565 		spin_unlock_bh(&vsock_table_lock);
566 		break;
567 
568 	case SOCK_DGRAM:
569 		retval = __vsock_bind_dgram(vsk, addr);
570 		break;
571 
572 	default:
573 		retval = -EINVAL;
574 		break;
575 	}
576 
577 	return retval;
578 }
579 
580 static void vsock_connect_timeout(struct work_struct *work);
581 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)582 struct sock *__vsock_create(struct net *net,
583 			    struct socket *sock,
584 			    struct sock *parent,
585 			    gfp_t priority,
586 			    unsigned short type,
587 			    int kern)
588 {
589 	struct sock *sk;
590 	struct vsock_sock *psk;
591 	struct vsock_sock *vsk;
592 
593 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
594 	if (!sk)
595 		return NULL;
596 
597 	sock_init_data(sock, sk);
598 
599 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
600 	 * non-NULL. We make sure that our sockets always have a type by
601 	 * setting it here if needed.
602 	 */
603 	if (!sock)
604 		sk->sk_type = type;
605 
606 	vsk = vsock_sk(sk);
607 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
608 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
609 
610 	sk->sk_destruct = vsock_sk_destruct;
611 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
612 	sock_reset_flag(sk, SOCK_DONE);
613 
614 	INIT_LIST_HEAD(&vsk->bound_table);
615 	INIT_LIST_HEAD(&vsk->connected_table);
616 	vsk->listener = NULL;
617 	INIT_LIST_HEAD(&vsk->pending_links);
618 	INIT_LIST_HEAD(&vsk->accept_queue);
619 	vsk->rejected = false;
620 	vsk->sent_request = false;
621 	vsk->ignore_connecting_rst = false;
622 	vsk->peer_shutdown = 0;
623 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
624 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
625 
626 	psk = parent ? vsock_sk(parent) : NULL;
627 	if (parent) {
628 		vsk->trusted = psk->trusted;
629 		vsk->owner = get_cred(psk->owner);
630 		vsk->connect_timeout = psk->connect_timeout;
631 	} else {
632 		vsk->trusted = capable(CAP_NET_ADMIN);
633 		vsk->owner = get_current_cred();
634 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
635 	}
636 
637 	if (transport->init(vsk, psk) < 0) {
638 		sk_free(sk);
639 		return NULL;
640 	}
641 
642 	if (sock)
643 		vsock_insert_unbound(vsk);
644 
645 	return sk;
646 }
647 EXPORT_SYMBOL_GPL(__vsock_create);
648 
__vsock_release(struct sock * sk,int level)649 static void __vsock_release(struct sock *sk, int level)
650 {
651 	if (sk) {
652 		struct sk_buff *skb;
653 		struct sock *pending;
654 		struct vsock_sock *vsk;
655 
656 		vsk = vsock_sk(sk);
657 		pending = NULL;	/* Compiler warning. */
658 
659 		/* The release call is supposed to use lock_sock_nested()
660 		 * rather than lock_sock(), if a sock lock should be acquired.
661 		 */
662 		transport->release(vsk);
663 
664 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
665 		 * version to avoid the warning "possible recursive locking
666 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
667 		 * is the same as lock_sock(sk).
668 		 */
669 		lock_sock_nested(sk, level);
670 		sock_orphan(sk);
671 		sk->sk_shutdown = SHUTDOWN_MASK;
672 
673 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
674 			kfree_skb(skb);
675 
676 		/* Clean up any sockets that never were accepted. */
677 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
678 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
679 			sock_put(pending);
680 		}
681 
682 		release_sock(sk);
683 		sock_put(sk);
684 	}
685 }
686 
vsock_sk_destruct(struct sock * sk)687 static void vsock_sk_destruct(struct sock *sk)
688 {
689 	struct vsock_sock *vsk = vsock_sk(sk);
690 
691 	transport->destruct(vsk);
692 
693 	/* When clearing these addresses, there's no need to set the family and
694 	 * possibly register the address family with the kernel.
695 	 */
696 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
697 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
698 
699 	put_cred(vsk->owner);
700 }
701 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)702 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
703 {
704 	int err;
705 
706 	err = sock_queue_rcv_skb(sk, skb);
707 	if (err)
708 		kfree_skb(skb);
709 
710 	return err;
711 }
712 
vsock_stream_has_data(struct vsock_sock * vsk)713 s64 vsock_stream_has_data(struct vsock_sock *vsk)
714 {
715 	return transport->stream_has_data(vsk);
716 }
717 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
718 
vsock_stream_has_space(struct vsock_sock * vsk)719 s64 vsock_stream_has_space(struct vsock_sock *vsk)
720 {
721 	return transport->stream_has_space(vsk);
722 }
723 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
724 
vsock_release(struct socket * sock)725 static int vsock_release(struct socket *sock)
726 {
727 	__vsock_release(sock->sk, 0);
728 	sock->sk = NULL;
729 	sock->state = SS_FREE;
730 
731 	return 0;
732 }
733 
734 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)735 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
736 {
737 	int err;
738 	struct sock *sk;
739 	struct sockaddr_vm *vm_addr;
740 
741 	sk = sock->sk;
742 
743 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
744 		return -EINVAL;
745 
746 	lock_sock(sk);
747 	err = __vsock_bind(sk, vm_addr);
748 	release_sock(sk);
749 
750 	return err;
751 }
752 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)753 static int vsock_getname(struct socket *sock,
754 			 struct sockaddr *addr, int peer)
755 {
756 	int err;
757 	struct sock *sk;
758 	struct vsock_sock *vsk;
759 	struct sockaddr_vm *vm_addr;
760 
761 	sk = sock->sk;
762 	vsk = vsock_sk(sk);
763 	err = 0;
764 
765 	lock_sock(sk);
766 
767 	if (peer) {
768 		if (sock->state != SS_CONNECTED) {
769 			err = -ENOTCONN;
770 			goto out;
771 		}
772 		vm_addr = &vsk->remote_addr;
773 	} else {
774 		vm_addr = &vsk->local_addr;
775 	}
776 
777 	if (!vm_addr) {
778 		err = -EINVAL;
779 		goto out;
780 	}
781 
782 	/* sys_getsockname() and sys_getpeername() pass us a
783 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
784 	 * that macro is defined in socket.c instead of .h, so we hardcode its
785 	 * value here.
786 	 */
787 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
788 	memcpy(addr, vm_addr, sizeof(*vm_addr));
789 	err = sizeof(*vm_addr);
790 
791 out:
792 	release_sock(sk);
793 	return err;
794 }
795 
vsock_shutdown(struct socket * sock,int mode)796 static int vsock_shutdown(struct socket *sock, int mode)
797 {
798 	int err;
799 	struct sock *sk;
800 
801 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
802 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
803 	 * here like the other address families do.  Note also that the
804 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
805 	 * which is what we want.
806 	 */
807 	mode++;
808 
809 	if ((mode & ~SHUTDOWN_MASK) || !mode)
810 		return -EINVAL;
811 
812 	/* If this is a STREAM socket and it is not connected then bail out
813 	 * immediately.  If it is a DGRAM socket then we must first kick the
814 	 * socket so that it wakes up from any sleeping calls, for example
815 	 * recv(), and then afterwards return the error.
816 	 */
817 
818 	sk = sock->sk;
819 	if (sock->state == SS_UNCONNECTED) {
820 		err = -ENOTCONN;
821 		if (sk->sk_type == SOCK_STREAM)
822 			return err;
823 	} else {
824 		sock->state = SS_DISCONNECTING;
825 		err = 0;
826 	}
827 
828 	/* Receive and send shutdowns are treated alike. */
829 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
830 	if (mode) {
831 		lock_sock(sk);
832 		sk->sk_shutdown |= mode;
833 		sk->sk_state_change(sk);
834 		release_sock(sk);
835 
836 		if (sk->sk_type == SOCK_STREAM) {
837 			sock_reset_flag(sk, SOCK_DONE);
838 			vsock_send_shutdown(sk, mode);
839 		}
840 	}
841 
842 	return err;
843 }
844 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)845 static __poll_t vsock_poll(struct file *file, struct socket *sock,
846 			       poll_table *wait)
847 {
848 	struct sock *sk;
849 	__poll_t mask;
850 	struct vsock_sock *vsk;
851 
852 	sk = sock->sk;
853 	vsk = vsock_sk(sk);
854 
855 	poll_wait(file, sk_sleep(sk), wait);
856 	mask = 0;
857 
858 	if (sk->sk_err)
859 		/* Signify that there has been an error on this socket. */
860 		mask |= EPOLLERR;
861 
862 	/* INET sockets treat local write shutdown and peer write shutdown as a
863 	 * case of EPOLLHUP set.
864 	 */
865 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
866 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
867 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
868 		mask |= EPOLLHUP;
869 	}
870 
871 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
872 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
873 		mask |= EPOLLRDHUP;
874 	}
875 
876 	if (sock->type == SOCK_DGRAM) {
877 		/* For datagram sockets we can read if there is something in
878 		 * the queue and write as long as the socket isn't shutdown for
879 		 * sending.
880 		 */
881 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
882 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
883 			mask |= EPOLLIN | EPOLLRDNORM;
884 		}
885 
886 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
887 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
888 
889 	} else if (sock->type == SOCK_STREAM) {
890 		lock_sock(sk);
891 
892 		/* Listening sockets that have connections in their accept
893 		 * queue can be read.
894 		 */
895 		if (sk->sk_state == TCP_LISTEN
896 		    && !vsock_is_accept_queue_empty(sk))
897 			mask |= EPOLLIN | EPOLLRDNORM;
898 
899 		/* If there is something in the queue then we can read. */
900 		if (transport->stream_is_active(vsk) &&
901 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
902 			bool data_ready_now = false;
903 			int ret = transport->notify_poll_in(
904 					vsk, 1, &data_ready_now);
905 			if (ret < 0) {
906 				mask |= EPOLLERR;
907 			} else {
908 				if (data_ready_now)
909 					mask |= EPOLLIN | EPOLLRDNORM;
910 
911 			}
912 		}
913 
914 		/* Sockets whose connections have been closed, reset, or
915 		 * terminated should also be considered read, and we check the
916 		 * shutdown flag for that.
917 		 */
918 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
919 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
920 			mask |= EPOLLIN | EPOLLRDNORM;
921 		}
922 
923 		/* Connected sockets that can produce data can be written. */
924 		if (sk->sk_state == TCP_ESTABLISHED) {
925 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
926 				bool space_avail_now = false;
927 				int ret = transport->notify_poll_out(
928 						vsk, 1, &space_avail_now);
929 				if (ret < 0) {
930 					mask |= EPOLLERR;
931 				} else {
932 					if (space_avail_now)
933 						/* Remove EPOLLWRBAND since INET
934 						 * sockets are not setting it.
935 						 */
936 						mask |= EPOLLOUT | EPOLLWRNORM;
937 
938 				}
939 			}
940 		}
941 
942 		/* Simulate INET socket poll behaviors, which sets
943 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
944 		 * but local send is not shutdown.
945 		 */
946 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
947 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
948 				mask |= EPOLLOUT | EPOLLWRNORM;
949 
950 		}
951 
952 		release_sock(sk);
953 	}
954 
955 	return mask;
956 }
957 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)958 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
959 			       size_t len)
960 {
961 	int err;
962 	struct sock *sk;
963 	struct vsock_sock *vsk;
964 	struct sockaddr_vm *remote_addr;
965 
966 	if (msg->msg_flags & MSG_OOB)
967 		return -EOPNOTSUPP;
968 
969 	/* For now, MSG_DONTWAIT is always assumed... */
970 	err = 0;
971 	sk = sock->sk;
972 	vsk = vsock_sk(sk);
973 
974 	lock_sock(sk);
975 
976 	err = vsock_auto_bind(vsk);
977 	if (err)
978 		goto out;
979 
980 
981 	/* If the provided message contains an address, use that.  Otherwise
982 	 * fall back on the socket's remote handle (if it has been connected).
983 	 */
984 	if (msg->msg_name &&
985 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
986 			    &remote_addr) == 0) {
987 		/* Ensure this address is of the right type and is a valid
988 		 * destination.
989 		 */
990 
991 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
992 			remote_addr->svm_cid = transport->get_local_cid();
993 
994 		if (!vsock_addr_bound(remote_addr)) {
995 			err = -EINVAL;
996 			goto out;
997 		}
998 	} else if (sock->state == SS_CONNECTED) {
999 		remote_addr = &vsk->remote_addr;
1000 
1001 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1002 			remote_addr->svm_cid = transport->get_local_cid();
1003 
1004 		/* XXX Should connect() or this function ensure remote_addr is
1005 		 * bound?
1006 		 */
1007 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1008 			err = -EINVAL;
1009 			goto out;
1010 		}
1011 	} else {
1012 		err = -EINVAL;
1013 		goto out;
1014 	}
1015 
1016 	if (!transport->dgram_allow(remote_addr->svm_cid,
1017 				    remote_addr->svm_port)) {
1018 		err = -EINVAL;
1019 		goto out;
1020 	}
1021 
1022 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1023 
1024 out:
1025 	release_sock(sk);
1026 	return err;
1027 }
1028 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1029 static int vsock_dgram_connect(struct socket *sock,
1030 			       struct sockaddr *addr, int addr_len, int flags)
1031 {
1032 	int err;
1033 	struct sock *sk;
1034 	struct vsock_sock *vsk;
1035 	struct sockaddr_vm *remote_addr;
1036 
1037 	sk = sock->sk;
1038 	vsk = vsock_sk(sk);
1039 
1040 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1041 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1042 		lock_sock(sk);
1043 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1044 				VMADDR_PORT_ANY);
1045 		sock->state = SS_UNCONNECTED;
1046 		release_sock(sk);
1047 		return 0;
1048 	} else if (err != 0)
1049 		return -EINVAL;
1050 
1051 	lock_sock(sk);
1052 
1053 	err = vsock_auto_bind(vsk);
1054 	if (err)
1055 		goto out;
1056 
1057 	if (!transport->dgram_allow(remote_addr->svm_cid,
1058 				    remote_addr->svm_port)) {
1059 		err = -EINVAL;
1060 		goto out;
1061 	}
1062 
1063 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1064 	sock->state = SS_CONNECTED;
1065 
1066 out:
1067 	release_sock(sk);
1068 	return err;
1069 }
1070 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1071 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1072 			       size_t len, int flags)
1073 {
1074 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1075 }
1076 
1077 static const struct proto_ops vsock_dgram_ops = {
1078 	.family = PF_VSOCK,
1079 	.owner = THIS_MODULE,
1080 	.release = vsock_release,
1081 	.bind = vsock_bind,
1082 	.connect = vsock_dgram_connect,
1083 	.socketpair = sock_no_socketpair,
1084 	.accept = sock_no_accept,
1085 	.getname = vsock_getname,
1086 	.poll = vsock_poll,
1087 	.ioctl = sock_no_ioctl,
1088 	.listen = sock_no_listen,
1089 	.shutdown = vsock_shutdown,
1090 	.setsockopt = sock_no_setsockopt,
1091 	.getsockopt = sock_no_getsockopt,
1092 	.sendmsg = vsock_dgram_sendmsg,
1093 	.recvmsg = vsock_dgram_recvmsg,
1094 	.mmap = sock_no_mmap,
1095 	.sendpage = sock_no_sendpage,
1096 };
1097 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1098 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1099 {
1100 	if (!transport->cancel_pkt)
1101 		return -EOPNOTSUPP;
1102 
1103 	return transport->cancel_pkt(vsk);
1104 }
1105 
vsock_connect_timeout(struct work_struct * work)1106 static void vsock_connect_timeout(struct work_struct *work)
1107 {
1108 	struct sock *sk;
1109 	struct vsock_sock *vsk;
1110 	int cancel = 0;
1111 
1112 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1113 	sk = sk_vsock(vsk);
1114 
1115 	lock_sock(sk);
1116 	if (sk->sk_state == TCP_SYN_SENT &&
1117 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1118 		sk->sk_state = TCP_CLOSE;
1119 		sk->sk_err = ETIMEDOUT;
1120 		sk->sk_error_report(sk);
1121 		cancel = 1;
1122 	}
1123 	release_sock(sk);
1124 	if (cancel)
1125 		vsock_transport_cancel_pkt(vsk);
1126 
1127 	sock_put(sk);
1128 }
1129 
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1130 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1131 				int addr_len, int flags)
1132 {
1133 	int err;
1134 	struct sock *sk;
1135 	struct vsock_sock *vsk;
1136 	struct sockaddr_vm *remote_addr;
1137 	long timeout;
1138 	DEFINE_WAIT(wait);
1139 
1140 	err = 0;
1141 	sk = sock->sk;
1142 	vsk = vsock_sk(sk);
1143 
1144 	lock_sock(sk);
1145 
1146 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1147 	switch (sock->state) {
1148 	case SS_CONNECTED:
1149 		err = -EISCONN;
1150 		goto out;
1151 	case SS_DISCONNECTING:
1152 		err = -EINVAL;
1153 		goto out;
1154 	case SS_CONNECTING:
1155 		/* This continues on so we can move sock into the SS_CONNECTED
1156 		 * state once the connection has completed (at which point err
1157 		 * will be set to zero also).  Otherwise, we will either wait
1158 		 * for the connection or return -EALREADY should this be a
1159 		 * non-blocking call.
1160 		 */
1161 		err = -EALREADY;
1162 		break;
1163 	default:
1164 		if ((sk->sk_state == TCP_LISTEN) ||
1165 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1166 			err = -EINVAL;
1167 			goto out;
1168 		}
1169 
1170 		/* The hypervisor and well-known contexts do not have socket
1171 		 * endpoints.
1172 		 */
1173 		if (!transport->stream_allow(remote_addr->svm_cid,
1174 					     remote_addr->svm_port)) {
1175 			err = -ENETUNREACH;
1176 			goto out;
1177 		}
1178 
1179 		/* Set the remote address that we are connecting to. */
1180 		memcpy(&vsk->remote_addr, remote_addr,
1181 		       sizeof(vsk->remote_addr));
1182 
1183 		err = vsock_auto_bind(vsk);
1184 		if (err)
1185 			goto out;
1186 
1187 		sk->sk_state = TCP_SYN_SENT;
1188 
1189 		err = transport->connect(vsk);
1190 		if (err < 0)
1191 			goto out;
1192 
1193 		/* Mark sock as connecting and set the error code to in
1194 		 * progress in case this is a non-blocking connect.
1195 		 */
1196 		sock->state = SS_CONNECTING;
1197 		err = -EINPROGRESS;
1198 	}
1199 
1200 	/* The receive path will handle all communication until we are able to
1201 	 * enter the connected state.  Here we wait for the connection to be
1202 	 * completed or a notification of an error.
1203 	 */
1204 	timeout = vsk->connect_timeout;
1205 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1206 
1207 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1208 		if (flags & O_NONBLOCK) {
1209 			/* If we're not going to block, we schedule a timeout
1210 			 * function to generate a timeout on the connection
1211 			 * attempt, in case the peer doesn't respond in a
1212 			 * timely manner. We hold on to the socket until the
1213 			 * timeout fires.
1214 			 */
1215 			sock_hold(sk);
1216 			schedule_delayed_work(&vsk->connect_work, timeout);
1217 
1218 			/* Skip ahead to preserve error code set above. */
1219 			goto out_wait;
1220 		}
1221 
1222 		release_sock(sk);
1223 		timeout = schedule_timeout(timeout);
1224 		lock_sock(sk);
1225 
1226 		if (signal_pending(current)) {
1227 			err = sock_intr_errno(timeout);
1228 			sk->sk_state = TCP_CLOSE;
1229 			sock->state = SS_UNCONNECTED;
1230 			vsock_transport_cancel_pkt(vsk);
1231 			goto out_wait;
1232 		} else if (timeout == 0) {
1233 			err = -ETIMEDOUT;
1234 			sk->sk_state = TCP_CLOSE;
1235 			sock->state = SS_UNCONNECTED;
1236 			vsock_transport_cancel_pkt(vsk);
1237 			goto out_wait;
1238 		}
1239 
1240 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1241 	}
1242 
1243 	if (sk->sk_err) {
1244 		err = -sk->sk_err;
1245 		sk->sk_state = TCP_CLOSE;
1246 		sock->state = SS_UNCONNECTED;
1247 	} else {
1248 		err = 0;
1249 	}
1250 
1251 out_wait:
1252 	finish_wait(sk_sleep(sk), &wait);
1253 out:
1254 	release_sock(sk);
1255 	return err;
1256 }
1257 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1258 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1259 			bool kern)
1260 {
1261 	struct sock *listener;
1262 	int err;
1263 	struct sock *connected;
1264 	struct vsock_sock *vconnected;
1265 	long timeout;
1266 	DEFINE_WAIT(wait);
1267 
1268 	err = 0;
1269 	listener = sock->sk;
1270 
1271 	lock_sock(listener);
1272 
1273 	if (sock->type != SOCK_STREAM) {
1274 		err = -EOPNOTSUPP;
1275 		goto out;
1276 	}
1277 
1278 	if (listener->sk_state != TCP_LISTEN) {
1279 		err = -EINVAL;
1280 		goto out;
1281 	}
1282 
1283 	/* Wait for children sockets to appear; these are the new sockets
1284 	 * created upon connection establishment.
1285 	 */
1286 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1287 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1288 
1289 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1290 	       listener->sk_err == 0) {
1291 		release_sock(listener);
1292 		timeout = schedule_timeout(timeout);
1293 		finish_wait(sk_sleep(listener), &wait);
1294 		lock_sock(listener);
1295 
1296 		if (signal_pending(current)) {
1297 			err = sock_intr_errno(timeout);
1298 			goto out;
1299 		} else if (timeout == 0) {
1300 			err = -EAGAIN;
1301 			goto out;
1302 		}
1303 
1304 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1305 	}
1306 	finish_wait(sk_sleep(listener), &wait);
1307 
1308 	if (listener->sk_err)
1309 		err = -listener->sk_err;
1310 
1311 	if (connected) {
1312 		listener->sk_ack_backlog--;
1313 
1314 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1315 		vconnected = vsock_sk(connected);
1316 
1317 		/* If the listener socket has received an error, then we should
1318 		 * reject this socket and return.  Note that we simply mark the
1319 		 * socket rejected, drop our reference, and let the cleanup
1320 		 * function handle the cleanup; the fact that we found it in
1321 		 * the listener's accept queue guarantees that the cleanup
1322 		 * function hasn't run yet.
1323 		 */
1324 		if (err) {
1325 			vconnected->rejected = true;
1326 		} else {
1327 			newsock->state = SS_CONNECTED;
1328 			sock_graft(connected, newsock);
1329 		}
1330 
1331 		release_sock(connected);
1332 		sock_put(connected);
1333 	}
1334 
1335 out:
1336 	release_sock(listener);
1337 	return err;
1338 }
1339 
vsock_listen(struct socket * sock,int backlog)1340 static int vsock_listen(struct socket *sock, int backlog)
1341 {
1342 	int err;
1343 	struct sock *sk;
1344 	struct vsock_sock *vsk;
1345 
1346 	sk = sock->sk;
1347 
1348 	lock_sock(sk);
1349 
1350 	if (sock->type != SOCK_STREAM) {
1351 		err = -EOPNOTSUPP;
1352 		goto out;
1353 	}
1354 
1355 	if (sock->state != SS_UNCONNECTED) {
1356 		err = -EINVAL;
1357 		goto out;
1358 	}
1359 
1360 	vsk = vsock_sk(sk);
1361 
1362 	if (!vsock_addr_bound(&vsk->local_addr)) {
1363 		err = -EINVAL;
1364 		goto out;
1365 	}
1366 
1367 	sk->sk_max_ack_backlog = backlog;
1368 	sk->sk_state = TCP_LISTEN;
1369 
1370 	err = 0;
1371 
1372 out:
1373 	release_sock(sk);
1374 	return err;
1375 }
1376 
vsock_stream_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1377 static int vsock_stream_setsockopt(struct socket *sock,
1378 				   int level,
1379 				   int optname,
1380 				   char __user *optval,
1381 				   unsigned int optlen)
1382 {
1383 	int err;
1384 	struct sock *sk;
1385 	struct vsock_sock *vsk;
1386 	u64 val;
1387 
1388 	if (level != AF_VSOCK)
1389 		return -ENOPROTOOPT;
1390 
1391 #define COPY_IN(_v)                                       \
1392 	do {						  \
1393 		if (optlen < sizeof(_v)) {		  \
1394 			err = -EINVAL;			  \
1395 			goto exit;			  \
1396 		}					  \
1397 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1398 			err = -EFAULT;					\
1399 			goto exit;					\
1400 		}							\
1401 	} while (0)
1402 
1403 	err = 0;
1404 	sk = sock->sk;
1405 	vsk = vsock_sk(sk);
1406 
1407 	lock_sock(sk);
1408 
1409 	switch (optname) {
1410 	case SO_VM_SOCKETS_BUFFER_SIZE:
1411 		COPY_IN(val);
1412 		transport->set_buffer_size(vsk, val);
1413 		break;
1414 
1415 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1416 		COPY_IN(val);
1417 		transport->set_max_buffer_size(vsk, val);
1418 		break;
1419 
1420 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1421 		COPY_IN(val);
1422 		transport->set_min_buffer_size(vsk, val);
1423 		break;
1424 
1425 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1426 		struct timeval tv;
1427 		COPY_IN(tv);
1428 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1429 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1430 			vsk->connect_timeout = tv.tv_sec * HZ +
1431 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1432 			if (vsk->connect_timeout == 0)
1433 				vsk->connect_timeout =
1434 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1435 
1436 		} else {
1437 			err = -ERANGE;
1438 		}
1439 		break;
1440 	}
1441 
1442 	default:
1443 		err = -ENOPROTOOPT;
1444 		break;
1445 	}
1446 
1447 #undef COPY_IN
1448 
1449 exit:
1450 	release_sock(sk);
1451 	return err;
1452 }
1453 
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1454 static int vsock_stream_getsockopt(struct socket *sock,
1455 				   int level, int optname,
1456 				   char __user *optval,
1457 				   int __user *optlen)
1458 {
1459 	int err;
1460 	int len;
1461 	struct sock *sk;
1462 	struct vsock_sock *vsk;
1463 	u64 val;
1464 
1465 	if (level != AF_VSOCK)
1466 		return -ENOPROTOOPT;
1467 
1468 	err = get_user(len, optlen);
1469 	if (err != 0)
1470 		return err;
1471 
1472 #define COPY_OUT(_v)                            \
1473 	do {					\
1474 		if (len < sizeof(_v))		\
1475 			return -EINVAL;		\
1476 						\
1477 		len = sizeof(_v);		\
1478 		if (copy_to_user(optval, &_v, len) != 0)	\
1479 			return -EFAULT;				\
1480 								\
1481 	} while (0)
1482 
1483 	err = 0;
1484 	sk = sock->sk;
1485 	vsk = vsock_sk(sk);
1486 
1487 	switch (optname) {
1488 	case SO_VM_SOCKETS_BUFFER_SIZE:
1489 		val = transport->get_buffer_size(vsk);
1490 		COPY_OUT(val);
1491 		break;
1492 
1493 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1494 		val = transport->get_max_buffer_size(vsk);
1495 		COPY_OUT(val);
1496 		break;
1497 
1498 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1499 		val = transport->get_min_buffer_size(vsk);
1500 		COPY_OUT(val);
1501 		break;
1502 
1503 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1504 		struct timeval tv;
1505 		tv.tv_sec = vsk->connect_timeout / HZ;
1506 		tv.tv_usec =
1507 		    (vsk->connect_timeout -
1508 		     tv.tv_sec * HZ) * (1000000 / HZ);
1509 		COPY_OUT(tv);
1510 		break;
1511 	}
1512 	default:
1513 		return -ENOPROTOOPT;
1514 	}
1515 
1516 	err = put_user(len, optlen);
1517 	if (err != 0)
1518 		return -EFAULT;
1519 
1520 #undef COPY_OUT
1521 
1522 	return 0;
1523 }
1524 
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1525 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1526 				size_t len)
1527 {
1528 	struct sock *sk;
1529 	struct vsock_sock *vsk;
1530 	ssize_t total_written;
1531 	long timeout;
1532 	int err;
1533 	struct vsock_transport_send_notify_data send_data;
1534 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1535 
1536 	sk = sock->sk;
1537 	vsk = vsock_sk(sk);
1538 	total_written = 0;
1539 	err = 0;
1540 
1541 	if (msg->msg_flags & MSG_OOB)
1542 		return -EOPNOTSUPP;
1543 
1544 	lock_sock(sk);
1545 
1546 	/* Callers should not provide a destination with stream sockets. */
1547 	if (msg->msg_namelen) {
1548 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1549 		goto out;
1550 	}
1551 
1552 	/* Send data only if both sides are not shutdown in the direction. */
1553 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1554 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1555 		err = -EPIPE;
1556 		goto out;
1557 	}
1558 
1559 	if (sk->sk_state != TCP_ESTABLISHED ||
1560 	    !vsock_addr_bound(&vsk->local_addr)) {
1561 		err = -ENOTCONN;
1562 		goto out;
1563 	}
1564 
1565 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1566 		err = -EDESTADDRREQ;
1567 		goto out;
1568 	}
1569 
1570 	/* Wait for room in the produce queue to enqueue our user's data. */
1571 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1572 
1573 	err = transport->notify_send_init(vsk, &send_data);
1574 	if (err < 0)
1575 		goto out;
1576 
1577 	while (total_written < len) {
1578 		ssize_t written;
1579 
1580 		add_wait_queue(sk_sleep(sk), &wait);
1581 		while (vsock_stream_has_space(vsk) == 0 &&
1582 		       sk->sk_err == 0 &&
1583 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1584 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1585 
1586 			/* Don't wait for non-blocking sockets. */
1587 			if (timeout == 0) {
1588 				err = -EAGAIN;
1589 				remove_wait_queue(sk_sleep(sk), &wait);
1590 				goto out_err;
1591 			}
1592 
1593 			err = transport->notify_send_pre_block(vsk, &send_data);
1594 			if (err < 0) {
1595 				remove_wait_queue(sk_sleep(sk), &wait);
1596 				goto out_err;
1597 			}
1598 
1599 			release_sock(sk);
1600 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1601 			lock_sock(sk);
1602 			if (signal_pending(current)) {
1603 				err = sock_intr_errno(timeout);
1604 				remove_wait_queue(sk_sleep(sk), &wait);
1605 				goto out_err;
1606 			} else if (timeout == 0) {
1607 				err = -EAGAIN;
1608 				remove_wait_queue(sk_sleep(sk), &wait);
1609 				goto out_err;
1610 			}
1611 		}
1612 		remove_wait_queue(sk_sleep(sk), &wait);
1613 
1614 		/* These checks occur both as part of and after the loop
1615 		 * conditional since we need to check before and after
1616 		 * sleeping.
1617 		 */
1618 		if (sk->sk_err) {
1619 			err = -sk->sk_err;
1620 			goto out_err;
1621 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1622 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1623 			err = -EPIPE;
1624 			goto out_err;
1625 		}
1626 
1627 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1628 		if (err < 0)
1629 			goto out_err;
1630 
1631 		/* Note that enqueue will only write as many bytes as are free
1632 		 * in the produce queue, so we don't need to ensure len is
1633 		 * smaller than the queue size.  It is the caller's
1634 		 * responsibility to check how many bytes we were able to send.
1635 		 */
1636 
1637 		written = transport->stream_enqueue(
1638 				vsk, msg,
1639 				len - total_written);
1640 		if (written < 0) {
1641 			err = -ENOMEM;
1642 			goto out_err;
1643 		}
1644 
1645 		total_written += written;
1646 
1647 		err = transport->notify_send_post_enqueue(
1648 				vsk, written, &send_data);
1649 		if (err < 0)
1650 			goto out_err;
1651 
1652 	}
1653 
1654 out_err:
1655 	if (total_written > 0)
1656 		err = total_written;
1657 out:
1658 	release_sock(sk);
1659 	return err;
1660 }
1661 
1662 
1663 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1664 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1665 		     int flags)
1666 {
1667 	struct sock *sk;
1668 	struct vsock_sock *vsk;
1669 	int err;
1670 	size_t target;
1671 	ssize_t copied;
1672 	long timeout;
1673 	struct vsock_transport_recv_notify_data recv_data;
1674 
1675 	DEFINE_WAIT(wait);
1676 
1677 	sk = sock->sk;
1678 	vsk = vsock_sk(sk);
1679 	err = 0;
1680 
1681 	lock_sock(sk);
1682 
1683 	if (sk->sk_state != TCP_ESTABLISHED) {
1684 		/* Recvmsg is supposed to return 0 if a peer performs an
1685 		 * orderly shutdown. Differentiate between that case and when a
1686 		 * peer has not connected or a local shutdown occured with the
1687 		 * SOCK_DONE flag.
1688 		 */
1689 		if (sock_flag(sk, SOCK_DONE))
1690 			err = 0;
1691 		else
1692 			err = -ENOTCONN;
1693 
1694 		goto out;
1695 	}
1696 
1697 	if (flags & MSG_OOB) {
1698 		err = -EOPNOTSUPP;
1699 		goto out;
1700 	}
1701 
1702 	/* We don't check peer_shutdown flag here since peer may actually shut
1703 	 * down, but there can be data in the queue that a local socket can
1704 	 * receive.
1705 	 */
1706 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1707 		err = 0;
1708 		goto out;
1709 	}
1710 
1711 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1712 	 * is not an error.  We may as well bail out now.
1713 	 */
1714 	if (!len) {
1715 		err = 0;
1716 		goto out;
1717 	}
1718 
1719 	/* We must not copy less than target bytes into the user's buffer
1720 	 * before returning successfully, so we wait for the consume queue to
1721 	 * have that much data to consume before dequeueing.  Note that this
1722 	 * makes it impossible to handle cases where target is greater than the
1723 	 * queue size.
1724 	 */
1725 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1726 	if (target >= transport->stream_rcvhiwat(vsk)) {
1727 		err = -ENOMEM;
1728 		goto out;
1729 	}
1730 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1731 	copied = 0;
1732 
1733 	err = transport->notify_recv_init(vsk, target, &recv_data);
1734 	if (err < 0)
1735 		goto out;
1736 
1737 
1738 	while (1) {
1739 		s64 ready;
1740 
1741 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1742 		ready = vsock_stream_has_data(vsk);
1743 
1744 		if (ready == 0) {
1745 			if (sk->sk_err != 0 ||
1746 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1747 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1748 				finish_wait(sk_sleep(sk), &wait);
1749 				break;
1750 			}
1751 			/* Don't wait for non-blocking sockets. */
1752 			if (timeout == 0) {
1753 				err = -EAGAIN;
1754 				finish_wait(sk_sleep(sk), &wait);
1755 				break;
1756 			}
1757 
1758 			err = transport->notify_recv_pre_block(
1759 					vsk, target, &recv_data);
1760 			if (err < 0) {
1761 				finish_wait(sk_sleep(sk), &wait);
1762 				break;
1763 			}
1764 			release_sock(sk);
1765 			timeout = schedule_timeout(timeout);
1766 			lock_sock(sk);
1767 
1768 			if (signal_pending(current)) {
1769 				err = sock_intr_errno(timeout);
1770 				finish_wait(sk_sleep(sk), &wait);
1771 				break;
1772 			} else if (timeout == 0) {
1773 				err = -EAGAIN;
1774 				finish_wait(sk_sleep(sk), &wait);
1775 				break;
1776 			}
1777 		} else {
1778 			ssize_t read;
1779 
1780 			finish_wait(sk_sleep(sk), &wait);
1781 
1782 			if (ready < 0) {
1783 				/* Invalid queue pair content. XXX This should
1784 				* be changed to a connection reset in a later
1785 				* change.
1786 				*/
1787 
1788 				err = -ENOMEM;
1789 				goto out;
1790 			}
1791 
1792 			err = transport->notify_recv_pre_dequeue(
1793 					vsk, target, &recv_data);
1794 			if (err < 0)
1795 				break;
1796 
1797 			read = transport->stream_dequeue(
1798 					vsk, msg,
1799 					len - copied, flags);
1800 			if (read < 0) {
1801 				err = -ENOMEM;
1802 				break;
1803 			}
1804 
1805 			copied += read;
1806 
1807 			err = transport->notify_recv_post_dequeue(
1808 					vsk, target, read,
1809 					!(flags & MSG_PEEK), &recv_data);
1810 			if (err < 0)
1811 				goto out;
1812 
1813 			if (read >= target || flags & MSG_PEEK)
1814 				break;
1815 
1816 			target -= read;
1817 		}
1818 	}
1819 
1820 	if (sk->sk_err)
1821 		err = -sk->sk_err;
1822 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1823 		err = 0;
1824 
1825 	if (copied > 0)
1826 		err = copied;
1827 
1828 out:
1829 	release_sock(sk);
1830 	return err;
1831 }
1832 
1833 static const struct proto_ops vsock_stream_ops = {
1834 	.family = PF_VSOCK,
1835 	.owner = THIS_MODULE,
1836 	.release = vsock_release,
1837 	.bind = vsock_bind,
1838 	.connect = vsock_stream_connect,
1839 	.socketpair = sock_no_socketpair,
1840 	.accept = vsock_accept,
1841 	.getname = vsock_getname,
1842 	.poll = vsock_poll,
1843 	.ioctl = sock_no_ioctl,
1844 	.listen = vsock_listen,
1845 	.shutdown = vsock_shutdown,
1846 	.setsockopt = vsock_stream_setsockopt,
1847 	.getsockopt = vsock_stream_getsockopt,
1848 	.sendmsg = vsock_stream_sendmsg,
1849 	.recvmsg = vsock_stream_recvmsg,
1850 	.mmap = sock_no_mmap,
1851 	.sendpage = sock_no_sendpage,
1852 };
1853 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)1854 static int vsock_create(struct net *net, struct socket *sock,
1855 			int protocol, int kern)
1856 {
1857 	if (!sock)
1858 		return -EINVAL;
1859 
1860 	if (protocol && protocol != PF_VSOCK)
1861 		return -EPROTONOSUPPORT;
1862 
1863 	switch (sock->type) {
1864 	case SOCK_DGRAM:
1865 		sock->ops = &vsock_dgram_ops;
1866 		break;
1867 	case SOCK_STREAM:
1868 		sock->ops = &vsock_stream_ops;
1869 		break;
1870 	default:
1871 		return -ESOCKTNOSUPPORT;
1872 	}
1873 
1874 	sock->state = SS_UNCONNECTED;
1875 
1876 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1877 }
1878 
1879 static const struct net_proto_family vsock_family_ops = {
1880 	.family = AF_VSOCK,
1881 	.create = vsock_create,
1882 	.owner = THIS_MODULE,
1883 };
1884 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)1885 static long vsock_dev_do_ioctl(struct file *filp,
1886 			       unsigned int cmd, void __user *ptr)
1887 {
1888 	u32 __user *p = ptr;
1889 	int retval = 0;
1890 
1891 	switch (cmd) {
1892 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1893 		if (put_user(transport->get_local_cid(), p) != 0)
1894 			retval = -EFAULT;
1895 		break;
1896 
1897 	default:
1898 		pr_err("Unknown ioctl %d\n", cmd);
1899 		retval = -EINVAL;
1900 	}
1901 
1902 	return retval;
1903 }
1904 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1905 static long vsock_dev_ioctl(struct file *filp,
1906 			    unsigned int cmd, unsigned long arg)
1907 {
1908 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1909 }
1910 
1911 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1912 static long vsock_dev_compat_ioctl(struct file *filp,
1913 				   unsigned int cmd, unsigned long arg)
1914 {
1915 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1916 }
1917 #endif
1918 
1919 static const struct file_operations vsock_device_ops = {
1920 	.owner		= THIS_MODULE,
1921 	.unlocked_ioctl	= vsock_dev_ioctl,
1922 #ifdef CONFIG_COMPAT
1923 	.compat_ioctl	= vsock_dev_compat_ioctl,
1924 #endif
1925 	.open		= nonseekable_open,
1926 };
1927 
1928 static struct miscdevice vsock_device = {
1929 	.name		= "vsock",
1930 	.fops		= &vsock_device_ops,
1931 };
1932 
__vsock_core_init(const struct vsock_transport * t,struct module * owner)1933 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1934 {
1935 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1936 
1937 	if (err)
1938 		return err;
1939 
1940 	if (transport) {
1941 		err = -EBUSY;
1942 		goto err_busy;
1943 	}
1944 
1945 	/* Transport must be the owner of the protocol so that it can't
1946 	 * unload while there are open sockets.
1947 	 */
1948 	vsock_proto.owner = owner;
1949 	transport = t;
1950 
1951 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1952 	err = misc_register(&vsock_device);
1953 	if (err) {
1954 		pr_err("Failed to register misc device\n");
1955 		goto err_reset_transport;
1956 	}
1957 
1958 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1959 	if (err) {
1960 		pr_err("Cannot register vsock protocol\n");
1961 		goto err_deregister_misc;
1962 	}
1963 
1964 	err = sock_register(&vsock_family_ops);
1965 	if (err) {
1966 		pr_err("could not register af_vsock (%d) address family: %d\n",
1967 		       AF_VSOCK, err);
1968 		goto err_unregister_proto;
1969 	}
1970 
1971 	mutex_unlock(&vsock_register_mutex);
1972 	return 0;
1973 
1974 err_unregister_proto:
1975 	proto_unregister(&vsock_proto);
1976 err_deregister_misc:
1977 	misc_deregister(&vsock_device);
1978 err_reset_transport:
1979 	transport = NULL;
1980 err_busy:
1981 	mutex_unlock(&vsock_register_mutex);
1982 	return err;
1983 }
1984 EXPORT_SYMBOL_GPL(__vsock_core_init);
1985 
vsock_core_exit(void)1986 void vsock_core_exit(void)
1987 {
1988 	mutex_lock(&vsock_register_mutex);
1989 
1990 	misc_deregister(&vsock_device);
1991 	sock_unregister(AF_VSOCK);
1992 	proto_unregister(&vsock_proto);
1993 
1994 	/* We do not want the assignment below re-ordered. */
1995 	mb();
1996 	transport = NULL;
1997 
1998 	mutex_unlock(&vsock_register_mutex);
1999 }
2000 EXPORT_SYMBOL_GPL(vsock_core_exit);
2001 
vsock_core_get_transport(void)2002 const struct vsock_transport *vsock_core_get_transport(void)
2003 {
2004 	/* vsock_register_mutex not taken since only the transport uses this
2005 	 * function and only while registered.
2006 	 */
2007 	return transport;
2008 }
2009 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2010 
vsock_exit(void)2011 static void __exit vsock_exit(void)
2012 {
2013 	/* Do nothing.  This function makes this module removable. */
2014 }
2015 
2016 module_init(vsock_init_tables);
2017 module_exit(vsock_exit);
2018 
2019 MODULE_AUTHOR("VMware, Inc.");
2020 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2021 MODULE_VERSION("1.0.2.0-k");
2022 MODULE_LICENSE("GPL v2");
2023