1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
126 */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
147 *
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
152 *
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
158 */
159 #define MAX_PORT_RETRIES 24
160
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
185
186 if (vsock_addr_bound(&vsk->local_addr))
187 return 0;
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
190 }
191
vsock_init_tables(void)192 static void vsock_init_tables(void)
193 {
194 int i;
195
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
205 {
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
208 }
209
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
215 }
216
__vsock_remove_bound(struct vsock_sock * vsk)217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
221 }
222
__vsock_remove_connected(struct vsock_sock * vsk)223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
227 }
228
__vsock_find_bound_socket(struct sockaddr_vm * addr)229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 struct vsock_sock *vsk;
232
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
236
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
241 }
242
243 return NULL;
244 }
245
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
248 {
249 struct vsock_sock *vsk;
250
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
256 }
257 }
258
259 return NULL;
260 }
261
vsock_insert_unbound(struct vsock_sock * vsk)262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
267 }
268
vsock_insert_connected(struct vsock_sock * vsk)269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
273
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
vsock_remove_bound(struct vsock_sock * vsk)280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
vsock_remove_connected(struct vsock_sock * vsk)289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
vsock_find_bound_socket(struct sockaddr_vm * addr)298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 struct sock *sk;
301
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
306
307 spin_unlock_bh(&vsock_table_lock);
308
309 return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
315 {
316 struct sock *sk;
317
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
322
323 spin_unlock_bh(&vsock_table_lock);
324
325 return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
vsock_remove_sock(struct vsock_sock * vsk)329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 int i;
339
340 spin_lock_bh(&vsock_table_lock);
341
342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 struct vsock_sock *vsk;
344 list_for_each_entry(vsk, &vsock_connected_table[i],
345 connected_table)
346 fn(sk_vsock(vsk));
347 }
348
349 spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352
vsock_add_pending(struct sock * listener,struct sock * pending)353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 struct vsock_sock *vlistener;
356 struct vsock_sock *vpending;
357
358 vlistener = vsock_sk(listener);
359 vpending = vsock_sk(pending);
360
361 sock_hold(pending);
362 sock_hold(listener);
363 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366
vsock_remove_pending(struct sock * listener,struct sock * pending)367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 struct vsock_sock *vpending = vsock_sk(pending);
370
371 list_del_init(&vpending->pending_links);
372 sock_put(listener);
373 sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376
vsock_enqueue_accept(struct sock * listener,struct sock * connected)377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vconnected;
381
382 vlistener = vsock_sk(listener);
383 vconnected = vsock_sk(connected);
384
385 sock_hold(connected);
386 sock_hold(listener);
387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390
vsock_use_local_transport(unsigned int remote_cid)391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 if (!transport_local)
394 return false;
395
396 if (remote_cid == VMADDR_CID_LOCAL)
397 return true;
398
399 if (transport_g2h) {
400 return remote_cid == transport_g2h->get_local_cid();
401 } else {
402 return remote_cid == VMADDR_CID_HOST;
403 }
404 }
405
vsock_deassign_transport(struct vsock_sock * vsk)406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 if (!vsk->transport)
409 return;
410
411 vsk->transport->destruct(vsk);
412 module_put(vsk->transport->module);
413 vsk->transport = NULL;
414 }
415
416 /* Assign a transport to a socket and call the .init transport callback.
417 *
418 * Note: for stream socket this must be called when vsk->remote_addr is set
419 * (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
426 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
428 {
429 const struct vsock_transport *new_transport;
430 struct sock *sk = sk_vsock(vsk);
431 unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 int ret;
433
434 switch (sk->sk_type) {
435 case SOCK_DGRAM:
436 new_transport = transport_dgram;
437 break;
438 case SOCK_STREAM:
439 if (vsock_use_local_transport(remote_cid))
440 new_transport = transport_local;
441 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
442 new_transport = transport_g2h;
443 else
444 new_transport = transport_h2g;
445 break;
446 default:
447 return -ESOCKTNOSUPPORT;
448 }
449
450 if (vsk->transport) {
451 if (vsk->transport == new_transport)
452 return 0;
453
454 /* transport->release() must be called with sock lock acquired.
455 * This path can only be taken during vsock_stream_connect(),
456 * where we have already held the sock lock.
457 * In the other cases, this function is called on a new socket
458 * which is not assigned to any transport.
459 */
460 vsk->transport->release(vsk);
461 vsock_deassign_transport(vsk);
462 }
463
464 /* We increase the module refcnt to prevent the transport unloading
465 * while there are open sockets assigned to it.
466 */
467 if (!new_transport || !try_module_get(new_transport->module))
468 return -ENODEV;
469
470 ret = new_transport->init(vsk, psk);
471 if (ret) {
472 module_put(new_transport->module);
473 return ret;
474 }
475
476 vsk->transport = new_transport;
477
478 return 0;
479 }
480 EXPORT_SYMBOL_GPL(vsock_assign_transport);
481
vsock_find_cid(unsigned int cid)482 bool vsock_find_cid(unsigned int cid)
483 {
484 if (transport_g2h && cid == transport_g2h->get_local_cid())
485 return true;
486
487 if (transport_h2g && cid == VMADDR_CID_HOST)
488 return true;
489
490 if (transport_local && cid == VMADDR_CID_LOCAL)
491 return true;
492
493 return false;
494 }
495 EXPORT_SYMBOL_GPL(vsock_find_cid);
496
vsock_dequeue_accept(struct sock * listener)497 static struct sock *vsock_dequeue_accept(struct sock *listener)
498 {
499 struct vsock_sock *vlistener;
500 struct vsock_sock *vconnected;
501
502 vlistener = vsock_sk(listener);
503
504 if (list_empty(&vlistener->accept_queue))
505 return NULL;
506
507 vconnected = list_entry(vlistener->accept_queue.next,
508 struct vsock_sock, accept_queue);
509
510 list_del_init(&vconnected->accept_queue);
511 sock_put(listener);
512 /* The caller will need a reference on the connected socket so we let
513 * it call sock_put().
514 */
515
516 return sk_vsock(vconnected);
517 }
518
vsock_is_accept_queue_empty(struct sock * sk)519 static bool vsock_is_accept_queue_empty(struct sock *sk)
520 {
521 struct vsock_sock *vsk = vsock_sk(sk);
522 return list_empty(&vsk->accept_queue);
523 }
524
vsock_is_pending(struct sock * sk)525 static bool vsock_is_pending(struct sock *sk)
526 {
527 struct vsock_sock *vsk = vsock_sk(sk);
528 return !list_empty(&vsk->pending_links);
529 }
530
vsock_send_shutdown(struct sock * sk,int mode)531 static int vsock_send_shutdown(struct sock *sk, int mode)
532 {
533 struct vsock_sock *vsk = vsock_sk(sk);
534
535 if (!vsk->transport)
536 return -ENODEV;
537
538 return vsk->transport->shutdown(vsk, mode);
539 }
540
vsock_pending_work(struct work_struct * work)541 static void vsock_pending_work(struct work_struct *work)
542 {
543 struct sock *sk;
544 struct sock *listener;
545 struct vsock_sock *vsk;
546 bool cleanup;
547
548 vsk = container_of(work, struct vsock_sock, pending_work.work);
549 sk = sk_vsock(vsk);
550 listener = vsk->listener;
551 cleanup = true;
552
553 lock_sock(listener);
554 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
555
556 if (vsock_is_pending(sk)) {
557 vsock_remove_pending(listener, sk);
558
559 sk_acceptq_removed(listener);
560 } else if (!vsk->rejected) {
561 /* We are not on the pending list and accept() did not reject
562 * us, so we must have been accepted by our user process. We
563 * just need to drop our references to the sockets and be on
564 * our way.
565 */
566 cleanup = false;
567 goto out;
568 }
569
570 /* We need to remove ourself from the global connected sockets list so
571 * incoming packets can't find this socket, and to reduce the reference
572 * count.
573 */
574 vsock_remove_connected(vsk);
575
576 sk->sk_state = TCP_CLOSE;
577
578 out:
579 release_sock(sk);
580 release_sock(listener);
581 if (cleanup)
582 sock_put(sk);
583
584 sock_put(sk);
585 sock_put(listener);
586 }
587
588 /**** SOCKET OPERATIONS ****/
589
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)590 static int __vsock_bind_stream(struct vsock_sock *vsk,
591 struct sockaddr_vm *addr)
592 {
593 static u32 port;
594 struct sockaddr_vm new_addr;
595
596 if (!port)
597 port = LAST_RESERVED_PORT + 1 +
598 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
599
600 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
601
602 if (addr->svm_port == VMADDR_PORT_ANY) {
603 bool found = false;
604 unsigned int i;
605
606 for (i = 0; i < MAX_PORT_RETRIES; i++) {
607 if (port <= LAST_RESERVED_PORT)
608 port = LAST_RESERVED_PORT + 1;
609
610 new_addr.svm_port = port++;
611
612 if (!__vsock_find_bound_socket(&new_addr)) {
613 found = true;
614 break;
615 }
616 }
617
618 if (!found)
619 return -EADDRNOTAVAIL;
620 } else {
621 /* If port is in reserved range, ensure caller
622 * has necessary privileges.
623 */
624 if (addr->svm_port <= LAST_RESERVED_PORT &&
625 !capable(CAP_NET_BIND_SERVICE)) {
626 return -EACCES;
627 }
628
629 if (__vsock_find_bound_socket(&new_addr))
630 return -EADDRINUSE;
631 }
632
633 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
634
635 /* Remove stream sockets from the unbound list and add them to the hash
636 * table for easy lookup by its address. The unbound list is simply an
637 * extra entry at the end of the hash table, a trick used by AF_UNIX.
638 */
639 __vsock_remove_bound(vsk);
640 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
641
642 return 0;
643 }
644
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)645 static int __vsock_bind_dgram(struct vsock_sock *vsk,
646 struct sockaddr_vm *addr)
647 {
648 return vsk->transport->dgram_bind(vsk, addr);
649 }
650
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)651 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
652 {
653 struct vsock_sock *vsk = vsock_sk(sk);
654 int retval;
655
656 /* First ensure this socket isn't already bound. */
657 if (vsock_addr_bound(&vsk->local_addr))
658 return -EINVAL;
659
660 /* Now bind to the provided address or select appropriate values if
661 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
662 * like AF_INET prevents binding to a non-local IP address (in most
663 * cases), we only allow binding to a local CID.
664 */
665 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
666 return -EADDRNOTAVAIL;
667
668 switch (sk->sk_socket->type) {
669 case SOCK_STREAM:
670 spin_lock_bh(&vsock_table_lock);
671 retval = __vsock_bind_stream(vsk, addr);
672 spin_unlock_bh(&vsock_table_lock);
673 break;
674
675 case SOCK_DGRAM:
676 retval = __vsock_bind_dgram(vsk, addr);
677 break;
678
679 default:
680 retval = -EINVAL;
681 break;
682 }
683
684 return retval;
685 }
686
687 static void vsock_connect_timeout(struct work_struct *work);
688
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)689 static struct sock *__vsock_create(struct net *net,
690 struct socket *sock,
691 struct sock *parent,
692 gfp_t priority,
693 unsigned short type,
694 int kern)
695 {
696 struct sock *sk;
697 struct vsock_sock *psk;
698 struct vsock_sock *vsk;
699
700 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
701 if (!sk)
702 return NULL;
703
704 sock_init_data(sock, sk);
705
706 /* sk->sk_type is normally set in sock_init_data, but only if sock is
707 * non-NULL. We make sure that our sockets always have a type by
708 * setting it here if needed.
709 */
710 if (!sock)
711 sk->sk_type = type;
712
713 vsk = vsock_sk(sk);
714 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
715 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
716
717 sk->sk_destruct = vsock_sk_destruct;
718 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
719 sock_reset_flag(sk, SOCK_DONE);
720
721 INIT_LIST_HEAD(&vsk->bound_table);
722 INIT_LIST_HEAD(&vsk->connected_table);
723 vsk->listener = NULL;
724 INIT_LIST_HEAD(&vsk->pending_links);
725 INIT_LIST_HEAD(&vsk->accept_queue);
726 vsk->rejected = false;
727 vsk->sent_request = false;
728 vsk->ignore_connecting_rst = false;
729 vsk->peer_shutdown = 0;
730 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
731 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
732
733 psk = parent ? vsock_sk(parent) : NULL;
734 if (parent) {
735 vsk->trusted = psk->trusted;
736 vsk->owner = get_cred(psk->owner);
737 vsk->connect_timeout = psk->connect_timeout;
738 vsk->buffer_size = psk->buffer_size;
739 vsk->buffer_min_size = psk->buffer_min_size;
740 vsk->buffer_max_size = psk->buffer_max_size;
741 security_sk_clone(parent, sk);
742 } else {
743 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
744 vsk->owner = get_current_cred();
745 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
746 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
747 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
748 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
749 }
750
751 return sk;
752 }
753
__vsock_release(struct sock * sk,int level)754 static void __vsock_release(struct sock *sk, int level)
755 {
756 if (sk) {
757 struct sock *pending;
758 struct vsock_sock *vsk;
759
760 vsk = vsock_sk(sk);
761 pending = NULL; /* Compiler warning. */
762
763 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
764 * version to avoid the warning "possible recursive locking
765 * detected". When "level" is 0, lock_sock_nested(sk, level)
766 * is the same as lock_sock(sk).
767 */
768 lock_sock_nested(sk, level);
769
770 if (vsk->transport)
771 vsk->transport->release(vsk);
772 else if (sk->sk_type == SOCK_STREAM)
773 vsock_remove_sock(vsk);
774
775 sock_orphan(sk);
776 sk->sk_shutdown = SHUTDOWN_MASK;
777
778 skb_queue_purge(&sk->sk_receive_queue);
779
780 /* Clean up any sockets that never were accepted. */
781 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
782 __vsock_release(pending, SINGLE_DEPTH_NESTING);
783 sock_put(pending);
784 }
785
786 release_sock(sk);
787 sock_put(sk);
788 }
789 }
790
vsock_sk_destruct(struct sock * sk)791 static void vsock_sk_destruct(struct sock *sk)
792 {
793 struct vsock_sock *vsk = vsock_sk(sk);
794
795 vsock_deassign_transport(vsk);
796
797 /* When clearing these addresses, there's no need to set the family and
798 * possibly register the address family with the kernel.
799 */
800 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
801 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802
803 put_cred(vsk->owner);
804 }
805
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)806 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
807 {
808 int err;
809
810 err = sock_queue_rcv_skb(sk, skb);
811 if (err)
812 kfree_skb(skb);
813
814 return err;
815 }
816
vsock_create_connected(struct sock * parent)817 struct sock *vsock_create_connected(struct sock *parent)
818 {
819 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
820 parent->sk_type, 0);
821 }
822 EXPORT_SYMBOL_GPL(vsock_create_connected);
823
vsock_stream_has_data(struct vsock_sock * vsk)824 s64 vsock_stream_has_data(struct vsock_sock *vsk)
825 {
826 return vsk->transport->stream_has_data(vsk);
827 }
828 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
829
vsock_stream_has_space(struct vsock_sock * vsk)830 s64 vsock_stream_has_space(struct vsock_sock *vsk)
831 {
832 return vsk->transport->stream_has_space(vsk);
833 }
834 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
835
vsock_release(struct socket * sock)836 static int vsock_release(struct socket *sock)
837 {
838 __vsock_release(sock->sk, 0);
839 sock->sk = NULL;
840 sock->state = SS_FREE;
841
842 return 0;
843 }
844
845 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)846 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
847 {
848 int err;
849 struct sock *sk;
850 struct sockaddr_vm *vm_addr;
851
852 sk = sock->sk;
853
854 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
855 return -EINVAL;
856
857 lock_sock(sk);
858 err = __vsock_bind(sk, vm_addr);
859 release_sock(sk);
860
861 return err;
862 }
863
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)864 static int vsock_getname(struct socket *sock,
865 struct sockaddr *addr, int peer)
866 {
867 int err;
868 struct sock *sk;
869 struct vsock_sock *vsk;
870 struct sockaddr_vm *vm_addr;
871
872 sk = sock->sk;
873 vsk = vsock_sk(sk);
874 err = 0;
875
876 lock_sock(sk);
877
878 if (peer) {
879 if (sock->state != SS_CONNECTED) {
880 err = -ENOTCONN;
881 goto out;
882 }
883 vm_addr = &vsk->remote_addr;
884 } else {
885 vm_addr = &vsk->local_addr;
886 }
887
888 if (!vm_addr) {
889 err = -EINVAL;
890 goto out;
891 }
892
893 /* sys_getsockname() and sys_getpeername() pass us a
894 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
895 * that macro is defined in socket.c instead of .h, so we hardcode its
896 * value here.
897 */
898 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
899 memcpy(addr, vm_addr, sizeof(*vm_addr));
900 err = sizeof(*vm_addr);
901
902 out:
903 release_sock(sk);
904 return err;
905 }
906
vsock_shutdown(struct socket * sock,int mode)907 static int vsock_shutdown(struct socket *sock, int mode)
908 {
909 int err;
910 struct sock *sk;
911
912 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
913 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
914 * here like the other address families do. Note also that the
915 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
916 * which is what we want.
917 */
918 mode++;
919
920 if ((mode & ~SHUTDOWN_MASK) || !mode)
921 return -EINVAL;
922
923 /* If this is a STREAM socket and it is not connected then bail out
924 * immediately. If it is a DGRAM socket then we must first kick the
925 * socket so that it wakes up from any sleeping calls, for example
926 * recv(), and then afterwards return the error.
927 */
928
929 sk = sock->sk;
930
931 lock_sock(sk);
932 if (sock->state == SS_UNCONNECTED) {
933 err = -ENOTCONN;
934 if (sk->sk_type == SOCK_STREAM)
935 goto out;
936 } else {
937 sock->state = SS_DISCONNECTING;
938 err = 0;
939 }
940
941 /* Receive and send shutdowns are treated alike. */
942 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
943 if (mode) {
944 sk->sk_shutdown |= mode;
945 sk->sk_state_change(sk);
946
947 if (sk->sk_type == SOCK_STREAM) {
948 sock_reset_flag(sk, SOCK_DONE);
949 vsock_send_shutdown(sk, mode);
950 }
951 }
952
953 out:
954 release_sock(sk);
955 return err;
956 }
957
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)958 static __poll_t vsock_poll(struct file *file, struct socket *sock,
959 poll_table *wait)
960 {
961 struct sock *sk;
962 __poll_t mask;
963 struct vsock_sock *vsk;
964
965 sk = sock->sk;
966 vsk = vsock_sk(sk);
967
968 poll_wait(file, sk_sleep(sk), wait);
969 mask = 0;
970
971 if (sk->sk_err)
972 /* Signify that there has been an error on this socket. */
973 mask |= EPOLLERR;
974
975 /* INET sockets treat local write shutdown and peer write shutdown as a
976 * case of EPOLLHUP set.
977 */
978 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
979 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
980 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
981 mask |= EPOLLHUP;
982 }
983
984 if (sk->sk_shutdown & RCV_SHUTDOWN ||
985 vsk->peer_shutdown & SEND_SHUTDOWN) {
986 mask |= EPOLLRDHUP;
987 }
988
989 if (sock->type == SOCK_DGRAM) {
990 /* For datagram sockets we can read if there is something in
991 * the queue and write as long as the socket isn't shutdown for
992 * sending.
993 */
994 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
995 (sk->sk_shutdown & RCV_SHUTDOWN)) {
996 mask |= EPOLLIN | EPOLLRDNORM;
997 }
998
999 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1000 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1001
1002 } else if (sock->type == SOCK_STREAM) {
1003 const struct vsock_transport *transport;
1004
1005 lock_sock(sk);
1006
1007 transport = vsk->transport;
1008
1009 /* Listening sockets that have connections in their accept
1010 * queue can be read.
1011 */
1012 if (sk->sk_state == TCP_LISTEN
1013 && !vsock_is_accept_queue_empty(sk))
1014 mask |= EPOLLIN | EPOLLRDNORM;
1015
1016 /* If there is something in the queue then we can read. */
1017 if (transport && transport->stream_is_active(vsk) &&
1018 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1019 bool data_ready_now = false;
1020 int ret = transport->notify_poll_in(
1021 vsk, 1, &data_ready_now);
1022 if (ret < 0) {
1023 mask |= EPOLLERR;
1024 } else {
1025 if (data_ready_now)
1026 mask |= EPOLLIN | EPOLLRDNORM;
1027
1028 }
1029 }
1030
1031 /* Sockets whose connections have been closed, reset, or
1032 * terminated should also be considered read, and we check the
1033 * shutdown flag for that.
1034 */
1035 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1036 vsk->peer_shutdown & SEND_SHUTDOWN) {
1037 mask |= EPOLLIN | EPOLLRDNORM;
1038 }
1039
1040 /* Connected sockets that can produce data can be written. */
1041 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1042 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1043 bool space_avail_now = false;
1044 int ret = transport->notify_poll_out(
1045 vsk, 1, &space_avail_now);
1046 if (ret < 0) {
1047 mask |= EPOLLERR;
1048 } else {
1049 if (space_avail_now)
1050 /* Remove EPOLLWRBAND since INET
1051 * sockets are not setting it.
1052 */
1053 mask |= EPOLLOUT | EPOLLWRNORM;
1054
1055 }
1056 }
1057 }
1058
1059 /* Simulate INET socket poll behaviors, which sets
1060 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1061 * but local send is not shutdown.
1062 */
1063 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1064 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1065 mask |= EPOLLOUT | EPOLLWRNORM;
1066
1067 }
1068
1069 release_sock(sk);
1070 }
1071
1072 return mask;
1073 }
1074
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1075 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1076 size_t len)
1077 {
1078 int err;
1079 struct sock *sk;
1080 struct vsock_sock *vsk;
1081 struct sockaddr_vm *remote_addr;
1082 const struct vsock_transport *transport;
1083
1084 if (msg->msg_flags & MSG_OOB)
1085 return -EOPNOTSUPP;
1086
1087 /* For now, MSG_DONTWAIT is always assumed... */
1088 err = 0;
1089 sk = sock->sk;
1090 vsk = vsock_sk(sk);
1091
1092 lock_sock(sk);
1093
1094 transport = vsk->transport;
1095
1096 err = vsock_auto_bind(vsk);
1097 if (err)
1098 goto out;
1099
1100
1101 /* If the provided message contains an address, use that. Otherwise
1102 * fall back on the socket's remote handle (if it has been connected).
1103 */
1104 if (msg->msg_name &&
1105 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1106 &remote_addr) == 0) {
1107 /* Ensure this address is of the right type and is a valid
1108 * destination.
1109 */
1110
1111 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1112 remote_addr->svm_cid = transport->get_local_cid();
1113
1114 if (!vsock_addr_bound(remote_addr)) {
1115 err = -EINVAL;
1116 goto out;
1117 }
1118 } else if (sock->state == SS_CONNECTED) {
1119 remote_addr = &vsk->remote_addr;
1120
1121 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1122 remote_addr->svm_cid = transport->get_local_cid();
1123
1124 /* XXX Should connect() or this function ensure remote_addr is
1125 * bound?
1126 */
1127 if (!vsock_addr_bound(&vsk->remote_addr)) {
1128 err = -EINVAL;
1129 goto out;
1130 }
1131 } else {
1132 err = -EINVAL;
1133 goto out;
1134 }
1135
1136 if (!transport->dgram_allow(remote_addr->svm_cid,
1137 remote_addr->svm_port)) {
1138 err = -EINVAL;
1139 goto out;
1140 }
1141
1142 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1143
1144 out:
1145 release_sock(sk);
1146 return err;
1147 }
1148
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1149 static int vsock_dgram_connect(struct socket *sock,
1150 struct sockaddr *addr, int addr_len, int flags)
1151 {
1152 int err;
1153 struct sock *sk;
1154 struct vsock_sock *vsk;
1155 struct sockaddr_vm *remote_addr;
1156
1157 sk = sock->sk;
1158 vsk = vsock_sk(sk);
1159
1160 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1161 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1162 lock_sock(sk);
1163 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1164 VMADDR_PORT_ANY);
1165 sock->state = SS_UNCONNECTED;
1166 release_sock(sk);
1167 return 0;
1168 } else if (err != 0)
1169 return -EINVAL;
1170
1171 lock_sock(sk);
1172
1173 err = vsock_auto_bind(vsk);
1174 if (err)
1175 goto out;
1176
1177 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1178 remote_addr->svm_port)) {
1179 err = -EINVAL;
1180 goto out;
1181 }
1182
1183 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1184 sock->state = SS_CONNECTED;
1185
1186 out:
1187 release_sock(sk);
1188 return err;
1189 }
1190
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1191 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1192 size_t len, int flags)
1193 {
1194 struct vsock_sock *vsk = vsock_sk(sock->sk);
1195
1196 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1197 }
1198
1199 static const struct proto_ops vsock_dgram_ops = {
1200 .family = PF_VSOCK,
1201 .owner = THIS_MODULE,
1202 .release = vsock_release,
1203 .bind = vsock_bind,
1204 .connect = vsock_dgram_connect,
1205 .socketpair = sock_no_socketpair,
1206 .accept = sock_no_accept,
1207 .getname = vsock_getname,
1208 .poll = vsock_poll,
1209 .ioctl = sock_no_ioctl,
1210 .listen = sock_no_listen,
1211 .shutdown = vsock_shutdown,
1212 .sendmsg = vsock_dgram_sendmsg,
1213 .recvmsg = vsock_dgram_recvmsg,
1214 .mmap = sock_no_mmap,
1215 .sendpage = sock_no_sendpage,
1216 };
1217
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1218 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1219 {
1220 const struct vsock_transport *transport = vsk->transport;
1221
1222 if (!transport || !transport->cancel_pkt)
1223 return -EOPNOTSUPP;
1224
1225 return transport->cancel_pkt(vsk);
1226 }
1227
vsock_connect_timeout(struct work_struct * work)1228 static void vsock_connect_timeout(struct work_struct *work)
1229 {
1230 struct sock *sk;
1231 struct vsock_sock *vsk;
1232
1233 vsk = container_of(work, struct vsock_sock, connect_work.work);
1234 sk = sk_vsock(vsk);
1235
1236 lock_sock(sk);
1237 if (sk->sk_state == TCP_SYN_SENT &&
1238 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1239 sk->sk_state = TCP_CLOSE;
1240 sk->sk_err = ETIMEDOUT;
1241 sk->sk_error_report(sk);
1242 vsock_transport_cancel_pkt(vsk);
1243 }
1244 release_sock(sk);
1245
1246 sock_put(sk);
1247 }
1248
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1249 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1250 int addr_len, int flags)
1251 {
1252 int err;
1253 struct sock *sk;
1254 struct vsock_sock *vsk;
1255 const struct vsock_transport *transport;
1256 struct sockaddr_vm *remote_addr;
1257 long timeout;
1258 DEFINE_WAIT(wait);
1259
1260 err = 0;
1261 sk = sock->sk;
1262 vsk = vsock_sk(sk);
1263
1264 lock_sock(sk);
1265
1266 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1267 switch (sock->state) {
1268 case SS_CONNECTED:
1269 err = -EISCONN;
1270 goto out;
1271 case SS_DISCONNECTING:
1272 err = -EINVAL;
1273 goto out;
1274 case SS_CONNECTING:
1275 /* This continues on so we can move sock into the SS_CONNECTED
1276 * state once the connection has completed (at which point err
1277 * will be set to zero also). Otherwise, we will either wait
1278 * for the connection or return -EALREADY should this be a
1279 * non-blocking call.
1280 */
1281 err = -EALREADY;
1282 break;
1283 default:
1284 if ((sk->sk_state == TCP_LISTEN) ||
1285 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1286 err = -EINVAL;
1287 goto out;
1288 }
1289
1290 /* Set the remote address that we are connecting to. */
1291 memcpy(&vsk->remote_addr, remote_addr,
1292 sizeof(vsk->remote_addr));
1293
1294 err = vsock_assign_transport(vsk, NULL);
1295 if (err)
1296 goto out;
1297
1298 transport = vsk->transport;
1299
1300 /* The hypervisor and well-known contexts do not have socket
1301 * endpoints.
1302 */
1303 if (!transport ||
1304 !transport->stream_allow(remote_addr->svm_cid,
1305 remote_addr->svm_port)) {
1306 err = -ENETUNREACH;
1307 goto out;
1308 }
1309
1310 err = vsock_auto_bind(vsk);
1311 if (err)
1312 goto out;
1313
1314 sk->sk_state = TCP_SYN_SENT;
1315
1316 err = transport->connect(vsk);
1317 if (err < 0)
1318 goto out;
1319
1320 /* Mark sock as connecting and set the error code to in
1321 * progress in case this is a non-blocking connect.
1322 */
1323 sock->state = SS_CONNECTING;
1324 err = -EINPROGRESS;
1325 }
1326
1327 /* The receive path will handle all communication until we are able to
1328 * enter the connected state. Here we wait for the connection to be
1329 * completed or a notification of an error.
1330 */
1331 timeout = vsk->connect_timeout;
1332 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1333
1334 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1335 if (flags & O_NONBLOCK) {
1336 /* If we're not going to block, we schedule a timeout
1337 * function to generate a timeout on the connection
1338 * attempt, in case the peer doesn't respond in a
1339 * timely manner. We hold on to the socket until the
1340 * timeout fires.
1341 */
1342 sock_hold(sk);
1343
1344 /* If the timeout function is already scheduled,
1345 * reschedule it, then ungrab the socket refcount to
1346 * keep it balanced.
1347 */
1348 if (mod_delayed_work(system_wq, &vsk->connect_work,
1349 timeout))
1350 sock_put(sk);
1351
1352 /* Skip ahead to preserve error code set above. */
1353 goto out_wait;
1354 }
1355
1356 release_sock(sk);
1357 timeout = schedule_timeout(timeout);
1358 lock_sock(sk);
1359
1360 if (signal_pending(current)) {
1361 err = sock_intr_errno(timeout);
1362 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1363 sock->state = SS_UNCONNECTED;
1364 vsock_transport_cancel_pkt(vsk);
1365 goto out_wait;
1366 } else if (timeout == 0) {
1367 err = -ETIMEDOUT;
1368 sk->sk_state = TCP_CLOSE;
1369 sock->state = SS_UNCONNECTED;
1370 vsock_transport_cancel_pkt(vsk);
1371 goto out_wait;
1372 }
1373
1374 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1375 }
1376
1377 if (sk->sk_err) {
1378 err = -sk->sk_err;
1379 sk->sk_state = TCP_CLOSE;
1380 sock->state = SS_UNCONNECTED;
1381 } else {
1382 err = 0;
1383 }
1384
1385 out_wait:
1386 finish_wait(sk_sleep(sk), &wait);
1387 out:
1388 release_sock(sk);
1389 return err;
1390 }
1391
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1392 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1393 bool kern)
1394 {
1395 struct sock *listener;
1396 int err;
1397 struct sock *connected;
1398 struct vsock_sock *vconnected;
1399 long timeout;
1400 DEFINE_WAIT(wait);
1401
1402 err = 0;
1403 listener = sock->sk;
1404
1405 lock_sock(listener);
1406
1407 if (sock->type != SOCK_STREAM) {
1408 err = -EOPNOTSUPP;
1409 goto out;
1410 }
1411
1412 if (listener->sk_state != TCP_LISTEN) {
1413 err = -EINVAL;
1414 goto out;
1415 }
1416
1417 /* Wait for children sockets to appear; these are the new sockets
1418 * created upon connection establishment.
1419 */
1420 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1421 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1422
1423 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1424 listener->sk_err == 0) {
1425 release_sock(listener);
1426 timeout = schedule_timeout(timeout);
1427 finish_wait(sk_sleep(listener), &wait);
1428 lock_sock(listener);
1429
1430 if (signal_pending(current)) {
1431 err = sock_intr_errno(timeout);
1432 goto out;
1433 } else if (timeout == 0) {
1434 err = -EAGAIN;
1435 goto out;
1436 }
1437
1438 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1439 }
1440 finish_wait(sk_sleep(listener), &wait);
1441
1442 if (listener->sk_err)
1443 err = -listener->sk_err;
1444
1445 if (connected) {
1446 sk_acceptq_removed(listener);
1447
1448 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1449 vconnected = vsock_sk(connected);
1450
1451 /* If the listener socket has received an error, then we should
1452 * reject this socket and return. Note that we simply mark the
1453 * socket rejected, drop our reference, and let the cleanup
1454 * function handle the cleanup; the fact that we found it in
1455 * the listener's accept queue guarantees that the cleanup
1456 * function hasn't run yet.
1457 */
1458 if (err) {
1459 vconnected->rejected = true;
1460 } else {
1461 newsock->state = SS_CONNECTED;
1462 sock_graft(connected, newsock);
1463 }
1464
1465 release_sock(connected);
1466 sock_put(connected);
1467 }
1468
1469 out:
1470 release_sock(listener);
1471 return err;
1472 }
1473
vsock_listen(struct socket * sock,int backlog)1474 static int vsock_listen(struct socket *sock, int backlog)
1475 {
1476 int err;
1477 struct sock *sk;
1478 struct vsock_sock *vsk;
1479
1480 sk = sock->sk;
1481
1482 lock_sock(sk);
1483
1484 if (sock->type != SOCK_STREAM) {
1485 err = -EOPNOTSUPP;
1486 goto out;
1487 }
1488
1489 if (sock->state != SS_UNCONNECTED) {
1490 err = -EINVAL;
1491 goto out;
1492 }
1493
1494 vsk = vsock_sk(sk);
1495
1496 if (!vsock_addr_bound(&vsk->local_addr)) {
1497 err = -EINVAL;
1498 goto out;
1499 }
1500
1501 sk->sk_max_ack_backlog = backlog;
1502 sk->sk_state = TCP_LISTEN;
1503
1504 err = 0;
1505
1506 out:
1507 release_sock(sk);
1508 return err;
1509 }
1510
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1511 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1512 const struct vsock_transport *transport,
1513 u64 val)
1514 {
1515 if (val > vsk->buffer_max_size)
1516 val = vsk->buffer_max_size;
1517
1518 if (val < vsk->buffer_min_size)
1519 val = vsk->buffer_min_size;
1520
1521 if (val != vsk->buffer_size &&
1522 transport && transport->notify_buffer_size)
1523 transport->notify_buffer_size(vsk, &val);
1524
1525 vsk->buffer_size = val;
1526 }
1527
vsock_stream_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1528 static int vsock_stream_setsockopt(struct socket *sock,
1529 int level,
1530 int optname,
1531 sockptr_t optval,
1532 unsigned int optlen)
1533 {
1534 int err;
1535 struct sock *sk;
1536 struct vsock_sock *vsk;
1537 const struct vsock_transport *transport;
1538 u64 val;
1539
1540 if (level != AF_VSOCK)
1541 return -ENOPROTOOPT;
1542
1543 #define COPY_IN(_v) \
1544 do { \
1545 if (optlen < sizeof(_v)) { \
1546 err = -EINVAL; \
1547 goto exit; \
1548 } \
1549 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1550 err = -EFAULT; \
1551 goto exit; \
1552 } \
1553 } while (0)
1554
1555 err = 0;
1556 sk = sock->sk;
1557 vsk = vsock_sk(sk);
1558
1559 lock_sock(sk);
1560
1561 transport = vsk->transport;
1562
1563 switch (optname) {
1564 case SO_VM_SOCKETS_BUFFER_SIZE:
1565 COPY_IN(val);
1566 vsock_update_buffer_size(vsk, transport, val);
1567 break;
1568
1569 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1570 COPY_IN(val);
1571 vsk->buffer_max_size = val;
1572 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1573 break;
1574
1575 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1576 COPY_IN(val);
1577 vsk->buffer_min_size = val;
1578 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1579 break;
1580
1581 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1582 struct __kernel_old_timeval tv;
1583 COPY_IN(tv);
1584 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1585 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1586 vsk->connect_timeout = tv.tv_sec * HZ +
1587 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1588 if (vsk->connect_timeout == 0)
1589 vsk->connect_timeout =
1590 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1591
1592 } else {
1593 err = -ERANGE;
1594 }
1595 break;
1596 }
1597
1598 default:
1599 err = -ENOPROTOOPT;
1600 break;
1601 }
1602
1603 #undef COPY_IN
1604
1605 exit:
1606 release_sock(sk);
1607 return err;
1608 }
1609
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1610 static int vsock_stream_getsockopt(struct socket *sock,
1611 int level, int optname,
1612 char __user *optval,
1613 int __user *optlen)
1614 {
1615 int err;
1616 int len;
1617 struct sock *sk;
1618 struct vsock_sock *vsk;
1619 u64 val;
1620
1621 if (level != AF_VSOCK)
1622 return -ENOPROTOOPT;
1623
1624 err = get_user(len, optlen);
1625 if (err != 0)
1626 return err;
1627
1628 #define COPY_OUT(_v) \
1629 do { \
1630 if (len < sizeof(_v)) \
1631 return -EINVAL; \
1632 \
1633 len = sizeof(_v); \
1634 if (copy_to_user(optval, &_v, len) != 0) \
1635 return -EFAULT; \
1636 \
1637 } while (0)
1638
1639 err = 0;
1640 sk = sock->sk;
1641 vsk = vsock_sk(sk);
1642
1643 switch (optname) {
1644 case SO_VM_SOCKETS_BUFFER_SIZE:
1645 val = vsk->buffer_size;
1646 COPY_OUT(val);
1647 break;
1648
1649 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1650 val = vsk->buffer_max_size;
1651 COPY_OUT(val);
1652 break;
1653
1654 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1655 val = vsk->buffer_min_size;
1656 COPY_OUT(val);
1657 break;
1658
1659 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1660 struct __kernel_old_timeval tv;
1661 tv.tv_sec = vsk->connect_timeout / HZ;
1662 tv.tv_usec =
1663 (vsk->connect_timeout -
1664 tv.tv_sec * HZ) * (1000000 / HZ);
1665 COPY_OUT(tv);
1666 break;
1667 }
1668 default:
1669 return -ENOPROTOOPT;
1670 }
1671
1672 err = put_user(len, optlen);
1673 if (err != 0)
1674 return -EFAULT;
1675
1676 #undef COPY_OUT
1677
1678 return 0;
1679 }
1680
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1681 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1682 size_t len)
1683 {
1684 struct sock *sk;
1685 struct vsock_sock *vsk;
1686 const struct vsock_transport *transport;
1687 ssize_t total_written;
1688 long timeout;
1689 int err;
1690 struct vsock_transport_send_notify_data send_data;
1691 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1692
1693 sk = sock->sk;
1694 vsk = vsock_sk(sk);
1695 total_written = 0;
1696 err = 0;
1697
1698 if (msg->msg_flags & MSG_OOB)
1699 return -EOPNOTSUPP;
1700
1701 lock_sock(sk);
1702
1703 transport = vsk->transport;
1704
1705 /* Callers should not provide a destination with stream sockets. */
1706 if (msg->msg_namelen) {
1707 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1708 goto out;
1709 }
1710
1711 /* Send data only if both sides are not shutdown in the direction. */
1712 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1713 vsk->peer_shutdown & RCV_SHUTDOWN) {
1714 err = -EPIPE;
1715 goto out;
1716 }
1717
1718 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1719 !vsock_addr_bound(&vsk->local_addr)) {
1720 err = -ENOTCONN;
1721 goto out;
1722 }
1723
1724 if (!vsock_addr_bound(&vsk->remote_addr)) {
1725 err = -EDESTADDRREQ;
1726 goto out;
1727 }
1728
1729 /* Wait for room in the produce queue to enqueue our user's data. */
1730 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1731
1732 err = transport->notify_send_init(vsk, &send_data);
1733 if (err < 0)
1734 goto out;
1735
1736 while (total_written < len) {
1737 ssize_t written;
1738
1739 add_wait_queue(sk_sleep(sk), &wait);
1740 while (vsock_stream_has_space(vsk) == 0 &&
1741 sk->sk_err == 0 &&
1742 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1743 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1744
1745 /* Don't wait for non-blocking sockets. */
1746 if (timeout == 0) {
1747 err = -EAGAIN;
1748 remove_wait_queue(sk_sleep(sk), &wait);
1749 goto out_err;
1750 }
1751
1752 err = transport->notify_send_pre_block(vsk, &send_data);
1753 if (err < 0) {
1754 remove_wait_queue(sk_sleep(sk), &wait);
1755 goto out_err;
1756 }
1757
1758 release_sock(sk);
1759 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1760 lock_sock(sk);
1761 if (signal_pending(current)) {
1762 err = sock_intr_errno(timeout);
1763 remove_wait_queue(sk_sleep(sk), &wait);
1764 goto out_err;
1765 } else if (timeout == 0) {
1766 err = -EAGAIN;
1767 remove_wait_queue(sk_sleep(sk), &wait);
1768 goto out_err;
1769 }
1770 }
1771 remove_wait_queue(sk_sleep(sk), &wait);
1772
1773 /* These checks occur both as part of and after the loop
1774 * conditional since we need to check before and after
1775 * sleeping.
1776 */
1777 if (sk->sk_err) {
1778 err = -sk->sk_err;
1779 goto out_err;
1780 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1781 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1782 err = -EPIPE;
1783 goto out_err;
1784 }
1785
1786 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1787 if (err < 0)
1788 goto out_err;
1789
1790 /* Note that enqueue will only write as many bytes as are free
1791 * in the produce queue, so we don't need to ensure len is
1792 * smaller than the queue size. It is the caller's
1793 * responsibility to check how many bytes we were able to send.
1794 */
1795
1796 written = transport->stream_enqueue(
1797 vsk, msg,
1798 len - total_written);
1799 if (written < 0) {
1800 err = -ENOMEM;
1801 goto out_err;
1802 }
1803
1804 total_written += written;
1805
1806 err = transport->notify_send_post_enqueue(
1807 vsk, written, &send_data);
1808 if (err < 0)
1809 goto out_err;
1810
1811 }
1812
1813 out_err:
1814 if (total_written > 0)
1815 err = total_written;
1816 out:
1817 release_sock(sk);
1818 return err;
1819 }
1820
1821
1822 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1823 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1824 int flags)
1825 {
1826 struct sock *sk;
1827 struct vsock_sock *vsk;
1828 const struct vsock_transport *transport;
1829 int err;
1830 size_t target;
1831 ssize_t copied;
1832 long timeout;
1833 struct vsock_transport_recv_notify_data recv_data;
1834
1835 DEFINE_WAIT(wait);
1836
1837 sk = sock->sk;
1838 vsk = vsock_sk(sk);
1839 err = 0;
1840
1841 lock_sock(sk);
1842
1843 transport = vsk->transport;
1844
1845 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1846 /* Recvmsg is supposed to return 0 if a peer performs an
1847 * orderly shutdown. Differentiate between that case and when a
1848 * peer has not connected or a local shutdown occured with the
1849 * SOCK_DONE flag.
1850 */
1851 if (sock_flag(sk, SOCK_DONE))
1852 err = 0;
1853 else
1854 err = -ENOTCONN;
1855
1856 goto out;
1857 }
1858
1859 if (flags & MSG_OOB) {
1860 err = -EOPNOTSUPP;
1861 goto out;
1862 }
1863
1864 /* We don't check peer_shutdown flag here since peer may actually shut
1865 * down, but there can be data in the queue that a local socket can
1866 * receive.
1867 */
1868 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1869 err = 0;
1870 goto out;
1871 }
1872
1873 /* It is valid on Linux to pass in a zero-length receive buffer. This
1874 * is not an error. We may as well bail out now.
1875 */
1876 if (!len) {
1877 err = 0;
1878 goto out;
1879 }
1880
1881 /* We must not copy less than target bytes into the user's buffer
1882 * before returning successfully, so we wait for the consume queue to
1883 * have that much data to consume before dequeueing. Note that this
1884 * makes it impossible to handle cases where target is greater than the
1885 * queue size.
1886 */
1887 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1888 if (target >= transport->stream_rcvhiwat(vsk)) {
1889 err = -ENOMEM;
1890 goto out;
1891 }
1892 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1893 copied = 0;
1894
1895 err = transport->notify_recv_init(vsk, target, &recv_data);
1896 if (err < 0)
1897 goto out;
1898
1899
1900 while (1) {
1901 s64 ready;
1902
1903 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1904 ready = vsock_stream_has_data(vsk);
1905
1906 if (ready == 0) {
1907 if (sk->sk_err != 0 ||
1908 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1909 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1910 finish_wait(sk_sleep(sk), &wait);
1911 break;
1912 }
1913 /* Don't wait for non-blocking sockets. */
1914 if (timeout == 0) {
1915 err = -EAGAIN;
1916 finish_wait(sk_sleep(sk), &wait);
1917 break;
1918 }
1919
1920 err = transport->notify_recv_pre_block(
1921 vsk, target, &recv_data);
1922 if (err < 0) {
1923 finish_wait(sk_sleep(sk), &wait);
1924 break;
1925 }
1926 release_sock(sk);
1927 timeout = schedule_timeout(timeout);
1928 lock_sock(sk);
1929
1930 if (signal_pending(current)) {
1931 err = sock_intr_errno(timeout);
1932 finish_wait(sk_sleep(sk), &wait);
1933 break;
1934 } else if (timeout == 0) {
1935 err = -EAGAIN;
1936 finish_wait(sk_sleep(sk), &wait);
1937 break;
1938 }
1939 } else {
1940 ssize_t read;
1941
1942 finish_wait(sk_sleep(sk), &wait);
1943
1944 if (ready < 0) {
1945 /* Invalid queue pair content. XXX This should
1946 * be changed to a connection reset in a later
1947 * change.
1948 */
1949
1950 err = -ENOMEM;
1951 goto out;
1952 }
1953
1954 err = transport->notify_recv_pre_dequeue(
1955 vsk, target, &recv_data);
1956 if (err < 0)
1957 break;
1958
1959 read = transport->stream_dequeue(
1960 vsk, msg,
1961 len - copied, flags);
1962 if (read < 0) {
1963 err = -ENOMEM;
1964 break;
1965 }
1966
1967 copied += read;
1968
1969 err = transport->notify_recv_post_dequeue(
1970 vsk, target, read,
1971 !(flags & MSG_PEEK), &recv_data);
1972 if (err < 0)
1973 goto out;
1974
1975 if (read >= target || flags & MSG_PEEK)
1976 break;
1977
1978 target -= read;
1979 }
1980 }
1981
1982 if (sk->sk_err)
1983 err = -sk->sk_err;
1984 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1985 err = 0;
1986
1987 if (copied > 0)
1988 err = copied;
1989
1990 out:
1991 release_sock(sk);
1992 return err;
1993 }
1994
1995 static const struct proto_ops vsock_stream_ops = {
1996 .family = PF_VSOCK,
1997 .owner = THIS_MODULE,
1998 .release = vsock_release,
1999 .bind = vsock_bind,
2000 .connect = vsock_stream_connect,
2001 .socketpair = sock_no_socketpair,
2002 .accept = vsock_accept,
2003 .getname = vsock_getname,
2004 .poll = vsock_poll,
2005 .ioctl = sock_no_ioctl,
2006 .listen = vsock_listen,
2007 .shutdown = vsock_shutdown,
2008 .setsockopt = vsock_stream_setsockopt,
2009 .getsockopt = vsock_stream_getsockopt,
2010 .sendmsg = vsock_stream_sendmsg,
2011 .recvmsg = vsock_stream_recvmsg,
2012 .mmap = sock_no_mmap,
2013 .sendpage = sock_no_sendpage,
2014 };
2015
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2016 static int vsock_create(struct net *net, struct socket *sock,
2017 int protocol, int kern)
2018 {
2019 struct vsock_sock *vsk;
2020 struct sock *sk;
2021 int ret;
2022
2023 if (!sock)
2024 return -EINVAL;
2025
2026 if (protocol && protocol != PF_VSOCK)
2027 return -EPROTONOSUPPORT;
2028
2029 switch (sock->type) {
2030 case SOCK_DGRAM:
2031 sock->ops = &vsock_dgram_ops;
2032 break;
2033 case SOCK_STREAM:
2034 sock->ops = &vsock_stream_ops;
2035 break;
2036 default:
2037 return -ESOCKTNOSUPPORT;
2038 }
2039
2040 sock->state = SS_UNCONNECTED;
2041
2042 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2043 if (!sk)
2044 return -ENOMEM;
2045
2046 vsk = vsock_sk(sk);
2047
2048 if (sock->type == SOCK_DGRAM) {
2049 ret = vsock_assign_transport(vsk, NULL);
2050 if (ret < 0) {
2051 sock_put(sk);
2052 return ret;
2053 }
2054 }
2055
2056 vsock_insert_unbound(vsk);
2057
2058 return 0;
2059 }
2060
2061 static const struct net_proto_family vsock_family_ops = {
2062 .family = AF_VSOCK,
2063 .create = vsock_create,
2064 .owner = THIS_MODULE,
2065 };
2066
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2067 static long vsock_dev_do_ioctl(struct file *filp,
2068 unsigned int cmd, void __user *ptr)
2069 {
2070 u32 __user *p = ptr;
2071 u32 cid = VMADDR_CID_ANY;
2072 int retval = 0;
2073
2074 switch (cmd) {
2075 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2076 /* To be compatible with the VMCI behavior, we prioritize the
2077 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2078 */
2079 if (transport_g2h)
2080 cid = transport_g2h->get_local_cid();
2081 else if (transport_h2g)
2082 cid = transport_h2g->get_local_cid();
2083
2084 if (put_user(cid, p) != 0)
2085 retval = -EFAULT;
2086 break;
2087
2088 default:
2089 pr_err("Unknown ioctl %d\n", cmd);
2090 retval = -EINVAL;
2091 }
2092
2093 return retval;
2094 }
2095
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2096 static long vsock_dev_ioctl(struct file *filp,
2097 unsigned int cmd, unsigned long arg)
2098 {
2099 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2100 }
2101
2102 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2103 static long vsock_dev_compat_ioctl(struct file *filp,
2104 unsigned int cmd, unsigned long arg)
2105 {
2106 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2107 }
2108 #endif
2109
2110 static const struct file_operations vsock_device_ops = {
2111 .owner = THIS_MODULE,
2112 .unlocked_ioctl = vsock_dev_ioctl,
2113 #ifdef CONFIG_COMPAT
2114 .compat_ioctl = vsock_dev_compat_ioctl,
2115 #endif
2116 .open = nonseekable_open,
2117 };
2118
2119 static struct miscdevice vsock_device = {
2120 .name = "vsock",
2121 .fops = &vsock_device_ops,
2122 };
2123
vsock_init(void)2124 static int __init vsock_init(void)
2125 {
2126 int err = 0;
2127
2128 vsock_init_tables();
2129
2130 vsock_proto.owner = THIS_MODULE;
2131 vsock_device.minor = MISC_DYNAMIC_MINOR;
2132 err = misc_register(&vsock_device);
2133 if (err) {
2134 pr_err("Failed to register misc device\n");
2135 goto err_reset_transport;
2136 }
2137
2138 err = proto_register(&vsock_proto, 1); /* we want our slab */
2139 if (err) {
2140 pr_err("Cannot register vsock protocol\n");
2141 goto err_deregister_misc;
2142 }
2143
2144 err = sock_register(&vsock_family_ops);
2145 if (err) {
2146 pr_err("could not register af_vsock (%d) address family: %d\n",
2147 AF_VSOCK, err);
2148 goto err_unregister_proto;
2149 }
2150
2151 return 0;
2152
2153 err_unregister_proto:
2154 proto_unregister(&vsock_proto);
2155 err_deregister_misc:
2156 misc_deregister(&vsock_device);
2157 err_reset_transport:
2158 return err;
2159 }
2160
vsock_exit(void)2161 static void __exit vsock_exit(void)
2162 {
2163 misc_deregister(&vsock_device);
2164 sock_unregister(AF_VSOCK);
2165 proto_unregister(&vsock_proto);
2166 }
2167
vsock_core_get_transport(struct vsock_sock * vsk)2168 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2169 {
2170 return vsk->transport;
2171 }
2172 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2173
vsock_core_register(const struct vsock_transport * t,int features)2174 int vsock_core_register(const struct vsock_transport *t, int features)
2175 {
2176 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2177 int err = mutex_lock_interruptible(&vsock_register_mutex);
2178
2179 if (err)
2180 return err;
2181
2182 t_h2g = transport_h2g;
2183 t_g2h = transport_g2h;
2184 t_dgram = transport_dgram;
2185 t_local = transport_local;
2186
2187 if (features & VSOCK_TRANSPORT_F_H2G) {
2188 if (t_h2g) {
2189 err = -EBUSY;
2190 goto err_busy;
2191 }
2192 t_h2g = t;
2193 }
2194
2195 if (features & VSOCK_TRANSPORT_F_G2H) {
2196 if (t_g2h) {
2197 err = -EBUSY;
2198 goto err_busy;
2199 }
2200 t_g2h = t;
2201 }
2202
2203 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2204 if (t_dgram) {
2205 err = -EBUSY;
2206 goto err_busy;
2207 }
2208 t_dgram = t;
2209 }
2210
2211 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2212 if (t_local) {
2213 err = -EBUSY;
2214 goto err_busy;
2215 }
2216 t_local = t;
2217 }
2218
2219 transport_h2g = t_h2g;
2220 transport_g2h = t_g2h;
2221 transport_dgram = t_dgram;
2222 transport_local = t_local;
2223
2224 err_busy:
2225 mutex_unlock(&vsock_register_mutex);
2226 return err;
2227 }
2228 EXPORT_SYMBOL_GPL(vsock_core_register);
2229
vsock_core_unregister(const struct vsock_transport * t)2230 void vsock_core_unregister(const struct vsock_transport *t)
2231 {
2232 mutex_lock(&vsock_register_mutex);
2233
2234 if (transport_h2g == t)
2235 transport_h2g = NULL;
2236
2237 if (transport_g2h == t)
2238 transport_g2h = NULL;
2239
2240 if (transport_dgram == t)
2241 transport_dgram = NULL;
2242
2243 if (transport_local == t)
2244 transport_local = NULL;
2245
2246 mutex_unlock(&vsock_register_mutex);
2247 }
2248 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2249
2250 module_init(vsock_init);
2251 module_exit(vsock_exit);
2252
2253 MODULE_AUTHOR("VMware, Inc.");
2254 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2255 MODULE_VERSION("1.0.2.0-k");
2256 MODULE_LICENSE("GPL v2");
2257