Home
last modified time | relevance | path

Searched +full:memory +full:- +full:mapped (Results 1 – 25 of 1074) sorted by relevance

12345678910>>...43

/kernel/linux/linux-5.10/drivers/mtd/maps/
DKconfig1 # SPDX-License-Identifier: GPL-2.0-only
7 bool "Support non-linear mappings of flash chips"
13 tristate "Flash device in physical memory map"
17 ROM driver code to communicate with chips which are mapped
18 physically into the CPU's memory. You will need to configure
21 with config options or at run-time.
42 This is the physical memory location at which the flash chips
43 are mapped on your particular target board. Refer to the
44 memory map which should hopefully be in the documentation for
54 physical memory map between the chips, this could be larger
[all …]
/kernel/linux/linux-4.19/drivers/mtd/maps/
DKconfig6 bool "Support non-linear mappings of flash chips"
12 tristate "Flash device in physical memory map"
16 ROM driver code to communicate with chips which are mapped
17 physically into the CPU's memory. You will need to configure
20 with config options or at run-time.
41 This is the physical memory location at which the flash chips
42 are mapped on your particular target board. Refer to the
43 memory map which should hopefully be in the documentation for
53 physical memory map between the chips, this could be larger
54 than the total amount of flash present. Refer to the memory
[all …]
/kernel/linux/linux-5.10/Documentation/admin-guide/mm/
Dpagemap.rst14 physical frame each virtual page is mapped to. It contains one 64-bit
18 * Bits 0-54 page frame number (PFN) if present
19 * Bits 0-4 swap type if swapped
20 * Bits 5-54 swap offset if swapped
21 * Bit 55 pte is soft-dirty (see
22 :ref:`Documentation/admin-guide/mm/soft-dirty.rst <soft_dirty>`)
23 * Bit 56 page exclusively mapped (since 4.2)
24 * Bits 57-60 zero
25 * Bit 61 page is file-page or shared-anon (since 3.5)
30 In 4.0 and 4.1 opens by unprivileged fail with -EPERM. Starting from
[all …]
/kernel/linux/linux-4.19/Documentation/admin-guide/mm/
Dpagemap.rst14 physical frame each virtual page is mapped to. It contains one 64-bit
18 * Bits 0-54 page frame number (PFN) if present
19 * Bits 0-4 swap type if swapped
20 * Bits 5-54 swap offset if swapped
21 * Bit 55 pte is soft-dirty (see
22 :ref:`Documentation/admin-guide/mm/soft-dirty.rst <soft_dirty>`)
23 * Bit 56 page exclusively mapped (since 4.2)
24 * Bits 57-60 zero
25 * Bit 61 page is file-page or shared-anon (since 3.5)
30 In 4.0 and 4.1 opens by unprivileged fail with -EPERM. Starting from
[all …]
/kernel/linux/linux-4.19/Documentation/devicetree/bindings/display/
Dst,stih4xx.txt3 - sti-vtg: video timing generator
5 - compatible: "st,vtg"
6 - reg: Physical base address of the IP registers and length of memory mapped region.
8 - interrupts : VTG interrupt number to the CPU.
9 - st,slave: phandle on a slave vtg
11 - sti-vtac: video timing advanced inter dye communication Rx and TX
13 - compatible: "st,vtac-main" or "st,vtac-aux"
14 - reg: Physical base address of the IP registers and length of memory mapped region.
15 - clocks: from common clock binding: handle hardware IP needed clocks, the
17 See ../clocks/clock-bindings.txt for details.
[all …]
/kernel/linux/linux-5.10/Documentation/devicetree/bindings/display/
Dst,stih4xx.txt3 - sti-vtg: video timing generator
5 - compatible: "st,vtg"
6 - reg: Physical base address of the IP registers and length of memory mapped region.
8 - interrupts : VTG interrupt number to the CPU.
9 - st,slave: phandle on a slave vtg
11 - sti-vtac: video timing advanced inter dye communication Rx and TX
13 - compatible: "st,vtac-main" or "st,vtac-aux"
14 - reg: Physical base address of the IP registers and length of memory mapped region.
15 - clocks: from common clock binding: handle hardware IP needed clocks, the
17 See ../clocks/clock-bindings.txt for details.
[all …]
/kernel/linux/linux-4.19/drivers/net/ethernet/cavium/liquidio/
Docteon_mem_ops.h7 * Copyright (c) 2003-2016 Cavium, Inc.
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
21 * \brief Host Driver: Routines used to read/write Octeon memory.
27 /** Read a 64-bit value from a BAR1 mapped core memory address.
28 * @param oct - pointer to the octeon device.
29 * @param core_addr - the address to read from.
32 * in which core_addr is mapped.
34 * @return 64-bit value read from Core memory
38 /** Read a 32-bit value from a BAR1 mapped core memory address.
39 * @param oct - pointer to the octeon device.
[all …]
/kernel/linux/linux-5.10/drivers/net/ethernet/cavium/liquidio/
Docteon_mem_ops.h7 * Copyright (c) 2003-2016 Cavium, Inc.
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
21 * \brief Host Driver: Routines used to read/write Octeon memory.
27 /** Read a 64-bit value from a BAR1 mapped core memory address.
28 * @param oct - pointer to the octeon device.
29 * @param core_addr - the address to read from.
32 * in which core_addr is mapped.
34 * @return 64-bit value read from Core memory
38 /** Read a 32-bit value from a BAR1 mapped core memory address.
39 * @param oct - pointer to the octeon device.
[all …]
/kernel/linux/linux-5.10/Documentation/vm/
Dunevictable-lru.rst13 This document describes the Linux memory manager's "Unevictable LRU"
21 details - the "what does it do?" - by reading the code. One hopes that the
33 memory x86_64 systems.
35 To illustrate this with an example, a non-NUMA x86_64 platform with 128GB of
36 main memory will have over 32 million 4k pages in a single zone. When a large
47 * Those mapped into SHM_LOCK'd shared memory regions.
49 * Those mapped into VM_LOCKED [mlock()ed] VMAs.
56 -------------------------
58 The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
70 system - which means we get to use the same code to manipulate them, the
[all …]
/kernel/linux/linux-4.19/Documentation/vm/
Dunevictable-lru.rst13 This document describes the Linux memory manager's "Unevictable LRU"
21 details - the "what does it do?" - by reading the code. One hopes that the
33 memory x86_64 systems.
35 To illustrate this with an example, a non-NUMA x86_64 platform with 128GB of
36 main memory will have over 32 million 4k pages in a single zone. When a large
47 * Those mapped into SHM_LOCK'd shared memory regions.
49 * Those mapped into VM_LOCKED [mlock()ed] VMAs.
56 -------------------------
58 The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
70 system - which means we get to use the same code to manipulate them, the
[all …]
/kernel/linux/linux-4.19/Documentation/scsi/
Dg_NCR5380.txt10 memory mapped modes.
19 The NCR53c400 does not support DMA but it does have Pseudo-DMA which is
30 base=xx[,...] the port or base address(es) (for port or memory mapped, resp.)
38 These old-style parameters can support only one card:
40 ncr_addr=xx the port or base address (for port or memory
41 mapped, resp.)
53 E.g. a port mapped NCR5380 board, driver to probe for IRQ:
58 E.g. a memory mapped NCR53C400 board with no IRQ:
63 E.g. two cards, DTC3181 (in non-PnP mode) at 0x240 with no IRQ
/kernel/linux/linux-5.10/drivers/virtio/
DKconfig1 # SPDX-License-Identifier: GPL-2.0-only
42 If disabled, you get a slightly smaller, non-transitional driver,
70 This driver provides access to virtio-pmem devices, storage devices
71 that are mapped into the physical address space - similar to NVDIMMs
72 - with a virtio-based flushing interface.
83 of memory within a KVM guest.
96 This driver provides access to virtio-mem paravirtualized memory
97 devices, allowing to hotplug and hotunplug memory.
99 This driver was only tested under x86-64, but should theoretically
100 work on all architectures that support memory hotplug and hotremove.
[all …]
/kernel/linux/linux-4.19/drivers/scsi/lpfc/
Dlpfc_mem.c4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
6 * Copyright (C) 2004-2014 Emulex. All rights reserved. *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
34 #include <linux/nvme-fc-driver.h>
50 #define LPFC_MEM_POOL_SIZE 64 /* max elem in non-DMA safety pool */
56 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; in lpfc_mem_alloc_active_rrq_pool_s4()
59 return -ENOMEM; in lpfc_mem_alloc_active_rrq_pool_s4()
60 bytes = ((BITS_PER_LONG - 1 + max_xri) / BITS_PER_LONG) * in lpfc_mem_alloc_active_rrq_pool_s4()
62 phba->cfg_rrq_xri_bitmap_sz = bytes; in lpfc_mem_alloc_active_rrq_pool_s4()
[all …]
/kernel/linux/linux-5.10/drivers/scsi/lpfc/
Dlpfc_mem.c4 * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
6 * Copyright (C) 2004-2014 Emulex. All rights reserved. *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
46 #define LPFC_MEM_POOL_SIZE 64 /* max elem in non-DMA safety pool */
48 #define LPFC_RRQ_POOL_SIZE 256 /* max elements in non-DMA pool */
49 #define LPFC_MBX_POOL_SIZE 256 /* max elements in MBX non-DMA pool */
54 int max_xri = phba->sli4_hba.max_cfg_param.max_xri; in lpfc_mem_alloc_active_rrq_pool_s4()
57 return -ENOMEM; in lpfc_mem_alloc_active_rrq_pool_s4()
58 bytes = ((BITS_PER_LONG - 1 + max_xri) / BITS_PER_LONG) * in lpfc_mem_alloc_active_rrq_pool_s4()
[all …]
/kernel/linux/linux-5.10/mm/
Dzpool.c1 // SPDX-License-Identifier: GPL-2.0-only
3 * zpool memory storage api
7 * This is a common frontend for memory storage pool implementations.
8 * Typically, this is used to store compressed memory.
38 * zpool_register_driver() - register a zpool implementation.
44 atomic_set(&driver->refcount, 0); in zpool_register_driver()
45 list_add(&driver->list, &drivers_head); in zpool_register_driver()
51 * zpool_unregister_driver() - unregister a zpool implementation.
65 refcount = atomic_read(&driver->refcount); in zpool_unregister_driver()
68 ret = -EBUSY; in zpool_unregister_driver()
[all …]
/kernel/linux/linux-4.19/Documentation/media/uapi/v4l/
Dmmap.rst1 .. -*- coding: utf-8; mode: rst -*-
6 Streaming I/O (Memory Mapping)
13 streaming methods, to determine if the memory mapping flavor is
15 with the memory type set to ``V4L2_MEMORY_MMAP``.
18 between application and driver, the data itself is not copied. Memory
19 mapping is primarily intended to map buffers in device memory into the
20 application's address space. Device memory can be for example the video
21 memory on a graphics card with a video capture add-on. However, being
23 drivers support streaming as well, allocating buffers in DMA-able main
24 memory.
[all …]
Dvidioc-reqbufs.rst1 .. -*- coding: utf-8; mode: rst -*-
12 VIDIOC_REQBUFS - Initiate Memory Mapping, User Pointer I/O or DMA buffer I/O
26 File descriptor returned by :ref:`open() <func-open>`.
34 This ioctl is used to initiate :ref:`memory mapped <mmap>`,
36 Memory mapped buffers are located in device memory and must be allocated
37 with this ioctl before they can be mapped into the application's address
48 the desired number of buffers, ``memory`` must be set to the requested
53 requested, even zero, when the driver runs out of free memory. A larger
62 buffers, however this cannot succeed when any buffers are still mapped.
72 .. flat-table:: struct v4l2_requestbuffers
[all …]
/kernel/linux/linux-5.10/Documentation/userspace-api/media/v4l/
Dmmap.rst1 .. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later
7 Streaming I/O (Memory Mapping)
14 streaming methods, to determine if the memory mapping flavor is
16 with the memory type set to ``V4L2_MEMORY_MMAP``.
19 between application and driver, the data itself is not copied. Memory
20 mapping is primarily intended to map buffers in device memory into the
21 application's address space. Device memory can be for example the video
22 memory on a graphics card with a video capture add-on. However, being
24 drivers support streaming as well, allocating buffers in DMA-able main
25 memory.
[all …]
/kernel/linux/linux-4.19/Documentation/media/uapi/dvb/
Ddmx-reqbufs.rst10 DMX_REQBUFS - Initiate Memory Mapping and/or DMA buffer I/O
34 This ioctl is used to initiate a memory mapped or DMABUF based demux I/O.
36 Memory mapped buffers are located in device memory and must be allocated
37 with this ioctl before they can be mapped into the application's address
52 … be smaller than the number requested, even zero, when the driver runs out of free memory. A larger
61 buffers, however this cannot succeed when any buffers are still mapped.
69 On success 0 is returned, on error -1 and the ``errno`` variable is set
71 :ref:`Generic Error Codes <gen-errors>` chapter.
Ddmx-mmap.rst1 .. _dmx-mmap:
10 dmx-mmap - Map device memory into application address space
17 .. code-block:: c
24 :name: dmx-mmap
37 Length of the memory area to map. This must be a multiple of the
41 The ``prot`` argument describes the desired memory protection.
48 The ``flags`` parameter specifies the type of the mapped object,
49 mapping options and whether modifications made to the mapped copy of
55 :ref:`mmap() <dmx-mmap>` will fail. If ``MAP_FIXED`` is specified,
60 ``MAP_SHARED`` allows applications to share the mapped memory with
[all …]
/kernel/linux/linux-4.19/include/xen/interface/
Dmemory.h1 /* SPDX-License-Identifier: GPL-2.0 */
3 * memory.h
5 * Memory reservation and information.
16 * Increase or decrease the specified domain's memory reservation. Returns a
17 * -ve errcode on failure, or the # extents successfully allocated or freed.
31 * IN: GPFN bases of extents to populate with memory
43 * I/O devices often have a 32-bit limitation even in 64-bit systems). If
59 * An atomic exchange of memory pages. If return code is zero then
60 * @out.extent_list provides GMFNs of the newly-allocated memory.
68 * [IN] Details of memory extents to be exchanged (GMFN bases).
[all …]
/kernel/linux/linux-5.10/Documentation/userspace-api/media/dvb/
Ddmx-reqbufs.rst1 .. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later
13 DMX_REQBUFS - Initiate Memory Mapping and/or DMA buffer I/O
36 This ioctl is used to initiate a memory mapped or DMABUF based demux I/O.
38 Memory mapped buffers are located in device memory and must be allocated
39 with this ioctl before they can be mapped into the application's address
54 … be smaller than the number requested, even zero, when the driver runs out of free memory. A larger
63 buffers, however this cannot succeed when any buffers are still mapped.
70 On success 0 is returned, on error -1 and the ``errno`` variable is set
72 :ref:`Generic Error Codes <gen-errors>` chapter.
Ddmx-mmap.rst1 .. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later
4 .. _dmx-mmap:
13 dmx-mmap - Map device memory into application address space
20 .. code-block:: c
38 Length of the memory area to map. This must be a multiple of the
42 The ``prot`` argument describes the desired memory protection.
49 The ``flags`` parameter specifies the type of the mapped object,
50 mapping options and whether modifications made to the mapped copy of
61 ``MAP_SHARED`` allows applications to share the mapped memory with
62 other (e. g. child-) processes.
[all …]
/kernel/linux/linux-4.19/mm/
Dzpool.c2 * zpool memory storage api
6 * This is a common frontend for memory storage pool implementations.
7 * Typically, this is used to store compressed memory.
36 * zpool_register_driver() - register a zpool implementation.
42 atomic_set(&driver->refcount, 0); in zpool_register_driver()
43 list_add(&driver->list, &drivers_head); in zpool_register_driver()
49 * zpool_unregister_driver() - unregister a zpool implementation.
63 refcount = atomic_read(&driver->refcount); in zpool_unregister_driver()
66 ret = -EBUSY; in zpool_unregister_driver()
68 list_del(&driver->list); in zpool_unregister_driver()
[all …]
/kernel/linux/linux-5.10/include/xen/interface/
Dmemory.h1 /* SPDX-License-Identifier: GPL-2.0 */
3 * memory.h
5 * Memory reservation and information.
16 * Increase or decrease the specified domain's memory reservation. Returns a
17 * -ve errcode on failure, or the # extents successfully allocated or freed.
31 * IN: GPFN bases of extents to populate with memory
43 * I/O devices often have a 32-bit limitation even in 64-bit systems). If
59 * An atomic exchange of memory pages. If return code is zero then
60 * @out.extent_list provides GMFNs of the newly-allocated memory.
68 * [IN] Details of memory extents to be exchanged (GMFN bases).
[all …]

12345678910>>...43