• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Finding the Cubed Root With and Without Derivatives</title>
5<link rel="stylesheet" href="../../math.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Math Toolkit 2.12.0">
8<link rel="up" href="../root_finding_examples.html" title="Examples of Root-Finding (with and without derivatives)">
9<link rel="prev" href="../root_finding_examples.html" title="Examples of Root-Finding (with and without derivatives)">
10<link rel="next" href="lambda.html" title="Using C++11 Lambda's">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="../root_finding_examples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../root_finding_examples.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="lambda.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="math_toolkit.root_finding_examples.cbrt_eg"></a><a class="link" href="cbrt_eg.html" title="Finding the Cubed Root With and Without Derivatives">Finding the
28      Cubed Root With and Without Derivatives</a>
29</h3></div></div></div>
30<p>
31        First some <code class="computeroutput"><span class="preprocessor">#includes</span></code> that
32        will be needed.
33      </p>
34<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">tools</span><span class="special">/</span><span class="identifier">roots</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
35<span class="comment">//using boost::math::policies::policy;</span>
36<span class="comment">//using boost::math::tools::newton_raphson_iterate;</span>
37<span class="comment">//using boost::math::tools::halley_iterate; //</span>
38<span class="comment">//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.</span>
39<span class="comment">//using boost::math::tools::bracket_and_solve_root;</span>
40<span class="comment">//using boost::math::tools::toms748_solve;</span>
41
42<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">next</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// For float_distance.</span>
43<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">tuple</span><span class="special">&gt;</span> <span class="comment">// for std::tuple and std::make_tuple.</span>
44<span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">cbrt</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// For boost::math::cbrt.</span>
45</pre>
46<div class="tip"><table border="0" summary="Tip">
47<tr>
48<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../../doc/src/images/tip.png"></td>
49<th align="left">Tip</th>
50</tr>
51<tr><td align="left" valign="top"><p>
52          For clarity, <code class="computeroutput"><span class="keyword">using</span></code> statements
53          are provided to list what functions are being used in this example: you
54          can, of course, partly or fully qualify the names in other ways. (For your
55          application, you may wish to extract some parts into header files, but
56          you should never use <code class="computeroutput"><span class="keyword">using</span></code>
57          statements globally in header files).
58        </p></td></tr>
59</table></div>
60<p>
61        Let's suppose we want to find the root of a number <span class="emphasis"><em>a</em></span>,
62        and to start, compute the cube root.
63      </p>
64<p>
65        So the equation we want to solve is:
66      </p>
67<div class="blockquote"><blockquote class="blockquote"><p>
68          <span class="serif_italic"><span class="emphasis"><em>f(x) = x³ -a</em></span></span>
69        </p></blockquote></div>
70<p>
71        We will first solve this without using any information about the slope or
72        curvature of the cube root function.
73      </p>
74<p>
75        Fortunately, the cube-root function is 'Really Well Behaved' in that it is
76        monotonic and has only one root (we leave negative values 'as an exercise
77        for the student').
78      </p>
79<p>
80        We then show how adding what we can know about this function, first just
81        the slope or 1st derivative <span class="emphasis"><em>f'(x)</em></span>, will speed homing
82        in on the solution.
83      </p>
84<p>
85        Lastly, we show how adding the curvature <span class="emphasis"><em>f''(x)</em></span> too
86        will speed convergence even more.
87      </p>
88<h4>
89<a name="math_toolkit.root_finding_examples.cbrt_eg.h0"></a>
90        <span class="phrase"><a name="math_toolkit.root_finding_examples.cbrt_eg.cbrt_no_derivatives"></a></span><a class="link" href="cbrt_eg.html#math_toolkit.root_finding_examples.cbrt_eg.cbrt_no_derivatives">Cube
91        root function without derivatives</a>
92      </h4>
93<p>
94        First we define a function object (functor):
95      </p>
96<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
97<span class="keyword">struct</span> <span class="identifier">cbrt_functor_noderiv</span>
98<span class="special">{</span>
99  <span class="comment">//  cube root of x using only function - no derivatives.</span>
100  <span class="identifier">cbrt_functor_noderiv</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">to_find_root_of</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">a</span><span class="special">(</span><span class="identifier">to_find_root_of</span><span class="special">)</span>
101  <span class="special">{</span> <span class="comment">/* Constructor just stores value a to find root of. */</span> <span class="special">}</span>
102  <span class="identifier">T</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">)</span>
103  <span class="special">{</span>
104    <span class="identifier">T</span> <span class="identifier">fx</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">a</span><span class="special">;</span> <span class="comment">// Difference (estimate x^3 - a).</span>
105    <span class="keyword">return</span> <span class="identifier">fx</span><span class="special">;</span>
106  <span class="special">}</span>
107<span class="keyword">private</span><span class="special">:</span>
108  <span class="identifier">T</span> <span class="identifier">a</span><span class="special">;</span> <span class="comment">// to be 'cube_rooted'.</span>
109<span class="special">};</span>
110</pre>
111<p>
112        Implementing the cube-root function itself is fairly trivial now: the hardest
113        part is finding a good approximation to begin with. In this case we'll just
114        divide the exponent by three. (There are better but more complex guess algorithms
115        used in 'real life'.)
116      </p>
117<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
118<span class="identifier">T</span> <span class="identifier">cbrt_noderiv</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">)</span>
119<span class="special">{</span>
120  <span class="comment">// return cube root of x using bracket_and_solve (no derivatives).</span>
121  <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">std</span><span class="special">;</span>                          <span class="comment">// Help ADL of std functions.</span>
122  <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">;</span>           <span class="comment">// For bracket_and_solve_root.</span>
123
124  <span class="keyword">int</span> <span class="identifier">exponent</span><span class="special">;</span>
125  <span class="identifier">frexp</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">exponent</span><span class="special">);</span>                          <span class="comment">// Get exponent of z (ignore mantissa).</span>
126  <span class="identifier">T</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">1.</span><span class="special">,</span> <span class="identifier">exponent</span><span class="special">/</span><span class="number">3</span><span class="special">);</span>              <span class="comment">// Rough guess is to divide the exponent by three.</span>
127  <span class="identifier">T</span> <span class="identifier">factor</span> <span class="special">=</span> <span class="number">2</span><span class="special">;</span>                                 <span class="comment">// How big steps to take when searching.</span>
128
129  <span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">maxit</span> <span class="special">=</span> <span class="number">20</span><span class="special">;</span>            <span class="comment">// Limit to maximum iterations.</span>
130  <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">it</span> <span class="special">=</span> <span class="identifier">maxit</span><span class="special">;</span>                  <span class="comment">// Initially our chosen max iterations, but updated with actual.</span>
131  <span class="keyword">bool</span> <span class="identifier">is_rising</span> <span class="special">=</span> <span class="keyword">true</span><span class="special">;</span>                        <span class="comment">// So if result if guess^3 is too low, then try increasing guess.</span>
132  <span class="keyword">int</span> <span class="identifier">digits</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits</span><span class="special">;</span>  <span class="comment">// Maximum possible binary digits accuracy for type T.</span>
133  <span class="comment">// Some fraction of digits is used to control how accurate to try to make the result.</span>
134  <span class="keyword">int</span> <span class="identifier">get_digits</span> <span class="special">=</span> <span class="identifier">digits</span> <span class="special">-</span> <span class="number">3</span><span class="special">;</span>                  <span class="comment">// We have to have a non-zero interval at each step, so</span>
135                                                <span class="comment">// maximum accuracy is digits - 1.  But we also have to</span>
136                                                <span class="comment">// allow for inaccuracy in f(x), otherwise the last few</span>
137                                                <span class="comment">// iterations just thrash around.</span>
138  <span class="identifier">eps_tolerance</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">tol</span><span class="special">(</span><span class="identifier">get_digits</span><span class="special">);</span>             <span class="comment">// Set the tolerance.</span>
139  <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">bracket_and_solve_root</span><span class="special">(</span><span class="identifier">cbrt_functor_noderiv</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">guess</span><span class="special">,</span> <span class="identifier">factor</span><span class="special">,</span> <span class="identifier">is_rising</span><span class="special">,</span> <span class="identifier">tol</span><span class="special">,</span> <span class="identifier">it</span><span class="special">);</span>
140  <span class="keyword">return</span> <span class="identifier">r</span><span class="special">.</span><span class="identifier">first</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">r</span><span class="special">.</span><span class="identifier">second</span> <span class="special">-</span> <span class="identifier">r</span><span class="special">.</span><span class="identifier">first</span><span class="special">)/</span><span class="number">2</span><span class="special">;</span>      <span class="comment">// Midway between brackets is our result, if necessary we could</span>
141                                                <span class="comment">// return the result as an interval here.</span>
142<span class="special">}</span>
143</pre>
144<div class="note"><table border="0" summary="Note">
145<tr>
146<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../doc/src/images/note.png"></td>
147<th align="left">Note</th>
148</tr>
149<tr><td align="left" valign="top">
150<p>
151          The final parameter specifying a maximum number of iterations is optional.
152          However, it defaults to <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span>
153          <span class="identifier">maxit</span> <span class="special">=</span>
154          <span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&gt;::</span><span class="identifier">max</span><span class="special">)();</span></code> which is <code class="computeroutput"><span class="number">18446744073709551615</span></code>
155          and is more than anyone would wish to wait for!
156        </p>
157<p>
158          So it may be wise to chose some reasonable estimate of how many iterations
159          may be needed, In this case the function is so well behaved that we can
160          chose a low value of 20.
161        </p>
162<p>
163          Internally when Boost.Math uses these functions, it sets the maximum iterations
164          to <code class="computeroutput"><span class="identifier">policies</span><span class="special">::</span><span class="identifier">get_max_root_iterations</span><span class="special">&lt;</span><span class="identifier">Policy</span><span class="special">&gt;();</span></code>.
165        </p>
166</td></tr>
167</table></div>
168<p>
169        Should we have wished we can show how many iterations were used in <code class="computeroutput"><span class="identifier">bracket_and_solve_root</span></code> (this information
170        is lost outside <code class="computeroutput"><span class="identifier">cbrt_noderiv</span></code>),
171        for example with:
172      </p>
173<pre class="programlisting"><span class="keyword">if</span> <span class="special">(</span><span class="identifier">it</span> <span class="special">&gt;=</span> <span class="identifier">maxit</span><span class="special">)</span>
174<span class="special">{</span>
175  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Unable to locate solution in "</span> <span class="special">&lt;&lt;</span> <span class="identifier">maxit</span> <span class="special">&lt;&lt;</span> <span class="string">" iterations:"</span>
176    <span class="string">" Current best guess is between "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span><span class="special">.</span><span class="identifier">first</span> <span class="special">&lt;&lt;</span> <span class="string">" and "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span><span class="special">.</span><span class="identifier">second</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
177<span class="special">}</span>
178<span class="keyword">else</span>
179<span class="special">{</span>
180  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Converged after "</span> <span class="special">&lt;&lt;</span> <span class="identifier">it</span> <span class="special">&lt;&lt;</span> <span class="string">" (from maximum of "</span> <span class="special">&lt;&lt;</span> <span class="identifier">maxit</span> <span class="special">&lt;&lt;</span> <span class="string">" iterations)."</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
181<span class="special">}</span>
182</pre>
183<p>
184        for output like
185      </p>
186<pre class="programlisting"><span class="identifier">Converged</span> <span class="identifier">after</span> <span class="number">11</span> <span class="special">(</span><span class="identifier">from</span> <span class="identifier">maximum</span> <span class="identifier">of</span> <span class="number">20</span> <span class="identifier">iterations</span><span class="special">).</span>
187</pre>
188<p>
189        This snippet from <code class="computeroutput"><span class="identifier">main</span><span class="special">()</span></code>
190        in <a href="../../../../example/root_finding_example.cpp" target="_top">root_finding_example.cpp</a>
191        shows how it can be used.
192      </p>
193<pre class="programlisting"><span class="keyword">try</span>
194<span class="special">{</span>
195  <span class="keyword">double</span> <span class="identifier">threecubed</span> <span class="special">=</span> <span class="number">27.</span><span class="special">;</span>   <span class="comment">// Value that has an *exactly representable* integer cube root.</span>
196  <span class="keyword">double</span> <span class="identifier">threecubedp1</span> <span class="special">=</span> <span class="number">28.</span><span class="special">;</span> <span class="comment">// Value whose cube root is *not* exactly representable.</span>
197
198  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cbrt(28) "</span> <span class="special">&lt;&lt;</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cbrt</span><span class="special">(</span><span class="number">28.</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// boost::math:: version of cbrt.</span>
199  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"std::cbrt(28) "</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cbrt</span><span class="special">(</span><span class="number">28.</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>    <span class="comment">// std:: version of cbrt.</span>
200  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span><span class="string">" cast double "</span> <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">3.0365889718756625194208095785056696355814539772481111</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
201
202  <span class="comment">// Cube root using bracketing:</span>
203  <span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_noderiv</span><span class="special">(</span><span class="identifier">threecubed</span><span class="special">);</span>
204  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cbrt_noderiv("</span> <span class="special">&lt;&lt;</span> <span class="identifier">threecubed</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
205  <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">cbrt_noderiv</span><span class="special">(</span><span class="identifier">threecubedp1</span><span class="special">);</span>
206  <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"cbrt_noderiv("</span> <span class="special">&lt;&lt;</span> <span class="identifier">threecubedp1</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
207</pre>
208<pre class="programlisting">  cbrt_noderiv(27) = 3
209  cbrt_noderiv(28) = 3.0365889718756618
210</pre>
211<p>
212        The result of <code class="computeroutput"><span class="identifier">bracket_and_solve_root</span></code>
213        is a <a href="http://www.cplusplus.com/reference/utility/pair/" target="_top">pair</a>
214        of values that could be displayed.
215      </p>
216<p>
217        The number of bits separating them can be found using <code class="computeroutput"><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">r</span><span class="special">.</span><span class="identifier">first</span><span class="special">,</span> <span class="identifier">r</span><span class="special">.</span><span class="identifier">second</span><span class="special">)</span></code>. The distance is zero (closest representable)
218        for 3<sup>3</sup> = 27 but <code class="computeroutput"><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">r</span><span class="special">.</span><span class="identifier">first</span><span class="special">,</span> <span class="identifier">r</span><span class="special">.</span><span class="identifier">second</span><span class="special">)</span> <span class="special">=</span> <span class="number">3</span></code>
219        for cube root of 28 with this function. The result (avoiding overflow) is
220        midway between these two values.
221      </p>
222<h4>
223<a name="math_toolkit.root_finding_examples.cbrt_eg.h1"></a>
224        <span class="phrase"><a name="math_toolkit.root_finding_examples.cbrt_eg.cbrt_1st_derivative"></a></span><a class="link" href="cbrt_eg.html#math_toolkit.root_finding_examples.cbrt_eg.cbrt_1st_derivative">Cube
225        root function with 1st derivative (slope)</a>
226      </h4>
227<p>
228        We now solve the same problem, but using more information about the function,
229        to show how this can speed up finding the best estimate of the root.
230      </p>
231<p>
232        For the root function, the 1st differential (the slope of the tangent to
233        a curve at any point) is known.
234      </p>
235<p>
236        This algorithm is similar to this <a href="http://en.wikipedia.org/wiki/Nth_root_algorithm" target="_top">nth
237        root algorithm</a>.
238      </p>
239<p>
240        If you need some reminders, then <a href="http://en.wikipedia.org/wiki/Derivative#Derivatives_of_elementary_functions" target="_top">derivatives
241        of elementary functions</a> may help.
242      </p>
243<p>
244        Using the rule that the derivative of <span class="emphasis"><em>x<sup>n</sup></em></span> for positive
245        n (actually all nonzero n) is <span class="emphasis"><em>n x<sup>n-1</sup></em></span>, allows us to get
246        the 1st differential as <span class="emphasis"><em>3x<sup>2</sup></em></span>.
247      </p>
248<p>
249        To see how this extra information is used to find a root, view <a href="http://en.wikipedia.org/wiki/Newton%27s_method" target="_top">Newton-Raphson
250        iterations</a> and the <a href="http://en.wikipedia.org/wiki/Newton%27s_method#mediaviewer/File:NewtonIteration_Ani.gif" target="_top">animation</a>.
251      </p>
252<p>
253        We define a better functor <code class="computeroutput"><span class="identifier">cbrt_functor_deriv</span></code>
254        that returns both the evaluation of the function to solve, along with its
255        first derivative:
256      </p>
257<p>
258        To '<span class="emphasis"><em>return</em></span>' two values, we use a <a href="http://en.cppreference.com/w/cpp/utility/pair" target="_top">std::pair</a>
259        of floating-point values.
260      </p>
261<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
262<span class="keyword">struct</span> <span class="identifier">cbrt_functor_deriv</span>
263<span class="special">{</span> <span class="comment">// Functor also returning 1st derivative.</span>
264  <span class="identifier">cbrt_functor_deriv</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">to_find_root_of</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">a</span><span class="special">(</span><span class="identifier">to_find_root_of</span><span class="special">)</span>
265  <span class="special">{</span> <span class="comment">// Constructor stores value a to find root of,</span>
266    <span class="comment">// for example: calling cbrt_functor_deriv&lt;T&gt;(a) to use to get cube root of a.</span>
267  <span class="special">}</span>
268  <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">)</span>
269  <span class="special">{</span>
270    <span class="comment">// Return both f(x) and f'(x).</span>
271    <span class="identifier">T</span> <span class="identifier">fx</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">a</span><span class="special">;</span>                <span class="comment">// Difference (estimate x^3 - value).</span>
272    <span class="identifier">T</span> <span class="identifier">dx</span> <span class="special">=</span>  <span class="number">3</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">;</span>                 <span class="comment">// 1st derivative = 3x^2.</span>
273    <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(</span><span class="identifier">fx</span><span class="special">,</span> <span class="identifier">dx</span><span class="special">);</span>   <span class="comment">// 'return' both fx and dx.</span>
274  <span class="special">}</span>
275<span class="keyword">private</span><span class="special">:</span>
276  <span class="identifier">T</span> <span class="identifier">a</span><span class="special">;</span>                               <span class="comment">// Store value to be 'cube_rooted'.</span>
277<span class="special">};</span>
278</pre>
279<p>
280        Our cube root function is now:
281      </p>
282<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
283<span class="identifier">T</span> <span class="identifier">cbrt_deriv</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">)</span>
284<span class="special">{</span>
285  <span class="comment">// return cube root of x using 1st derivative and Newton_Raphson.</span>
286  <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">;</span>
287  <span class="keyword">int</span> <span class="identifier">exponent</span><span class="special">;</span>
288  <span class="identifier">frexp</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">exponent</span><span class="special">);</span>                                <span class="comment">// Get exponent of z (ignore mantissa).</span>
289  <span class="identifier">T</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">1.</span><span class="special">,</span> <span class="identifier">exponent</span><span class="special">/</span><span class="number">3</span><span class="special">);</span>                    <span class="comment">// Rough guess is to divide the exponent by three.</span>
290  <span class="identifier">T</span> <span class="identifier">min</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">0.5</span><span class="special">,</span> <span class="identifier">exponent</span><span class="special">/</span><span class="number">3</span><span class="special">);</span>                     <span class="comment">// Minimum possible value is half our guess.</span>
291  <span class="identifier">T</span> <span class="identifier">max</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">2.</span><span class="special">,</span> <span class="identifier">exponent</span><span class="special">/</span><span class="number">3</span><span class="special">);</span>                      <span class="comment">// Maximum possible value is twice our guess.</span>
292  <span class="keyword">const</span> <span class="keyword">int</span> <span class="identifier">digits</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits</span><span class="special">;</span>  <span class="comment">// Maximum possible binary digits accuracy for type T.</span>
293  <span class="keyword">int</span> <span class="identifier">get_digits</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">digits</span> <span class="special">*</span> <span class="number">0.6</span><span class="special">);</span>    <span class="comment">// Accuracy doubles with each step, so stop when we have</span>
294                                                      <span class="comment">// just over half the digits correct.</span>
295  <span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">maxit</span> <span class="special">=</span> <span class="number">20</span><span class="special">;</span>
296  <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">it</span> <span class="special">=</span> <span class="identifier">maxit</span><span class="special">;</span>
297  <span class="identifier">T</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">newton_raphson_iterate</span><span class="special">(</span><span class="identifier">cbrt_functor_deriv</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">guess</span><span class="special">,</span> <span class="identifier">min</span><span class="special">,</span> <span class="identifier">max</span><span class="special">,</span> <span class="identifier">get_digits</span><span class="special">,</span> <span class="identifier">it</span><span class="special">);</span>
298  <span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
299<span class="special">}</span>
300</pre>
301<p>
302        The result of <a href="../../../../../../libs/math/include/boost/math/tools/roots.hpp" target="_top"><code class="computeroutput"><span class="identifier">newton_raphson_iterate</span></code></a> function
303        is a single value.
304      </p>
305<div class="tip"><table border="0" summary="Tip">
306<tr>
307<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../../doc/src/images/tip.png"></td>
308<th align="left">Tip</th>
309</tr>
310<tr><td align="left" valign="top"><p>
311          There is a compromise between accuracy and speed when choosing the value
312          of <code class="computeroutput"><span class="identifier">digits</span></code>. It is tempting
313          to simply chose <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits</span></code>, but this may mean some inefficient
314          and unnecessary iterations as the function thrashes around trying to locate
315          the last bit. In theory, since the precision doubles with each step it
316          is sufficient to stop when half the bits are correct: as the last step
317          will have doubled that to full precision. Of course the function has no
318          way to tell if that is actually the case unless it does one more step to
319          be sure. In practice setting the precision to slightly more than <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits</span> <span class="special">/</span> <span class="number">2</span></code> is a good choice.
320        </p></td></tr>
321</table></div>
322<p>
323        Note that it is up to the caller of the function to check the iteration count
324        after the call to see if iteration stoped as a result of running out of iterations
325        rather than meeting the required precision.
326      </p>
327<p>
328        Using the test data in <a href="../../../../test/test_cbrt.cpp" target="_top">/test/test_cbrt.cpp</a>
329        this found the cube root exact to the last digit in every case, and in no
330        more than 6 iterations at double precision. However, you will note that a
331        high precision was used in this example, exactly what was warned against
332        earlier on in these docs! In this particular case it is possible to compute
333        <span class="emphasis"><em>f(x)</em></span> exactly and without undue cancellation error, so
334        a high limit is not too much of an issue.
335      </p>
336<p>
337        However, reducing the limit to <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits</span> <span class="special">*</span> <span class="number">2</span> <span class="special">/</span> <span class="number">3</span></code>
338        gave full precision in all but one of the test cases (and that one was out
339        by just one bit). The maximum number of iterations remained 6, but in most
340        cases was reduced by one.
341      </p>
342<p>
343        Note also that the above code omits a probable optimization by computing
344345and reusing it, omits error handling, and does not handle negative values
346        of z correctly. (These are left as the customary exercise for the reader!)
347      </p>
348<p>
349        The <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">cbrt</span></code> function also includes these and other
350        improvements: most importantly it uses a much better initial guess which
351        reduces the iteration count to just 1 in almost all cases.
352      </p>
353<h4>
354<a name="math_toolkit.root_finding_examples.cbrt_eg.h2"></a>
355        <span class="phrase"><a name="math_toolkit.root_finding_examples.cbrt_eg.cbrt_2_derivatives"></a></span><a class="link" href="cbrt_eg.html#math_toolkit.root_finding_examples.cbrt_eg.cbrt_2_derivatives">Cube
356        root with 1st &amp; 2nd derivative (slope &amp; curvature)</a>
357      </h4>
358<p>
359        Next we define yet another even better functor <code class="computeroutput"><span class="identifier">cbrt_functor_2deriv</span></code>
360        that returns both the evaluation of the function to solve, along with its
361        first <span class="bold"><strong>and second</strong></span> derivative:
362      </p>
363<div class="blockquote"><blockquote class="blockquote"><p>
364          <span class="serif_italic"><span class="emphasis"><em>f''(x) = 6x</em></span></span>
365        </p></blockquote></div>
366<p>
367        using information about both slope and curvature to speed convergence.
368      </p>
369<p>
370        To <span class="emphasis"><em>'return'</em></span> three values, we use a <code class="computeroutput"><span class="identifier">tuple</span></code>
371        of three floating-point values:
372      </p>
373<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
374<span class="keyword">struct</span> <span class="identifier">cbrt_functor_2deriv</span>
375<span class="special">{</span>
376  <span class="comment">// Functor returning both 1st and 2nd derivatives.</span>
377  <span class="identifier">cbrt_functor_2deriv</span><span class="special">(</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">to_find_root_of</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">a</span><span class="special">(</span><span class="identifier">to_find_root_of</span><span class="special">)</span>
378  <span class="special">{</span> <span class="comment">// Constructor stores value a to find root of, for example:</span>
379    <span class="comment">// calling cbrt_functor_2deriv&lt;T&gt;(x) to get cube root of x,</span>
380  <span class="special">}</span>
381  <span class="identifier">std</span><span class="special">::</span><span class="identifier">tuple</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">T</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">)</span>
382  <span class="special">{</span>
383    <span class="comment">// Return both f(x) and f'(x) and f''(x).</span>
384    <span class="identifier">T</span> <span class="identifier">fx</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">a</span><span class="special">;</span>                     <span class="comment">// Difference (estimate x^3 - value).</span>
385    <span class="identifier">T</span> <span class="identifier">dx</span> <span class="special">=</span> <span class="number">3</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">;</span>                       <span class="comment">// 1st derivative = 3x^2.</span>
386    <span class="identifier">T</span> <span class="identifier">d2x</span> <span class="special">=</span> <span class="number">6</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">;</span>                        <span class="comment">// 2nd derivative = 6x.</span>
387    <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_tuple</span><span class="special">(</span><span class="identifier">fx</span><span class="special">,</span> <span class="identifier">dx</span><span class="special">,</span> <span class="identifier">d2x</span><span class="special">);</span>  <span class="comment">// 'return' fx, dx and d2x.</span>
388  <span class="special">}</span>
389<span class="keyword">private</span><span class="special">:</span>
390  <span class="identifier">T</span> <span class="identifier">a</span><span class="special">;</span> <span class="comment">// to be 'cube_rooted'.</span>
391<span class="special">};</span>
392</pre>
393<p>
394        Our cube root function is now:
395      </p>
396<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
397<span class="identifier">T</span> <span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">)</span>
398<span class="special">{</span>
399  <span class="comment">// return cube root of x using 1st and 2nd derivatives and Halley.</span>
400  <span class="comment">//using namespace std;  // Help ADL of std functions.</span>
401  <span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">;</span>
402  <span class="keyword">int</span> <span class="identifier">exponent</span><span class="special">;</span>
403  <span class="identifier">frexp</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="special">&amp;</span><span class="identifier">exponent</span><span class="special">);</span>                                <span class="comment">// Get exponent of z (ignore mantissa).</span>
404  <span class="identifier">T</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">1.</span><span class="special">,</span> <span class="identifier">exponent</span><span class="special">/</span><span class="number">3</span><span class="special">);</span>                    <span class="comment">// Rough guess is to divide the exponent by three.</span>
405  <span class="identifier">T</span> <span class="identifier">min</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">0.5</span><span class="special">,</span> <span class="identifier">exponent</span><span class="special">/</span><span class="number">3</span><span class="special">);</span>                     <span class="comment">// Minimum possible value is half our guess.</span>
406  <span class="identifier">T</span> <span class="identifier">max</span> <span class="special">=</span> <span class="identifier">ldexp</span><span class="special">(</span><span class="number">2.</span><span class="special">,</span> <span class="identifier">exponent</span><span class="special">/</span><span class="number">3</span><span class="special">);</span>                      <span class="comment">// Maximum possible value is twice our guess.</span>
407  <span class="keyword">const</span> <span class="keyword">int</span> <span class="identifier">digits</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">digits</span><span class="special">;</span>  <span class="comment">// Maximum possible binary digits accuracy for type T.</span>
408  <span class="comment">// digits used to control how accurate to try to make the result.</span>
409  <span class="keyword">int</span> <span class="identifier">get_digits</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">digits</span> <span class="special">*</span> <span class="number">0.4</span><span class="special">);</span>    <span class="comment">// Accuracy triples with each step, so stop when just</span>
410                                                      <span class="comment">// over one third of the digits are correct.</span>
411  <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">maxit</span> <span class="special">=</span> <span class="number">20</span><span class="special">;</span>
412  <span class="identifier">T</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">halley_iterate</span><span class="special">(</span><span class="identifier">cbrt_functor_2deriv</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">guess</span><span class="special">,</span> <span class="identifier">min</span><span class="special">,</span> <span class="identifier">max</span><span class="special">,</span> <span class="identifier">get_digits</span><span class="special">,</span> <span class="identifier">maxit</span><span class="special">);</span>
413  <span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
414<span class="special">}</span>
415</pre>
416<p>
417        The function <code class="computeroutput"><span class="identifier">halley_iterate</span></code>
418        also returns a single value, and the number of iterations will reveal if
419        it met the convergence criterion set by <code class="computeroutput"><span class="identifier">get_digits</span></code>.
420      </p>
421<p>
422        The no-derivative method gives a result of
423      </p>
424<pre class="programlisting"><span class="identifier">cbrt_noderiv</span><span class="special">(</span><span class="number">28</span><span class="special">)</span> <span class="special">=</span> <span class="number">3.0365889718756618</span>
425</pre>
426<p>
427        with a 3 bits distance between the bracketed values, whereas the derivative
428        methods both converge to a single value
429      </p>
430<pre class="programlisting"><span class="identifier">cbrt_2deriv</span><span class="special">(</span><span class="number">28</span><span class="special">)</span> <span class="special">=</span> <span class="number">3.0365889718756627</span>
431</pre>
432<p>
433        which we can compare with the <a href="../../../../../../libs/math/doc/html/math_toolkit/powers/cbrt.html" target="_top">boost::math::cbrt</a>
434      </p>
435<pre class="programlisting"><span class="identifier">cbrt</span><span class="special">(</span><span class="number">28</span><span class="special">)</span>              <span class="special">=</span> <span class="number">3.0365889718756627</span>
436</pre>
437<p>
438        Note that the iterations are set to stop at just one-half of full precision,
439        and yet, even so, not one of the test cases had a single bit wrong. What's
440        more, the maximum number of iterations was now just 4.
441      </p>
442<p>
443        Just to complete the picture, we could have called <a class="link" href="../roots_deriv.html#math_toolkit.roots_deriv.schroder"><code class="computeroutput"><span class="identifier">schroder_iterate</span></code></a> in the last example:
444        and in fact it makes no difference to the accuracy or number of iterations
445        in this particular case. However, the relative performance of these two methods
446        may vary depending upon the nature of <span class="emphasis"><em>f(x)</em></span>, and the
447        accuracy to which the initial guess can be computed. There appear to be no
448        generalisations that can be made except "try them and see".
449      </p>
450<p>
451        Finally, had we called <code class="computeroutput"><span class="identifier">cbrt</span></code>
452        with <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a> set to
453        1000 bit precision (about 300 decimal digits), then full precision can be
454        obtained with just 7 iterations. To put that in perspective, an increase
455        in precision by a factor of 20, has less than doubled the number of iterations.
456        That just goes to emphasise that most of the iterations are used up getting
457        the first few digits correct: after that these methods can churn out further
458        digits with remarkable efficiency.
459      </p>
460<p>
461        Or to put it another way: <span class="emphasis"><em>nothing beats a really good initial guess!</em></span>
462      </p>
463<p>
464        Full code of this example is at <a href="../../../../example/root_finding_example.cpp" target="_top">root_finding_example.cpp</a>,
465      </p>
466</div>
467<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
468<td align="left"></td>
469<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
470      Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
471      Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
472      Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
473      Daryle Walker and Xiaogang Zhang<p>
474        Distributed under the Boost Software License, Version 1.0. (See accompanying
475        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
476      </p>
477</div></td>
478</tr></table>
479<hr>
480<div class="spirit-nav">
481<a accesskey="p" href="../root_finding_examples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../root_finding_examples.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="lambda.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
482</div>
483</body>
484</html>
485