• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2008.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_SPECIAL_NEXT_HPP
7 #define BOOST_MATH_SPECIAL_NEXT_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/special_functions/math_fwd.hpp>
14 #include <boost/math/policies/error_handling.hpp>
15 #include <boost/math/special_functions/fpclassify.hpp>
16 #include <boost/math/special_functions/sign.hpp>
17 #include <boost/math/special_functions/trunc.hpp>
18 
19 #include <float.h>
20 
21 #if !defined(_CRAYC) && !defined(__CUDACC__) && (!defined(__GNUC__) || (__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ > 3)))
22 #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(__SSE2__)
23 #include "xmmintrin.h"
24 #define BOOST_MATH_CHECK_SSE2
25 #endif
26 #endif
27 
28 namespace boost{ namespace math{
29 
30    namespace concepts {
31 
32       class real_concept;
33       class std_real_concept;
34 
35    }
36 
37 namespace detail{
38 
39 template <class T>
40 struct has_hidden_guard_digits;
41 template <>
42 struct has_hidden_guard_digits<float> : public boost::false_type {};
43 template <>
44 struct has_hidden_guard_digits<double> : public boost::false_type {};
45 template <>
46 struct has_hidden_guard_digits<long double> : public boost::false_type {};
47 #ifdef BOOST_HAS_FLOAT128
48 template <>
49 struct has_hidden_guard_digits<__float128> : public boost::false_type {};
50 #endif
51 template <>
52 struct has_hidden_guard_digits<boost::math::concepts::real_concept> : public boost::false_type {};
53 template <>
54 struct has_hidden_guard_digits<boost::math::concepts::std_real_concept> : public boost::false_type {};
55 
56 template <class T, bool b>
57 struct has_hidden_guard_digits_10 : public boost::false_type {};
58 template <class T>
59 struct has_hidden_guard_digits_10<T, true> : public boost::integral_constant<bool, (std::numeric_limits<T>::digits10 != std::numeric_limits<T>::max_digits10)> {};
60 
61 template <class T>
62 struct has_hidden_guard_digits
63    : public has_hidden_guard_digits_10<T,
64    std::numeric_limits<T>::is_specialized
65    && (std::numeric_limits<T>::radix == 10) >
66 {};
67 
68 template <class T>
normalize_value(const T & val,const boost::false_type &)69 inline const T& normalize_value(const T& val, const boost::false_type&) { return val; }
70 template <class T>
normalize_value(const T & val,const boost::true_type &)71 inline T normalize_value(const T& val, const boost::true_type&)
72 {
73    BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized);
74    BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2);
75 
76    boost::intmax_t shift = (boost::intmax_t)std::numeric_limits<T>::digits - (boost::intmax_t)ilogb(val) - 1;
77    T result = scalbn(val, shift);
78    result = round(result);
79    return scalbn(result, -shift);
80 }
81 
82 template <class T>
get_smallest_value(boost::true_type const &)83 inline T get_smallest_value(boost::true_type const&)
84 {
85    //
86    // numeric_limits lies about denorms being present - particularly
87    // when this can be turned on or off at runtime, as is the case
88    // when using the SSE2 registers in DAZ or FTZ mode.
89    //
90    static const T m = std::numeric_limits<T>::denorm_min();
91 #ifdef BOOST_MATH_CHECK_SSE2
92    return (_mm_getcsr() & (_MM_FLUSH_ZERO_ON | 0x40)) ? tools::min_value<T>() : m;;
93 #else
94    return ((tools::min_value<T>() / 2) == 0) ? tools::min_value<T>() : m;
95 #endif
96 }
97 
98 template <class T>
get_smallest_value(boost::false_type const &)99 inline T get_smallest_value(boost::false_type const&)
100 {
101    return tools::min_value<T>();
102 }
103 
104 template <class T>
get_smallest_value()105 inline T get_smallest_value()
106 {
107 #if defined(BOOST_MSVC) && (BOOST_MSVC <= 1310)
108    return get_smallest_value<T>(boost::integral_constant<bool, std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == 1)>());
109 #else
110    return get_smallest_value<T>(boost::integral_constant<bool, std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present)>());
111 #endif
112 }
113 
114 //
115 // Returns the smallest value that won't generate denorms when
116 // we calculate the value of the least-significant-bit:
117 //
118 template <class T>
119 T get_min_shift_value();
120 
121 template <class T>
122 struct min_shift_initializer
123 {
124    struct init
125    {
initboost::math::detail::min_shift_initializer::init126       init()
127       {
128          do_init();
129       }
do_initboost::math::detail::min_shift_initializer::init130       static void do_init()
131       {
132          get_min_shift_value<T>();
133       }
force_instantiateboost::math::detail::min_shift_initializer::init134       void force_instantiate()const{}
135    };
136    static const init initializer;
force_instantiateboost::math::detail::min_shift_initializer137    static void force_instantiate()
138    {
139       initializer.force_instantiate();
140    }
141 };
142 
143 template <class T>
144 const typename min_shift_initializer<T>::init min_shift_initializer<T>::initializer;
145 
146 template <class T>
calc_min_shifted(const boost::true_type &)147 inline T calc_min_shifted(const boost::true_type&)
148 {
149    BOOST_MATH_STD_USING
150    return ldexp(tools::min_value<T>(), tools::digits<T>() + 1);
151 }
152 template <class T>
calc_min_shifted(const boost::false_type &)153 inline T calc_min_shifted(const boost::false_type&)
154 {
155    BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized);
156    BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2);
157 
158    return scalbn(tools::min_value<T>(), std::numeric_limits<T>::digits + 1);
159 }
160 
161 
162 template <class T>
get_min_shift_value()163 inline T get_min_shift_value()
164 {
165    static const T val = calc_min_shifted<T>(boost::integral_constant<bool, !std::numeric_limits<T>::is_specialized || std::numeric_limits<T>::radix == 2>());
166    min_shift_initializer<T>::force_instantiate();
167 
168    return val;
169 }
170 
171 template <class T, class Policy>
float_next_imp(const T & val,const boost::true_type &,const Policy & pol)172 T float_next_imp(const T& val, const boost::true_type&, const Policy& pol)
173 {
174    BOOST_MATH_STD_USING
175    int expon;
176    static const char* function = "float_next<%1%>(%1%)";
177 
178    int fpclass = (boost::math::fpclassify)(val);
179 
180    if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE))
181    {
182       if(val < 0)
183          return -tools::max_value<T>();
184       return policies::raise_domain_error<T>(
185          function,
186          "Argument must be finite, but got %1%", val, pol);
187    }
188 
189    if(val >= tools::max_value<T>())
190       return policies::raise_overflow_error<T>(function, 0, pol);
191 
192    if(val == 0)
193       return detail::get_smallest_value<T>();
194 
195    if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != -tools::min_value<T>()))
196    {
197       //
198       // Special case: if the value of the least significant bit is a denorm, and the result
199       // would not be a denorm, then shift the input, increment, and shift back.
200       // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
201       //
202       return ldexp(float_next(T(ldexp(val, 2 * tools::digits<T>())), pol), -2 * tools::digits<T>());
203    }
204 
205    if(-0.5f == frexp(val, &expon))
206       --expon; // reduce exponent when val is a power of two, and negative.
207    T diff = ldexp(T(1), expon - tools::digits<T>());
208    if(diff == 0)
209       diff = detail::get_smallest_value<T>();
210    return val + diff;
211 } // float_next_imp
212 //
213 // Special version for some base other than 2:
214 //
215 template <class T, class Policy>
float_next_imp(const T & val,const boost::false_type &,const Policy & pol)216 T float_next_imp(const T& val, const boost::false_type&, const Policy& pol)
217 {
218    BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized);
219    BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2);
220 
221    BOOST_MATH_STD_USING
222    boost::intmax_t expon;
223    static const char* function = "float_next<%1%>(%1%)";
224 
225    int fpclass = (boost::math::fpclassify)(val);
226 
227    if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE))
228    {
229       if(val < 0)
230          return -tools::max_value<T>();
231       return policies::raise_domain_error<T>(
232          function,
233          "Argument must be finite, but got %1%", val, pol);
234    }
235 
236    if(val >= tools::max_value<T>())
237       return policies::raise_overflow_error<T>(function, 0, pol);
238 
239    if(val == 0)
240       return detail::get_smallest_value<T>();
241 
242    if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != -tools::min_value<T>()))
243    {
244       //
245       // Special case: if the value of the least significant bit is a denorm, and the result
246       // would not be a denorm, then shift the input, increment, and shift back.
247       // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
248       //
249       return scalbn(float_next(T(scalbn(val, 2 * std::numeric_limits<T>::digits)), pol), -2 * std::numeric_limits<T>::digits);
250    }
251 
252    expon = 1 + ilogb(val);
253    if(-1 == scalbn(val, -expon) * std::numeric_limits<T>::radix)
254       --expon; // reduce exponent when val is a power of base, and negative.
255    T diff = scalbn(T(1), expon - std::numeric_limits<T>::digits);
256    if(diff == 0)
257       diff = detail::get_smallest_value<T>();
258    return val + diff;
259 } // float_next_imp
260 
261 } // namespace detail
262 
263 template <class T, class Policy>
float_next(const T & val,const Policy & pol)264 inline typename tools::promote_args<T>::type float_next(const T& val, const Policy& pol)
265 {
266    typedef typename tools::promote_args<T>::type result_type;
267    return detail::float_next_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), boost::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol);
268 }
269 
270 #if 0 //def BOOST_MSVC
271 //
272 // We used to use ::_nextafter here, but doing so fails when using
273 // the SSE2 registers if the FTZ or DAZ flags are set, so use our own
274 // - albeit slower - code instead as at least that gives the correct answer.
275 //
276 template <class Policy>
277 inline double float_next(const double& val, const Policy& pol)
278 {
279    static const char* function = "float_next<%1%>(%1%)";
280 
281    if(!(boost::math::isfinite)(val) && (val > 0))
282       return policies::raise_domain_error<double>(
283          function,
284          "Argument must be finite, but got %1%", val, pol);
285 
286    if(val >= tools::max_value<double>())
287       return policies::raise_overflow_error<double>(function, 0, pol);
288 
289    return ::_nextafter(val, tools::max_value<double>());
290 }
291 #endif
292 
293 template <class T>
float_next(const T & val)294 inline typename tools::promote_args<T>::type float_next(const T& val)
295 {
296    return float_next(val, policies::policy<>());
297 }
298 
299 namespace detail{
300 
301 template <class T, class Policy>
float_prior_imp(const T & val,const boost::true_type &,const Policy & pol)302 T float_prior_imp(const T& val, const boost::true_type&, const Policy& pol)
303 {
304    BOOST_MATH_STD_USING
305    int expon;
306    static const char* function = "float_prior<%1%>(%1%)";
307 
308    int fpclass = (boost::math::fpclassify)(val);
309 
310    if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE))
311    {
312       if(val > 0)
313          return tools::max_value<T>();
314       return policies::raise_domain_error<T>(
315          function,
316          "Argument must be finite, but got %1%", val, pol);
317    }
318 
319    if(val <= -tools::max_value<T>())
320       return -policies::raise_overflow_error<T>(function, 0, pol);
321 
322    if(val == 0)
323       return -detail::get_smallest_value<T>();
324 
325    if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != tools::min_value<T>()))
326    {
327       //
328       // Special case: if the value of the least significant bit is a denorm, and the result
329       // would not be a denorm, then shift the input, increment, and shift back.
330       // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
331       //
332       return ldexp(float_prior(T(ldexp(val, 2 * tools::digits<T>())), pol), -2 * tools::digits<T>());
333    }
334 
335    T remain = frexp(val, &expon);
336    if(remain == 0.5f)
337       --expon; // when val is a power of two we must reduce the exponent
338    T diff = ldexp(T(1), expon - tools::digits<T>());
339    if(diff == 0)
340       diff = detail::get_smallest_value<T>();
341    return val - diff;
342 } // float_prior_imp
343 //
344 // Special version for bases other than 2:
345 //
346 template <class T, class Policy>
float_prior_imp(const T & val,const boost::false_type &,const Policy & pol)347 T float_prior_imp(const T& val, const boost::false_type&, const Policy& pol)
348 {
349    BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized);
350    BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2);
351 
352    BOOST_MATH_STD_USING
353    boost::intmax_t expon;
354    static const char* function = "float_prior<%1%>(%1%)";
355 
356    int fpclass = (boost::math::fpclassify)(val);
357 
358    if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE))
359    {
360       if(val > 0)
361          return tools::max_value<T>();
362       return policies::raise_domain_error<T>(
363          function,
364          "Argument must be finite, but got %1%", val, pol);
365    }
366 
367    if(val <= -tools::max_value<T>())
368       return -policies::raise_overflow_error<T>(function, 0, pol);
369 
370    if(val == 0)
371       return -detail::get_smallest_value<T>();
372 
373    if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != tools::min_value<T>()))
374    {
375       //
376       // Special case: if the value of the least significant bit is a denorm, and the result
377       // would not be a denorm, then shift the input, increment, and shift back.
378       // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
379       //
380       return scalbn(float_prior(T(scalbn(val, 2 * std::numeric_limits<T>::digits)), pol), -2 * std::numeric_limits<T>::digits);
381    }
382 
383    expon = 1 + ilogb(val);
384    T remain = scalbn(val, -expon);
385    if(remain * std::numeric_limits<T>::radix == 1)
386       --expon; // when val is a power of two we must reduce the exponent
387    T diff = scalbn(T(1), expon - std::numeric_limits<T>::digits);
388    if(diff == 0)
389       diff = detail::get_smallest_value<T>();
390    return val - diff;
391 } // float_prior_imp
392 
393 } // namespace detail
394 
395 template <class T, class Policy>
float_prior(const T & val,const Policy & pol)396 inline typename tools::promote_args<T>::type float_prior(const T& val, const Policy& pol)
397 {
398    typedef typename tools::promote_args<T>::type result_type;
399    return detail::float_prior_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), boost::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol);
400 }
401 
402 #if 0 //def BOOST_MSVC
403 //
404 // We used to use ::_nextafter here, but doing so fails when using
405 // the SSE2 registers if the FTZ or DAZ flags are set, so use our own
406 // - albeit slower - code instead as at least that gives the correct answer.
407 //
408 template <class Policy>
409 inline double float_prior(const double& val, const Policy& pol)
410 {
411    static const char* function = "float_prior<%1%>(%1%)";
412 
413    if(!(boost::math::isfinite)(val) && (val < 0))
414       return policies::raise_domain_error<double>(
415          function,
416          "Argument must be finite, but got %1%", val, pol);
417 
418    if(val <= -tools::max_value<double>())
419       return -policies::raise_overflow_error<double>(function, 0, pol);
420 
421    return ::_nextafter(val, -tools::max_value<double>());
422 }
423 #endif
424 
425 template <class T>
float_prior(const T & val)426 inline typename tools::promote_args<T>::type float_prior(const T& val)
427 {
428    return float_prior(val, policies::policy<>());
429 }
430 
431 template <class T, class U, class Policy>
nextafter(const T & val,const U & direction,const Policy & pol)432 inline typename tools::promote_args<T, U>::type nextafter(const T& val, const U& direction, const Policy& pol)
433 {
434    typedef typename tools::promote_args<T, U>::type result_type;
435    return val < direction ? boost::math::float_next<result_type>(val, pol) : val == direction ? val : boost::math::float_prior<result_type>(val, pol);
436 }
437 
438 template <class T, class U>
nextafter(const T & val,const U & direction)439 inline typename tools::promote_args<T, U>::type nextafter(const T& val, const U& direction)
440 {
441    return nextafter(val, direction, policies::policy<>());
442 }
443 
444 namespace detail{
445 
446 template <class T, class Policy>
float_distance_imp(const T & a,const T & b,const boost::true_type &,const Policy & pol)447 T float_distance_imp(const T& a, const T& b, const boost::true_type&, const Policy& pol)
448 {
449    BOOST_MATH_STD_USING
450    //
451    // Error handling:
452    //
453    static const char* function = "float_distance<%1%>(%1%, %1%)";
454    if(!(boost::math::isfinite)(a))
455       return policies::raise_domain_error<T>(
456          function,
457          "Argument a must be finite, but got %1%", a, pol);
458    if(!(boost::math::isfinite)(b))
459       return policies::raise_domain_error<T>(
460          function,
461          "Argument b must be finite, but got %1%", b, pol);
462    //
463    // Special cases:
464    //
465    if(a > b)
466       return -float_distance(b, a, pol);
467    if(a == b)
468       return T(0);
469    if(a == 0)
470       return 1 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol));
471    if(b == 0)
472       return 1 + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
473    if(boost::math::sign(a) != boost::math::sign(b))
474       return 2 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol))
475          + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
476    //
477    // By the time we get here, both a and b must have the same sign, we want
478    // b > a and both positive for the following logic:
479    //
480    if(a < 0)
481       return float_distance(static_cast<T>(-b), static_cast<T>(-a), pol);
482 
483    BOOST_ASSERT(a >= 0);
484    BOOST_ASSERT(b >= a);
485 
486    int expon;
487    //
488    // Note that if a is a denorm then the usual formula fails
489    // because we actually have fewer than tools::digits<T>()
490    // significant bits in the representation:
491    //
492    (void)frexp(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon);
493    T upper = ldexp(T(1), expon);
494    T result = T(0);
495    //
496    // If b is greater than upper, then we *must* split the calculation
497    // as the size of the ULP changes with each order of magnitude change:
498    //
499    if(b > upper)
500    {
501       int expon2;
502       (void)frexp(b, &expon2);
503       T upper2 = ldexp(T(0.5), expon2);
504       result = float_distance(upper2, b);
505       result += (expon2 - expon - 1) * ldexp(T(1), tools::digits<T>() - 1);
506    }
507    //
508    // Use compensated double-double addition to avoid rounding
509    // errors in the subtraction:
510    //
511    expon = tools::digits<T>() - expon;
512    T mb, x, y, z;
513    if(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) || (b - a < tools::min_value<T>()))
514    {
515       //
516       // Special case - either one end of the range is a denormal, or else the difference is.
517       // The regular code will fail if we're using the SSE2 registers on Intel and either
518       // the FTZ or DAZ flags are set.
519       //
520       T a2 = ldexp(a, tools::digits<T>());
521       T b2 = ldexp(b, tools::digits<T>());
522       mb = -(std::min)(T(ldexp(upper, tools::digits<T>())), b2);
523       x = a2 + mb;
524       z = x - a2;
525       y = (a2 - (x - z)) + (mb - z);
526 
527       expon -= tools::digits<T>();
528    }
529    else
530    {
531       mb = -(std::min)(upper, b);
532       x = a + mb;
533       z = x - a;
534       y = (a - (x - z)) + (mb - z);
535    }
536    if(x < 0)
537    {
538       x = -x;
539       y = -y;
540    }
541    result += ldexp(x, expon) + ldexp(y, expon);
542    //
543    // Result must be an integer:
544    //
545    BOOST_ASSERT(result == floor(result));
546    return result;
547 } // float_distance_imp
548 //
549 // Special versions for bases other than 2:
550 //
551 template <class T, class Policy>
float_distance_imp(const T & a,const T & b,const boost::false_type &,const Policy & pol)552 T float_distance_imp(const T& a, const T& b, const boost::false_type&, const Policy& pol)
553 {
554    BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized);
555    BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2);
556 
557    BOOST_MATH_STD_USING
558    //
559    // Error handling:
560    //
561    static const char* function = "float_distance<%1%>(%1%, %1%)";
562    if(!(boost::math::isfinite)(a))
563       return policies::raise_domain_error<T>(
564          function,
565          "Argument a must be finite, but got %1%", a, pol);
566    if(!(boost::math::isfinite)(b))
567       return policies::raise_domain_error<T>(
568          function,
569          "Argument b must be finite, but got %1%", b, pol);
570    //
571    // Special cases:
572    //
573    if(a > b)
574       return -float_distance(b, a, pol);
575    if(a == b)
576       return T(0);
577    if(a == 0)
578       return 1 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol));
579    if(b == 0)
580       return 1 + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
581    if(boost::math::sign(a) != boost::math::sign(b))
582       return 2 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol))
583          + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol));
584    //
585    // By the time we get here, both a and b must have the same sign, we want
586    // b > a and both positive for the following logic:
587    //
588    if(a < 0)
589       return float_distance(static_cast<T>(-b), static_cast<T>(-a), pol);
590 
591    BOOST_ASSERT(a >= 0);
592    BOOST_ASSERT(b >= a);
593 
594    boost::intmax_t expon;
595    //
596    // Note that if a is a denorm then the usual formula fails
597    // because we actually have fewer than tools::digits<T>()
598    // significant bits in the representation:
599    //
600    expon = 1 + ilogb(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) ? tools::min_value<T>() : a);
601    T upper = scalbn(T(1), expon);
602    T result = T(0);
603    //
604    // If b is greater than upper, then we *must* split the calculation
605    // as the size of the ULP changes with each order of magnitude change:
606    //
607    if(b > upper)
608    {
609       boost::intmax_t expon2 = 1 + ilogb(b);
610       T upper2 = scalbn(T(1), expon2 - 1);
611       result = float_distance(upper2, b);
612       result += (expon2 - expon - 1) * scalbn(T(1), std::numeric_limits<T>::digits - 1);
613    }
614    //
615    // Use compensated double-double addition to avoid rounding
616    // errors in the subtraction:
617    //
618    expon = std::numeric_limits<T>::digits - expon;
619    T mb, x, y, z;
620    if(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) || (b - a < tools::min_value<T>()))
621    {
622       //
623       // Special case - either one end of the range is a denormal, or else the difference is.
624       // The regular code will fail if we're using the SSE2 registers on Intel and either
625       // the FTZ or DAZ flags are set.
626       //
627       T a2 = scalbn(a, std::numeric_limits<T>::digits);
628       T b2 = scalbn(b, std::numeric_limits<T>::digits);
629       mb = -(std::min)(T(scalbn(upper, std::numeric_limits<T>::digits)), b2);
630       x = a2 + mb;
631       z = x - a2;
632       y = (a2 - (x - z)) + (mb - z);
633 
634       expon -= std::numeric_limits<T>::digits;
635    }
636    else
637    {
638       mb = -(std::min)(upper, b);
639       x = a + mb;
640       z = x - a;
641       y = (a - (x - z)) + (mb - z);
642    }
643    if(x < 0)
644    {
645       x = -x;
646       y = -y;
647    }
648    result += scalbn(x, expon) + scalbn(y, expon);
649    //
650    // Result must be an integer:
651    //
652    BOOST_ASSERT(result == floor(result));
653    return result;
654 } // float_distance_imp
655 
656 } // namespace detail
657 
658 template <class T, class U, class Policy>
float_distance(const T & a,const U & b,const Policy & pol)659 inline typename tools::promote_args<T, U>::type float_distance(const T& a, const U& b, const Policy& pol)
660 {
661    typedef typename tools::promote_args<T, U>::type result_type;
662    return detail::float_distance_imp(detail::normalize_value(static_cast<result_type>(a), typename detail::has_hidden_guard_digits<result_type>::type()), detail::normalize_value(static_cast<result_type>(b), typename detail::has_hidden_guard_digits<result_type>::type()), boost::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol);
663 }
664 
665 template <class T, class U>
float_distance(const T & a,const U & b)666 typename tools::promote_args<T, U>::type float_distance(const T& a, const U& b)
667 {
668    return boost::math::float_distance(a, b, policies::policy<>());
669 }
670 
671 namespace detail{
672 
673 template <class T, class Policy>
float_advance_imp(T val,int distance,const boost::true_type &,const Policy & pol)674 T float_advance_imp(T val, int distance, const boost::true_type&, const Policy& pol)
675 {
676    BOOST_MATH_STD_USING
677    //
678    // Error handling:
679    //
680    static const char* function = "float_advance<%1%>(%1%, int)";
681 
682    int fpclass = (boost::math::fpclassify)(val);
683 
684    if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE))
685       return policies::raise_domain_error<T>(
686          function,
687          "Argument val must be finite, but got %1%", val, pol);
688 
689    if(val < 0)
690       return -float_advance(-val, -distance, pol);
691    if(distance == 0)
692       return val;
693    if(distance == 1)
694       return float_next(val, pol);
695    if(distance == -1)
696       return float_prior(val, pol);
697 
698    if(fabs(val) < detail::get_min_shift_value<T>())
699    {
700       //
701       // Special case: if the value of the least significant bit is a denorm,
702       // implement in terms of float_next/float_prior.
703       // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
704       //
705       if(distance > 0)
706       {
707          do{ val = float_next(val, pol); } while(--distance);
708       }
709       else
710       {
711          do{ val = float_prior(val, pol); } while(++distance);
712       }
713       return val;
714    }
715 
716    int expon;
717    (void)frexp(val, &expon);
718    T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon);
719    if(val <= tools::min_value<T>())
720    {
721       limit = sign(T(distance)) * tools::min_value<T>();
722    }
723    T limit_distance = float_distance(val, limit);
724    while(fabs(limit_distance) < abs(distance))
725    {
726       distance -= itrunc(limit_distance);
727       val = limit;
728       if(distance < 0)
729       {
730          limit /= 2;
731          expon--;
732       }
733       else
734       {
735          limit *= 2;
736          expon++;
737       }
738       limit_distance = float_distance(val, limit);
739       if(distance && (limit_distance == 0))
740       {
741          return policies::raise_evaluation_error<T>(function, "Internal logic failed while trying to increment floating point value %1%: most likely your FPU is in non-IEEE conforming mode.", val, pol);
742       }
743    }
744    if((0.5f == frexp(val, &expon)) && (distance < 0))
745       --expon;
746    T diff = 0;
747    if(val != 0)
748       diff = distance * ldexp(T(1), expon - tools::digits<T>());
749    if(diff == 0)
750       diff = distance * detail::get_smallest_value<T>();
751    return val += diff;
752 } // float_advance_imp
753 //
754 // Special version for bases other than 2:
755 //
756 template <class T, class Policy>
float_advance_imp(T val,int distance,const boost::false_type &,const Policy & pol)757 T float_advance_imp(T val, int distance, const boost::false_type&, const Policy& pol)
758 {
759    BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized);
760    BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2);
761 
762    BOOST_MATH_STD_USING
763    //
764    // Error handling:
765    //
766    static const char* function = "float_advance<%1%>(%1%, int)";
767 
768    int fpclass = (boost::math::fpclassify)(val);
769 
770    if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE))
771       return policies::raise_domain_error<T>(
772          function,
773          "Argument val must be finite, but got %1%", val, pol);
774 
775    if(val < 0)
776       return -float_advance(-val, -distance, pol);
777    if(distance == 0)
778       return val;
779    if(distance == 1)
780       return float_next(val, pol);
781    if(distance == -1)
782       return float_prior(val, pol);
783 
784    if(fabs(val) < detail::get_min_shift_value<T>())
785    {
786       //
787       // Special case: if the value of the least significant bit is a denorm,
788       // implement in terms of float_next/float_prior.
789       // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
790       //
791       if(distance > 0)
792       {
793          do{ val = float_next(val, pol); } while(--distance);
794       }
795       else
796       {
797          do{ val = float_prior(val, pol); } while(++distance);
798       }
799       return val;
800    }
801 
802    boost::intmax_t expon = 1 + ilogb(val);
803    T limit = scalbn(T(1), distance < 0 ? expon - 1 : expon);
804    if(val <= tools::min_value<T>())
805    {
806       limit = sign(T(distance)) * tools::min_value<T>();
807    }
808    T limit_distance = float_distance(val, limit);
809    while(fabs(limit_distance) < abs(distance))
810    {
811       distance -= itrunc(limit_distance);
812       val = limit;
813       if(distance < 0)
814       {
815          limit /= std::numeric_limits<T>::radix;
816          expon--;
817       }
818       else
819       {
820          limit *= std::numeric_limits<T>::radix;
821          expon++;
822       }
823       limit_distance = float_distance(val, limit);
824       if(distance && (limit_distance == 0))
825       {
826          return policies::raise_evaluation_error<T>(function, "Internal logic failed while trying to increment floating point value %1%: most likely your FPU is in non-IEEE conforming mode.", val, pol);
827       }
828    }
829    /*expon = 1 + ilogb(val);
830    if((1 == scalbn(val, 1 + expon)) && (distance < 0))
831       --expon;*/
832    T diff = 0;
833    if(val != 0)
834       diff = distance * scalbn(T(1), expon - std::numeric_limits<T>::digits);
835    if(diff == 0)
836       diff = distance * detail::get_smallest_value<T>();
837    return val += diff;
838 } // float_advance_imp
839 
840 } // namespace detail
841 
842 template <class T, class Policy>
float_advance(T val,int distance,const Policy & pol)843 inline typename tools::promote_args<T>::type float_advance(T val, int distance, const Policy& pol)
844 {
845    typedef typename tools::promote_args<T>::type result_type;
846    return detail::float_advance_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), distance, boost::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol);
847 }
848 
849 template <class T>
float_advance(const T & val,int distance)850 inline typename tools::promote_args<T>::type float_advance(const T& val, int distance)
851 {
852    return boost::math::float_advance(val, distance, policies::policy<>());
853 }
854 
855 }} // boost math namespaces
856 
857 #endif // BOOST_MATH_SPECIAL_NEXT_HPP
858 
859