• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Freescale QuadSPI driver.
3  *
4  * Copyright (C) 2013 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/errno.h>
15 #include <linux/platform_device.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/timer.h>
24 #include <linux/jiffies.h>
25 #include <linux/completion.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/mtd/spi-nor.h>
29 #include <linux/mutex.h>
30 #include <linux/pm_qos.h>
31 #include <linux/sizes.h>
32 
33 /* Controller needs driver to swap endian */
34 #define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
35 /* Controller needs 4x internal clock */
36 #define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
37 /*
38  * TKT253890, Controller needs driver to fill txfifo till 16 byte to
39  * trigger data transfer even though extern data will not transferred.
40  */
41 #define QUADSPI_QUIRK_TKT253890		(1 << 2)
42 /* Controller cannot wake up from wait mode, TKT245618 */
43 #define QUADSPI_QUIRK_TKT245618         (1 << 3)
44 
45 /* The registers */
46 #define QUADSPI_MCR			0x00
47 #define QUADSPI_MCR_RESERVED_SHIFT	16
48 #define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
49 #define QUADSPI_MCR_MDIS_SHIFT		14
50 #define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
51 #define QUADSPI_MCR_CLR_TXF_SHIFT	11
52 #define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
53 #define QUADSPI_MCR_CLR_RXF_SHIFT	10
54 #define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
55 #define QUADSPI_MCR_DDR_EN_SHIFT	7
56 #define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
57 #define QUADSPI_MCR_END_CFG_SHIFT	2
58 #define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
59 #define QUADSPI_MCR_SWRSTHD_SHIFT	1
60 #define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
61 #define QUADSPI_MCR_SWRSTSD_SHIFT	0
62 #define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)
63 
64 #define QUADSPI_IPCR			0x08
65 #define QUADSPI_IPCR_SEQID_SHIFT	24
66 #define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)
67 
68 #define QUADSPI_BUF0CR			0x10
69 #define QUADSPI_BUF1CR			0x14
70 #define QUADSPI_BUF2CR			0x18
71 #define QUADSPI_BUFXCR_INVALID_MSTRID	0xe
72 
73 #define QUADSPI_BUF3CR			0x1c
74 #define QUADSPI_BUF3CR_ALLMST_SHIFT	31
75 #define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
76 #define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
77 #define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
78 
79 #define QUADSPI_BFGENCR			0x20
80 #define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
81 #define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
82 #define QUADSPI_BFGENCR_SEQID_SHIFT	12
83 #define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
84 
85 #define QUADSPI_BUF0IND			0x30
86 #define QUADSPI_BUF1IND			0x34
87 #define QUADSPI_BUF2IND			0x38
88 #define QUADSPI_SFAR			0x100
89 
90 #define QUADSPI_SMPR			0x108
91 #define QUADSPI_SMPR_DDRSMP_SHIFT	16
92 #define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
93 #define QUADSPI_SMPR_FSDLY_SHIFT	6
94 #define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
95 #define QUADSPI_SMPR_FSPHS_SHIFT	5
96 #define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
97 #define QUADSPI_SMPR_HSENA_SHIFT	0
98 #define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)
99 
100 #define QUADSPI_RBSR			0x10c
101 #define QUADSPI_RBSR_RDBFL_SHIFT	8
102 #define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
103 
104 #define QUADSPI_RBCT			0x110
105 #define QUADSPI_RBCT_WMRK_MASK		0x1F
106 #define QUADSPI_RBCT_RXBRD_SHIFT	8
107 #define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
108 
109 #define QUADSPI_TBSR			0x150
110 #define QUADSPI_TBDR			0x154
111 #define QUADSPI_SR			0x15c
112 #define QUADSPI_SR_IP_ACC_SHIFT		1
113 #define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
114 #define QUADSPI_SR_AHB_ACC_SHIFT	2
115 #define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
116 
117 #define QUADSPI_FR			0x160
118 #define QUADSPI_FR_TFF_MASK		0x1
119 
120 #define QUADSPI_SFA1AD			0x180
121 #define QUADSPI_SFA2AD			0x184
122 #define QUADSPI_SFB1AD			0x188
123 #define QUADSPI_SFB2AD			0x18c
124 #define QUADSPI_RBDR			0x200
125 
126 #define QUADSPI_LUTKEY			0x300
127 #define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
128 
129 #define QUADSPI_LCKCR			0x304
130 #define QUADSPI_LCKER_LOCK		0x1
131 #define QUADSPI_LCKER_UNLOCK		0x2
132 
133 #define QUADSPI_RSER			0x164
134 #define QUADSPI_RSER_TFIE		(0x1 << 0)
135 
136 #define QUADSPI_LUT_BASE		0x310
137 
138 /*
139  * The definition of the LUT register shows below:
140  *
141  *  ---------------------------------------------------
142  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
143  *  ---------------------------------------------------
144  */
145 #define OPRND0_SHIFT		0
146 #define PAD0_SHIFT		8
147 #define INSTR0_SHIFT		10
148 #define OPRND1_SHIFT		16
149 
150 /* Instruction set for the LUT register. */
151 #define LUT_STOP		0
152 #define LUT_CMD			1
153 #define LUT_ADDR		2
154 #define LUT_DUMMY		3
155 #define LUT_MODE		4
156 #define LUT_MODE2		5
157 #define LUT_MODE4		6
158 #define LUT_FSL_READ		7
159 #define LUT_FSL_WRITE		8
160 #define LUT_JMP_ON_CS		9
161 #define LUT_ADDR_DDR		10
162 #define LUT_MODE_DDR		11
163 #define LUT_MODE2_DDR		12
164 #define LUT_MODE4_DDR		13
165 #define LUT_FSL_READ_DDR		14
166 #define LUT_FSL_WRITE_DDR		15
167 #define LUT_DATA_LEARN		16
168 
169 /*
170  * The PAD definitions for LUT register.
171  *
172  * The pad stands for the lines number of IO[0:3].
173  * For example, the Quad read need four IO lines, so you should
174  * set LUT_PAD4 which means we use four IO lines.
175  */
176 #define LUT_PAD1		0
177 #define LUT_PAD2		1
178 #define LUT_PAD4		2
179 
180 /* Oprands for the LUT register. */
181 #define ADDR24BIT		0x18
182 #define ADDR32BIT		0x20
183 
184 /* Macros for constructing the LUT register. */
185 #define LUT0(ins, pad, opr)						\
186 		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
187 		((LUT_##ins) << INSTR0_SHIFT))
188 
189 #define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)
190 
191 /* other macros for LUT register. */
192 #define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
193 #define QUADSPI_LUT_NUM		64
194 
195 /* SEQID -- we can have 16 seqids at most. */
196 #define SEQID_READ		0
197 #define SEQID_WREN		1
198 #define SEQID_WRDI		2
199 #define SEQID_RDSR		3
200 #define SEQID_SE		4
201 #define SEQID_CHIP_ERASE	5
202 #define SEQID_PP		6
203 #define SEQID_RDID		7
204 #define SEQID_WRSR		8
205 #define SEQID_RDCR		9
206 #define SEQID_EN4B		10
207 #define SEQID_BRWR		11
208 
209 #define QUADSPI_MIN_IOMAP SZ_4M
210 
211 enum fsl_qspi_devtype {
212 	FSL_QUADSPI_VYBRID,
213 	FSL_QUADSPI_IMX6SX,
214 	FSL_QUADSPI_IMX7D,
215 	FSL_QUADSPI_IMX6UL,
216 	FSL_QUADSPI_LS1021A,
217 	FSL_QUADSPI_LS2080A,
218 };
219 
220 struct fsl_qspi_devtype_data {
221 	enum fsl_qspi_devtype devtype;
222 	int rxfifo;
223 	int txfifo;
224 	int ahb_buf_size;
225 	int driver_data;
226 };
227 
228 static const struct fsl_qspi_devtype_data vybrid_data = {
229 	.devtype = FSL_QUADSPI_VYBRID,
230 	.rxfifo = 128,
231 	.txfifo = 64,
232 	.ahb_buf_size = 1024,
233 	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
234 };
235 
236 static const struct fsl_qspi_devtype_data imx6sx_data = {
237 	.devtype = FSL_QUADSPI_IMX6SX,
238 	.rxfifo = 128,
239 	.txfifo = 512,
240 	.ahb_buf_size = 1024,
241 	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
242 		       | QUADSPI_QUIRK_TKT245618,
243 };
244 
245 static const struct fsl_qspi_devtype_data imx7d_data = {
246 	.devtype = FSL_QUADSPI_IMX7D,
247 	.rxfifo = 512,
248 	.txfifo = 512,
249 	.ahb_buf_size = 1024,
250 	.driver_data = QUADSPI_QUIRK_TKT253890
251 		       | QUADSPI_QUIRK_4X_INT_CLK,
252 };
253 
254 static const struct fsl_qspi_devtype_data imx6ul_data = {
255 	.devtype = FSL_QUADSPI_IMX6UL,
256 	.rxfifo = 128,
257 	.txfifo = 512,
258 	.ahb_buf_size = 1024,
259 	.driver_data = QUADSPI_QUIRK_TKT253890
260 		       | QUADSPI_QUIRK_4X_INT_CLK,
261 };
262 
263 static struct fsl_qspi_devtype_data ls1021a_data = {
264 	.devtype = FSL_QUADSPI_LS1021A,
265 	.rxfifo = 128,
266 	.txfifo = 64,
267 	.ahb_buf_size = 1024,
268 	.driver_data = 0,
269 };
270 
271 static const struct fsl_qspi_devtype_data ls2080a_data = {
272 	.devtype = FSL_QUADSPI_LS2080A,
273 	.rxfifo = 128,
274 	.txfifo = 64,
275 	.ahb_buf_size = 1024,
276 	.driver_data = QUADSPI_QUIRK_TKT253890,
277 };
278 
279 
280 #define FSL_QSPI_MAX_CHIP	4
281 struct fsl_qspi {
282 	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
283 	void __iomem *iobase;
284 	void __iomem *ahb_addr;
285 	u32 memmap_phy;
286 	u32 memmap_offs;
287 	u32 memmap_len;
288 	struct clk *clk, *clk_en;
289 	struct device *dev;
290 	struct completion c;
291 	const struct fsl_qspi_devtype_data *devtype_data;
292 	u32 nor_size;
293 	u32 nor_num;
294 	u32 clk_rate;
295 	unsigned int chip_base_addr; /* We may support two chips. */
296 	bool has_second_chip;
297 	bool big_endian;
298 	struct mutex lock;
299 	struct pm_qos_request pm_qos_req;
300 };
301 
needs_swap_endian(struct fsl_qspi * q)302 static inline int needs_swap_endian(struct fsl_qspi *q)
303 {
304 	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
305 }
306 
needs_4x_clock(struct fsl_qspi * q)307 static inline int needs_4x_clock(struct fsl_qspi *q)
308 {
309 	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
310 }
311 
needs_fill_txfifo(struct fsl_qspi * q)312 static inline int needs_fill_txfifo(struct fsl_qspi *q)
313 {
314 	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
315 }
316 
needs_wakeup_wait_mode(struct fsl_qspi * q)317 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
318 {
319 	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
320 }
321 
322 /*
323  * R/W functions for big- or little-endian registers:
324  * The qSPI controller's endian is independent of the CPU core's endian.
325  * So far, although the CPU core is little-endian but the qSPI have two
326  * versions for big-endian and little-endian.
327  */
qspi_writel(struct fsl_qspi * q,u32 val,void __iomem * addr)328 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
329 {
330 	if (q->big_endian)
331 		iowrite32be(val, addr);
332 	else
333 		iowrite32(val, addr);
334 }
335 
qspi_readl(struct fsl_qspi * q,void __iomem * addr)336 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
337 {
338 	if (q->big_endian)
339 		return ioread32be(addr);
340 	else
341 		return ioread32(addr);
342 }
343 
344 /*
345  * An IC bug makes us to re-arrange the 32-bit data.
346  * The following chips, such as IMX6SLX, have fixed this bug.
347  */
fsl_qspi_endian_xchg(struct fsl_qspi * q,u32 a)348 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
349 {
350 	return needs_swap_endian(q) ? __swab32(a) : a;
351 }
352 
fsl_qspi_unlock_lut(struct fsl_qspi * q)353 static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
354 {
355 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
356 	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
357 }
358 
fsl_qspi_lock_lut(struct fsl_qspi * q)359 static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
360 {
361 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
362 	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
363 }
364 
fsl_qspi_irq_handler(int irq,void * dev_id)365 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
366 {
367 	struct fsl_qspi *q = dev_id;
368 	u32 reg;
369 
370 	/* clear interrupt */
371 	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
372 	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
373 
374 	if (reg & QUADSPI_FR_TFF_MASK)
375 		complete(&q->c);
376 
377 	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
378 	return IRQ_HANDLED;
379 }
380 
fsl_qspi_init_lut(struct fsl_qspi * q)381 static void fsl_qspi_init_lut(struct fsl_qspi *q)
382 {
383 	void __iomem *base = q->iobase;
384 	int rxfifo = q->devtype_data->rxfifo;
385 	u32 lut_base;
386 	int i;
387 
388 	struct spi_nor *nor = &q->nor[0];
389 	u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
390 	u8 read_op = nor->read_opcode;
391 	u8 read_dm = nor->read_dummy;
392 
393 	fsl_qspi_unlock_lut(q);
394 
395 	/* Clear all the LUT table */
396 	for (i = 0; i < QUADSPI_LUT_NUM; i++)
397 		qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
398 
399 	/* Read */
400 	lut_base = SEQID_READ * 4;
401 
402 	qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen),
403 			base + QUADSPI_LUT(lut_base));
404 	qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) |
405 		    LUT1(FSL_READ, PAD4, rxfifo),
406 			base + QUADSPI_LUT(lut_base + 1));
407 
408 	/* Write enable */
409 	lut_base = SEQID_WREN * 4;
410 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
411 			base + QUADSPI_LUT(lut_base));
412 
413 	/* Page Program */
414 	lut_base = SEQID_PP * 4;
415 
416 	qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) |
417 		    LUT1(ADDR, PAD1, addrlen),
418 			base + QUADSPI_LUT(lut_base));
419 	qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
420 			base + QUADSPI_LUT(lut_base + 1));
421 
422 	/* Read Status */
423 	lut_base = SEQID_RDSR * 4;
424 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
425 			LUT1(FSL_READ, PAD1, 0x1),
426 			base + QUADSPI_LUT(lut_base));
427 
428 	/* Erase a sector */
429 	lut_base = SEQID_SE * 4;
430 
431 	qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) |
432 		    LUT1(ADDR, PAD1, addrlen),
433 			base + QUADSPI_LUT(lut_base));
434 
435 	/* Erase the whole chip */
436 	lut_base = SEQID_CHIP_ERASE * 4;
437 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
438 			base + QUADSPI_LUT(lut_base));
439 
440 	/* READ ID */
441 	lut_base = SEQID_RDID * 4;
442 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
443 			LUT1(FSL_READ, PAD1, 0x8),
444 			base + QUADSPI_LUT(lut_base));
445 
446 	/* Write Register */
447 	lut_base = SEQID_WRSR * 4;
448 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
449 			LUT1(FSL_WRITE, PAD1, 0x2),
450 			base + QUADSPI_LUT(lut_base));
451 
452 	/* Read Configuration Register */
453 	lut_base = SEQID_RDCR * 4;
454 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
455 			LUT1(FSL_READ, PAD1, 0x1),
456 			base + QUADSPI_LUT(lut_base));
457 
458 	/* Write disable */
459 	lut_base = SEQID_WRDI * 4;
460 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
461 			base + QUADSPI_LUT(lut_base));
462 
463 	/* Enter 4 Byte Mode (Micron) */
464 	lut_base = SEQID_EN4B * 4;
465 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
466 			base + QUADSPI_LUT(lut_base));
467 
468 	/* Enter 4 Byte Mode (Spansion) */
469 	lut_base = SEQID_BRWR * 4;
470 	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
471 			base + QUADSPI_LUT(lut_base));
472 
473 	fsl_qspi_lock_lut(q);
474 }
475 
476 /* Get the SEQID for the command */
fsl_qspi_get_seqid(struct fsl_qspi * q,u8 cmd)477 static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
478 {
479 	switch (cmd) {
480 	case SPINOR_OP_READ_1_1_4:
481 	case SPINOR_OP_READ_1_1_4_4B:
482 		return SEQID_READ;
483 	case SPINOR_OP_WREN:
484 		return SEQID_WREN;
485 	case SPINOR_OP_WRDI:
486 		return SEQID_WRDI;
487 	case SPINOR_OP_RDSR:
488 		return SEQID_RDSR;
489 	case SPINOR_OP_SE:
490 		return SEQID_SE;
491 	case SPINOR_OP_CHIP_ERASE:
492 		return SEQID_CHIP_ERASE;
493 	case SPINOR_OP_PP:
494 		return SEQID_PP;
495 	case SPINOR_OP_RDID:
496 		return SEQID_RDID;
497 	case SPINOR_OP_WRSR:
498 		return SEQID_WRSR;
499 	case SPINOR_OP_RDCR:
500 		return SEQID_RDCR;
501 	case SPINOR_OP_EN4B:
502 		return SEQID_EN4B;
503 	case SPINOR_OP_BRWR:
504 		return SEQID_BRWR;
505 	default:
506 		if (cmd == q->nor[0].erase_opcode)
507 			return SEQID_SE;
508 		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
509 		break;
510 	}
511 	return -EINVAL;
512 }
513 
514 static int
fsl_qspi_runcmd(struct fsl_qspi * q,u8 cmd,unsigned int addr,int len)515 fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
516 {
517 	void __iomem *base = q->iobase;
518 	int seqid;
519 	u32 reg, reg2;
520 	int err;
521 
522 	init_completion(&q->c);
523 	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
524 			q->chip_base_addr, addr, len, cmd);
525 
526 	/* save the reg */
527 	reg = qspi_readl(q, base + QUADSPI_MCR);
528 
529 	qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
530 			base + QUADSPI_SFAR);
531 	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
532 			base + QUADSPI_RBCT);
533 	qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
534 
535 	do {
536 		reg2 = qspi_readl(q, base + QUADSPI_SR);
537 		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
538 			udelay(1);
539 			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
540 			continue;
541 		}
542 		break;
543 	} while (1);
544 
545 	/* trigger the LUT now */
546 	seqid = fsl_qspi_get_seqid(q, cmd);
547 	if (seqid < 0)
548 		return seqid;
549 
550 	qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
551 			base + QUADSPI_IPCR);
552 
553 	/* Wait for the interrupt. */
554 	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
555 		dev_err(q->dev,
556 			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
557 			cmd, addr, qspi_readl(q, base + QUADSPI_FR),
558 			qspi_readl(q, base + QUADSPI_SR));
559 		err = -ETIMEDOUT;
560 	} else {
561 		err = 0;
562 	}
563 
564 	/* restore the MCR */
565 	qspi_writel(q, reg, base + QUADSPI_MCR);
566 
567 	return err;
568 }
569 
570 /* Read out the data from the QUADSPI_RBDR buffer registers. */
fsl_qspi_read_data(struct fsl_qspi * q,int len,u8 * rxbuf)571 static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
572 {
573 	u32 tmp;
574 	int i = 0;
575 
576 	while (len > 0) {
577 		tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
578 		tmp = fsl_qspi_endian_xchg(q, tmp);
579 		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
580 				q->chip_base_addr, tmp);
581 
582 		if (len >= 4) {
583 			*((u32 *)rxbuf) = tmp;
584 			rxbuf += 4;
585 		} else {
586 			memcpy(rxbuf, &tmp, len);
587 			break;
588 		}
589 
590 		len -= 4;
591 		i++;
592 	}
593 }
594 
595 /*
596  * If we have changed the content of the flash by writing or erasing,
597  * we need to invalidate the AHB buffer. If we do not do so, we may read out
598  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
599  * domain at the same time.
600  */
fsl_qspi_invalid(struct fsl_qspi * q)601 static inline void fsl_qspi_invalid(struct fsl_qspi *q)
602 {
603 	u32 reg;
604 
605 	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
606 	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
607 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
608 
609 	/*
610 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
611 	 * Delay 1 us is enough.
612 	 */
613 	udelay(1);
614 
615 	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
616 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
617 }
618 
fsl_qspi_nor_write(struct fsl_qspi * q,struct spi_nor * nor,u8 opcode,unsigned int to,u32 * txbuf,unsigned count)619 static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
620 				u8 opcode, unsigned int to, u32 *txbuf,
621 				unsigned count)
622 {
623 	int ret, i, j;
624 	u32 tmp;
625 
626 	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
627 		q->chip_base_addr, to, count);
628 
629 	/* clear the TX FIFO. */
630 	tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
631 	qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
632 
633 	/* fill the TX data to the FIFO */
634 	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
635 		tmp = fsl_qspi_endian_xchg(q, *txbuf);
636 		qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
637 		txbuf++;
638 	}
639 
640 	/* fill the TXFIFO upto 16 bytes for i.MX7d */
641 	if (needs_fill_txfifo(q))
642 		for (; i < 4; i++)
643 			qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
644 
645 	/* Trigger it */
646 	ret = fsl_qspi_runcmd(q, opcode, to, count);
647 
648 	if (ret == 0)
649 		return count;
650 
651 	return ret;
652 }
653 
fsl_qspi_set_map_addr(struct fsl_qspi * q)654 static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
655 {
656 	int nor_size = q->nor_size;
657 	void __iomem *base = q->iobase;
658 
659 	qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
660 	qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
661 	qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
662 	qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
663 }
664 
665 /*
666  * There are two different ways to read out the data from the flash:
667  *  the "IP Command Read" and the "AHB Command Read".
668  *
669  * The IC guy suggests we use the "AHB Command Read" which is faster
670  * then the "IP Command Read". (What's more is that there is a bug in
671  * the "IP Command Read" in the Vybrid.)
672  *
673  * After we set up the registers for the "AHB Command Read", we can use
674  * the memcpy to read the data directly. A "missed" access to the buffer
675  * causes the controller to clear the buffer, and use the sequence pointed
676  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
677  */
fsl_qspi_init_ahb_read(struct fsl_qspi * q)678 static int fsl_qspi_init_ahb_read(struct fsl_qspi *q)
679 {
680 	void __iomem *base = q->iobase;
681 	int seqid;
682 
683 	/* AHB configuration for access buffer 0/1/2 .*/
684 	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
685 	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
686 	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
687 	/*
688 	 * Set ADATSZ with the maximum AHB buffer size to improve the
689 	 * read performance.
690 	 */
691 	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
692 			((q->devtype_data->ahb_buf_size / 8)
693 			<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
694 			base + QUADSPI_BUF3CR);
695 
696 	/* We only use the buffer3 */
697 	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
698 	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
699 	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
700 
701 	/* Set the default lut sequence for AHB Read. */
702 	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
703 	if (seqid < 0)
704 		return seqid;
705 
706 	qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
707 		q->iobase + QUADSPI_BFGENCR);
708 
709 	return 0;
710 }
711 
712 /* This function was used to prepare and enable QSPI clock */
fsl_qspi_clk_prep_enable(struct fsl_qspi * q)713 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
714 {
715 	int ret;
716 
717 	ret = clk_prepare_enable(q->clk_en);
718 	if (ret)
719 		return ret;
720 
721 	ret = clk_prepare_enable(q->clk);
722 	if (ret) {
723 		clk_disable_unprepare(q->clk_en);
724 		return ret;
725 	}
726 
727 	if (needs_wakeup_wait_mode(q))
728 		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
729 
730 	return 0;
731 }
732 
733 /* This function was used to disable and unprepare QSPI clock */
fsl_qspi_clk_disable_unprep(struct fsl_qspi * q)734 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
735 {
736 	if (needs_wakeup_wait_mode(q))
737 		pm_qos_remove_request(&q->pm_qos_req);
738 
739 	clk_disable_unprepare(q->clk);
740 	clk_disable_unprepare(q->clk_en);
741 
742 }
743 
744 /* We use this function to do some basic init for spi_nor_scan(). */
fsl_qspi_nor_setup(struct fsl_qspi * q)745 static int fsl_qspi_nor_setup(struct fsl_qspi *q)
746 {
747 	void __iomem *base = q->iobase;
748 	u32 reg;
749 	int ret;
750 
751 	/* disable and unprepare clock to avoid glitch pass to controller */
752 	fsl_qspi_clk_disable_unprep(q);
753 
754 	/* the default frequency, we will change it in the future. */
755 	ret = clk_set_rate(q->clk, 66000000);
756 	if (ret)
757 		return ret;
758 
759 	ret = fsl_qspi_clk_prep_enable(q);
760 	if (ret)
761 		return ret;
762 
763 	/* Reset the module */
764 	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
765 		base + QUADSPI_MCR);
766 	udelay(1);
767 
768 	/* Init the LUT table. */
769 	fsl_qspi_init_lut(q);
770 
771 	/* Disable the module */
772 	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
773 			base + QUADSPI_MCR);
774 
775 	reg = qspi_readl(q, base + QUADSPI_SMPR);
776 	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
777 			| QUADSPI_SMPR_FSPHS_MASK
778 			| QUADSPI_SMPR_HSENA_MASK
779 			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
780 
781 	/* Enable the module */
782 	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
783 			base + QUADSPI_MCR);
784 
785 	/* clear all interrupt status */
786 	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
787 
788 	/* enable the interrupt */
789 	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
790 
791 	return 0;
792 }
793 
fsl_qspi_nor_setup_last(struct fsl_qspi * q)794 static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
795 {
796 	unsigned long rate = q->clk_rate;
797 	int ret;
798 
799 	if (needs_4x_clock(q))
800 		rate *= 4;
801 
802 	/* disable and unprepare clock to avoid glitch pass to controller */
803 	fsl_qspi_clk_disable_unprep(q);
804 
805 	ret = clk_set_rate(q->clk, rate);
806 	if (ret)
807 		return ret;
808 
809 	ret = fsl_qspi_clk_prep_enable(q);
810 	if (ret)
811 		return ret;
812 
813 	/* Init the LUT table again. */
814 	fsl_qspi_init_lut(q);
815 
816 	/* Init for AHB read */
817 	return fsl_qspi_init_ahb_read(q);
818 }
819 
820 static const struct of_device_id fsl_qspi_dt_ids[] = {
821 	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
822 	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
823 	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
824 	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
825 	{ .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
826 	{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
827 	{ /* sentinel */ }
828 };
829 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
830 
fsl_qspi_set_base_addr(struct fsl_qspi * q,struct spi_nor * nor)831 static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
832 {
833 	q->chip_base_addr = q->nor_size * (nor - q->nor);
834 }
835 
fsl_qspi_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)836 static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
837 {
838 	int ret;
839 	struct fsl_qspi *q = nor->priv;
840 
841 	ret = fsl_qspi_runcmd(q, opcode, 0, len);
842 	if (ret)
843 		return ret;
844 
845 	fsl_qspi_read_data(q, len, buf);
846 	return 0;
847 }
848 
fsl_qspi_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)849 static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
850 {
851 	struct fsl_qspi *q = nor->priv;
852 	int ret;
853 
854 	if (!buf) {
855 		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
856 		if (ret)
857 			return ret;
858 
859 		if (opcode == SPINOR_OP_CHIP_ERASE)
860 			fsl_qspi_invalid(q);
861 
862 	} else if (len > 0) {
863 		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
864 					(u32 *)buf, len);
865 		if (ret > 0)
866 			return 0;
867 	} else {
868 		dev_err(q->dev, "invalid cmd %d\n", opcode);
869 		ret = -EINVAL;
870 	}
871 
872 	return ret;
873 }
874 
fsl_qspi_write(struct spi_nor * nor,loff_t to,size_t len,const u_char * buf)875 static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
876 			      size_t len, const u_char *buf)
877 {
878 	struct fsl_qspi *q = nor->priv;
879 	ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
880 					 (u32 *)buf, len);
881 
882 	/* invalid the data in the AHB buffer. */
883 	fsl_qspi_invalid(q);
884 	return ret;
885 }
886 
fsl_qspi_read(struct spi_nor * nor,loff_t from,size_t len,u_char * buf)887 static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
888 			     size_t len, u_char *buf)
889 {
890 	struct fsl_qspi *q = nor->priv;
891 	u8 cmd = nor->read_opcode;
892 
893 	/* if necessary,ioremap buffer before AHB read, */
894 	if (!q->ahb_addr) {
895 		q->memmap_offs = q->chip_base_addr + from;
896 		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
897 
898 		q->ahb_addr = ioremap_nocache(
899 				q->memmap_phy + q->memmap_offs,
900 				q->memmap_len);
901 		if (!q->ahb_addr) {
902 			dev_err(q->dev, "ioremap failed\n");
903 			return -ENOMEM;
904 		}
905 	/* ioremap if the data requested is out of range */
906 	} else if (q->chip_base_addr + from < q->memmap_offs
907 			|| q->chip_base_addr + from + len >
908 			q->memmap_offs + q->memmap_len) {
909 		iounmap(q->ahb_addr);
910 
911 		q->memmap_offs = q->chip_base_addr + from;
912 		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
913 		q->ahb_addr = ioremap_nocache(
914 				q->memmap_phy + q->memmap_offs,
915 				q->memmap_len);
916 		if (!q->ahb_addr) {
917 			dev_err(q->dev, "ioremap failed\n");
918 			return -ENOMEM;
919 		}
920 	}
921 
922 	dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
923 		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
924 		len);
925 
926 	/* Read out the data directly from the AHB buffer.*/
927 	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
928 		len);
929 
930 	return len;
931 }
932 
fsl_qspi_erase(struct spi_nor * nor,loff_t offs)933 static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
934 {
935 	struct fsl_qspi *q = nor->priv;
936 	int ret;
937 
938 	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
939 		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
940 
941 	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
942 	if (ret)
943 		return ret;
944 
945 	fsl_qspi_invalid(q);
946 	return 0;
947 }
948 
fsl_qspi_prep(struct spi_nor * nor,enum spi_nor_ops ops)949 static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
950 {
951 	struct fsl_qspi *q = nor->priv;
952 	int ret;
953 
954 	mutex_lock(&q->lock);
955 
956 	ret = fsl_qspi_clk_prep_enable(q);
957 	if (ret)
958 		goto err_mutex;
959 
960 	fsl_qspi_set_base_addr(q, nor);
961 	return 0;
962 
963 err_mutex:
964 	mutex_unlock(&q->lock);
965 	return ret;
966 }
967 
fsl_qspi_unprep(struct spi_nor * nor,enum spi_nor_ops ops)968 static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
969 {
970 	struct fsl_qspi *q = nor->priv;
971 
972 	fsl_qspi_clk_disable_unprep(q);
973 	mutex_unlock(&q->lock);
974 }
975 
fsl_qspi_probe(struct platform_device * pdev)976 static int fsl_qspi_probe(struct platform_device *pdev)
977 {
978 	const struct spi_nor_hwcaps hwcaps = {
979 		.mask = SNOR_HWCAPS_READ_1_1_4 |
980 			SNOR_HWCAPS_PP,
981 	};
982 	struct device_node *np = pdev->dev.of_node;
983 	struct device *dev = &pdev->dev;
984 	struct fsl_qspi *q;
985 	struct resource *res;
986 	struct spi_nor *nor;
987 	struct mtd_info *mtd;
988 	int ret, i = 0;
989 
990 	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
991 	if (!q)
992 		return -ENOMEM;
993 
994 	q->nor_num = of_get_child_count(dev->of_node);
995 	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
996 		return -ENODEV;
997 
998 	q->dev = dev;
999 	q->devtype_data = of_device_get_match_data(dev);
1000 	if (!q->devtype_data)
1001 		return -ENODEV;
1002 	platform_set_drvdata(pdev, q);
1003 
1004 	/* find the resources */
1005 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
1006 	q->iobase = devm_ioremap_resource(dev, res);
1007 	if (IS_ERR(q->iobase))
1008 		return PTR_ERR(q->iobase);
1009 
1010 	q->big_endian = of_property_read_bool(np, "big-endian");
1011 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1012 					"QuadSPI-memory");
1013 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
1014 				     res->name)) {
1015 		dev_err(dev, "can't request region for resource %pR\n", res);
1016 		return -EBUSY;
1017 	}
1018 
1019 	q->memmap_phy = res->start;
1020 
1021 	/* find the clocks */
1022 	q->clk_en = devm_clk_get(dev, "qspi_en");
1023 	if (IS_ERR(q->clk_en))
1024 		return PTR_ERR(q->clk_en);
1025 
1026 	q->clk = devm_clk_get(dev, "qspi");
1027 	if (IS_ERR(q->clk))
1028 		return PTR_ERR(q->clk);
1029 
1030 	ret = fsl_qspi_clk_prep_enable(q);
1031 	if (ret) {
1032 		dev_err(dev, "can not enable the clock\n");
1033 		goto clk_failed;
1034 	}
1035 
1036 	/* find the irq */
1037 	ret = platform_get_irq(pdev, 0);
1038 	if (ret < 0) {
1039 		dev_err(dev, "failed to get the irq: %d\n", ret);
1040 		goto irq_failed;
1041 	}
1042 
1043 	ret = devm_request_irq(dev, ret,
1044 			fsl_qspi_irq_handler, 0, pdev->name, q);
1045 	if (ret) {
1046 		dev_err(dev, "failed to request irq: %d\n", ret);
1047 		goto irq_failed;
1048 	}
1049 
1050 	ret = fsl_qspi_nor_setup(q);
1051 	if (ret)
1052 		goto irq_failed;
1053 
1054 	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1055 		q->has_second_chip = true;
1056 
1057 	mutex_init(&q->lock);
1058 
1059 	/* iterate the subnodes. */
1060 	for_each_available_child_of_node(dev->of_node, np) {
1061 		/* skip the holes */
1062 		if (!q->has_second_chip)
1063 			i *= 2;
1064 
1065 		nor = &q->nor[i];
1066 		mtd = &nor->mtd;
1067 
1068 		nor->dev = dev;
1069 		spi_nor_set_flash_node(nor, np);
1070 		nor->priv = q;
1071 
1072 		if (q->nor_num > 1 && !mtd->name) {
1073 			int spiflash_idx;
1074 
1075 			ret = of_property_read_u32(np, "reg", &spiflash_idx);
1076 			if (!ret) {
1077 				mtd->name = devm_kasprintf(dev, GFP_KERNEL,
1078 							   "%s-%d",
1079 							   dev_name(dev),
1080 							   spiflash_idx);
1081 				if (!mtd->name) {
1082 					ret = -ENOMEM;
1083 					goto mutex_failed;
1084 				}
1085 			} else {
1086 				dev_warn(dev, "reg property is missing\n");
1087 			}
1088 		}
1089 
1090 		/* fill the hooks */
1091 		nor->read_reg = fsl_qspi_read_reg;
1092 		nor->write_reg = fsl_qspi_write_reg;
1093 		nor->read = fsl_qspi_read;
1094 		nor->write = fsl_qspi_write;
1095 		nor->erase = fsl_qspi_erase;
1096 
1097 		nor->prepare = fsl_qspi_prep;
1098 		nor->unprepare = fsl_qspi_unprep;
1099 
1100 		ret = of_property_read_u32(np, "spi-max-frequency",
1101 				&q->clk_rate);
1102 		if (ret < 0)
1103 			goto mutex_failed;
1104 
1105 		/* set the chip address for READID */
1106 		fsl_qspi_set_base_addr(q, nor);
1107 
1108 		ret = spi_nor_scan(nor, NULL, &hwcaps);
1109 		if (ret)
1110 			goto mutex_failed;
1111 
1112 		ret = mtd_device_register(mtd, NULL, 0);
1113 		if (ret)
1114 			goto mutex_failed;
1115 
1116 		/* Set the correct NOR size now. */
1117 		if (q->nor_size == 0) {
1118 			q->nor_size = mtd->size;
1119 
1120 			/* Map the SPI NOR to accessiable address */
1121 			fsl_qspi_set_map_addr(q);
1122 		}
1123 
1124 		/*
1125 		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
1126 		 * may writes 265 bytes per time. The write is working in the
1127 		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
1128 		 * size.
1129 		 *
1130 		 * So shrink the spi_nor->page_size if it is larger then the
1131 		 * TX FIFO.
1132 		 */
1133 		if (nor->page_size > q->devtype_data->txfifo)
1134 			nor->page_size = q->devtype_data->txfifo;
1135 
1136 		i++;
1137 	}
1138 
1139 	/* finish the rest init. */
1140 	ret = fsl_qspi_nor_setup_last(q);
1141 	if (ret)
1142 		goto last_init_failed;
1143 
1144 	fsl_qspi_clk_disable_unprep(q);
1145 	return 0;
1146 
1147 last_init_failed:
1148 	for (i = 0; i < q->nor_num; i++) {
1149 		/* skip the holes */
1150 		if (!q->has_second_chip)
1151 			i *= 2;
1152 		mtd_device_unregister(&q->nor[i].mtd);
1153 	}
1154 mutex_failed:
1155 	mutex_destroy(&q->lock);
1156 irq_failed:
1157 	fsl_qspi_clk_disable_unprep(q);
1158 clk_failed:
1159 	dev_err(dev, "Freescale QuadSPI probe failed\n");
1160 	return ret;
1161 }
1162 
fsl_qspi_remove(struct platform_device * pdev)1163 static int fsl_qspi_remove(struct platform_device *pdev)
1164 {
1165 	struct fsl_qspi *q = platform_get_drvdata(pdev);
1166 	int i;
1167 
1168 	for (i = 0; i < q->nor_num; i++) {
1169 		/* skip the holes */
1170 		if (!q->has_second_chip)
1171 			i *= 2;
1172 		mtd_device_unregister(&q->nor[i].mtd);
1173 	}
1174 
1175 	/* disable the hardware */
1176 	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
1177 	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
1178 
1179 	mutex_destroy(&q->lock);
1180 
1181 	if (q->ahb_addr)
1182 		iounmap(q->ahb_addr);
1183 
1184 	return 0;
1185 }
1186 
fsl_qspi_suspend(struct platform_device * pdev,pm_message_t state)1187 static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
1188 {
1189 	return 0;
1190 }
1191 
fsl_qspi_resume(struct platform_device * pdev)1192 static int fsl_qspi_resume(struct platform_device *pdev)
1193 {
1194 	int ret;
1195 	struct fsl_qspi *q = platform_get_drvdata(pdev);
1196 
1197 	ret = fsl_qspi_clk_prep_enable(q);
1198 	if (ret)
1199 		return ret;
1200 
1201 	fsl_qspi_nor_setup(q);
1202 	fsl_qspi_set_map_addr(q);
1203 	fsl_qspi_nor_setup_last(q);
1204 
1205 	fsl_qspi_clk_disable_unprep(q);
1206 
1207 	return 0;
1208 }
1209 
1210 static struct platform_driver fsl_qspi_driver = {
1211 	.driver = {
1212 		.name	= "fsl-quadspi",
1213 		.of_match_table = fsl_qspi_dt_ids,
1214 	},
1215 	.probe          = fsl_qspi_probe,
1216 	.remove		= fsl_qspi_remove,
1217 	.suspend	= fsl_qspi_suspend,
1218 	.resume		= fsl_qspi_resume,
1219 };
1220 module_platform_driver(fsl_qspi_driver);
1221 
1222 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1223 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1224 MODULE_LICENSE("GPL v2");
1225