1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56 * @hw: pointer to the HW structure
57 * @mem: ptr to mem struct to fill out
58 * @size: size of memory requested
59 * @alignment: what to align the allocation to
60 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 struct iavf_dma_mem *mem,
63 u64 size, u32 alignment)
64 {
65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67 if (!mem)
68 return IAVF_ERR_PARAM;
69
70 mem->size = ALIGN(size, alignment);
71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 if (mem->va)
74 return 0;
75 else
76 return IAVF_ERR_NO_MEMORY;
77 }
78
79 /**
80 * iavf_free_dma_mem_d - OS specific memory free for shared code
81 * @hw: pointer to the HW structure
82 * @mem: ptr to mem struct to free
83 **/
iavf_free_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem)84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 struct iavf_dma_mem *mem)
86 {
87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89 if (!mem || !mem->va)
90 return IAVF_ERR_PARAM;
91 dma_free_coherent(&adapter->pdev->dev, mem->size,
92 mem->va, (dma_addr_t)mem->pa);
93 return 0;
94 }
95
96 /**
97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98 * @hw: pointer to the HW structure
99 * @mem: ptr to mem struct to fill out
100 * @size: size of memory requested
101 **/
iavf_allocate_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 struct iavf_virt_mem *mem, u32 size)
104 {
105 if (!mem)
106 return IAVF_ERR_PARAM;
107
108 mem->size = size;
109 mem->va = kzalloc(size, GFP_KERNEL);
110
111 if (mem->va)
112 return 0;
113 else
114 return IAVF_ERR_NO_MEMORY;
115 }
116
117 /**
118 * iavf_free_virt_mem_d - OS specific memory free for shared code
119 * @hw: pointer to the HW structure
120 * @mem: ptr to mem struct to free
121 **/
iavf_free_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem)122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 struct iavf_virt_mem *mem)
124 {
125 if (!mem)
126 return IAVF_ERR_PARAM;
127
128 /* it's ok to kfree a NULL pointer */
129 kfree(mem->va);
130
131 return 0;
132 }
133
134 /**
135 * iavf_lock_timeout - try to set bit but give up after timeout
136 * @adapter: board private structure
137 * @bit: bit to set
138 * @msecs: timeout in msecs
139 *
140 * Returns 0 on success, negative on failure
141 **/
iavf_lock_timeout(struct iavf_adapter * adapter,enum iavf_critical_section_t bit,unsigned int msecs)142 static int iavf_lock_timeout(struct iavf_adapter *adapter,
143 enum iavf_critical_section_t bit,
144 unsigned int msecs)
145 {
146 unsigned int wait, delay = 10;
147
148 for (wait = 0; wait < msecs; wait += delay) {
149 if (!test_and_set_bit(bit, &adapter->crit_section))
150 return 0;
151
152 msleep(delay);
153 }
154
155 return -1;
156 }
157
158 /**
159 * iavf_schedule_reset - Set the flags and schedule a reset event
160 * @adapter: board private structure
161 **/
iavf_schedule_reset(struct iavf_adapter * adapter)162 void iavf_schedule_reset(struct iavf_adapter *adapter)
163 {
164 if (!(adapter->flags &
165 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
166 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
167 queue_work(iavf_wq, &adapter->reset_task);
168 }
169 }
170
171 /**
172 * iavf_tx_timeout - Respond to a Tx Hang
173 * @netdev: network interface device structure
174 * @txqueue: queue number that is timing out
175 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)176 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
177 {
178 struct iavf_adapter *adapter = netdev_priv(netdev);
179
180 adapter->tx_timeout_count++;
181 iavf_schedule_reset(adapter);
182 }
183
184 /**
185 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
186 * @adapter: board private structure
187 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)188 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
189 {
190 struct iavf_hw *hw = &adapter->hw;
191
192 if (!adapter->msix_entries)
193 return;
194
195 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
196
197 iavf_flush(hw);
198
199 synchronize_irq(adapter->msix_entries[0].vector);
200 }
201
202 /**
203 * iavf_misc_irq_enable - Enable default interrupt generation settings
204 * @adapter: board private structure
205 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)206 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
207 {
208 struct iavf_hw *hw = &adapter->hw;
209
210 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
211 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
212 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
213
214 iavf_flush(hw);
215 }
216
217 /**
218 * iavf_irq_disable - Mask off interrupt generation on the NIC
219 * @adapter: board private structure
220 **/
iavf_irq_disable(struct iavf_adapter * adapter)221 static void iavf_irq_disable(struct iavf_adapter *adapter)
222 {
223 int i;
224 struct iavf_hw *hw = &adapter->hw;
225
226 if (!adapter->msix_entries)
227 return;
228
229 for (i = 1; i < adapter->num_msix_vectors; i++) {
230 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
231 synchronize_irq(adapter->msix_entries[i].vector);
232 }
233 iavf_flush(hw);
234 }
235
236 /**
237 * iavf_irq_enable_queues - Enable interrupt for specified queues
238 * @adapter: board private structure
239 * @mask: bitmap of queues to enable
240 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter,u32 mask)241 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
242 {
243 struct iavf_hw *hw = &adapter->hw;
244 int i;
245
246 for (i = 1; i < adapter->num_msix_vectors; i++) {
247 if (mask & BIT(i - 1)) {
248 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
249 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
250 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
251 }
252 }
253 }
254
255 /**
256 * iavf_irq_enable - Enable default interrupt generation settings
257 * @adapter: board private structure
258 * @flush: boolean value whether to run rd32()
259 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)260 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
261 {
262 struct iavf_hw *hw = &adapter->hw;
263
264 iavf_misc_irq_enable(adapter);
265 iavf_irq_enable_queues(adapter, ~0);
266
267 if (flush)
268 iavf_flush(hw);
269 }
270
271 /**
272 * iavf_msix_aq - Interrupt handler for vector 0
273 * @irq: interrupt number
274 * @data: pointer to netdev
275 **/
iavf_msix_aq(int irq,void * data)276 static irqreturn_t iavf_msix_aq(int irq, void *data)
277 {
278 struct net_device *netdev = data;
279 struct iavf_adapter *adapter = netdev_priv(netdev);
280 struct iavf_hw *hw = &adapter->hw;
281
282 /* handle non-queue interrupts, these reads clear the registers */
283 rd32(hw, IAVF_VFINT_ICR01);
284 rd32(hw, IAVF_VFINT_ICR0_ENA1);
285
286 /* schedule work on the private workqueue */
287 queue_work(iavf_wq, &adapter->adminq_task);
288
289 return IRQ_HANDLED;
290 }
291
292 /**
293 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
294 * @irq: interrupt number
295 * @data: pointer to a q_vector
296 **/
iavf_msix_clean_rings(int irq,void * data)297 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
298 {
299 struct iavf_q_vector *q_vector = data;
300
301 if (!q_vector->tx.ring && !q_vector->rx.ring)
302 return IRQ_HANDLED;
303
304 napi_schedule_irqoff(&q_vector->napi);
305
306 return IRQ_HANDLED;
307 }
308
309 /**
310 * iavf_map_vector_to_rxq - associate irqs with rx queues
311 * @adapter: board private structure
312 * @v_idx: interrupt number
313 * @r_idx: queue number
314 **/
315 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)316 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
317 {
318 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
319 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
320 struct iavf_hw *hw = &adapter->hw;
321
322 rx_ring->q_vector = q_vector;
323 rx_ring->next = q_vector->rx.ring;
324 rx_ring->vsi = &adapter->vsi;
325 q_vector->rx.ring = rx_ring;
326 q_vector->rx.count++;
327 q_vector->rx.next_update = jiffies + 1;
328 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
329 q_vector->ring_mask |= BIT(r_idx);
330 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
331 q_vector->rx.current_itr >> 1);
332 q_vector->rx.current_itr = q_vector->rx.target_itr;
333 }
334
335 /**
336 * iavf_map_vector_to_txq - associate irqs with tx queues
337 * @adapter: board private structure
338 * @v_idx: interrupt number
339 * @t_idx: queue number
340 **/
341 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)342 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
343 {
344 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
345 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
346 struct iavf_hw *hw = &adapter->hw;
347
348 tx_ring->q_vector = q_vector;
349 tx_ring->next = q_vector->tx.ring;
350 tx_ring->vsi = &adapter->vsi;
351 q_vector->tx.ring = tx_ring;
352 q_vector->tx.count++;
353 q_vector->tx.next_update = jiffies + 1;
354 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
355 q_vector->num_ringpairs++;
356 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
357 q_vector->tx.target_itr >> 1);
358 q_vector->tx.current_itr = q_vector->tx.target_itr;
359 }
360
361 /**
362 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
363 * @adapter: board private structure to initialize
364 *
365 * This function maps descriptor rings to the queue-specific vectors
366 * we were allotted through the MSI-X enabling code. Ideally, we'd have
367 * one vector per ring/queue, but on a constrained vector budget, we
368 * group the rings as "efficiently" as possible. You would add new
369 * mapping configurations in here.
370 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)371 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
372 {
373 int rings_remaining = adapter->num_active_queues;
374 int ridx = 0, vidx = 0;
375 int q_vectors;
376
377 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
378
379 for (; ridx < rings_remaining; ridx++) {
380 iavf_map_vector_to_rxq(adapter, vidx, ridx);
381 iavf_map_vector_to_txq(adapter, vidx, ridx);
382
383 /* In the case where we have more queues than vectors, continue
384 * round-robin on vectors until all queues are mapped.
385 */
386 if (++vidx >= q_vectors)
387 vidx = 0;
388 }
389
390 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
391 }
392
393 /**
394 * iavf_irq_affinity_notify - Callback for affinity changes
395 * @notify: context as to what irq was changed
396 * @mask: the new affinity mask
397 *
398 * This is a callback function used by the irq_set_affinity_notifier function
399 * so that we may register to receive changes to the irq affinity masks.
400 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)401 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
402 const cpumask_t *mask)
403 {
404 struct iavf_q_vector *q_vector =
405 container_of(notify, struct iavf_q_vector, affinity_notify);
406
407 cpumask_copy(&q_vector->affinity_mask, mask);
408 }
409
410 /**
411 * iavf_irq_affinity_release - Callback for affinity notifier release
412 * @ref: internal core kernel usage
413 *
414 * This is a callback function used by the irq_set_affinity_notifier function
415 * to inform the current notification subscriber that they will no longer
416 * receive notifications.
417 **/
iavf_irq_affinity_release(struct kref * ref)418 static void iavf_irq_affinity_release(struct kref *ref) {}
419
420 /**
421 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
422 * @adapter: board private structure
423 * @basename: device basename
424 *
425 * Allocates MSI-X vectors for tx and rx handling, and requests
426 * interrupts from the kernel.
427 **/
428 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)429 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
430 {
431 unsigned int vector, q_vectors;
432 unsigned int rx_int_idx = 0, tx_int_idx = 0;
433 int irq_num, err;
434 int cpu;
435
436 iavf_irq_disable(adapter);
437 /* Decrement for Other and TCP Timer vectors */
438 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
439
440 for (vector = 0; vector < q_vectors; vector++) {
441 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
442
443 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
444
445 if (q_vector->tx.ring && q_vector->rx.ring) {
446 snprintf(q_vector->name, sizeof(q_vector->name),
447 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
448 tx_int_idx++;
449 } else if (q_vector->rx.ring) {
450 snprintf(q_vector->name, sizeof(q_vector->name),
451 "iavf-%s-rx-%d", basename, rx_int_idx++);
452 } else if (q_vector->tx.ring) {
453 snprintf(q_vector->name, sizeof(q_vector->name),
454 "iavf-%s-tx-%d", basename, tx_int_idx++);
455 } else {
456 /* skip this unused q_vector */
457 continue;
458 }
459 err = request_irq(irq_num,
460 iavf_msix_clean_rings,
461 0,
462 q_vector->name,
463 q_vector);
464 if (err) {
465 dev_info(&adapter->pdev->dev,
466 "Request_irq failed, error: %d\n", err);
467 goto free_queue_irqs;
468 }
469 /* register for affinity change notifications */
470 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
471 q_vector->affinity_notify.release =
472 iavf_irq_affinity_release;
473 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
474 /* Spread the IRQ affinity hints across online CPUs. Note that
475 * get_cpu_mask returns a mask with a permanent lifetime so
476 * it's safe to use as a hint for irq_set_affinity_hint.
477 */
478 cpu = cpumask_local_spread(q_vector->v_idx, -1);
479 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
480 }
481
482 return 0;
483
484 free_queue_irqs:
485 while (vector) {
486 vector--;
487 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
488 irq_set_affinity_notifier(irq_num, NULL);
489 irq_set_affinity_hint(irq_num, NULL);
490 free_irq(irq_num, &adapter->q_vectors[vector]);
491 }
492 return err;
493 }
494
495 /**
496 * iavf_request_misc_irq - Initialize MSI-X interrupts
497 * @adapter: board private structure
498 *
499 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
500 * vector is only for the admin queue, and stays active even when the netdev
501 * is closed.
502 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)503 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
504 {
505 struct net_device *netdev = adapter->netdev;
506 int err;
507
508 snprintf(adapter->misc_vector_name,
509 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
510 dev_name(&adapter->pdev->dev));
511 err = request_irq(adapter->msix_entries[0].vector,
512 &iavf_msix_aq, 0,
513 adapter->misc_vector_name, netdev);
514 if (err) {
515 dev_err(&adapter->pdev->dev,
516 "request_irq for %s failed: %d\n",
517 adapter->misc_vector_name, err);
518 free_irq(adapter->msix_entries[0].vector, netdev);
519 }
520 return err;
521 }
522
523 /**
524 * iavf_free_traffic_irqs - Free MSI-X interrupts
525 * @adapter: board private structure
526 *
527 * Frees all MSI-X vectors other than 0.
528 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)529 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
530 {
531 int vector, irq_num, q_vectors;
532
533 if (!adapter->msix_entries)
534 return;
535
536 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
537
538 for (vector = 0; vector < q_vectors; vector++) {
539 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
540 irq_set_affinity_notifier(irq_num, NULL);
541 irq_set_affinity_hint(irq_num, NULL);
542 free_irq(irq_num, &adapter->q_vectors[vector]);
543 }
544 }
545
546 /**
547 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
548 * @adapter: board private structure
549 *
550 * Frees MSI-X vector 0.
551 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)552 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
553 {
554 struct net_device *netdev = adapter->netdev;
555
556 if (!adapter->msix_entries)
557 return;
558
559 free_irq(adapter->msix_entries[0].vector, netdev);
560 }
561
562 /**
563 * iavf_configure_tx - Configure Transmit Unit after Reset
564 * @adapter: board private structure
565 *
566 * Configure the Tx unit of the MAC after a reset.
567 **/
iavf_configure_tx(struct iavf_adapter * adapter)568 static void iavf_configure_tx(struct iavf_adapter *adapter)
569 {
570 struct iavf_hw *hw = &adapter->hw;
571 int i;
572
573 for (i = 0; i < adapter->num_active_queues; i++)
574 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
575 }
576
577 /**
578 * iavf_configure_rx - Configure Receive Unit after Reset
579 * @adapter: board private structure
580 *
581 * Configure the Rx unit of the MAC after a reset.
582 **/
iavf_configure_rx(struct iavf_adapter * adapter)583 static void iavf_configure_rx(struct iavf_adapter *adapter)
584 {
585 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
586 struct iavf_hw *hw = &adapter->hw;
587 int i;
588
589 /* Legacy Rx will always default to a 2048 buffer size. */
590 #if (PAGE_SIZE < 8192)
591 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
592 struct net_device *netdev = adapter->netdev;
593
594 /* For jumbo frames on systems with 4K pages we have to use
595 * an order 1 page, so we might as well increase the size
596 * of our Rx buffer to make better use of the available space
597 */
598 rx_buf_len = IAVF_RXBUFFER_3072;
599
600 /* We use a 1536 buffer size for configurations with
601 * standard Ethernet mtu. On x86 this gives us enough room
602 * for shared info and 192 bytes of padding.
603 */
604 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
605 (netdev->mtu <= ETH_DATA_LEN))
606 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
607 }
608 #endif
609
610 for (i = 0; i < adapter->num_active_queues; i++) {
611 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
612 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
613
614 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
615 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
616 else
617 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
618 }
619 }
620
621 /**
622 * iavf_find_vlan - Search filter list for specific vlan filter
623 * @adapter: board private structure
624 * @vlan: vlan tag
625 *
626 * Returns ptr to the filter object or NULL. Must be called while holding the
627 * mac_vlan_list_lock.
628 **/
629 static struct
iavf_find_vlan(struct iavf_adapter * adapter,u16 vlan)630 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
631 {
632 struct iavf_vlan_filter *f;
633
634 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
635 if (vlan == f->vlan)
636 return f;
637 }
638 return NULL;
639 }
640
641 /**
642 * iavf_add_vlan - Add a vlan filter to the list
643 * @adapter: board private structure
644 * @vlan: VLAN tag
645 *
646 * Returns ptr to the filter object or NULL when no memory available.
647 **/
648 static struct
iavf_add_vlan(struct iavf_adapter * adapter,u16 vlan)649 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
650 {
651 struct iavf_vlan_filter *f = NULL;
652
653 spin_lock_bh(&adapter->mac_vlan_list_lock);
654
655 f = iavf_find_vlan(adapter, vlan);
656 if (!f) {
657 f = kzalloc(sizeof(*f), GFP_ATOMIC);
658 if (!f)
659 goto clearout;
660
661 f->vlan = vlan;
662
663 list_add_tail(&f->list, &adapter->vlan_filter_list);
664 f->add = true;
665 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
666 }
667
668 clearout:
669 spin_unlock_bh(&adapter->mac_vlan_list_lock);
670 return f;
671 }
672
673 /**
674 * iavf_del_vlan - Remove a vlan filter from the list
675 * @adapter: board private structure
676 * @vlan: VLAN tag
677 **/
iavf_del_vlan(struct iavf_adapter * adapter,u16 vlan)678 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
679 {
680 struct iavf_vlan_filter *f;
681
682 spin_lock_bh(&adapter->mac_vlan_list_lock);
683
684 f = iavf_find_vlan(adapter, vlan);
685 if (f) {
686 f->remove = true;
687 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
688 }
689
690 spin_unlock_bh(&adapter->mac_vlan_list_lock);
691 }
692
693 /**
694 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
695 * @netdev: network device struct
696 * @proto: unused protocol data
697 * @vid: VLAN tag
698 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)699 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
700 __always_unused __be16 proto, u16 vid)
701 {
702 struct iavf_adapter *adapter = netdev_priv(netdev);
703
704 if (!VLAN_ALLOWED(adapter))
705 return -EIO;
706 if (iavf_add_vlan(adapter, vid) == NULL)
707 return -ENOMEM;
708 return 0;
709 }
710
711 /**
712 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
713 * @netdev: network device struct
714 * @proto: unused protocol data
715 * @vid: VLAN tag
716 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)717 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
718 __always_unused __be16 proto, u16 vid)
719 {
720 struct iavf_adapter *adapter = netdev_priv(netdev);
721
722 if (VLAN_ALLOWED(adapter)) {
723 iavf_del_vlan(adapter, vid);
724 return 0;
725 }
726 return -EIO;
727 }
728
729 /**
730 * iavf_find_filter - Search filter list for specific mac filter
731 * @adapter: board private structure
732 * @macaddr: the MAC address
733 *
734 * Returns ptr to the filter object or NULL. Must be called while holding the
735 * mac_vlan_list_lock.
736 **/
737 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)738 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
739 const u8 *macaddr)
740 {
741 struct iavf_mac_filter *f;
742
743 if (!macaddr)
744 return NULL;
745
746 list_for_each_entry(f, &adapter->mac_filter_list, list) {
747 if (ether_addr_equal(macaddr, f->macaddr))
748 return f;
749 }
750 return NULL;
751 }
752
753 /**
754 * iavf_add_filter - Add a mac filter to the filter list
755 * @adapter: board private structure
756 * @macaddr: the MAC address
757 *
758 * Returns ptr to the filter object or NULL when no memory available.
759 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)760 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
761 const u8 *macaddr)
762 {
763 struct iavf_mac_filter *f;
764
765 if (!macaddr)
766 return NULL;
767
768 f = iavf_find_filter(adapter, macaddr);
769 if (!f) {
770 f = kzalloc(sizeof(*f), GFP_ATOMIC);
771 if (!f)
772 return f;
773
774 ether_addr_copy(f->macaddr, macaddr);
775
776 list_add_tail(&f->list, &adapter->mac_filter_list);
777 f->add = true;
778 f->is_new_mac = true;
779 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
780 } else {
781 f->remove = false;
782 }
783
784 return f;
785 }
786
787 /**
788 * iavf_set_mac - NDO callback to set port mac address
789 * @netdev: network interface device structure
790 * @p: pointer to an address structure
791 *
792 * Returns 0 on success, negative on failure
793 **/
iavf_set_mac(struct net_device * netdev,void * p)794 static int iavf_set_mac(struct net_device *netdev, void *p)
795 {
796 struct iavf_adapter *adapter = netdev_priv(netdev);
797 struct iavf_hw *hw = &adapter->hw;
798 struct iavf_mac_filter *f;
799 struct sockaddr *addr = p;
800
801 if (!is_valid_ether_addr(addr->sa_data))
802 return -EADDRNOTAVAIL;
803
804 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
805 return 0;
806
807 spin_lock_bh(&adapter->mac_vlan_list_lock);
808
809 f = iavf_find_filter(adapter, hw->mac.addr);
810 if (f) {
811 f->remove = true;
812 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
813 }
814
815 f = iavf_add_filter(adapter, addr->sa_data);
816
817 spin_unlock_bh(&adapter->mac_vlan_list_lock);
818
819 if (f) {
820 ether_addr_copy(hw->mac.addr, addr->sa_data);
821 }
822
823 return (f == NULL) ? -ENOMEM : 0;
824 }
825
826 /**
827 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
828 * @netdev: the netdevice
829 * @addr: address to add
830 *
831 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
832 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
833 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)834 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
835 {
836 struct iavf_adapter *adapter = netdev_priv(netdev);
837
838 if (iavf_add_filter(adapter, addr))
839 return 0;
840 else
841 return -ENOMEM;
842 }
843
844 /**
845 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
846 * @netdev: the netdevice
847 * @addr: address to add
848 *
849 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
850 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
851 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)852 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
853 {
854 struct iavf_adapter *adapter = netdev_priv(netdev);
855 struct iavf_mac_filter *f;
856
857 /* Under some circumstances, we might receive a request to delete
858 * our own device address from our uc list. Because we store the
859 * device address in the VSI's MAC/VLAN filter list, we need to ignore
860 * such requests and not delete our device address from this list.
861 */
862 if (ether_addr_equal(addr, netdev->dev_addr))
863 return 0;
864
865 f = iavf_find_filter(adapter, addr);
866 if (f) {
867 f->remove = true;
868 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
869 }
870 return 0;
871 }
872
873 /**
874 * iavf_set_rx_mode - NDO callback to set the netdev filters
875 * @netdev: network interface device structure
876 **/
iavf_set_rx_mode(struct net_device * netdev)877 static void iavf_set_rx_mode(struct net_device *netdev)
878 {
879 struct iavf_adapter *adapter = netdev_priv(netdev);
880
881 spin_lock_bh(&adapter->mac_vlan_list_lock);
882 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
883 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
884 spin_unlock_bh(&adapter->mac_vlan_list_lock);
885
886 if (netdev->flags & IFF_PROMISC &&
887 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
888 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
889 else if (!(netdev->flags & IFF_PROMISC) &&
890 adapter->flags & IAVF_FLAG_PROMISC_ON)
891 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
892
893 if (netdev->flags & IFF_ALLMULTI &&
894 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
895 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
896 else if (!(netdev->flags & IFF_ALLMULTI) &&
897 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
898 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
899 }
900
901 /**
902 * iavf_napi_enable_all - enable NAPI on all queue vectors
903 * @adapter: board private structure
904 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)905 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
906 {
907 int q_idx;
908 struct iavf_q_vector *q_vector;
909 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
910
911 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
912 struct napi_struct *napi;
913
914 q_vector = &adapter->q_vectors[q_idx];
915 napi = &q_vector->napi;
916 napi_enable(napi);
917 }
918 }
919
920 /**
921 * iavf_napi_disable_all - disable NAPI on all queue vectors
922 * @adapter: board private structure
923 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)924 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
925 {
926 int q_idx;
927 struct iavf_q_vector *q_vector;
928 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
929
930 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
931 q_vector = &adapter->q_vectors[q_idx];
932 napi_disable(&q_vector->napi);
933 }
934 }
935
936 /**
937 * iavf_configure - set up transmit and receive data structures
938 * @adapter: board private structure
939 **/
iavf_configure(struct iavf_adapter * adapter)940 static void iavf_configure(struct iavf_adapter *adapter)
941 {
942 struct net_device *netdev = adapter->netdev;
943 int i;
944
945 iavf_set_rx_mode(netdev);
946
947 iavf_configure_tx(adapter);
948 iavf_configure_rx(adapter);
949 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
950
951 for (i = 0; i < adapter->num_active_queues; i++) {
952 struct iavf_ring *ring = &adapter->rx_rings[i];
953
954 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
955 }
956 }
957
958 /**
959 * iavf_up_complete - Finish the last steps of bringing up a connection
960 * @adapter: board private structure
961 *
962 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
963 **/
iavf_up_complete(struct iavf_adapter * adapter)964 static void iavf_up_complete(struct iavf_adapter *adapter)
965 {
966 adapter->state = __IAVF_RUNNING;
967 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
968
969 iavf_napi_enable_all(adapter);
970
971 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
972 if (CLIENT_ENABLED(adapter))
973 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
974 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
975 }
976
977 /**
978 * iavf_down - Shutdown the connection processing
979 * @adapter: board private structure
980 *
981 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
982 **/
iavf_down(struct iavf_adapter * adapter)983 void iavf_down(struct iavf_adapter *adapter)
984 {
985 struct net_device *netdev = adapter->netdev;
986 struct iavf_vlan_filter *vlf;
987 struct iavf_mac_filter *f;
988 struct iavf_cloud_filter *cf;
989
990 if (adapter->state <= __IAVF_DOWN_PENDING)
991 return;
992
993 netif_carrier_off(netdev);
994 netif_tx_disable(netdev);
995 adapter->link_up = false;
996 iavf_napi_disable_all(adapter);
997 iavf_irq_disable(adapter);
998
999 spin_lock_bh(&adapter->mac_vlan_list_lock);
1000
1001 /* clear the sync flag on all filters */
1002 __dev_uc_unsync(adapter->netdev, NULL);
1003 __dev_mc_unsync(adapter->netdev, NULL);
1004
1005 /* remove all MAC filters */
1006 list_for_each_entry(f, &adapter->mac_filter_list, list) {
1007 f->remove = true;
1008 }
1009
1010 /* remove all VLAN filters */
1011 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1012 vlf->remove = true;
1013 }
1014
1015 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1016
1017 /* remove all cloud filters */
1018 spin_lock_bh(&adapter->cloud_filter_list_lock);
1019 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1020 cf->del = true;
1021 }
1022 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1023
1024 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1025 adapter->state != __IAVF_RESETTING) {
1026 /* cancel any current operation */
1027 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1028 /* Schedule operations to close down the HW. Don't wait
1029 * here for this to complete. The watchdog is still running
1030 * and it will take care of this.
1031 */
1032 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1033 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1035 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1036 }
1037
1038 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1039 }
1040
1041 /**
1042 * iavf_acquire_msix_vectors - Setup the MSIX capability
1043 * @adapter: board private structure
1044 * @vectors: number of vectors to request
1045 *
1046 * Work with the OS to set up the MSIX vectors needed.
1047 *
1048 * Returns 0 on success, negative on failure
1049 **/
1050 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1051 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1052 {
1053 int err, vector_threshold;
1054
1055 /* We'll want at least 3 (vector_threshold):
1056 * 0) Other (Admin Queue and link, mostly)
1057 * 1) TxQ[0] Cleanup
1058 * 2) RxQ[0] Cleanup
1059 */
1060 vector_threshold = MIN_MSIX_COUNT;
1061
1062 /* The more we get, the more we will assign to Tx/Rx Cleanup
1063 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1064 * Right now, we simply care about how many we'll get; we'll
1065 * set them up later while requesting irq's.
1066 */
1067 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1068 vector_threshold, vectors);
1069 if (err < 0) {
1070 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1071 kfree(adapter->msix_entries);
1072 adapter->msix_entries = NULL;
1073 return err;
1074 }
1075
1076 /* Adjust for only the vectors we'll use, which is minimum
1077 * of max_msix_q_vectors + NONQ_VECS, or the number of
1078 * vectors we were allocated.
1079 */
1080 adapter->num_msix_vectors = err;
1081 return 0;
1082 }
1083
1084 /**
1085 * iavf_free_queues - Free memory for all rings
1086 * @adapter: board private structure to initialize
1087 *
1088 * Free all of the memory associated with queue pairs.
1089 **/
iavf_free_queues(struct iavf_adapter * adapter)1090 static void iavf_free_queues(struct iavf_adapter *adapter)
1091 {
1092 if (!adapter->vsi_res)
1093 return;
1094 adapter->num_active_queues = 0;
1095 kfree(adapter->tx_rings);
1096 adapter->tx_rings = NULL;
1097 kfree(adapter->rx_rings);
1098 adapter->rx_rings = NULL;
1099 }
1100
1101 /**
1102 * iavf_alloc_queues - Allocate memory for all rings
1103 * @adapter: board private structure to initialize
1104 *
1105 * We allocate one ring per queue at run-time since we don't know the
1106 * number of queues at compile-time. The polling_netdev array is
1107 * intended for Multiqueue, but should work fine with a single queue.
1108 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1109 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1110 {
1111 int i, num_active_queues;
1112
1113 /* If we're in reset reallocating queues we don't actually know yet for
1114 * certain the PF gave us the number of queues we asked for but we'll
1115 * assume it did. Once basic reset is finished we'll confirm once we
1116 * start negotiating config with PF.
1117 */
1118 if (adapter->num_req_queues)
1119 num_active_queues = adapter->num_req_queues;
1120 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1121 adapter->num_tc)
1122 num_active_queues = adapter->ch_config.total_qps;
1123 else
1124 num_active_queues = min_t(int,
1125 adapter->vsi_res->num_queue_pairs,
1126 (int)(num_online_cpus()));
1127
1128
1129 adapter->tx_rings = kcalloc(num_active_queues,
1130 sizeof(struct iavf_ring), GFP_KERNEL);
1131 if (!adapter->tx_rings)
1132 goto err_out;
1133 adapter->rx_rings = kcalloc(num_active_queues,
1134 sizeof(struct iavf_ring), GFP_KERNEL);
1135 if (!adapter->rx_rings)
1136 goto err_out;
1137
1138 for (i = 0; i < num_active_queues; i++) {
1139 struct iavf_ring *tx_ring;
1140 struct iavf_ring *rx_ring;
1141
1142 tx_ring = &adapter->tx_rings[i];
1143
1144 tx_ring->queue_index = i;
1145 tx_ring->netdev = adapter->netdev;
1146 tx_ring->dev = &adapter->pdev->dev;
1147 tx_ring->count = adapter->tx_desc_count;
1148 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1149 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1150 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1151
1152 rx_ring = &adapter->rx_rings[i];
1153 rx_ring->queue_index = i;
1154 rx_ring->netdev = adapter->netdev;
1155 rx_ring->dev = &adapter->pdev->dev;
1156 rx_ring->count = adapter->rx_desc_count;
1157 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1158 }
1159
1160 adapter->num_active_queues = num_active_queues;
1161
1162 return 0;
1163
1164 err_out:
1165 iavf_free_queues(adapter);
1166 return -ENOMEM;
1167 }
1168
1169 /**
1170 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1171 * @adapter: board private structure to initialize
1172 *
1173 * Attempt to configure the interrupts using the best available
1174 * capabilities of the hardware and the kernel.
1175 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1176 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1177 {
1178 int vector, v_budget;
1179 int pairs = 0;
1180 int err = 0;
1181
1182 if (!adapter->vsi_res) {
1183 err = -EIO;
1184 goto out;
1185 }
1186 pairs = adapter->num_active_queues;
1187
1188 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1189 * us much good if we have more vectors than CPUs. However, we already
1190 * limit the total number of queues by the number of CPUs so we do not
1191 * need any further limiting here.
1192 */
1193 v_budget = min_t(int, pairs + NONQ_VECS,
1194 (int)adapter->vf_res->max_vectors);
1195
1196 adapter->msix_entries = kcalloc(v_budget,
1197 sizeof(struct msix_entry), GFP_KERNEL);
1198 if (!adapter->msix_entries) {
1199 err = -ENOMEM;
1200 goto out;
1201 }
1202
1203 for (vector = 0; vector < v_budget; vector++)
1204 adapter->msix_entries[vector].entry = vector;
1205
1206 err = iavf_acquire_msix_vectors(adapter, v_budget);
1207
1208 out:
1209 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1210 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1211 return err;
1212 }
1213
1214 /**
1215 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1216 * @adapter: board private structure
1217 *
1218 * Return 0 on success, negative on failure
1219 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1220 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1221 {
1222 struct iavf_aqc_get_set_rss_key_data *rss_key =
1223 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1224 struct iavf_hw *hw = &adapter->hw;
1225 int ret = 0;
1226
1227 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1228 /* bail because we already have a command pending */
1229 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1230 adapter->current_op);
1231 return -EBUSY;
1232 }
1233
1234 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1235 if (ret) {
1236 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1237 iavf_stat_str(hw, ret),
1238 iavf_aq_str(hw, hw->aq.asq_last_status));
1239 return ret;
1240
1241 }
1242
1243 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1244 adapter->rss_lut, adapter->rss_lut_size);
1245 if (ret) {
1246 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1247 iavf_stat_str(hw, ret),
1248 iavf_aq_str(hw, hw->aq.asq_last_status));
1249 }
1250
1251 return ret;
1252
1253 }
1254
1255 /**
1256 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1257 * @adapter: board private structure
1258 *
1259 * Returns 0 on success, negative on failure
1260 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1261 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1262 {
1263 struct iavf_hw *hw = &adapter->hw;
1264 u32 *dw;
1265 u16 i;
1266
1267 dw = (u32 *)adapter->rss_key;
1268 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1269 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1270
1271 dw = (u32 *)adapter->rss_lut;
1272 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1273 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1274
1275 iavf_flush(hw);
1276
1277 return 0;
1278 }
1279
1280 /**
1281 * iavf_config_rss - Configure RSS keys and lut
1282 * @adapter: board private structure
1283 *
1284 * Returns 0 on success, negative on failure
1285 **/
iavf_config_rss(struct iavf_adapter * adapter)1286 int iavf_config_rss(struct iavf_adapter *adapter)
1287 {
1288
1289 if (RSS_PF(adapter)) {
1290 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1291 IAVF_FLAG_AQ_SET_RSS_KEY;
1292 return 0;
1293 } else if (RSS_AQ(adapter)) {
1294 return iavf_config_rss_aq(adapter);
1295 } else {
1296 return iavf_config_rss_reg(adapter);
1297 }
1298 }
1299
1300 /**
1301 * iavf_fill_rss_lut - Fill the lut with default values
1302 * @adapter: board private structure
1303 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1304 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1305 {
1306 u16 i;
1307
1308 for (i = 0; i < adapter->rss_lut_size; i++)
1309 adapter->rss_lut[i] = i % adapter->num_active_queues;
1310 }
1311
1312 /**
1313 * iavf_init_rss - Prepare for RSS
1314 * @adapter: board private structure
1315 *
1316 * Return 0 on success, negative on failure
1317 **/
iavf_init_rss(struct iavf_adapter * adapter)1318 static int iavf_init_rss(struct iavf_adapter *adapter)
1319 {
1320 struct iavf_hw *hw = &adapter->hw;
1321 int ret;
1322
1323 if (!RSS_PF(adapter)) {
1324 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1325 if (adapter->vf_res->vf_cap_flags &
1326 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1327 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1328 else
1329 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1330
1331 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1332 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1333 }
1334
1335 iavf_fill_rss_lut(adapter);
1336 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1337 ret = iavf_config_rss(adapter);
1338
1339 return ret;
1340 }
1341
1342 /**
1343 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1344 * @adapter: board private structure to initialize
1345 *
1346 * We allocate one q_vector per queue interrupt. If allocation fails we
1347 * return -ENOMEM.
1348 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1349 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1350 {
1351 int q_idx = 0, num_q_vectors;
1352 struct iavf_q_vector *q_vector;
1353
1354 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1355 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1356 GFP_KERNEL);
1357 if (!adapter->q_vectors)
1358 return -ENOMEM;
1359
1360 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1361 q_vector = &adapter->q_vectors[q_idx];
1362 q_vector->adapter = adapter;
1363 q_vector->vsi = &adapter->vsi;
1364 q_vector->v_idx = q_idx;
1365 q_vector->reg_idx = q_idx;
1366 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1367 netif_napi_add(adapter->netdev, &q_vector->napi,
1368 iavf_napi_poll, NAPI_POLL_WEIGHT);
1369 }
1370
1371 return 0;
1372 }
1373
1374 /**
1375 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1376 * @adapter: board private structure to initialize
1377 *
1378 * This function frees the memory allocated to the q_vectors. In addition if
1379 * NAPI is enabled it will delete any references to the NAPI struct prior
1380 * to freeing the q_vector.
1381 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1382 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1383 {
1384 int q_idx, num_q_vectors;
1385 int napi_vectors;
1386
1387 if (!adapter->q_vectors)
1388 return;
1389
1390 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1391 napi_vectors = adapter->num_active_queues;
1392
1393 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1394 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1395
1396 if (q_idx < napi_vectors)
1397 netif_napi_del(&q_vector->napi);
1398 }
1399 kfree(adapter->q_vectors);
1400 adapter->q_vectors = NULL;
1401 }
1402
1403 /**
1404 * iavf_reset_interrupt_capability - Reset MSIX setup
1405 * @adapter: board private structure
1406 *
1407 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1408 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1409 {
1410 if (!adapter->msix_entries)
1411 return;
1412
1413 pci_disable_msix(adapter->pdev);
1414 kfree(adapter->msix_entries);
1415 adapter->msix_entries = NULL;
1416 }
1417
1418 /**
1419 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1420 * @adapter: board private structure to initialize
1421 *
1422 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1423 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1424 {
1425 int err;
1426
1427 err = iavf_alloc_queues(adapter);
1428 if (err) {
1429 dev_err(&adapter->pdev->dev,
1430 "Unable to allocate memory for queues\n");
1431 goto err_alloc_queues;
1432 }
1433
1434 rtnl_lock();
1435 err = iavf_set_interrupt_capability(adapter);
1436 rtnl_unlock();
1437 if (err) {
1438 dev_err(&adapter->pdev->dev,
1439 "Unable to setup interrupt capabilities\n");
1440 goto err_set_interrupt;
1441 }
1442
1443 err = iavf_alloc_q_vectors(adapter);
1444 if (err) {
1445 dev_err(&adapter->pdev->dev,
1446 "Unable to allocate memory for queue vectors\n");
1447 goto err_alloc_q_vectors;
1448 }
1449
1450 /* If we've made it so far while ADq flag being ON, then we haven't
1451 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1452 * resources have been allocated in the reset path.
1453 * Now we can truly claim that ADq is enabled.
1454 */
1455 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1456 adapter->num_tc)
1457 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1458 adapter->num_tc);
1459
1460 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1461 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1462 adapter->num_active_queues);
1463
1464 return 0;
1465 err_alloc_q_vectors:
1466 iavf_reset_interrupt_capability(adapter);
1467 err_set_interrupt:
1468 iavf_free_queues(adapter);
1469 err_alloc_queues:
1470 return err;
1471 }
1472
1473 /**
1474 * iavf_free_rss - Free memory used by RSS structs
1475 * @adapter: board private structure
1476 **/
iavf_free_rss(struct iavf_adapter * adapter)1477 static void iavf_free_rss(struct iavf_adapter *adapter)
1478 {
1479 kfree(adapter->rss_key);
1480 adapter->rss_key = NULL;
1481
1482 kfree(adapter->rss_lut);
1483 adapter->rss_lut = NULL;
1484 }
1485
1486 /**
1487 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1488 * @adapter: board private structure
1489 *
1490 * Returns 0 on success, negative on failure
1491 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter)1492 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1493 {
1494 struct net_device *netdev = adapter->netdev;
1495 int err;
1496
1497 if (netif_running(netdev))
1498 iavf_free_traffic_irqs(adapter);
1499 iavf_free_misc_irq(adapter);
1500 iavf_reset_interrupt_capability(adapter);
1501 iavf_free_q_vectors(adapter);
1502 iavf_free_queues(adapter);
1503
1504 err = iavf_init_interrupt_scheme(adapter);
1505 if (err)
1506 goto err;
1507
1508 netif_tx_stop_all_queues(netdev);
1509
1510 err = iavf_request_misc_irq(adapter);
1511 if (err)
1512 goto err;
1513
1514 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1515
1516 iavf_map_rings_to_vectors(adapter);
1517 err:
1518 return err;
1519 }
1520
1521 /**
1522 * iavf_process_aq_command - process aq_required flags
1523 * and sends aq command
1524 * @adapter: pointer to iavf adapter structure
1525 *
1526 * Returns 0 on success
1527 * Returns error code if no command was sent
1528 * or error code if the command failed.
1529 **/
iavf_process_aq_command(struct iavf_adapter * adapter)1530 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1531 {
1532 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1533 return iavf_send_vf_config_msg(adapter);
1534 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1535 iavf_disable_queues(adapter);
1536 return 0;
1537 }
1538
1539 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1540 iavf_map_queues(adapter);
1541 return 0;
1542 }
1543
1544 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1545 iavf_add_ether_addrs(adapter);
1546 return 0;
1547 }
1548
1549 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1550 iavf_add_vlans(adapter);
1551 return 0;
1552 }
1553
1554 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1555 iavf_del_ether_addrs(adapter);
1556 return 0;
1557 }
1558
1559 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1560 iavf_del_vlans(adapter);
1561 return 0;
1562 }
1563
1564 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1565 iavf_enable_vlan_stripping(adapter);
1566 return 0;
1567 }
1568
1569 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1570 iavf_disable_vlan_stripping(adapter);
1571 return 0;
1572 }
1573
1574 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1575 iavf_configure_queues(adapter);
1576 return 0;
1577 }
1578
1579 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1580 iavf_enable_queues(adapter);
1581 return 0;
1582 }
1583
1584 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1585 /* This message goes straight to the firmware, not the
1586 * PF, so we don't have to set current_op as we will
1587 * not get a response through the ARQ.
1588 */
1589 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1590 return 0;
1591 }
1592 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1593 iavf_get_hena(adapter);
1594 return 0;
1595 }
1596 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1597 iavf_set_hena(adapter);
1598 return 0;
1599 }
1600 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1601 iavf_set_rss_key(adapter);
1602 return 0;
1603 }
1604 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1605 iavf_set_rss_lut(adapter);
1606 return 0;
1607 }
1608
1609 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1610 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1611 FLAG_VF_MULTICAST_PROMISC);
1612 return 0;
1613 }
1614
1615 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1616 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1617 return 0;
1618 }
1619
1620 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1621 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1622 iavf_set_promiscuous(adapter, 0);
1623 return 0;
1624 }
1625
1626 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1627 iavf_enable_channels(adapter);
1628 return 0;
1629 }
1630
1631 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1632 iavf_disable_channels(adapter);
1633 return 0;
1634 }
1635 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1636 iavf_add_cloud_filter(adapter);
1637 return 0;
1638 }
1639
1640 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1641 iavf_del_cloud_filter(adapter);
1642 return 0;
1643 }
1644 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1645 iavf_del_cloud_filter(adapter);
1646 return 0;
1647 }
1648 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1649 iavf_add_cloud_filter(adapter);
1650 return 0;
1651 }
1652 return -EAGAIN;
1653 }
1654
1655 /**
1656 * iavf_startup - first step of driver startup
1657 * @adapter: board private structure
1658 *
1659 * Function process __IAVF_STARTUP driver state.
1660 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1661 * when fails it returns -EAGAIN
1662 **/
iavf_startup(struct iavf_adapter * adapter)1663 static int iavf_startup(struct iavf_adapter *adapter)
1664 {
1665 struct pci_dev *pdev = adapter->pdev;
1666 struct iavf_hw *hw = &adapter->hw;
1667 int err;
1668
1669 WARN_ON(adapter->state != __IAVF_STARTUP);
1670
1671 /* driver loaded, probe complete */
1672 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1673 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1674 err = iavf_set_mac_type(hw);
1675 if (err) {
1676 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1677 goto err;
1678 }
1679
1680 err = iavf_check_reset_complete(hw);
1681 if (err) {
1682 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1683 err);
1684 goto err;
1685 }
1686 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1687 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1688 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1689 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1690
1691 err = iavf_init_adminq(hw);
1692 if (err) {
1693 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1694 goto err;
1695 }
1696 err = iavf_send_api_ver(adapter);
1697 if (err) {
1698 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1699 iavf_shutdown_adminq(hw);
1700 goto err;
1701 }
1702 adapter->state = __IAVF_INIT_VERSION_CHECK;
1703 err:
1704 return err;
1705 }
1706
1707 /**
1708 * iavf_init_version_check - second step of driver startup
1709 * @adapter: board private structure
1710 *
1711 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1712 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1713 * when fails it returns -EAGAIN
1714 **/
iavf_init_version_check(struct iavf_adapter * adapter)1715 static int iavf_init_version_check(struct iavf_adapter *adapter)
1716 {
1717 struct pci_dev *pdev = adapter->pdev;
1718 struct iavf_hw *hw = &adapter->hw;
1719 int err = -EAGAIN;
1720
1721 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1722
1723 if (!iavf_asq_done(hw)) {
1724 dev_err(&pdev->dev, "Admin queue command never completed\n");
1725 iavf_shutdown_adminq(hw);
1726 adapter->state = __IAVF_STARTUP;
1727 goto err;
1728 }
1729
1730 /* aq msg sent, awaiting reply */
1731 err = iavf_verify_api_ver(adapter);
1732 if (err) {
1733 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1734 err = iavf_send_api_ver(adapter);
1735 else
1736 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1737 adapter->pf_version.major,
1738 adapter->pf_version.minor,
1739 VIRTCHNL_VERSION_MAJOR,
1740 VIRTCHNL_VERSION_MINOR);
1741 goto err;
1742 }
1743 err = iavf_send_vf_config_msg(adapter);
1744 if (err) {
1745 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1746 err);
1747 goto err;
1748 }
1749 adapter->state = __IAVF_INIT_GET_RESOURCES;
1750
1751 err:
1752 return err;
1753 }
1754
1755 /**
1756 * iavf_init_get_resources - third step of driver startup
1757 * @adapter: board private structure
1758 *
1759 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1760 * finishes driver initialization procedure.
1761 * When success the state is changed to __IAVF_DOWN
1762 * when fails it returns -EAGAIN
1763 **/
iavf_init_get_resources(struct iavf_adapter * adapter)1764 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1765 {
1766 struct net_device *netdev = adapter->netdev;
1767 struct pci_dev *pdev = adapter->pdev;
1768 struct iavf_hw *hw = &adapter->hw;
1769 int err;
1770
1771 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1772 /* aq msg sent, awaiting reply */
1773 if (!adapter->vf_res) {
1774 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1775 GFP_KERNEL);
1776 if (!adapter->vf_res) {
1777 err = -ENOMEM;
1778 goto err;
1779 }
1780 }
1781 err = iavf_get_vf_config(adapter);
1782 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1783 err = iavf_send_vf_config_msg(adapter);
1784 goto err;
1785 } else if (err == IAVF_ERR_PARAM) {
1786 /* We only get ERR_PARAM if the device is in a very bad
1787 * state or if we've been disabled for previous bad
1788 * behavior. Either way, we're done now.
1789 */
1790 iavf_shutdown_adminq(hw);
1791 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1792 return 0;
1793 }
1794 if (err) {
1795 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1796 goto err_alloc;
1797 }
1798
1799 err = iavf_process_config(adapter);
1800 if (err)
1801 goto err_alloc;
1802 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1803
1804 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1805
1806 netdev->netdev_ops = &iavf_netdev_ops;
1807 iavf_set_ethtool_ops(netdev);
1808 netdev->watchdog_timeo = 5 * HZ;
1809
1810 /* MTU range: 68 - 9710 */
1811 netdev->min_mtu = ETH_MIN_MTU;
1812 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1813
1814 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1815 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1816 adapter->hw.mac.addr);
1817 eth_hw_addr_random(netdev);
1818 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1819 } else {
1820 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1821 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1822 }
1823
1824 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1825 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1826 err = iavf_init_interrupt_scheme(adapter);
1827 if (err)
1828 goto err_sw_init;
1829 iavf_map_rings_to_vectors(adapter);
1830 if (adapter->vf_res->vf_cap_flags &
1831 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1832 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1833
1834 err = iavf_request_misc_irq(adapter);
1835 if (err)
1836 goto err_sw_init;
1837
1838 netif_carrier_off(netdev);
1839 adapter->link_up = false;
1840
1841 /* set the semaphore to prevent any callbacks after device registration
1842 * up to time when state of driver will be set to __IAVF_DOWN
1843 */
1844 rtnl_lock();
1845 if (!adapter->netdev_registered) {
1846 err = register_netdevice(netdev);
1847 if (err) {
1848 rtnl_unlock();
1849 goto err_register;
1850 }
1851 }
1852
1853 adapter->netdev_registered = true;
1854
1855 netif_tx_stop_all_queues(netdev);
1856 if (CLIENT_ALLOWED(adapter)) {
1857 err = iavf_lan_add_device(adapter);
1858 if (err)
1859 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1860 err);
1861 }
1862 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1863 if (netdev->features & NETIF_F_GRO)
1864 dev_info(&pdev->dev, "GRO is enabled\n");
1865
1866 adapter->state = __IAVF_DOWN;
1867 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1868 rtnl_unlock();
1869
1870 iavf_misc_irq_enable(adapter);
1871 wake_up(&adapter->down_waitqueue);
1872
1873 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1874 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1875 if (!adapter->rss_key || !adapter->rss_lut) {
1876 err = -ENOMEM;
1877 goto err_mem;
1878 }
1879 if (RSS_AQ(adapter))
1880 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1881 else
1882 iavf_init_rss(adapter);
1883
1884 return err;
1885 err_mem:
1886 iavf_free_rss(adapter);
1887 err_register:
1888 iavf_free_misc_irq(adapter);
1889 err_sw_init:
1890 iavf_reset_interrupt_capability(adapter);
1891 err_alloc:
1892 kfree(adapter->vf_res);
1893 adapter->vf_res = NULL;
1894 err:
1895 return err;
1896 }
1897
1898 /**
1899 * iavf_watchdog_task - Periodic call-back task
1900 * @work: pointer to work_struct
1901 **/
iavf_watchdog_task(struct work_struct * work)1902 static void iavf_watchdog_task(struct work_struct *work)
1903 {
1904 struct iavf_adapter *adapter = container_of(work,
1905 struct iavf_adapter,
1906 watchdog_task.work);
1907 struct iavf_hw *hw = &adapter->hw;
1908 u32 reg_val;
1909
1910 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1911 goto restart_watchdog;
1912
1913 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1914 adapter->state = __IAVF_COMM_FAILED;
1915
1916 switch (adapter->state) {
1917 case __IAVF_COMM_FAILED:
1918 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1919 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1920 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1921 reg_val == VIRTCHNL_VFR_COMPLETED) {
1922 /* A chance for redemption! */
1923 dev_err(&adapter->pdev->dev,
1924 "Hardware came out of reset. Attempting reinit.\n");
1925 adapter->state = __IAVF_STARTUP;
1926 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1927 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1928 clear_bit(__IAVF_IN_CRITICAL_TASK,
1929 &adapter->crit_section);
1930 /* Don't reschedule the watchdog, since we've restarted
1931 * the init task. When init_task contacts the PF and
1932 * gets everything set up again, it'll restart the
1933 * watchdog for us. Down, boy. Sit. Stay. Woof.
1934 */
1935 return;
1936 }
1937 adapter->aq_required = 0;
1938 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1939 clear_bit(__IAVF_IN_CRITICAL_TASK,
1940 &adapter->crit_section);
1941 queue_delayed_work(iavf_wq,
1942 &adapter->watchdog_task,
1943 msecs_to_jiffies(10));
1944 goto watchdog_done;
1945 case __IAVF_RESETTING:
1946 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1947 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1948 return;
1949 case __IAVF_DOWN:
1950 case __IAVF_DOWN_PENDING:
1951 case __IAVF_TESTING:
1952 case __IAVF_RUNNING:
1953 if (adapter->current_op) {
1954 if (!iavf_asq_done(hw)) {
1955 dev_dbg(&adapter->pdev->dev,
1956 "Admin queue timeout\n");
1957 iavf_send_api_ver(adapter);
1958 }
1959 } else {
1960 /* An error will be returned if no commands were
1961 * processed; use this opportunity to update stats
1962 */
1963 if (iavf_process_aq_command(adapter) &&
1964 adapter->state == __IAVF_RUNNING)
1965 iavf_request_stats(adapter);
1966 }
1967 break;
1968 case __IAVF_REMOVE:
1969 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1970 return;
1971 default:
1972 goto restart_watchdog;
1973 }
1974
1975 /* check for hw reset */
1976 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1977 if (!reg_val) {
1978 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1979 adapter->aq_required = 0;
1980 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1981 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1982 queue_work(iavf_wq, &adapter->reset_task);
1983 goto watchdog_done;
1984 }
1985
1986 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1987 watchdog_done:
1988 if (adapter->state == __IAVF_RUNNING ||
1989 adapter->state == __IAVF_COMM_FAILED)
1990 iavf_detect_recover_hung(&adapter->vsi);
1991 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1992 restart_watchdog:
1993 if (adapter->aq_required)
1994 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1995 msecs_to_jiffies(20));
1996 else
1997 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1998 queue_work(iavf_wq, &adapter->adminq_task);
1999 }
2000
iavf_disable_vf(struct iavf_adapter * adapter)2001 static void iavf_disable_vf(struct iavf_adapter *adapter)
2002 {
2003 struct iavf_mac_filter *f, *ftmp;
2004 struct iavf_vlan_filter *fv, *fvtmp;
2005 struct iavf_cloud_filter *cf, *cftmp;
2006
2007 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2008
2009 /* We don't use netif_running() because it may be true prior to
2010 * ndo_open() returning, so we can't assume it means all our open
2011 * tasks have finished, since we're not holding the rtnl_lock here.
2012 */
2013 if (adapter->state == __IAVF_RUNNING) {
2014 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2015 netif_carrier_off(adapter->netdev);
2016 netif_tx_disable(adapter->netdev);
2017 adapter->link_up = false;
2018 iavf_napi_disable_all(adapter);
2019 iavf_irq_disable(adapter);
2020 iavf_free_traffic_irqs(adapter);
2021 iavf_free_all_tx_resources(adapter);
2022 iavf_free_all_rx_resources(adapter);
2023 }
2024
2025 spin_lock_bh(&adapter->mac_vlan_list_lock);
2026
2027 /* Delete all of the filters */
2028 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2029 list_del(&f->list);
2030 kfree(f);
2031 }
2032
2033 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2034 list_del(&fv->list);
2035 kfree(fv);
2036 }
2037
2038 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2039
2040 spin_lock_bh(&adapter->cloud_filter_list_lock);
2041 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2042 list_del(&cf->list);
2043 kfree(cf);
2044 adapter->num_cloud_filters--;
2045 }
2046 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2047
2048 iavf_free_misc_irq(adapter);
2049 iavf_reset_interrupt_capability(adapter);
2050 iavf_free_queues(adapter);
2051 iavf_free_q_vectors(adapter);
2052 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2053 iavf_shutdown_adminq(&adapter->hw);
2054 adapter->netdev->flags &= ~IFF_UP;
2055 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2056 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2057 adapter->state = __IAVF_DOWN;
2058 wake_up(&adapter->down_waitqueue);
2059 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2060 }
2061
2062 /**
2063 * iavf_reset_task - Call-back task to handle hardware reset
2064 * @work: pointer to work_struct
2065 *
2066 * During reset we need to shut down and reinitialize the admin queue
2067 * before we can use it to communicate with the PF again. We also clear
2068 * and reinit the rings because that context is lost as well.
2069 **/
iavf_reset_task(struct work_struct * work)2070 static void iavf_reset_task(struct work_struct *work)
2071 {
2072 struct iavf_adapter *adapter = container_of(work,
2073 struct iavf_adapter,
2074 reset_task);
2075 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2076 struct net_device *netdev = adapter->netdev;
2077 struct iavf_hw *hw = &adapter->hw;
2078 struct iavf_mac_filter *f, *ftmp;
2079 struct iavf_vlan_filter *vlf;
2080 struct iavf_cloud_filter *cf;
2081 u32 reg_val;
2082 int i = 0, err;
2083 bool running;
2084
2085 /* When device is being removed it doesn't make sense to run the reset
2086 * task, just return in such a case.
2087 */
2088 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2089 return;
2090
2091 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200)) {
2092 schedule_work(&adapter->reset_task);
2093 return;
2094 }
2095 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2096 &adapter->crit_section))
2097 usleep_range(500, 1000);
2098 if (CLIENT_ENABLED(adapter)) {
2099 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2100 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2101 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2102 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2103 cancel_delayed_work_sync(&adapter->client_task);
2104 iavf_notify_client_close(&adapter->vsi, true);
2105 }
2106 iavf_misc_irq_disable(adapter);
2107 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2108 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2109 /* Restart the AQ here. If we have been reset but didn't
2110 * detect it, or if the PF had to reinit, our AQ will be hosed.
2111 */
2112 iavf_shutdown_adminq(hw);
2113 iavf_init_adminq(hw);
2114 iavf_request_reset(adapter);
2115 }
2116 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2117
2118 /* poll until we see the reset actually happen */
2119 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2120 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2121 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2122 if (!reg_val)
2123 break;
2124 usleep_range(5000, 10000);
2125 }
2126 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2127 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2128 goto continue_reset; /* act like the reset happened */
2129 }
2130
2131 /* wait until the reset is complete and the PF is responding to us */
2132 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2133 /* sleep first to make sure a minimum wait time is met */
2134 msleep(IAVF_RESET_WAIT_MS);
2135
2136 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2137 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2138 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2139 break;
2140 }
2141
2142 pci_set_master(adapter->pdev);
2143
2144 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2145 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2146 reg_val);
2147 iavf_disable_vf(adapter);
2148 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2149 return; /* Do not attempt to reinit. It's dead, Jim. */
2150 }
2151
2152 continue_reset:
2153 /* We don't use netif_running() because it may be true prior to
2154 * ndo_open() returning, so we can't assume it means all our open
2155 * tasks have finished, since we're not holding the rtnl_lock here.
2156 */
2157 running = ((adapter->state == __IAVF_RUNNING) ||
2158 (adapter->state == __IAVF_RESETTING));
2159
2160 if (running) {
2161 netif_carrier_off(netdev);
2162 netif_tx_stop_all_queues(netdev);
2163 adapter->link_up = false;
2164 iavf_napi_disable_all(adapter);
2165 }
2166 iavf_irq_disable(adapter);
2167
2168 adapter->state = __IAVF_RESETTING;
2169 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2170
2171 /* free the Tx/Rx rings and descriptors, might be better to just
2172 * re-use them sometime in the future
2173 */
2174 iavf_free_all_rx_resources(adapter);
2175 iavf_free_all_tx_resources(adapter);
2176
2177 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2178 /* kill and reinit the admin queue */
2179 iavf_shutdown_adminq(hw);
2180 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2181 err = iavf_init_adminq(hw);
2182 if (err)
2183 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2184 err);
2185 adapter->aq_required = 0;
2186
2187 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2188 err = iavf_reinit_interrupt_scheme(adapter);
2189 if (err)
2190 goto reset_err;
2191 }
2192
2193 if (RSS_AQ(adapter)) {
2194 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2195 } else {
2196 err = iavf_init_rss(adapter);
2197 if (err)
2198 goto reset_err;
2199 }
2200
2201 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2202 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2203
2204 spin_lock_bh(&adapter->mac_vlan_list_lock);
2205
2206 /* Delete filter for the current MAC address, it could have
2207 * been changed by the PF via administratively set MAC.
2208 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2209 */
2210 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2211 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2212 list_del(&f->list);
2213 kfree(f);
2214 }
2215 }
2216 /* re-add all MAC filters */
2217 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2218 f->add = true;
2219 }
2220 /* re-add all VLAN filters */
2221 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2222 vlf->add = true;
2223 }
2224
2225 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2226
2227 /* check if TCs are running and re-add all cloud filters */
2228 spin_lock_bh(&adapter->cloud_filter_list_lock);
2229 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2230 adapter->num_tc) {
2231 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2232 cf->add = true;
2233 }
2234 }
2235 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2236
2237 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2238 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2239 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2240 iavf_misc_irq_enable(adapter);
2241
2242 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2243
2244 /* We were running when the reset started, so we need to restore some
2245 * state here.
2246 */
2247 if (running) {
2248 /* allocate transmit descriptors */
2249 err = iavf_setup_all_tx_resources(adapter);
2250 if (err)
2251 goto reset_err;
2252
2253 /* allocate receive descriptors */
2254 err = iavf_setup_all_rx_resources(adapter);
2255 if (err)
2256 goto reset_err;
2257
2258 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2259 err = iavf_request_traffic_irqs(adapter, netdev->name);
2260 if (err)
2261 goto reset_err;
2262
2263 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2264 }
2265
2266 iavf_configure(adapter);
2267
2268 iavf_up_complete(adapter);
2269
2270 iavf_irq_enable(adapter, true);
2271 } else {
2272 adapter->state = __IAVF_DOWN;
2273 wake_up(&adapter->down_waitqueue);
2274 }
2275 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2276 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2277
2278 return;
2279 reset_err:
2280 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2281 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2282 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2283 iavf_close(netdev);
2284 }
2285
2286 /**
2287 * iavf_adminq_task - worker thread to clean the admin queue
2288 * @work: pointer to work_struct containing our data
2289 **/
iavf_adminq_task(struct work_struct * work)2290 static void iavf_adminq_task(struct work_struct *work)
2291 {
2292 struct iavf_adapter *adapter =
2293 container_of(work, struct iavf_adapter, adminq_task);
2294 struct iavf_hw *hw = &adapter->hw;
2295 struct iavf_arq_event_info event;
2296 enum virtchnl_ops v_op;
2297 enum iavf_status ret, v_ret;
2298 u32 val, oldval;
2299 u16 pending;
2300
2301 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2302 goto out;
2303
2304 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2305 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2306 if (!event.msg_buf)
2307 goto out;
2308
2309 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200))
2310 goto freedom;
2311 do {
2312 ret = iavf_clean_arq_element(hw, &event, &pending);
2313 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2314 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2315
2316 if (ret || !v_op)
2317 break; /* No event to process or error cleaning ARQ */
2318
2319 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2320 event.msg_len);
2321 if (pending != 0)
2322 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2323 } while (pending);
2324 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2325
2326 if ((adapter->flags &
2327 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2328 adapter->state == __IAVF_RESETTING)
2329 goto freedom;
2330
2331 /* check for error indications */
2332 val = rd32(hw, hw->aq.arq.len);
2333 if (val == 0xdeadbeef) /* indicates device in reset */
2334 goto freedom;
2335 oldval = val;
2336 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2337 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2338 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2339 }
2340 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2341 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2342 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2343 }
2344 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2345 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2346 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2347 }
2348 if (oldval != val)
2349 wr32(hw, hw->aq.arq.len, val);
2350
2351 val = rd32(hw, hw->aq.asq.len);
2352 oldval = val;
2353 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2354 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2355 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2356 }
2357 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2358 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2359 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2360 }
2361 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2362 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2363 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2364 }
2365 if (oldval != val)
2366 wr32(hw, hw->aq.asq.len, val);
2367
2368 freedom:
2369 kfree(event.msg_buf);
2370 out:
2371 /* re-enable Admin queue interrupt cause */
2372 iavf_misc_irq_enable(adapter);
2373 }
2374
2375 /**
2376 * iavf_client_task - worker thread to perform client work
2377 * @work: pointer to work_struct containing our data
2378 *
2379 * This task handles client interactions. Because client calls can be
2380 * reentrant, we can't handle them in the watchdog.
2381 **/
iavf_client_task(struct work_struct * work)2382 static void iavf_client_task(struct work_struct *work)
2383 {
2384 struct iavf_adapter *adapter =
2385 container_of(work, struct iavf_adapter, client_task.work);
2386
2387 /* If we can't get the client bit, just give up. We'll be rescheduled
2388 * later.
2389 */
2390
2391 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2392 return;
2393
2394 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2395 iavf_client_subtask(adapter);
2396 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2397 goto out;
2398 }
2399 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2400 iavf_notify_client_l2_params(&adapter->vsi);
2401 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2402 goto out;
2403 }
2404 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2405 iavf_notify_client_close(&adapter->vsi, false);
2406 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2407 goto out;
2408 }
2409 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2410 iavf_notify_client_open(&adapter->vsi);
2411 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2412 }
2413 out:
2414 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2415 }
2416
2417 /**
2418 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2419 * @adapter: board private structure
2420 *
2421 * Free all transmit software resources
2422 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)2423 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2424 {
2425 int i;
2426
2427 if (!adapter->tx_rings)
2428 return;
2429
2430 for (i = 0; i < adapter->num_active_queues; i++)
2431 if (adapter->tx_rings[i].desc)
2432 iavf_free_tx_resources(&adapter->tx_rings[i]);
2433 }
2434
2435 /**
2436 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2437 * @adapter: board private structure
2438 *
2439 * If this function returns with an error, then it's possible one or
2440 * more of the rings is populated (while the rest are not). It is the
2441 * callers duty to clean those orphaned rings.
2442 *
2443 * Return 0 on success, negative on failure
2444 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)2445 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2446 {
2447 int i, err = 0;
2448
2449 for (i = 0; i < adapter->num_active_queues; i++) {
2450 adapter->tx_rings[i].count = adapter->tx_desc_count;
2451 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2452 if (!err)
2453 continue;
2454 dev_err(&adapter->pdev->dev,
2455 "Allocation for Tx Queue %u failed\n", i);
2456 break;
2457 }
2458
2459 return err;
2460 }
2461
2462 /**
2463 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2464 * @adapter: board private structure
2465 *
2466 * If this function returns with an error, then it's possible one or
2467 * more of the rings is populated (while the rest are not). It is the
2468 * callers duty to clean those orphaned rings.
2469 *
2470 * Return 0 on success, negative on failure
2471 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)2472 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2473 {
2474 int i, err = 0;
2475
2476 for (i = 0; i < adapter->num_active_queues; i++) {
2477 adapter->rx_rings[i].count = adapter->rx_desc_count;
2478 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2479 if (!err)
2480 continue;
2481 dev_err(&adapter->pdev->dev,
2482 "Allocation for Rx Queue %u failed\n", i);
2483 break;
2484 }
2485 return err;
2486 }
2487
2488 /**
2489 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2490 * @adapter: board private structure
2491 *
2492 * Free all receive software resources
2493 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)2494 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2495 {
2496 int i;
2497
2498 if (!adapter->rx_rings)
2499 return;
2500
2501 for (i = 0; i < adapter->num_active_queues; i++)
2502 if (adapter->rx_rings[i].desc)
2503 iavf_free_rx_resources(&adapter->rx_rings[i]);
2504 }
2505
2506 /**
2507 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2508 * @adapter: board private structure
2509 * @max_tx_rate: max Tx bw for a tc
2510 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)2511 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2512 u64 max_tx_rate)
2513 {
2514 int speed = 0, ret = 0;
2515
2516 if (ADV_LINK_SUPPORT(adapter)) {
2517 if (adapter->link_speed_mbps < U32_MAX) {
2518 speed = adapter->link_speed_mbps;
2519 goto validate_bw;
2520 } else {
2521 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2522 return -EINVAL;
2523 }
2524 }
2525
2526 switch (adapter->link_speed) {
2527 case VIRTCHNL_LINK_SPEED_40GB:
2528 speed = SPEED_40000;
2529 break;
2530 case VIRTCHNL_LINK_SPEED_25GB:
2531 speed = SPEED_25000;
2532 break;
2533 case VIRTCHNL_LINK_SPEED_20GB:
2534 speed = SPEED_20000;
2535 break;
2536 case VIRTCHNL_LINK_SPEED_10GB:
2537 speed = SPEED_10000;
2538 break;
2539 case VIRTCHNL_LINK_SPEED_5GB:
2540 speed = SPEED_5000;
2541 break;
2542 case VIRTCHNL_LINK_SPEED_2_5GB:
2543 speed = SPEED_2500;
2544 break;
2545 case VIRTCHNL_LINK_SPEED_1GB:
2546 speed = SPEED_1000;
2547 break;
2548 case VIRTCHNL_LINK_SPEED_100MB:
2549 speed = SPEED_100;
2550 break;
2551 default:
2552 break;
2553 }
2554
2555 validate_bw:
2556 if (max_tx_rate > speed) {
2557 dev_err(&adapter->pdev->dev,
2558 "Invalid tx rate specified\n");
2559 ret = -EINVAL;
2560 }
2561
2562 return ret;
2563 }
2564
2565 /**
2566 * iavf_validate_channel_config - validate queue mapping info
2567 * @adapter: board private structure
2568 * @mqprio_qopt: queue parameters
2569 *
2570 * This function validates if the config provided by the user to
2571 * configure queue channels is valid or not. Returns 0 on a valid
2572 * config.
2573 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)2574 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2575 struct tc_mqprio_qopt_offload *mqprio_qopt)
2576 {
2577 u64 total_max_rate = 0;
2578 int i, num_qps = 0;
2579 u64 tx_rate = 0;
2580 int ret = 0;
2581
2582 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2583 mqprio_qopt->qopt.num_tc < 1)
2584 return -EINVAL;
2585
2586 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2587 if (!mqprio_qopt->qopt.count[i] ||
2588 mqprio_qopt->qopt.offset[i] != num_qps)
2589 return -EINVAL;
2590 if (mqprio_qopt->min_rate[i]) {
2591 dev_err(&adapter->pdev->dev,
2592 "Invalid min tx rate (greater than 0) specified\n");
2593 return -EINVAL;
2594 }
2595 /*convert to Mbps */
2596 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2597 IAVF_MBPS_DIVISOR);
2598 total_max_rate += tx_rate;
2599 num_qps += mqprio_qopt->qopt.count[i];
2600 }
2601 if (num_qps > IAVF_MAX_REQ_QUEUES)
2602 return -EINVAL;
2603
2604 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2605 return ret;
2606 }
2607
2608 /**
2609 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2610 * @adapter: board private structure
2611 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)2612 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2613 {
2614 struct iavf_cloud_filter *cf, *cftmp;
2615
2616 spin_lock_bh(&adapter->cloud_filter_list_lock);
2617 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2618 list) {
2619 list_del(&cf->list);
2620 kfree(cf);
2621 adapter->num_cloud_filters--;
2622 }
2623 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2624 }
2625
2626 /**
2627 * __iavf_setup_tc - configure multiple traffic classes
2628 * @netdev: network interface device structure
2629 * @type_data: tc offload data
2630 *
2631 * This function processes the config information provided by the
2632 * user to configure traffic classes/queue channels and packages the
2633 * information to request the PF to setup traffic classes.
2634 *
2635 * Returns 0 on success.
2636 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)2637 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2638 {
2639 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2640 struct iavf_adapter *adapter = netdev_priv(netdev);
2641 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2642 u8 num_tc = 0, total_qps = 0;
2643 int ret = 0, netdev_tc = 0;
2644 u64 max_tx_rate;
2645 u16 mode;
2646 int i;
2647
2648 num_tc = mqprio_qopt->qopt.num_tc;
2649 mode = mqprio_qopt->mode;
2650
2651 /* delete queue_channel */
2652 if (!mqprio_qopt->qopt.hw) {
2653 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2654 /* reset the tc configuration */
2655 netdev_reset_tc(netdev);
2656 adapter->num_tc = 0;
2657 netif_tx_stop_all_queues(netdev);
2658 netif_tx_disable(netdev);
2659 iavf_del_all_cloud_filters(adapter);
2660 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2661 goto exit;
2662 } else {
2663 return -EINVAL;
2664 }
2665 }
2666
2667 /* add queue channel */
2668 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2669 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2670 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2671 return -EOPNOTSUPP;
2672 }
2673 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2674 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2675 return -EINVAL;
2676 }
2677
2678 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2679 if (ret)
2680 return ret;
2681 /* Return if same TC config is requested */
2682 if (adapter->num_tc == num_tc)
2683 return 0;
2684 adapter->num_tc = num_tc;
2685
2686 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2687 if (i < num_tc) {
2688 adapter->ch_config.ch_info[i].count =
2689 mqprio_qopt->qopt.count[i];
2690 adapter->ch_config.ch_info[i].offset =
2691 mqprio_qopt->qopt.offset[i];
2692 total_qps += mqprio_qopt->qopt.count[i];
2693 max_tx_rate = mqprio_qopt->max_rate[i];
2694 /* convert to Mbps */
2695 max_tx_rate = div_u64(max_tx_rate,
2696 IAVF_MBPS_DIVISOR);
2697 adapter->ch_config.ch_info[i].max_tx_rate =
2698 max_tx_rate;
2699 } else {
2700 adapter->ch_config.ch_info[i].count = 1;
2701 adapter->ch_config.ch_info[i].offset = 0;
2702 }
2703 }
2704 adapter->ch_config.total_qps = total_qps;
2705 netif_tx_stop_all_queues(netdev);
2706 netif_tx_disable(netdev);
2707 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2708 netdev_reset_tc(netdev);
2709 /* Report the tc mapping up the stack */
2710 netdev_set_num_tc(adapter->netdev, num_tc);
2711 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2712 u16 qcount = mqprio_qopt->qopt.count[i];
2713 u16 qoffset = mqprio_qopt->qopt.offset[i];
2714
2715 if (i < num_tc)
2716 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2717 qoffset);
2718 }
2719 }
2720 exit:
2721 return ret;
2722 }
2723
2724 /**
2725 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2726 * @adapter: board private structure
2727 * @f: pointer to struct flow_cls_offload
2728 * @filter: pointer to cloud filter structure
2729 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)2730 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2731 struct flow_cls_offload *f,
2732 struct iavf_cloud_filter *filter)
2733 {
2734 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2735 struct flow_dissector *dissector = rule->match.dissector;
2736 u16 n_proto_mask = 0;
2737 u16 n_proto_key = 0;
2738 u8 field_flags = 0;
2739 u16 addr_type = 0;
2740 u16 n_proto = 0;
2741 int i = 0;
2742 struct virtchnl_filter *vf = &filter->f;
2743
2744 if (dissector->used_keys &
2745 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2746 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2747 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2748 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2749 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2750 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2751 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2752 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2753 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2754 dissector->used_keys);
2755 return -EOPNOTSUPP;
2756 }
2757
2758 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2759 struct flow_match_enc_keyid match;
2760
2761 flow_rule_match_enc_keyid(rule, &match);
2762 if (match.mask->keyid != 0)
2763 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2764 }
2765
2766 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2767 struct flow_match_basic match;
2768
2769 flow_rule_match_basic(rule, &match);
2770 n_proto_key = ntohs(match.key->n_proto);
2771 n_proto_mask = ntohs(match.mask->n_proto);
2772
2773 if (n_proto_key == ETH_P_ALL) {
2774 n_proto_key = 0;
2775 n_proto_mask = 0;
2776 }
2777 n_proto = n_proto_key & n_proto_mask;
2778 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2779 return -EINVAL;
2780 if (n_proto == ETH_P_IPV6) {
2781 /* specify flow type as TCP IPv6 */
2782 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2783 }
2784
2785 if (match.key->ip_proto != IPPROTO_TCP) {
2786 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2787 return -EINVAL;
2788 }
2789 }
2790
2791 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2792 struct flow_match_eth_addrs match;
2793
2794 flow_rule_match_eth_addrs(rule, &match);
2795
2796 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2797 if (!is_zero_ether_addr(match.mask->dst)) {
2798 if (is_broadcast_ether_addr(match.mask->dst)) {
2799 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2800 } else {
2801 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2802 match.mask->dst);
2803 return IAVF_ERR_CONFIG;
2804 }
2805 }
2806
2807 if (!is_zero_ether_addr(match.mask->src)) {
2808 if (is_broadcast_ether_addr(match.mask->src)) {
2809 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2810 } else {
2811 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2812 match.mask->src);
2813 return IAVF_ERR_CONFIG;
2814 }
2815 }
2816
2817 if (!is_zero_ether_addr(match.key->dst))
2818 if (is_valid_ether_addr(match.key->dst) ||
2819 is_multicast_ether_addr(match.key->dst)) {
2820 /* set the mask if a valid dst_mac address */
2821 for (i = 0; i < ETH_ALEN; i++)
2822 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2823 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2824 match.key->dst);
2825 }
2826
2827 if (!is_zero_ether_addr(match.key->src))
2828 if (is_valid_ether_addr(match.key->src) ||
2829 is_multicast_ether_addr(match.key->src)) {
2830 /* set the mask if a valid dst_mac address */
2831 for (i = 0; i < ETH_ALEN; i++)
2832 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2833 ether_addr_copy(vf->data.tcp_spec.src_mac,
2834 match.key->src);
2835 }
2836 }
2837
2838 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2839 struct flow_match_vlan match;
2840
2841 flow_rule_match_vlan(rule, &match);
2842 if (match.mask->vlan_id) {
2843 if (match.mask->vlan_id == VLAN_VID_MASK) {
2844 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2845 } else {
2846 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2847 match.mask->vlan_id);
2848 return IAVF_ERR_CONFIG;
2849 }
2850 }
2851 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2852 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2853 }
2854
2855 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2856 struct flow_match_control match;
2857
2858 flow_rule_match_control(rule, &match);
2859 addr_type = match.key->addr_type;
2860 }
2861
2862 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2863 struct flow_match_ipv4_addrs match;
2864
2865 flow_rule_match_ipv4_addrs(rule, &match);
2866 if (match.mask->dst) {
2867 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2868 field_flags |= IAVF_CLOUD_FIELD_IIP;
2869 } else {
2870 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2871 be32_to_cpu(match.mask->dst));
2872 return IAVF_ERR_CONFIG;
2873 }
2874 }
2875
2876 if (match.mask->src) {
2877 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2878 field_flags |= IAVF_CLOUD_FIELD_IIP;
2879 } else {
2880 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2881 be32_to_cpu(match.mask->dst));
2882 return IAVF_ERR_CONFIG;
2883 }
2884 }
2885
2886 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2887 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2888 return IAVF_ERR_CONFIG;
2889 }
2890 if (match.key->dst) {
2891 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2892 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2893 }
2894 if (match.key->src) {
2895 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2896 vf->data.tcp_spec.src_ip[0] = match.key->src;
2897 }
2898 }
2899
2900 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2901 struct flow_match_ipv6_addrs match;
2902
2903 flow_rule_match_ipv6_addrs(rule, &match);
2904
2905 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2906 if (ipv6_addr_any(&match.mask->dst)) {
2907 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2908 IPV6_ADDR_ANY);
2909 return IAVF_ERR_CONFIG;
2910 }
2911
2912 /* src and dest IPv6 address should not be LOOPBACK
2913 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2914 */
2915 if (ipv6_addr_loopback(&match.key->dst) ||
2916 ipv6_addr_loopback(&match.key->src)) {
2917 dev_err(&adapter->pdev->dev,
2918 "ipv6 addr should not be loopback\n");
2919 return IAVF_ERR_CONFIG;
2920 }
2921 if (!ipv6_addr_any(&match.mask->dst) ||
2922 !ipv6_addr_any(&match.mask->src))
2923 field_flags |= IAVF_CLOUD_FIELD_IIP;
2924
2925 for (i = 0; i < 4; i++)
2926 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2927 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2928 sizeof(vf->data.tcp_spec.dst_ip));
2929 for (i = 0; i < 4; i++)
2930 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2931 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2932 sizeof(vf->data.tcp_spec.src_ip));
2933 }
2934 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2935 struct flow_match_ports match;
2936
2937 flow_rule_match_ports(rule, &match);
2938 if (match.mask->src) {
2939 if (match.mask->src == cpu_to_be16(0xffff)) {
2940 field_flags |= IAVF_CLOUD_FIELD_IIP;
2941 } else {
2942 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2943 be16_to_cpu(match.mask->src));
2944 return IAVF_ERR_CONFIG;
2945 }
2946 }
2947
2948 if (match.mask->dst) {
2949 if (match.mask->dst == cpu_to_be16(0xffff)) {
2950 field_flags |= IAVF_CLOUD_FIELD_IIP;
2951 } else {
2952 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2953 be16_to_cpu(match.mask->dst));
2954 return IAVF_ERR_CONFIG;
2955 }
2956 }
2957 if (match.key->dst) {
2958 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2959 vf->data.tcp_spec.dst_port = match.key->dst;
2960 }
2961
2962 if (match.key->src) {
2963 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2964 vf->data.tcp_spec.src_port = match.key->src;
2965 }
2966 }
2967 vf->field_flags = field_flags;
2968
2969 return 0;
2970 }
2971
2972 /**
2973 * iavf_handle_tclass - Forward to a traffic class on the device
2974 * @adapter: board private structure
2975 * @tc: traffic class index on the device
2976 * @filter: pointer to cloud filter structure
2977 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)2978 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2979 struct iavf_cloud_filter *filter)
2980 {
2981 if (tc == 0)
2982 return 0;
2983 if (tc < adapter->num_tc) {
2984 if (!filter->f.data.tcp_spec.dst_port) {
2985 dev_err(&adapter->pdev->dev,
2986 "Specify destination port to redirect to traffic class other than TC0\n");
2987 return -EINVAL;
2988 }
2989 }
2990 /* redirect to a traffic class on the same device */
2991 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2992 filter->f.action_meta = tc;
2993 return 0;
2994 }
2995
2996 /**
2997 * iavf_configure_clsflower - Add tc flower filters
2998 * @adapter: board private structure
2999 * @cls_flower: Pointer to struct flow_cls_offload
3000 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3001 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3002 struct flow_cls_offload *cls_flower)
3003 {
3004 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3005 struct iavf_cloud_filter *filter = NULL;
3006 int err = -EINVAL, count = 50;
3007
3008 if (tc < 0) {
3009 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3010 return -EINVAL;
3011 }
3012
3013 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3014 if (!filter)
3015 return -ENOMEM;
3016
3017 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3018 &adapter->crit_section)) {
3019 if (--count == 0)
3020 goto err;
3021 udelay(1);
3022 }
3023
3024 filter->cookie = cls_flower->cookie;
3025
3026 /* set the mask to all zeroes to begin with */
3027 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3028 /* start out with flow type and eth type IPv4 to begin with */
3029 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3030 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3031 if (err < 0)
3032 goto err;
3033
3034 err = iavf_handle_tclass(adapter, tc, filter);
3035 if (err < 0)
3036 goto err;
3037
3038 /* add filter to the list */
3039 spin_lock_bh(&adapter->cloud_filter_list_lock);
3040 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3041 adapter->num_cloud_filters++;
3042 filter->add = true;
3043 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3044 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3045 err:
3046 if (err)
3047 kfree(filter);
3048
3049 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3050 return err;
3051 }
3052
3053 /* iavf_find_cf - Find the cloud filter in the list
3054 * @adapter: Board private structure
3055 * @cookie: filter specific cookie
3056 *
3057 * Returns ptr to the filter object or NULL. Must be called while holding the
3058 * cloud_filter_list_lock.
3059 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3060 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3061 unsigned long *cookie)
3062 {
3063 struct iavf_cloud_filter *filter = NULL;
3064
3065 if (!cookie)
3066 return NULL;
3067
3068 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3069 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3070 return filter;
3071 }
3072 return NULL;
3073 }
3074
3075 /**
3076 * iavf_delete_clsflower - Remove tc flower filters
3077 * @adapter: board private structure
3078 * @cls_flower: Pointer to struct flow_cls_offload
3079 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3080 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3081 struct flow_cls_offload *cls_flower)
3082 {
3083 struct iavf_cloud_filter *filter = NULL;
3084 int err = 0;
3085
3086 spin_lock_bh(&adapter->cloud_filter_list_lock);
3087 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3088 if (filter) {
3089 filter->del = true;
3090 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3091 } else {
3092 err = -EINVAL;
3093 }
3094 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3095
3096 return err;
3097 }
3098
3099 /**
3100 * iavf_setup_tc_cls_flower - flower classifier offloads
3101 * @adapter: board private structure
3102 * @cls_flower: pointer to flow_cls_offload struct with flow info
3103 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3104 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3105 struct flow_cls_offload *cls_flower)
3106 {
3107 switch (cls_flower->command) {
3108 case FLOW_CLS_REPLACE:
3109 return iavf_configure_clsflower(adapter, cls_flower);
3110 case FLOW_CLS_DESTROY:
3111 return iavf_delete_clsflower(adapter, cls_flower);
3112 case FLOW_CLS_STATS:
3113 return -EOPNOTSUPP;
3114 default:
3115 return -EOPNOTSUPP;
3116 }
3117 }
3118
3119 /**
3120 * iavf_setup_tc_block_cb - block callback for tc
3121 * @type: type of offload
3122 * @type_data: offload data
3123 * @cb_priv:
3124 *
3125 * This function is the block callback for traffic classes
3126 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3127 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3128 void *cb_priv)
3129 {
3130 struct iavf_adapter *adapter = cb_priv;
3131
3132 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3133 return -EOPNOTSUPP;
3134
3135 switch (type) {
3136 case TC_SETUP_CLSFLOWER:
3137 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3138 default:
3139 return -EOPNOTSUPP;
3140 }
3141 }
3142
3143 static LIST_HEAD(iavf_block_cb_list);
3144
3145 /**
3146 * iavf_setup_tc - configure multiple traffic classes
3147 * @netdev: network interface device structure
3148 * @type: type of offload
3149 * @type_data: tc offload data
3150 *
3151 * This function is the callback to ndo_setup_tc in the
3152 * netdev_ops.
3153 *
3154 * Returns 0 on success
3155 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)3156 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3157 void *type_data)
3158 {
3159 struct iavf_adapter *adapter = netdev_priv(netdev);
3160
3161 switch (type) {
3162 case TC_SETUP_QDISC_MQPRIO:
3163 return __iavf_setup_tc(netdev, type_data);
3164 case TC_SETUP_BLOCK:
3165 return flow_block_cb_setup_simple(type_data,
3166 &iavf_block_cb_list,
3167 iavf_setup_tc_block_cb,
3168 adapter, adapter, true);
3169 default:
3170 return -EOPNOTSUPP;
3171 }
3172 }
3173
3174 /**
3175 * iavf_open - Called when a network interface is made active
3176 * @netdev: network interface device structure
3177 *
3178 * Returns 0 on success, negative value on failure
3179 *
3180 * The open entry point is called when a network interface is made
3181 * active by the system (IFF_UP). At this point all resources needed
3182 * for transmit and receive operations are allocated, the interrupt
3183 * handler is registered with the OS, the watchdog is started,
3184 * and the stack is notified that the interface is ready.
3185 **/
iavf_open(struct net_device * netdev)3186 static int iavf_open(struct net_device *netdev)
3187 {
3188 struct iavf_adapter *adapter = netdev_priv(netdev);
3189 int err;
3190
3191 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3192 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3193 return -EIO;
3194 }
3195
3196 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3197 &adapter->crit_section))
3198 usleep_range(500, 1000);
3199
3200 if (adapter->state != __IAVF_DOWN) {
3201 err = -EBUSY;
3202 goto err_unlock;
3203 }
3204
3205 /* allocate transmit descriptors */
3206 err = iavf_setup_all_tx_resources(adapter);
3207 if (err)
3208 goto err_setup_tx;
3209
3210 /* allocate receive descriptors */
3211 err = iavf_setup_all_rx_resources(adapter);
3212 if (err)
3213 goto err_setup_rx;
3214
3215 /* clear any pending interrupts, may auto mask */
3216 err = iavf_request_traffic_irqs(adapter, netdev->name);
3217 if (err)
3218 goto err_req_irq;
3219
3220 spin_lock_bh(&adapter->mac_vlan_list_lock);
3221
3222 iavf_add_filter(adapter, adapter->hw.mac.addr);
3223
3224 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3225
3226 iavf_configure(adapter);
3227
3228 iavf_up_complete(adapter);
3229
3230 iavf_irq_enable(adapter, true);
3231
3232 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3233
3234 return 0;
3235
3236 err_req_irq:
3237 iavf_down(adapter);
3238 iavf_free_traffic_irqs(adapter);
3239 err_setup_rx:
3240 iavf_free_all_rx_resources(adapter);
3241 err_setup_tx:
3242 iavf_free_all_tx_resources(adapter);
3243 err_unlock:
3244 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3245
3246 return err;
3247 }
3248
3249 /**
3250 * iavf_close - Disables a network interface
3251 * @netdev: network interface device structure
3252 *
3253 * Returns 0, this is not allowed to fail
3254 *
3255 * The close entry point is called when an interface is de-activated
3256 * by the OS. The hardware is still under the drivers control, but
3257 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3258 * are freed, along with all transmit and receive resources.
3259 **/
iavf_close(struct net_device * netdev)3260 static int iavf_close(struct net_device *netdev)
3261 {
3262 struct iavf_adapter *adapter = netdev_priv(netdev);
3263 int status;
3264
3265 if (adapter->state <= __IAVF_DOWN_PENDING)
3266 return 0;
3267
3268 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3269 &adapter->crit_section))
3270 usleep_range(500, 1000);
3271
3272 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3273 if (CLIENT_ENABLED(adapter))
3274 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3275
3276 iavf_down(adapter);
3277 adapter->state = __IAVF_DOWN_PENDING;
3278 iavf_free_traffic_irqs(adapter);
3279
3280 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3281
3282 /* We explicitly don't free resources here because the hardware is
3283 * still active and can DMA into memory. Resources are cleared in
3284 * iavf_virtchnl_completion() after we get confirmation from the PF
3285 * driver that the rings have been stopped.
3286 *
3287 * Also, we wait for state to transition to __IAVF_DOWN before
3288 * returning. State change occurs in iavf_virtchnl_completion() after
3289 * VF resources are released (which occurs after PF driver processes and
3290 * responds to admin queue commands).
3291 */
3292
3293 status = wait_event_timeout(adapter->down_waitqueue,
3294 adapter->state == __IAVF_DOWN,
3295 msecs_to_jiffies(500));
3296 if (!status)
3297 netdev_warn(netdev, "Device resources not yet released\n");
3298 return 0;
3299 }
3300
3301 /**
3302 * iavf_change_mtu - Change the Maximum Transfer Unit
3303 * @netdev: network interface device structure
3304 * @new_mtu: new value for maximum frame size
3305 *
3306 * Returns 0 on success, negative on failure
3307 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)3308 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3309 {
3310 struct iavf_adapter *adapter = netdev_priv(netdev);
3311
3312 netdev->mtu = new_mtu;
3313 if (CLIENT_ENABLED(adapter)) {
3314 iavf_notify_client_l2_params(&adapter->vsi);
3315 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3316 }
3317 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3318 queue_work(iavf_wq, &adapter->reset_task);
3319
3320 return 0;
3321 }
3322
3323 /**
3324 * iavf_set_features - set the netdev feature flags
3325 * @netdev: ptr to the netdev being adjusted
3326 * @features: the feature set that the stack is suggesting
3327 * Note: expects to be called while under rtnl_lock()
3328 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)3329 static int iavf_set_features(struct net_device *netdev,
3330 netdev_features_t features)
3331 {
3332 struct iavf_adapter *adapter = netdev_priv(netdev);
3333
3334 /* Don't allow changing VLAN_RX flag when adapter is not capable
3335 * of VLAN offload
3336 */
3337 if (!VLAN_ALLOWED(adapter)) {
3338 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3339 return -EINVAL;
3340 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3341 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3342 adapter->aq_required |=
3343 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3344 else
3345 adapter->aq_required |=
3346 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3347 }
3348
3349 return 0;
3350 }
3351
3352 /**
3353 * iavf_features_check - Validate encapsulated packet conforms to limits
3354 * @skb: skb buff
3355 * @dev: This physical port's netdev
3356 * @features: Offload features that the stack believes apply
3357 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3358 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3359 struct net_device *dev,
3360 netdev_features_t features)
3361 {
3362 size_t len;
3363
3364 /* No point in doing any of this if neither checksum nor GSO are
3365 * being requested for this frame. We can rule out both by just
3366 * checking for CHECKSUM_PARTIAL
3367 */
3368 if (skb->ip_summed != CHECKSUM_PARTIAL)
3369 return features;
3370
3371 /* We cannot support GSO if the MSS is going to be less than
3372 * 64 bytes. If it is then we need to drop support for GSO.
3373 */
3374 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3375 features &= ~NETIF_F_GSO_MASK;
3376
3377 /* MACLEN can support at most 63 words */
3378 len = skb_network_header(skb) - skb->data;
3379 if (len & ~(63 * 2))
3380 goto out_err;
3381
3382 /* IPLEN and EIPLEN can support at most 127 dwords */
3383 len = skb_transport_header(skb) - skb_network_header(skb);
3384 if (len & ~(127 * 4))
3385 goto out_err;
3386
3387 if (skb->encapsulation) {
3388 /* L4TUNLEN can support 127 words */
3389 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3390 if (len & ~(127 * 2))
3391 goto out_err;
3392
3393 /* IPLEN can support at most 127 dwords */
3394 len = skb_inner_transport_header(skb) -
3395 skb_inner_network_header(skb);
3396 if (len & ~(127 * 4))
3397 goto out_err;
3398 }
3399
3400 /* No need to validate L4LEN as TCP is the only protocol with a
3401 * a flexible value and we support all possible values supported
3402 * by TCP, which is at most 15 dwords
3403 */
3404
3405 return features;
3406 out_err:
3407 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3408 }
3409
3410 /**
3411 * iavf_fix_features - fix up the netdev feature bits
3412 * @netdev: our net device
3413 * @features: desired feature bits
3414 *
3415 * Returns fixed-up features bits
3416 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)3417 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3418 netdev_features_t features)
3419 {
3420 struct iavf_adapter *adapter = netdev_priv(netdev);
3421
3422 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3423 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3424 NETIF_F_HW_VLAN_CTAG_RX |
3425 NETIF_F_HW_VLAN_CTAG_FILTER);
3426
3427 return features;
3428 }
3429
3430 static const struct net_device_ops iavf_netdev_ops = {
3431 .ndo_open = iavf_open,
3432 .ndo_stop = iavf_close,
3433 .ndo_start_xmit = iavf_xmit_frame,
3434 .ndo_set_rx_mode = iavf_set_rx_mode,
3435 .ndo_validate_addr = eth_validate_addr,
3436 .ndo_set_mac_address = iavf_set_mac,
3437 .ndo_change_mtu = iavf_change_mtu,
3438 .ndo_tx_timeout = iavf_tx_timeout,
3439 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3440 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3441 .ndo_features_check = iavf_features_check,
3442 .ndo_fix_features = iavf_fix_features,
3443 .ndo_set_features = iavf_set_features,
3444 .ndo_setup_tc = iavf_setup_tc,
3445 };
3446
3447 /**
3448 * iavf_check_reset_complete - check that VF reset is complete
3449 * @hw: pointer to hw struct
3450 *
3451 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3452 **/
iavf_check_reset_complete(struct iavf_hw * hw)3453 static int iavf_check_reset_complete(struct iavf_hw *hw)
3454 {
3455 u32 rstat;
3456 int i;
3457
3458 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3459 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3460 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3461 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3462 (rstat == VIRTCHNL_VFR_COMPLETED))
3463 return 0;
3464 usleep_range(10, 20);
3465 }
3466 return -EBUSY;
3467 }
3468
3469 /**
3470 * iavf_process_config - Process the config information we got from the PF
3471 * @adapter: board private structure
3472 *
3473 * Verify that we have a valid config struct, and set up our netdev features
3474 * and our VSI struct.
3475 **/
iavf_process_config(struct iavf_adapter * adapter)3476 int iavf_process_config(struct iavf_adapter *adapter)
3477 {
3478 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3479 int i, num_req_queues = adapter->num_req_queues;
3480 struct net_device *netdev = adapter->netdev;
3481 struct iavf_vsi *vsi = &adapter->vsi;
3482 netdev_features_t hw_enc_features;
3483 netdev_features_t hw_features;
3484
3485 /* got VF config message back from PF, now we can parse it */
3486 for (i = 0; i < vfres->num_vsis; i++) {
3487 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3488 adapter->vsi_res = &vfres->vsi_res[i];
3489 }
3490 if (!adapter->vsi_res) {
3491 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3492 return -ENODEV;
3493 }
3494
3495 if (num_req_queues &&
3496 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3497 /* Problem. The PF gave us fewer queues than what we had
3498 * negotiated in our request. Need a reset to see if we can't
3499 * get back to a working state.
3500 */
3501 dev_err(&adapter->pdev->dev,
3502 "Requested %d queues, but PF only gave us %d.\n",
3503 num_req_queues,
3504 adapter->vsi_res->num_queue_pairs);
3505 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3506 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3507 iavf_schedule_reset(adapter);
3508 return -ENODEV;
3509 }
3510 adapter->num_req_queues = 0;
3511
3512 hw_enc_features = NETIF_F_SG |
3513 NETIF_F_IP_CSUM |
3514 NETIF_F_IPV6_CSUM |
3515 NETIF_F_HIGHDMA |
3516 NETIF_F_SOFT_FEATURES |
3517 NETIF_F_TSO |
3518 NETIF_F_TSO_ECN |
3519 NETIF_F_TSO6 |
3520 NETIF_F_SCTP_CRC |
3521 NETIF_F_RXHASH |
3522 NETIF_F_RXCSUM |
3523 0;
3524
3525 /* advertise to stack only if offloads for encapsulated packets is
3526 * supported
3527 */
3528 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3529 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3530 NETIF_F_GSO_GRE |
3531 NETIF_F_GSO_GRE_CSUM |
3532 NETIF_F_GSO_IPXIP4 |
3533 NETIF_F_GSO_IPXIP6 |
3534 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3535 NETIF_F_GSO_PARTIAL |
3536 0;
3537
3538 if (!(vfres->vf_cap_flags &
3539 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3540 netdev->gso_partial_features |=
3541 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3542
3543 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3544 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3545 netdev->hw_enc_features |= hw_enc_features;
3546 }
3547 /* record features VLANs can make use of */
3548 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3549
3550 /* Write features and hw_features separately to avoid polluting
3551 * with, or dropping, features that are set when we registered.
3552 */
3553 hw_features = hw_enc_features;
3554
3555 /* Enable VLAN features if supported */
3556 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3557 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3558 NETIF_F_HW_VLAN_CTAG_RX);
3559 /* Enable cloud filter if ADQ is supported */
3560 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3561 hw_features |= NETIF_F_HW_TC;
3562
3563 netdev->hw_features |= hw_features;
3564
3565 netdev->features |= hw_features;
3566
3567 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3568 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3569
3570 netdev->priv_flags |= IFF_UNICAST_FLT;
3571
3572 /* Do not turn on offloads when they are requested to be turned off.
3573 * TSO needs minimum 576 bytes to work correctly.
3574 */
3575 if (netdev->wanted_features) {
3576 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3577 netdev->mtu < 576)
3578 netdev->features &= ~NETIF_F_TSO;
3579 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3580 netdev->mtu < 576)
3581 netdev->features &= ~NETIF_F_TSO6;
3582 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3583 netdev->features &= ~NETIF_F_TSO_ECN;
3584 if (!(netdev->wanted_features & NETIF_F_GRO))
3585 netdev->features &= ~NETIF_F_GRO;
3586 if (!(netdev->wanted_features & NETIF_F_GSO))
3587 netdev->features &= ~NETIF_F_GSO;
3588 }
3589
3590 adapter->vsi.id = adapter->vsi_res->vsi_id;
3591
3592 adapter->vsi.back = adapter;
3593 adapter->vsi.base_vector = 1;
3594 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3595 vsi->netdev = adapter->netdev;
3596 vsi->qs_handle = adapter->vsi_res->qset_handle;
3597 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3598 adapter->rss_key_size = vfres->rss_key_size;
3599 adapter->rss_lut_size = vfres->rss_lut_size;
3600 } else {
3601 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3602 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3603 }
3604
3605 return 0;
3606 }
3607
3608 /**
3609 * iavf_init_task - worker thread to perform delayed initialization
3610 * @work: pointer to work_struct containing our data
3611 *
3612 * This task completes the work that was begun in probe. Due to the nature
3613 * of VF-PF communications, we may need to wait tens of milliseconds to get
3614 * responses back from the PF. Rather than busy-wait in probe and bog down the
3615 * whole system, we'll do it in a task so we can sleep.
3616 * This task only runs during driver init. Once we've established
3617 * communications with the PF driver and set up our netdev, the watchdog
3618 * takes over.
3619 **/
iavf_init_task(struct work_struct * work)3620 static void iavf_init_task(struct work_struct *work)
3621 {
3622 struct iavf_adapter *adapter = container_of(work,
3623 struct iavf_adapter,
3624 init_task.work);
3625 struct iavf_hw *hw = &adapter->hw;
3626
3627 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000)) {
3628 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3629 return;
3630 }
3631 switch (adapter->state) {
3632 case __IAVF_STARTUP:
3633 if (iavf_startup(adapter) < 0)
3634 goto init_failed;
3635 break;
3636 case __IAVF_INIT_VERSION_CHECK:
3637 if (iavf_init_version_check(adapter) < 0)
3638 goto init_failed;
3639 break;
3640 case __IAVF_INIT_GET_RESOURCES:
3641 if (iavf_init_get_resources(adapter) < 0)
3642 goto init_failed;
3643 goto out;
3644 default:
3645 goto init_failed;
3646 }
3647
3648 queue_delayed_work(iavf_wq, &adapter->init_task,
3649 msecs_to_jiffies(30));
3650 goto out;
3651 init_failed:
3652 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3653 dev_err(&adapter->pdev->dev,
3654 "Failed to communicate with PF; waiting before retry\n");
3655 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3656 iavf_shutdown_adminq(hw);
3657 adapter->state = __IAVF_STARTUP;
3658 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3659 goto out;
3660 }
3661 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3662 out:
3663 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3664 }
3665
3666 /**
3667 * iavf_shutdown - Shutdown the device in preparation for a reboot
3668 * @pdev: pci device structure
3669 **/
iavf_shutdown(struct pci_dev * pdev)3670 static void iavf_shutdown(struct pci_dev *pdev)
3671 {
3672 struct net_device *netdev = pci_get_drvdata(pdev);
3673 struct iavf_adapter *adapter = netdev_priv(netdev);
3674
3675 netif_device_detach(netdev);
3676
3677 if (netif_running(netdev))
3678 iavf_close(netdev);
3679
3680 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3681 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3682 /* Prevent the watchdog from running. */
3683 adapter->state = __IAVF_REMOVE;
3684 adapter->aq_required = 0;
3685 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3686
3687 #ifdef CONFIG_PM
3688 pci_save_state(pdev);
3689
3690 #endif
3691 pci_disable_device(pdev);
3692 }
3693
3694 /**
3695 * iavf_probe - Device Initialization Routine
3696 * @pdev: PCI device information struct
3697 * @ent: entry in iavf_pci_tbl
3698 *
3699 * Returns 0 on success, negative on failure
3700 *
3701 * iavf_probe initializes an adapter identified by a pci_dev structure.
3702 * The OS initialization, configuring of the adapter private structure,
3703 * and a hardware reset occur.
3704 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3705 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3706 {
3707 struct net_device *netdev;
3708 struct iavf_adapter *adapter = NULL;
3709 struct iavf_hw *hw = NULL;
3710 int err;
3711
3712 err = pci_enable_device(pdev);
3713 if (err)
3714 return err;
3715
3716 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3717 if (err) {
3718 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3719 if (err) {
3720 dev_err(&pdev->dev,
3721 "DMA configuration failed: 0x%x\n", err);
3722 goto err_dma;
3723 }
3724 }
3725
3726 err = pci_request_regions(pdev, iavf_driver_name);
3727 if (err) {
3728 dev_err(&pdev->dev,
3729 "pci_request_regions failed 0x%x\n", err);
3730 goto err_pci_reg;
3731 }
3732
3733 pci_enable_pcie_error_reporting(pdev);
3734
3735 pci_set_master(pdev);
3736
3737 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3738 IAVF_MAX_REQ_QUEUES);
3739 if (!netdev) {
3740 err = -ENOMEM;
3741 goto err_alloc_etherdev;
3742 }
3743
3744 SET_NETDEV_DEV(netdev, &pdev->dev);
3745
3746 pci_set_drvdata(pdev, netdev);
3747 adapter = netdev_priv(netdev);
3748
3749 adapter->netdev = netdev;
3750 adapter->pdev = pdev;
3751
3752 hw = &adapter->hw;
3753 hw->back = adapter;
3754
3755 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3756 adapter->state = __IAVF_STARTUP;
3757
3758 /* Call save state here because it relies on the adapter struct. */
3759 pci_save_state(pdev);
3760
3761 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3762 pci_resource_len(pdev, 0));
3763 if (!hw->hw_addr) {
3764 err = -EIO;
3765 goto err_ioremap;
3766 }
3767 hw->vendor_id = pdev->vendor;
3768 hw->device_id = pdev->device;
3769 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3770 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3771 hw->subsystem_device_id = pdev->subsystem_device;
3772 hw->bus.device = PCI_SLOT(pdev->devfn);
3773 hw->bus.func = PCI_FUNC(pdev->devfn);
3774 hw->bus.bus_id = pdev->bus->number;
3775
3776 /* set up the locks for the AQ, do this only once in probe
3777 * and destroy them only once in remove
3778 */
3779 mutex_init(&hw->aq.asq_mutex);
3780 mutex_init(&hw->aq.arq_mutex);
3781
3782 spin_lock_init(&adapter->mac_vlan_list_lock);
3783 spin_lock_init(&adapter->cloud_filter_list_lock);
3784
3785 INIT_LIST_HEAD(&adapter->mac_filter_list);
3786 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3787 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3788
3789 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3790 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3791 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3792 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3793 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3794 queue_delayed_work(iavf_wq, &adapter->init_task,
3795 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3796
3797 /* Setup the wait queue for indicating transition to down status */
3798 init_waitqueue_head(&adapter->down_waitqueue);
3799
3800 return 0;
3801
3802 err_ioremap:
3803 free_netdev(netdev);
3804 err_alloc_etherdev:
3805 pci_disable_pcie_error_reporting(pdev);
3806 pci_release_regions(pdev);
3807 err_pci_reg:
3808 err_dma:
3809 pci_disable_device(pdev);
3810 return err;
3811 }
3812
3813 /**
3814 * iavf_suspend - Power management suspend routine
3815 * @dev_d: device info pointer
3816 *
3817 * Called when the system (VM) is entering sleep/suspend.
3818 **/
iavf_suspend(struct device * dev_d)3819 static int __maybe_unused iavf_suspend(struct device *dev_d)
3820 {
3821 struct net_device *netdev = dev_get_drvdata(dev_d);
3822 struct iavf_adapter *adapter = netdev_priv(netdev);
3823
3824 netif_device_detach(netdev);
3825
3826 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3827 &adapter->crit_section))
3828 usleep_range(500, 1000);
3829
3830 if (netif_running(netdev)) {
3831 rtnl_lock();
3832 iavf_down(adapter);
3833 rtnl_unlock();
3834 }
3835 iavf_free_misc_irq(adapter);
3836 iavf_reset_interrupt_capability(adapter);
3837
3838 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3839
3840 return 0;
3841 }
3842
3843 /**
3844 * iavf_resume - Power management resume routine
3845 * @dev_d: device info pointer
3846 *
3847 * Called when the system (VM) is resumed from sleep/suspend.
3848 **/
iavf_resume(struct device * dev_d)3849 static int __maybe_unused iavf_resume(struct device *dev_d)
3850 {
3851 struct pci_dev *pdev = to_pci_dev(dev_d);
3852 struct net_device *netdev = pci_get_drvdata(pdev);
3853 struct iavf_adapter *adapter = netdev_priv(netdev);
3854 u32 err;
3855
3856 pci_set_master(pdev);
3857
3858 rtnl_lock();
3859 err = iavf_set_interrupt_capability(adapter);
3860 if (err) {
3861 rtnl_unlock();
3862 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3863 return err;
3864 }
3865 err = iavf_request_misc_irq(adapter);
3866 rtnl_unlock();
3867 if (err) {
3868 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3869 return err;
3870 }
3871
3872 queue_work(iavf_wq, &adapter->reset_task);
3873
3874 netif_device_attach(netdev);
3875
3876 return err;
3877 }
3878
3879 /**
3880 * iavf_remove - Device Removal Routine
3881 * @pdev: PCI device information struct
3882 *
3883 * iavf_remove is called by the PCI subsystem to alert the driver
3884 * that it should release a PCI device. The could be caused by a
3885 * Hot-Plug event, or because the driver is going to be removed from
3886 * memory.
3887 **/
iavf_remove(struct pci_dev * pdev)3888 static void iavf_remove(struct pci_dev *pdev)
3889 {
3890 struct net_device *netdev = pci_get_drvdata(pdev);
3891 struct iavf_adapter *adapter = netdev_priv(netdev);
3892 struct iavf_vlan_filter *vlf, *vlftmp;
3893 struct iavf_mac_filter *f, *ftmp;
3894 struct iavf_cloud_filter *cf, *cftmp;
3895 struct iavf_hw *hw = &adapter->hw;
3896 int err;
3897 /* Indicate we are in remove and not to run reset_task */
3898 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3899 cancel_delayed_work_sync(&adapter->init_task);
3900 cancel_work_sync(&adapter->reset_task);
3901 cancel_delayed_work_sync(&adapter->client_task);
3902 if (adapter->netdev_registered) {
3903 unregister_netdev(netdev);
3904 adapter->netdev_registered = false;
3905 }
3906 if (CLIENT_ALLOWED(adapter)) {
3907 err = iavf_lan_del_device(adapter);
3908 if (err)
3909 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3910 err);
3911 }
3912
3913 iavf_request_reset(adapter);
3914 msleep(50);
3915 /* If the FW isn't responding, kick it once, but only once. */
3916 if (!iavf_asq_done(hw)) {
3917 iavf_request_reset(adapter);
3918 msleep(50);
3919 }
3920 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3921 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3922
3923 /* Shut down all the garbage mashers on the detention level */
3924 adapter->state = __IAVF_REMOVE;
3925 adapter->aq_required = 0;
3926 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3927 iavf_free_all_tx_resources(adapter);
3928 iavf_free_all_rx_resources(adapter);
3929 iavf_misc_irq_disable(adapter);
3930 iavf_free_misc_irq(adapter);
3931 iavf_reset_interrupt_capability(adapter);
3932 iavf_free_q_vectors(adapter);
3933
3934 cancel_delayed_work_sync(&adapter->watchdog_task);
3935
3936 cancel_work_sync(&adapter->adminq_task);
3937
3938 iavf_free_rss(adapter);
3939
3940 if (hw->aq.asq.count)
3941 iavf_shutdown_adminq(hw);
3942
3943 /* destroy the locks only once, here */
3944 mutex_destroy(&hw->aq.arq_mutex);
3945 mutex_destroy(&hw->aq.asq_mutex);
3946
3947 iounmap(hw->hw_addr);
3948 pci_release_regions(pdev);
3949 iavf_free_queues(adapter);
3950 kfree(adapter->vf_res);
3951 spin_lock_bh(&adapter->mac_vlan_list_lock);
3952 /* If we got removed before an up/down sequence, we've got a filter
3953 * hanging out there that we need to get rid of.
3954 */
3955 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3956 list_del(&f->list);
3957 kfree(f);
3958 }
3959 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3960 list) {
3961 list_del(&vlf->list);
3962 kfree(vlf);
3963 }
3964
3965 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3966
3967 spin_lock_bh(&adapter->cloud_filter_list_lock);
3968 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3969 list_del(&cf->list);
3970 kfree(cf);
3971 }
3972 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3973
3974 free_netdev(netdev);
3975
3976 pci_disable_pcie_error_reporting(pdev);
3977
3978 pci_disable_device(pdev);
3979 }
3980
3981 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3982
3983 static struct pci_driver iavf_driver = {
3984 .name = iavf_driver_name,
3985 .id_table = iavf_pci_tbl,
3986 .probe = iavf_probe,
3987 .remove = iavf_remove,
3988 .driver.pm = &iavf_pm_ops,
3989 .shutdown = iavf_shutdown,
3990 };
3991
3992 /**
3993 * iavf_init_module - Driver Registration Routine
3994 *
3995 * iavf_init_module is the first routine called when the driver is
3996 * loaded. All it does is register with the PCI subsystem.
3997 **/
iavf_init_module(void)3998 static int __init iavf_init_module(void)
3999 {
4000 int ret;
4001
4002 pr_info("iavf: %s\n", iavf_driver_string);
4003
4004 pr_info("%s\n", iavf_copyright);
4005
4006 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4007 iavf_driver_name);
4008 if (!iavf_wq) {
4009 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4010 return -ENOMEM;
4011 }
4012 ret = pci_register_driver(&iavf_driver);
4013 return ret;
4014 }
4015
4016 module_init(iavf_init_module);
4017
4018 /**
4019 * iavf_exit_module - Driver Exit Cleanup Routine
4020 *
4021 * iavf_exit_module is called just before the driver is removed
4022 * from memory.
4023 **/
iavf_exit_module(void)4024 static void __exit iavf_exit_module(void)
4025 {
4026 pci_unregister_driver(&iavf_driver);
4027 destroy_workqueue(iavf_wq);
4028 }
4029
4030 module_exit(iavf_exit_module);
4031
4032 /* iavf_main.c */
4033