• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2014 Marshall A. Greenblatt. Portions copyright (c) 2011
2 // Google Inc. All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //    * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //    * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //    * Neither the name of Google Inc. nor the name Chromium Embedded
15 // Framework nor the names of its contributors may be used to endorse
16 // or promote products derived from this software without specific prior
17 // written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // This defines a set of argument wrappers and related factory methods that
32 // can be used specify the refcounting and reference semantics of arguments
33 // that are bound by the Bind() function in base/bind.h.
34 //
35 // It also defines a set of simple functions and utilities that people want
36 // when using Callback<> and Bind().
37 //
38 //
39 // ARGUMENT BINDING WRAPPERS
40 //
41 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
42 // base::ConstRef(), and base::IgnoreResult().
43 //
44 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
45 // refcounting on arguments that are refcounted objects.
46 //
47 // Owned() transfers ownership of an object to the Callback resulting from
48 // bind; the object will be deleted when the Callback is deleted.
49 //
50 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
51 // through a Callback. Logically, this signifies a destructive transfer of
52 // the state of the argument into the target function.  Invoking
53 // Callback::Run() twice on a Callback that was created with a Passed()
54 // argument will CHECK() because the first invocation would have already
55 // transferred ownership to the target function.
56 //
57 // ConstRef() allows binding a constant reference to an argument rather
58 // than a copy.
59 //
60 // IgnoreResult() is used to adapt a function or Callback with a return type to
61 // one with a void return. This is most useful if you have a function with,
62 // say, a pesky ignorable bool return that you want to use with PostTask or
63 // something else that expect a Callback with a void return.
64 //
65 // EXAMPLE OF Unretained():
66 //
67 //   class Foo {
68 //    public:
69 //     void func() { cout << "Foo:f" << endl; }
70 //   };
71 //
72 //   // In some function somewhere.
73 //   Foo foo;
74 //   Closure foo_callback =
75 //       Bind(&Foo::func, Unretained(&foo));
76 //   foo_callback.Run();  // Prints "Foo:f".
77 //
78 // Without the Unretained() wrapper on |&foo|, the above call would fail
79 // to compile because Foo does not support the AddRef() and Release() methods.
80 //
81 //
82 // EXAMPLE OF Owned():
83 //
84 //   void foo(int* arg) { cout << *arg << endl }
85 //
86 //   int* pn = new int(1);
87 //   Closure foo_callback = Bind(&foo, Owned(pn));
88 //
89 //   foo_callback.Run();  // Prints "1"
90 //   foo_callback.Run();  // Prints "1"
91 //   *n = 2;
92 //   foo_callback.Run();  // Prints "2"
93 //
94 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
95 //                          // |foo_callback| goes out of scope.
96 //
97 // Without Owned(), someone would have to know to delete |pn| when the last
98 // reference to the Callback is deleted.
99 //
100 //
101 // EXAMPLE OF ConstRef():
102 //
103 //   void foo(int arg) { cout << arg << endl }
104 //
105 //   int n = 1;
106 //   Closure no_ref = Bind(&foo, n);
107 //   Closure has_ref = Bind(&foo, ConstRef(n));
108 //
109 //   no_ref.Run();  // Prints "1"
110 //   has_ref.Run();  // Prints "1"
111 //
112 //   n = 2;
113 //   no_ref.Run();  // Prints "1"
114 //   has_ref.Run();  // Prints "2"
115 //
116 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
117 // its bound callbacks.
118 //
119 //
120 // EXAMPLE OF IgnoreResult():
121 //
122 //   int DoSomething(int arg) { cout << arg << endl; }
123 //
124 //   // Assign to a Callback with a void return type.
125 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
126 //   cb->Run(1);  // Prints "1".
127 //
128 //   // Prints "1" on |ml|.
129 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
130 //
131 //
132 // EXAMPLE OF Passed():
133 //
134 //   void TakesOwnership(scoped_ptr<Foo> arg) { }
135 //   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
136 //
137 //   scoped_ptr<Foo> f(new Foo());
138 //
139 //   // |cb| is given ownership of Foo(). |f| is now NULL.
140 //   // You can use f.Pass() in place of &f, but it's more verbose.
141 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
142 //
143 //   // Run was never called so |cb| still owns Foo() and deletes
144 //   // it on Reset().
145 //   cb.Reset();
146 //
147 //   // |cb| is given a new Foo created by CreateFoo().
148 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
149 //
150 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
151 //   // no longer owns Foo() and, if reset, would not delete Foo().
152 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
153 //   cb.Run();  // This CHECK()s since Foo() already been used once.
154 //
155 // Passed() is particularly useful with PostTask() when you are transferring
156 // ownership of an argument into a task, but don't necessarily know if the
157 // task will always be executed. This can happen if the task is cancellable
158 // or if it is posted to a MessageLoopProxy.
159 //
160 //
161 // SIMPLE FUNCTIONS AND UTILITIES.
162 //
163 //   DoNothing() - Useful for creating a Closure that does nothing when called.
164 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
165 //                        pointer when invoked. Only use this when necessary.
166 //                        In most cases MessageLoop::DeleteSoon() is a better
167 //                        fit.
168 
169 #ifndef CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
170 #define CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
171 #pragma once
172 
173 #if defined(BASE_BIND_HELPERS_H_)
174 // Do nothing if the Chromium header has already been included.
175 // This can happen in cases where Chromium code is used directly by the
176 // client application. When using Chromium code directly always include
177 // the Chromium header first to avoid type conflicts.
178 #elif defined(USING_CHROMIUM_INCLUDES)
179 // When building CEF include the Chromium header directly.
180 #include "base/bind_helpers.h"
181 #else  // !USING_CHROMIUM_INCLUDES
182 // The following is substantially similar to the Chromium implementation.
183 // If the Chromium implementation diverges the below implementation should be
184 // updated to match.
185 
186 #include "include/base/cef_basictypes.h"
187 #include "include/base/cef_callback.h"
188 #include "include/base/cef_template_util.h"
189 #include "include/base/cef_weak_ptr.h"
190 
191 namespace base {
192 namespace cef_internal {
193 
194 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
195 // for the existence of AddRef() and Release() functions of the correct
196 // signature.
197 //
198 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
199 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
200 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
201 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
202 //
203 // The last link in particular show the method used below.
204 //
205 // For SFINAE to work with inherited methods, we need to pull some extra tricks
206 // with multiple inheritance.  In the more standard formulation, the overloads
207 // of Check would be:
208 //
209 //   template <typename C>
210 //   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
211 //
212 //   template <typename C>
213 //   No NotTheCheckWeWant(...);
214 //
215 //   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
216 //
217 // The problem here is that template resolution will not match
218 // C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
219 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
220 // |value| will be false.  This formulation only checks for whether or
221 // not TargetFunc exist directly in the class being introspected.
222 //
223 // To get around this, we play a dirty trick with multiple inheritance.
224 // First, We create a class BaseMixin that declares each function that we
225 // want to probe for.  Then we create a class Base that inherits from both T
226 // (the class we wish to probe) and BaseMixin.  Note that the function
227 // signature in BaseMixin does not need to match the signature of the function
228 // we are probing for; thus it's easiest to just use void(void).
229 //
230 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
231 // ambiguous resolution between BaseMixin and T.  This lets us write the
232 // following:
233 //
234 //   template <typename C>
235 //   No GoodCheck(Helper<&C::TargetFunc>*);
236 //
237 //   template <typename C>
238 //   Yes GoodCheck(...);
239 //
240 //   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
241 //
242 // Notice here that the variadic version of GoodCheck() returns Yes here
243 // instead of No like the previous one. Also notice that we calculate |value|
244 // by specializing GoodCheck() on Base instead of T.
245 //
246 // We've reversed the roles of the variadic, and Helper overloads.
247 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
248 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
249 // to the variadic version if T has TargetFunc.  If T::TargetFunc does not
250 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
251 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
252 //
253 // This method of SFINAE will correctly probe for inherited names, but it cannot
254 // typecheck those names.  It's still a good enough sanity check though.
255 //
256 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
257 //
258 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
259 // this works well.
260 //
261 // TODO(ajwong): Make this check for Release() as well.
262 // See http://crbug.com/82038.
263 template <typename T>
264 class SupportsAddRefAndRelease {
265   typedef char Yes[1];
266   typedef char No[2];
267 
268   struct BaseMixin {
269     void AddRef();
270   };
271 
272 // MSVC warns when you try to use Base if T has a private destructor, the
273 // common pattern for refcounted types. It does this even though no attempt to
274 // instantiate Base is made.  We disable the warning for this definition.
275 #if defined(OS_WIN)
276 #pragma warning(push)
277 #pragma warning(disable : 4624)
278 #endif
279   struct Base : public T, public BaseMixin {};
280 #if defined(OS_WIN)
281 #pragma warning(pop)
282 #endif
283 
284   template <void (BaseMixin::*)(void)>
285   struct Helper {};
286 
287   template <typename C>
288   static No& Check(Helper<&C::AddRef>*);
289 
290   template <typename>
291   static Yes& Check(...);
292 
293  public:
294   static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes);
295 };
296 
297 // Helpers to assert that arguments of a recounted type are bound with a
298 // scoped_refptr.
299 template <bool IsClasstype, typename T>
300 struct UnsafeBindtoRefCountedArgHelper : false_type {};
301 
302 template <typename T>
303 struct UnsafeBindtoRefCountedArgHelper<true, T>
304     : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {};
305 
306 template <typename T>
307 struct UnsafeBindtoRefCountedArg : false_type {};
308 
309 template <typename T>
310 struct UnsafeBindtoRefCountedArg<T*>
311     : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {};
312 
313 template <typename T>
314 class HasIsMethodTag {
315   typedef char Yes[1];
316   typedef char No[2];
317 
318   template <typename U>
319   static Yes& Check(typename U::IsMethod*);
320 
321   template <typename U>
322   static No& Check(...);
323 
324  public:
325   static const bool value = sizeof(Check<T>(0)) == sizeof(Yes);
326 };
327 
328 template <typename T>
329 class UnretainedWrapper {
330  public:
331   explicit UnretainedWrapper(T* o) : ptr_(o) {}
332   T* get() const { return ptr_; }
333 
334  private:
335   T* ptr_;
336 };
337 
338 template <typename T>
339 class ConstRefWrapper {
340  public:
341   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
342   const T& get() const { return *ptr_; }
343 
344  private:
345   const T* ptr_;
346 };
347 
348 template <typename T>
349 struct IgnoreResultHelper {
350   explicit IgnoreResultHelper(T functor) : functor_(functor) {}
351 
352   T functor_;
353 };
354 
355 template <typename T>
356 struct IgnoreResultHelper<Callback<T>> {
357   explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
358 
359   const Callback<T>& functor_;
360 };
361 
362 // An alternate implementation is to avoid the destructive copy, and instead
363 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
364 // a class that is essentially a scoped_ptr<>.
365 //
366 // The current implementation has the benefit though of leaving ParamTraits<>
367 // fully in callback_internal.h as well as avoiding type conversions during
368 // storage.
369 template <typename T>
370 class OwnedWrapper {
371  public:
372   explicit OwnedWrapper(T* o) : ptr_(o) {}
373   ~OwnedWrapper() { delete ptr_; }
374   T* get() const { return ptr_; }
375   OwnedWrapper(const OwnedWrapper& other) {
376     ptr_ = other.ptr_;
377     other.ptr_ = NULL;
378   }
379 
380  private:
381   mutable T* ptr_;
382 };
383 
384 // PassedWrapper is a copyable adapter for a scoper that ignores const.
385 //
386 // It is needed to get around the fact that Bind() takes a const reference to
387 // all its arguments.  Because Bind() takes a const reference to avoid
388 // unnecessary copies, it is incompatible with movable-but-not-copyable
389 // types; doing a destructive "move" of the type into Bind() would violate
390 // the const correctness.
391 //
392 // This conundrum cannot be solved without either C++11 rvalue references or
393 // a O(2^n) blowup of Bind() templates to handle each combination of regular
394 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
395 // that is copyable to transmit the correct type information down into
396 // BindState<>. Ignoring const in this type makes sense because it is only
397 // created when we are explicitly trying to do a destructive move.
398 //
399 // Two notes:
400 //  1) PassedWrapper supports any type that has a "Pass()" function.
401 //     This is intentional. The whitelisting of which specific types we
402 //     support is maintained by CallbackParamTraits<>.
403 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
404 //     scoper to a Callback and allow the Callback to execute once.
405 template <typename T>
406 class PassedWrapper {
407  public:
408   explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
409   PassedWrapper(const PassedWrapper& other)
410       : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {}
411   T Pass() const {
412     CHECK(is_valid_);
413     is_valid_ = false;
414     return scoper_.Pass();
415   }
416 
417  private:
418   mutable bool is_valid_;
419   mutable T scoper_;
420 };
421 
422 // Unwrap the stored parameters for the wrappers above.
423 template <typename T>
424 struct UnwrapTraits {
425   typedef const T& ForwardType;
426   static ForwardType Unwrap(const T& o) { return o; }
427 };
428 
429 template <typename T>
430 struct UnwrapTraits<UnretainedWrapper<T>> {
431   typedef T* ForwardType;
432   static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
433     return unretained.get();
434   }
435 };
436 
437 template <typename T>
438 struct UnwrapTraits<ConstRefWrapper<T>> {
439   typedef const T& ForwardType;
440   static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
441     return const_ref.get();
442   }
443 };
444 
445 template <typename T>
446 struct UnwrapTraits<scoped_refptr<T>> {
447   typedef T* ForwardType;
448   static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
449 };
450 
451 template <typename T>
452 struct UnwrapTraits<WeakPtr<T>> {
453   typedef const WeakPtr<T>& ForwardType;
454   static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
455 };
456 
457 template <typename T>
458 struct UnwrapTraits<OwnedWrapper<T>> {
459   typedef T* ForwardType;
460   static ForwardType Unwrap(const OwnedWrapper<T>& o) { return o.get(); }
461 };
462 
463 template <typename T>
464 struct UnwrapTraits<PassedWrapper<T>> {
465   typedef T ForwardType;
466   static T Unwrap(PassedWrapper<T>& o) { return o.Pass(); }
467 };
468 
469 // Utility for handling different refcounting semantics in the Bind()
470 // function.
471 template <bool is_method, typename T>
472 struct MaybeRefcount;
473 
474 template <typename T>
475 struct MaybeRefcount<false, T> {
476   static void AddRef(const T&) {}
477   static void Release(const T&) {}
478 };
479 
480 template <typename T, size_t n>
481 struct MaybeRefcount<false, T[n]> {
482   static void AddRef(const T*) {}
483   static void Release(const T*) {}
484 };
485 
486 template <typename T>
487 struct MaybeRefcount<true, T> {
488   static void AddRef(const T&) {}
489   static void Release(const T&) {}
490 };
491 
492 template <typename T>
493 struct MaybeRefcount<true, T*> {
494   static void AddRef(T* o) { o->AddRef(); }
495   static void Release(T* o) { o->Release(); }
496 };
497 
498 // No need to additionally AddRef() and Release() since we are storing a
499 // scoped_refptr<> inside the storage object already.
500 template <typename T>
501 struct MaybeRefcount<true, scoped_refptr<T>> {
502   static void AddRef(const scoped_refptr<T>& o) {}
503   static void Release(const scoped_refptr<T>& o) {}
504 };
505 
506 template <typename T>
507 struct MaybeRefcount<true, const T*> {
508   static void AddRef(const T* o) { o->AddRef(); }
509   static void Release(const T* o) { o->Release(); }
510 };
511 
512 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
513 // method.  It is used internally by Bind() to select the correct
514 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
515 // the target object is invalidated.
516 //
517 // P1 should be the type of the object that will be received of the method.
518 template <bool IsMethod, typename P1>
519 struct IsWeakMethod : public false_type {};
520 
521 template <typename T>
522 struct IsWeakMethod<true, WeakPtr<T>> : public true_type {};
523 
524 template <typename T>
525 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>> : public true_type {};
526 
527 }  // namespace cef_internal
528 
529 template <typename T>
530 static inline cef_internal::UnretainedWrapper<T> Unretained(T* o) {
531   return cef_internal::UnretainedWrapper<T>(o);
532 }
533 
534 template <typename T>
535 static inline cef_internal::ConstRefWrapper<T> ConstRef(const T& o) {
536   return cef_internal::ConstRefWrapper<T>(o);
537 }
538 
539 template <typename T>
540 static inline cef_internal::OwnedWrapper<T> Owned(T* o) {
541   return cef_internal::OwnedWrapper<T>(o);
542 }
543 
544 // We offer 2 syntaxes for calling Passed().  The first takes a temporary and
545 // is best suited for use with the return value of a function. The second
546 // takes a pointer to the scoper and is just syntactic sugar to avoid having
547 // to write Passed(scoper.Pass()).
548 template <typename T>
549 static inline cef_internal::PassedWrapper<T> Passed(T scoper) {
550   return cef_internal::PassedWrapper<T>(scoper.Pass());
551 }
552 template <typename T>
553 static inline cef_internal::PassedWrapper<T> Passed(T* scoper) {
554   return cef_internal::PassedWrapper<T>(scoper->Pass());
555 }
556 
557 template <typename T>
558 static inline cef_internal::IgnoreResultHelper<T> IgnoreResult(T data) {
559   return cef_internal::IgnoreResultHelper<T>(data);
560 }
561 
562 template <typename T>
563 static inline cef_internal::IgnoreResultHelper<Callback<T>> IgnoreResult(
564     const Callback<T>& data) {
565   return cef_internal::IgnoreResultHelper<Callback<T>>(data);
566 }
567 
568 void DoNothing();
569 
570 template <typename T>
571 void DeletePointer(T* obj) {
572   delete obj;
573 }
574 
575 }  // namespace base
576 
577 #endif  // !USING_CHROMIUM_INCLUDES
578 
579 #endif  // CEF_INCLUDE_BASE_CEF_BIND_HELPERS_H_
580