1 // Copyright (c) 2013 Google Inc. All rights reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 // * Neither the name of Google Inc. nor the name Chromium Embedded
14 // Framework nor the names of its contributors may be used to endorse
15 // or promote products derived from this software without specific prior
16 // written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Do not include this header file directly. Use base/cef_atomicops.h
31 // instead.
32 //
33 // LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
34
35 #ifndef CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
36 #define CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
37
38 #if defined(OS_QNX)
39 #include <sys/cpuinline.h>
40 #endif
41
42 namespace base {
43 namespace subtle {
44
45 // Memory barriers on ARM are funky, but the kernel is here to help:
46 //
47 // * ARMv5 didn't support SMP, there is no memory barrier instruction at
48 // all on this architecture, or when targeting its machine code.
49 //
50 // * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
51 // writing a random value to a very specific coprocessor register.
52 //
53 // * On ARMv7, the "dmb" instruction is used to perform a full memory
54 // barrier (though writing to the co-processor will still work).
55 // However, on single core devices (e.g. Nexus One, or Nexus S),
56 // this instruction will take up to 200 ns, which is huge, even though
57 // it's completely un-needed on these devices.
58 //
59 // * There is no easy way to determine at runtime if the device is
60 // single or multi-core. However, the kernel provides a useful helper
61 // function at a fixed memory address (0xffff0fa0), which will always
62 // perform a memory barrier in the most efficient way. I.e. on single
63 // core devices, this is an empty function that exits immediately.
64 // On multi-core devices, it implements a full memory barrier.
65 //
66 // * This source could be compiled to ARMv5 machine code that runs on a
67 // multi-core ARMv6 or ARMv7 device. In this case, memory barriers
68 // are needed for correct execution. Always call the kernel helper, even
69 // when targeting ARMv5TE.
70 //
71
MemoryBarrier()72 inline void MemoryBarrier() {
73 #if defined(OS_LINUX) || defined(OS_ANDROID)
74 // Note: This is a function call, which is also an implicit compiler barrier.
75 typedef void (*KernelMemoryBarrierFunc)();
76 ((KernelMemoryBarrierFunc)0xffff0fa0)();
77 #elif defined(OS_QNX)
78 __cpu_membarrier();
79 #else
80 #error MemoryBarrier() is not implemented on this platform.
81 #endif
82 }
83
84 // An ARM toolchain would only define one of these depending on which
85 // variant of the target architecture is being used. This tests against
86 // any known ARMv6 or ARMv7 variant, where it is possible to directly
87 // use ldrex/strex instructions to implement fast atomic operations.
88 #if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
89 defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
90 defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
91 defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
92 defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)
93
NoBarrier_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)94 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
95 Atomic32 old_value,
96 Atomic32 new_value) {
97 Atomic32 prev_value;
98 int reloop;
99 do {
100 // The following is equivalent to:
101 //
102 // prev_value = LDREX(ptr)
103 // reloop = 0
104 // if (prev_value != old_value)
105 // reloop = STREX(ptr, new_value)
106 __asm__ __volatile__(
107 " ldrex %0, [%3]\n"
108 " mov %1, #0\n"
109 " cmp %0, %4\n"
110 #ifdef __thumb2__
111 " it eq\n"
112 #endif
113 " strexeq %1, %5, [%3]\n"
114 : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
115 : "r"(ptr), "r"(old_value), "r"(new_value)
116 : "cc", "memory");
117 } while (reloop != 0);
118 return prev_value;
119 }
120
Acquire_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)121 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
122 Atomic32 old_value,
123 Atomic32 new_value) {
124 Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
125 MemoryBarrier();
126 return result;
127 }
128
Release_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)129 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
130 Atomic32 old_value,
131 Atomic32 new_value) {
132 MemoryBarrier();
133 return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
134 }
135
NoBarrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)136 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
137 Atomic32 increment) {
138 Atomic32 value;
139 int reloop;
140 do {
141 // Equivalent to:
142 //
143 // value = LDREX(ptr)
144 // value += increment
145 // reloop = STREX(ptr, value)
146 //
147 __asm__ __volatile__(
148 " ldrex %0, [%3]\n"
149 " add %0, %0, %4\n"
150 " strex %1, %0, [%3]\n"
151 : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
152 : "r"(ptr), "r"(increment)
153 : "cc", "memory");
154 } while (reloop);
155 return value;
156 }
157
Barrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)158 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
159 Atomic32 increment) {
160 // TODO(digit): Investigate if it's possible to implement this with
161 // a single MemoryBarrier() operation between the LDREX and STREX.
162 // See http://crbug.com/246514
163 MemoryBarrier();
164 Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
165 MemoryBarrier();
166 return result;
167 }
168
NoBarrier_AtomicExchange(volatile Atomic32 * ptr,Atomic32 new_value)169 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
170 Atomic32 new_value) {
171 Atomic32 old_value;
172 int reloop;
173 do {
174 // old_value = LDREX(ptr)
175 // reloop = STREX(ptr, new_value)
176 __asm__ __volatile__(
177 " ldrex %0, [%3]\n"
178 " strex %1, %4, [%3]\n"
179 : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
180 : "r"(ptr), "r"(new_value)
181 : "cc", "memory");
182 } while (reloop != 0);
183 return old_value;
184 }
185
186 // This tests against any known ARMv5 variant.
187 #elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
188 defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
189
190 // The kernel also provides a helper function to perform an atomic
191 // compare-and-swap operation at the hard-wired address 0xffff0fc0.
192 // On ARMv5, this is implemented by a special code path that the kernel
193 // detects and treats specially when thread pre-emption happens.
194 // On ARMv6 and higher, it uses LDREX/STREX instructions instead.
195 //
196 // Note that this always perform a full memory barrier, there is no
197 // need to add calls MemoryBarrier() before or after it. It also
198 // returns 0 on success, and 1 on exit.
199 //
200 // Available and reliable since Linux 2.6.24. Both Android and ChromeOS
201 // use newer kernel revisions, so this should not be a concern.
202 namespace {
203
LinuxKernelCmpxchg(Atomic32 old_value,Atomic32 new_value,volatile Atomic32 * ptr)204 inline int LinuxKernelCmpxchg(Atomic32 old_value,
205 Atomic32 new_value,
206 volatile Atomic32* ptr) {
207 typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
208 return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
209 }
210
211 } // namespace
212
NoBarrier_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)213 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
214 Atomic32 old_value,
215 Atomic32 new_value) {
216 Atomic32 prev_value;
217 for (;;) {
218 prev_value = *ptr;
219 if (prev_value != old_value)
220 return prev_value;
221 if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
222 return old_value;
223 }
224 }
225
NoBarrier_AtomicExchange(volatile Atomic32 * ptr,Atomic32 new_value)226 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
227 Atomic32 new_value) {
228 Atomic32 old_value;
229 do {
230 old_value = *ptr;
231 } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
232 return old_value;
233 }
234
NoBarrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)235 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
236 Atomic32 increment) {
237 return Barrier_AtomicIncrement(ptr, increment);
238 }
239
Barrier_AtomicIncrement(volatile Atomic32 * ptr,Atomic32 increment)240 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
241 Atomic32 increment) {
242 for (;;) {
243 // Atomic exchange the old value with an incremented one.
244 Atomic32 old_value = *ptr;
245 Atomic32 new_value = old_value + increment;
246 if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
247 // The exchange took place as expected.
248 return new_value;
249 }
250 // Otherwise, *ptr changed mid-loop and we need to retry.
251 }
252 }
253
Acquire_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)254 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
255 Atomic32 old_value,
256 Atomic32 new_value) {
257 Atomic32 prev_value;
258 for (;;) {
259 prev_value = *ptr;
260 if (prev_value != old_value) {
261 // Always ensure acquire semantics.
262 MemoryBarrier();
263 return prev_value;
264 }
265 if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
266 return old_value;
267 }
268 }
269
Release_CompareAndSwap(volatile Atomic32 * ptr,Atomic32 old_value,Atomic32 new_value)270 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
271 Atomic32 old_value,
272 Atomic32 new_value) {
273 // This could be implemented as:
274 // MemoryBarrier();
275 // return NoBarrier_CompareAndSwap();
276 //
277 // But would use 3 barriers per succesful CAS. To save performance,
278 // use Acquire_CompareAndSwap(). Its implementation guarantees that:
279 // - A succesful swap uses only 2 barriers (in the kernel helper).
280 // - An early return due to (prev_value != old_value) performs
281 // a memory barrier with no store, which is equivalent to the
282 // generic implementation above.
283 return Acquire_CompareAndSwap(ptr, old_value, new_value);
284 }
285
286 #else
287 #error "Your CPU's ARM architecture is not supported yet"
288 #endif
289
290 // NOTE: Atomicity of the following load and store operations is only
291 // guaranteed in case of 32-bit alignement of |ptr| values.
292
NoBarrier_Store(volatile Atomic32 * ptr,Atomic32 value)293 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
294 *ptr = value;
295 }
296
Acquire_Store(volatile Atomic32 * ptr,Atomic32 value)297 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
298 *ptr = value;
299 MemoryBarrier();
300 }
301
Release_Store(volatile Atomic32 * ptr,Atomic32 value)302 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
303 MemoryBarrier();
304 *ptr = value;
305 }
306
NoBarrier_Load(volatile const Atomic32 * ptr)307 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
308 return *ptr;
309 }
310
Acquire_Load(volatile const Atomic32 * ptr)311 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
312 Atomic32 value = *ptr;
313 MemoryBarrier();
314 return value;
315 }
316
Release_Load(volatile const Atomic32 * ptr)317 inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
318 MemoryBarrier();
319 return *ptr;
320 }
321
322 } // namespace base::subtle
323 } // namespace base
324
325 #endif // CEF_INCLUDE_BASE_INTERNAL_CEF_ATOMICOPS_ARM_GCC_H_
326