1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "gn/string_utils.h"
6
7 #include <stddef.h>
8 #include <cctype>
9
10 #include "base/strings/string_number_conversions.h"
11 #include "gn/err.h"
12 #include "gn/input_file.h"
13 #include "gn/parser.h"
14 #include "gn/scope.h"
15 #include "gn/token.h"
16 #include "gn/tokenizer.h"
17 #include "gn/value.h"
18
19 namespace {
20
21 // Constructs an Err indicating a range inside a string. We assume that the
22 // token has quotes around it that are not counted by the offset.
ErrInsideStringToken(const Token & token,size_t offset,size_t size,const std::string & msg,const std::string & help=std::string ())23 Err ErrInsideStringToken(const Token& token,
24 size_t offset,
25 size_t size,
26 const std::string& msg,
27 const std::string& help = std::string()) {
28 // The "+1" is skipping over the " at the beginning of the token.
29 int int_offset = static_cast<int>(offset);
30 Location begin_loc(token.location().file(), token.location().line_number(),
31 token.location().column_number() + int_offset + 1,
32 token.location().byte() + int_offset + 1);
33 Location end_loc(
34 token.location().file(), token.location().line_number(),
35 token.location().column_number() + int_offset + 1 +
36 static_cast<int>(size),
37 token.location().byte() + int_offset + 1 + static_cast<int>(size));
38 return Err(LocationRange(begin_loc, end_loc), msg, help);
39 }
40
41 // Notes about expression interpolation. This is based loosly on Dart but is
42 // slightly less flexible. In Dart, seeing the ${ in a string is something
43 // the toplevel parser knows about, and it will recurse into the block
44 // treating it as a first-class {...} block. So even things like this work:
45 // "hello ${"foo}"*2+"bar"}" => "hello foo}foo}bar"
46 // (you can see it did not get confused by the nested strings or the nested "}"
47 // inside the block).
48 //
49 // This is cool but complicates the parser for almost no benefit for this
50 // non-general-purpose programming language. The main reason expressions are
51 // supported here at all are to support "${scope.variable}" and "${list[0]}",
52 // neither of which have any of these edge-cases.
53 //
54 // In this simplified approach, we search for the terminating '}' and execute
55 // the result. This means we can't support any expressions with embedded '}'
56 // or '"'. To keep people from getting confusing about what's supported and
57 // what's not, only identifier and accessor expressions are allowed (neither
58 // of these run into any of these edge-cases).
AppendInterpolatedExpression(Scope * scope,const Token & token,const char * input,size_t begin_offset,size_t end_offset,std::string * output,Err * err)59 bool AppendInterpolatedExpression(Scope* scope,
60 const Token& token,
61 const char* input,
62 size_t begin_offset,
63 size_t end_offset,
64 std::string* output,
65 Err* err) {
66 SourceFile empty_source_file; // Prevent most vexing parse.
67 InputFile input_file(empty_source_file);
68 input_file.SetContents(
69 std::string(&input[begin_offset], end_offset - begin_offset));
70
71 // Tokenize.
72 std::vector<Token> tokens = Tokenizer::Tokenize(&input_file, err);
73 if (err->has_error()) {
74 // The error will point into our temporary buffer, rewrite it to refer
75 // to the original token. This will make the location information less
76 // precise, but generally there won't be complicated things in string
77 // interpolations.
78 *err = ErrInsideStringToken(token, begin_offset, end_offset - begin_offset,
79 err->message(), err->help_text());
80 return false;
81 }
82
83 // Parse.
84 std::unique_ptr<ParseNode> node = Parser::ParseExpression(tokens, err);
85 if (err->has_error()) {
86 // Rewrite error as above.
87 *err = ErrInsideStringToken(token, begin_offset, end_offset - begin_offset,
88 err->message(), err->help_text());
89 return false;
90 }
91 if (!(node->AsIdentifier() || node->AsAccessor())) {
92 *err = ErrInsideStringToken(
93 token, begin_offset, end_offset - begin_offset,
94 "Invalid string interpolation.",
95 "The thing inside the ${} must be an identifier ${foo},\n"
96 "a scope access ${foo.bar}, or a list access ${foo[0]}.");
97 return false;
98 }
99
100 // Evaluate.
101 Value result = node->Execute(scope, err);
102 if (err->has_error()) {
103 // Rewrite error as above.
104 *err = ErrInsideStringToken(token, begin_offset, end_offset - begin_offset,
105 err->message(), err->help_text());
106 return false;
107 }
108
109 output->append(result.ToString(false));
110 return true;
111 }
112
AppendInterpolatedIdentifier(Scope * scope,const Token & token,const char * input,size_t begin_offset,size_t end_offset,std::string * output,Err * err)113 bool AppendInterpolatedIdentifier(Scope* scope,
114 const Token& token,
115 const char* input,
116 size_t begin_offset,
117 size_t end_offset,
118 std::string* output,
119 Err* err) {
120 std::string_view identifier(&input[begin_offset], end_offset - begin_offset);
121 const Value* value = scope->GetValue(identifier, true);
122 if (!value) {
123 // We assume the input points inside the token.
124 *err = ErrInsideStringToken(
125 token, identifier.data() - token.value().data() - 1, identifier.size(),
126 "Undefined identifier in string expansion.",
127 std::string("\"") + identifier + "\" is not currently in scope.");
128 return false;
129 }
130
131 output->append(value->ToString(false));
132 return true;
133 }
134
135 // Handles string interpolations: $identifier and ${expression}
136 //
137 // |*i| is the index into |input| after the $. This will be updated to point to
138 // the last character consumed on success. The token is the original string
139 // to blame on failure.
140 //
141 // On failure, returns false and sets the error. On success, appends the
142 // result of the interpolation to |*output|.
AppendStringInterpolation(Scope * scope,const Token & token,const char * input,size_t size,size_t * i,std::string * output,Err * err)143 bool AppendStringInterpolation(Scope* scope,
144 const Token& token,
145 const char* input,
146 size_t size,
147 size_t* i,
148 std::string* output,
149 Err* err) {
150 size_t dollars_index = *i - 1;
151
152 if (input[*i] == '{') {
153 // Bracketed expression.
154 (*i)++;
155 size_t begin_offset = *i;
156
157 // Find the closing } and check for non-identifier chars. Don't need to
158 // bother checking for the more-restricted first character of an identifier
159 // since the {} unambiguously denotes the range, and identifiers with
160 // invalid names just won't be found later.
161 bool has_non_ident_chars = false;
162 while (*i < size && input[*i] != '}') {
163 has_non_ident_chars |= Tokenizer::IsIdentifierContinuingChar(input[*i]);
164 (*i)++;
165 }
166 if (*i == size) {
167 *err = ErrInsideStringToken(token, dollars_index, *i - dollars_index,
168 "Unterminated ${...");
169 return false;
170 }
171
172 // In the common case, the thing inside the {} will actually be a
173 // simple identifier. Avoid all the complicated parsing of accessors
174 // in this case.
175 if (!has_non_ident_chars) {
176 return AppendInterpolatedIdentifier(scope, token, input, begin_offset, *i,
177 output, err);
178 }
179 return AppendInterpolatedExpression(scope, token, input, begin_offset, *i,
180 output, err);
181 }
182
183 // Simple identifier.
184 // The first char of an identifier is more restricted.
185 if (!Tokenizer::IsIdentifierFirstChar(input[*i])) {
186 *err = ErrInsideStringToken(token, dollars_index, *i - dollars_index + 1,
187 "$ not followed by an identifier char.",
188 "It you want a literal $ use \"\\$\".");
189 return false;
190 }
191 size_t begin_offset = *i;
192 (*i)++;
193
194 // Find the first non-identifier char following the string.
195 while (*i < size && Tokenizer::IsIdentifierContinuingChar(input[*i]))
196 (*i)++;
197 size_t end_offset = *i;
198 (*i)--; // Back up to mark the last character consumed.
199 return AppendInterpolatedIdentifier(scope, token, input, begin_offset,
200 end_offset, output, err);
201 }
202
203 // Handles a hex literal: $0xFF
204 //
205 // |*i| is the index into |input| after the $. This will be updated to point to
206 // the last character consumed on success. The token is the original string
207 // to blame on failure.
208 //
209 // On failure, returns false and sets the error. On success, appends the
210 // char with the given hex value to |*output|.
AppendHexByte(Scope * scope,const Token & token,const char * input,size_t size,size_t * i,std::string * output,Err * err)211 bool AppendHexByte(Scope* scope,
212 const Token& token,
213 const char* input,
214 size_t size,
215 size_t* i,
216 std::string* output,
217 Err* err) {
218 size_t dollars_index = *i - 1;
219 // "$0" is already known to exist.
220 if (*i + 3 >= size || input[*i + 1] != 'x' || !std::isxdigit(input[*i + 2]) ||
221 !std::isxdigit(input[*i + 3])) {
222 *err = ErrInsideStringToken(
223 token, dollars_index, *i - dollars_index + 1,
224 "Invalid hex character. Hex values must look like 0xFF.");
225 return false;
226 }
227 int value = 0;
228 if (!base::HexStringToInt(std::string_view(&input[*i + 2], 2), &value)) {
229 *err = ErrInsideStringToken(token, dollars_index, *i - dollars_index + 1,
230 "Could not convert hex value.");
231 return false;
232 }
233 *i += 3;
234 output->push_back(value);
235 return true;
236 }
237
238 } // namespace
239
ExpandStringLiteral(Scope * scope,const Token & literal,Value * result,Err * err)240 bool ExpandStringLiteral(Scope* scope,
241 const Token& literal,
242 Value* result,
243 Err* err) {
244 DCHECK(literal.type() == Token::STRING);
245 DCHECK(literal.value().size() > 1); // Should include quotes.
246 DCHECK(result->type() == Value::STRING); // Should be already set.
247
248 // The token includes the surrounding quotes, so strip those off.
249 const char* input = &literal.value().data()[1];
250 size_t size = literal.value().size() - 2;
251
252 std::string& output = result->string_value();
253 output.reserve(size);
254 for (size_t i = 0; i < size; i++) {
255 if (input[i] == '\\') {
256 if (i < size - 1) {
257 switch (input[i + 1]) {
258 case '\\':
259 case '"':
260 case '$':
261 output.push_back(input[i + 1]);
262 i++;
263 continue;
264 default: // Everything else has no meaning: pass the literal.
265 break;
266 }
267 }
268 output.push_back(input[i]);
269 } else if (input[i] == '$') {
270 i++;
271 if (i == size) {
272 *err = ErrInsideStringToken(
273 literal, i - 1, 1, "$ at end of string.",
274 "I was expecting an identifier, 0xFF, or {...} after the $.");
275 return false;
276 }
277 if (input[i] == '0') {
278 if (!AppendHexByte(scope, literal, input, size, &i, &output, err))
279 return false;
280 } else if (!AppendStringInterpolation(scope, literal, input, size, &i,
281 &output, err))
282 return false;
283 } else {
284 output.push_back(input[i]);
285 }
286 }
287 return true;
288 }
289
EditDistance(const std::string_view & s1,const std::string_view & s2,size_t max_edit_distance)290 size_t EditDistance(const std::string_view& s1,
291 const std::string_view& s2,
292 size_t max_edit_distance) {
293 // The algorithm implemented below is the "classic"
294 // dynamic-programming algorithm for computing the Levenshtein
295 // distance, which is described here:
296 //
297 // http://en.wikipedia.org/wiki/Levenshtein_distance
298 //
299 // Although the algorithm is typically described using an m x n
300 // array, only one row plus one element are used at a time, so this
301 // implementation just keeps one vector for the row. To update one entry,
302 // only the entries to the left, top, and top-left are needed. The left
303 // entry is in row[x-1], the top entry is what's in row[x] from the last
304 // iteration, and the top-left entry is stored in previous.
305 size_t m = s1.size();
306 size_t n = s2.size();
307
308 std::vector<size_t> row(n + 1);
309 for (size_t i = 1; i <= n; ++i)
310 row[i] = i;
311
312 for (size_t y = 1; y <= m; ++y) {
313 row[0] = y;
314 size_t best_this_row = row[0];
315
316 size_t previous = y - 1;
317 for (size_t x = 1; x <= n; ++x) {
318 size_t old_row = row[x];
319 row[x] = std::min(previous + (s1[y - 1] == s2[x - 1] ? 0u : 1u),
320 std::min(row[x - 1], row[x]) + 1u);
321 previous = old_row;
322 best_this_row = std::min(best_this_row, row[x]);
323 }
324
325 if (max_edit_distance && best_this_row > max_edit_distance)
326 return max_edit_distance + 1;
327 }
328
329 return row[n];
330 }
331
SpellcheckString(const std::string_view & text,const std::vector<std::string_view> & words)332 std::string_view SpellcheckString(const std::string_view& text,
333 const std::vector<std::string_view>& words) {
334 const size_t kMaxValidEditDistance = 3u;
335
336 size_t min_distance = kMaxValidEditDistance + 1u;
337 std::string_view result;
338 for (std::string_view word : words) {
339 size_t distance = EditDistance(word, text, kMaxValidEditDistance);
340 if (distance < min_distance) {
341 min_distance = distance;
342 result = word;
343 }
344 }
345 return result;
346 }
347
ReadStdin()348 std::string ReadStdin() {
349 char buffer[4 << 10];
350 std::string result;
351 size_t len;
352 while ((len = fread(buffer, 1, sizeof(buffer), stdin)) > 0)
353 result.append(buffer, len);
354 // TODO(thakis): Check ferror(stdin)?
355 return result;
356 }
357