1 /*
2 * TLB flush routines for radix kernels.
3 *
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/memblock.h>
15 #include <linux/mmu_context.h>
16 #include <linux/sched/mm.h>
17
18 #include <asm/ppc-opcode.h>
19 #include <asm/tlb.h>
20 #include <asm/tlbflush.h>
21 #include <asm/trace.h>
22 #include <asm/cputhreads.h>
23
24 #define RIC_FLUSH_TLB 0
25 #define RIC_FLUSH_PWC 1
26 #define RIC_FLUSH_ALL 2
27
28 /*
29 * tlbiel instruction for radix, set invalidation
30 * i.e., r=1 and is=01 or is=10 or is=11
31 */
tlbiel_radix_set_isa300(unsigned int set,unsigned int is,unsigned int pid,unsigned int ric,unsigned int prs)32 static inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is,
33 unsigned int pid,
34 unsigned int ric, unsigned int prs)
35 {
36 unsigned long rb;
37 unsigned long rs;
38
39 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
40 rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
41
42 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
43 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
44 : "memory");
45 }
46
tlbiel_all_isa300(unsigned int num_sets,unsigned int is)47 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
48 {
49 unsigned int set;
50
51 asm volatile("ptesync": : :"memory");
52
53 /*
54 * Flush the first set of the TLB, and the entire Page Walk Cache
55 * and partition table entries. Then flush the remaining sets of the
56 * TLB.
57 */
58 tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
59 for (set = 1; set < num_sets; set++)
60 tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
61
62 /* Do the same for process scoped entries. */
63 tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
64 for (set = 1; set < num_sets; set++)
65 tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
66
67 asm volatile("ptesync": : :"memory");
68 }
69
radix__tlbiel_all(unsigned int action)70 void radix__tlbiel_all(unsigned int action)
71 {
72 unsigned int is;
73
74 switch (action) {
75 case TLB_INVAL_SCOPE_GLOBAL:
76 is = 3;
77 break;
78 case TLB_INVAL_SCOPE_LPID:
79 is = 2;
80 break;
81 default:
82 BUG();
83 }
84
85 if (early_cpu_has_feature(CPU_FTR_ARCH_300))
86 tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is);
87 else
88 WARN(1, "%s called on pre-POWER9 CPU\n", __func__);
89
90 asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
91 }
92
__tlbiel_pid(unsigned long pid,int set,unsigned long ric)93 static inline void __tlbiel_pid(unsigned long pid, int set,
94 unsigned long ric)
95 {
96 unsigned long rb,rs,prs,r;
97
98 rb = PPC_BIT(53); /* IS = 1 */
99 rb |= set << PPC_BITLSHIFT(51);
100 rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
101 prs = 1; /* process scoped */
102 r = 1; /* radix format */
103
104 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
105 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
106 trace_tlbie(0, 1, rb, rs, ric, prs, r);
107 }
108
__tlbie_pid(unsigned long pid,unsigned long ric)109 static inline void __tlbie_pid(unsigned long pid, unsigned long ric)
110 {
111 unsigned long rb,rs,prs,r;
112
113 rb = PPC_BIT(53); /* IS = 1 */
114 rs = pid << PPC_BITLSHIFT(31);
115 prs = 1; /* process scoped */
116 r = 1; /* radix format */
117
118 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
119 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
120 trace_tlbie(0, 0, rb, rs, ric, prs, r);
121 }
122
__tlbiel_lpid(unsigned long lpid,int set,unsigned long ric)123 static inline void __tlbiel_lpid(unsigned long lpid, int set,
124 unsigned long ric)
125 {
126 unsigned long rb,rs,prs,r;
127
128 rb = PPC_BIT(52); /* IS = 2 */
129 rb |= set << PPC_BITLSHIFT(51);
130 rs = 0; /* LPID comes from LPIDR */
131 prs = 0; /* partition scoped */
132 r = 1; /* radix format */
133
134 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
135 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
136 trace_tlbie(lpid, 1, rb, rs, ric, prs, r);
137 }
138
__tlbie_lpid(unsigned long lpid,unsigned long ric)139 static inline void __tlbie_lpid(unsigned long lpid, unsigned long ric)
140 {
141 unsigned long rb,rs,prs,r;
142
143 rb = PPC_BIT(52); /* IS = 2 */
144 rs = lpid;
145 prs = 0; /* partition scoped */
146 r = 1; /* radix format */
147
148 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
149 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
150 trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
151 }
152
__tlbiel_lpid_guest(unsigned long lpid,int set,unsigned long ric)153 static inline void __tlbiel_lpid_guest(unsigned long lpid, int set,
154 unsigned long ric)
155 {
156 unsigned long rb,rs,prs,r;
157
158 rb = PPC_BIT(52); /* IS = 2 */
159 rb |= set << PPC_BITLSHIFT(51);
160 rs = 0; /* LPID comes from LPIDR */
161 prs = 1; /* process scoped */
162 r = 1; /* radix format */
163
164 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
165 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
166 trace_tlbie(lpid, 1, rb, rs, ric, prs, r);
167 }
168
169
__tlbiel_va(unsigned long va,unsigned long pid,unsigned long ap,unsigned long ric)170 static inline void __tlbiel_va(unsigned long va, unsigned long pid,
171 unsigned long ap, unsigned long ric)
172 {
173 unsigned long rb,rs,prs,r;
174
175 rb = va & ~(PPC_BITMASK(52, 63));
176 rb |= ap << PPC_BITLSHIFT(58);
177 rs = pid << PPC_BITLSHIFT(31);
178 prs = 1; /* process scoped */
179 r = 1; /* radix format */
180
181 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
182 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
183 trace_tlbie(0, 1, rb, rs, ric, prs, r);
184 }
185
__tlbie_va(unsigned long va,unsigned long pid,unsigned long ap,unsigned long ric)186 static inline void __tlbie_va(unsigned long va, unsigned long pid,
187 unsigned long ap, unsigned long ric)
188 {
189 unsigned long rb,rs,prs,r;
190
191 rb = va & ~(PPC_BITMASK(52, 63));
192 rb |= ap << PPC_BITLSHIFT(58);
193 rs = pid << PPC_BITLSHIFT(31);
194 prs = 1; /* process scoped */
195 r = 1; /* radix format */
196
197 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
198 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
199 trace_tlbie(0, 0, rb, rs, ric, prs, r);
200 }
201
__tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long ap,unsigned long ric)202 static inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid,
203 unsigned long ap, unsigned long ric)
204 {
205 unsigned long rb,rs,prs,r;
206
207 rb = va & ~(PPC_BITMASK(52, 63));
208 rb |= ap << PPC_BITLSHIFT(58);
209 rs = lpid;
210 prs = 0; /* partition scoped */
211 r = 1; /* radix format */
212
213 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
214 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
215 trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
216 }
217
218
fixup_tlbie_va(unsigned long va,unsigned long pid,unsigned long ap)219 static inline void fixup_tlbie_va(unsigned long va, unsigned long pid,
220 unsigned long ap)
221 {
222 if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
223 asm volatile("ptesync": : :"memory");
224 __tlbie_va(va, 0, ap, RIC_FLUSH_TLB);
225 }
226
227 if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
228 asm volatile("ptesync": : :"memory");
229 __tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
230 }
231 }
232
fixup_tlbie_va_range(unsigned long va,unsigned long pid,unsigned long ap)233 static inline void fixup_tlbie_va_range(unsigned long va, unsigned long pid,
234 unsigned long ap)
235 {
236 if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
237 asm volatile("ptesync": : :"memory");
238 __tlbie_pid(0, RIC_FLUSH_TLB);
239 }
240
241 if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
242 asm volatile("ptesync": : :"memory");
243 __tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
244 }
245 }
246
fixup_tlbie_pid(unsigned long pid)247 static inline void fixup_tlbie_pid(unsigned long pid)
248 {
249 /*
250 * We can use any address for the invalidation, pick one which is
251 * probably unused as an optimisation.
252 */
253 unsigned long va = ((1UL << 52) - 1);
254
255 if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
256 asm volatile("ptesync": : :"memory");
257 __tlbie_pid(0, RIC_FLUSH_TLB);
258 }
259
260 if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
261 asm volatile("ptesync": : :"memory");
262 __tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
263 }
264 }
265
266
fixup_tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long ap)267 static inline void fixup_tlbie_lpid_va(unsigned long va, unsigned long lpid,
268 unsigned long ap)
269 {
270 if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
271 asm volatile("ptesync": : :"memory");
272 __tlbie_lpid_va(va, 0, ap, RIC_FLUSH_TLB);
273 }
274
275 if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
276 asm volatile("ptesync": : :"memory");
277 __tlbie_lpid_va(va, lpid, ap, RIC_FLUSH_TLB);
278 }
279 }
280
fixup_tlbie_lpid(unsigned long lpid)281 static inline void fixup_tlbie_lpid(unsigned long lpid)
282 {
283 /*
284 * We can use any address for the invalidation, pick one which is
285 * probably unused as an optimisation.
286 */
287 unsigned long va = ((1UL << 52) - 1);
288
289 if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
290 asm volatile("ptesync": : :"memory");
291 __tlbie_lpid(0, RIC_FLUSH_TLB);
292 }
293
294 if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
295 asm volatile("ptesync": : :"memory");
296 __tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
297 }
298 }
299
300 /*
301 * We use 128 set in radix mode and 256 set in hpt mode.
302 */
_tlbiel_pid(unsigned long pid,unsigned long ric)303 static inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
304 {
305 int set;
306
307 asm volatile("ptesync": : :"memory");
308
309 /*
310 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
311 * also flush the entire Page Walk Cache.
312 */
313 __tlbiel_pid(pid, 0, ric);
314
315 /* For PWC, only one flush is needed */
316 if (ric == RIC_FLUSH_PWC) {
317 asm volatile("ptesync": : :"memory");
318 return;
319 }
320
321 /* For the remaining sets, just flush the TLB */
322 for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
323 __tlbiel_pid(pid, set, RIC_FLUSH_TLB);
324
325 asm volatile("ptesync": : :"memory");
326 asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
327 }
328
_tlbie_pid(unsigned long pid,unsigned long ric)329 static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
330 {
331 asm volatile("ptesync": : :"memory");
332
333 /*
334 * Workaround the fact that the "ric" argument to __tlbie_pid
335 * must be a compile-time contraint to match the "i" constraint
336 * in the asm statement.
337 */
338 switch (ric) {
339 case RIC_FLUSH_TLB:
340 __tlbie_pid(pid, RIC_FLUSH_TLB);
341 fixup_tlbie_pid(pid);
342 break;
343 case RIC_FLUSH_PWC:
344 __tlbie_pid(pid, RIC_FLUSH_PWC);
345 break;
346 case RIC_FLUSH_ALL:
347 default:
348 __tlbie_pid(pid, RIC_FLUSH_ALL);
349 fixup_tlbie_pid(pid);
350 }
351 asm volatile("eieio; tlbsync; ptesync": : :"memory");
352 }
353
_tlbiel_lpid(unsigned long lpid,unsigned long ric)354 static inline void _tlbiel_lpid(unsigned long lpid, unsigned long ric)
355 {
356 int set;
357
358 VM_BUG_ON(mfspr(SPRN_LPID) != lpid);
359
360 asm volatile("ptesync": : :"memory");
361
362 /*
363 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
364 * also flush the entire Page Walk Cache.
365 */
366 __tlbiel_lpid(lpid, 0, ric);
367
368 /* For PWC, only one flush is needed */
369 if (ric == RIC_FLUSH_PWC) {
370 asm volatile("ptesync": : :"memory");
371 return;
372 }
373
374 /* For the remaining sets, just flush the TLB */
375 for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
376 __tlbiel_lpid(lpid, set, RIC_FLUSH_TLB);
377
378 asm volatile("ptesync": : :"memory");
379 asm volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
380 }
381
_tlbie_lpid(unsigned long lpid,unsigned long ric)382 static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric)
383 {
384 asm volatile("ptesync": : :"memory");
385
386 /*
387 * Workaround the fact that the "ric" argument to __tlbie_pid
388 * must be a compile-time contraint to match the "i" constraint
389 * in the asm statement.
390 */
391 switch (ric) {
392 case RIC_FLUSH_TLB:
393 __tlbie_lpid(lpid, RIC_FLUSH_TLB);
394 fixup_tlbie_lpid(lpid);
395 break;
396 case RIC_FLUSH_PWC:
397 __tlbie_lpid(lpid, RIC_FLUSH_PWC);
398 break;
399 case RIC_FLUSH_ALL:
400 default:
401 __tlbie_lpid(lpid, RIC_FLUSH_ALL);
402 fixup_tlbie_lpid(lpid);
403 }
404 asm volatile("eieio; tlbsync; ptesync": : :"memory");
405 }
406
_tlbiel_lpid_guest(unsigned long lpid,unsigned long ric)407 static inline void _tlbiel_lpid_guest(unsigned long lpid, unsigned long ric)
408 {
409 int set;
410
411 VM_BUG_ON(mfspr(SPRN_LPID) != lpid);
412
413 asm volatile("ptesync": : :"memory");
414
415 /*
416 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
417 * also flush the entire Page Walk Cache.
418 */
419 __tlbiel_lpid_guest(lpid, 0, ric);
420
421 /* For PWC, only one flush is needed */
422 if (ric == RIC_FLUSH_PWC) {
423 asm volatile("ptesync": : :"memory");
424 return;
425 }
426
427 /* For the remaining sets, just flush the TLB */
428 for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
429 __tlbiel_lpid_guest(lpid, set, RIC_FLUSH_TLB);
430
431 asm volatile("ptesync": : :"memory");
432 asm volatile(PPC_INVALIDATE_ERAT : : :"memory");
433 }
434
435
__tlbiel_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize)436 static inline void __tlbiel_va_range(unsigned long start, unsigned long end,
437 unsigned long pid, unsigned long page_size,
438 unsigned long psize)
439 {
440 unsigned long addr;
441 unsigned long ap = mmu_get_ap(psize);
442
443 for (addr = start; addr < end; addr += page_size)
444 __tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
445 }
446
_tlbiel_va(unsigned long va,unsigned long pid,unsigned long psize,unsigned long ric)447 static inline void _tlbiel_va(unsigned long va, unsigned long pid,
448 unsigned long psize, unsigned long ric)
449 {
450 unsigned long ap = mmu_get_ap(psize);
451
452 asm volatile("ptesync": : :"memory");
453 __tlbiel_va(va, pid, ap, ric);
454 asm volatile("ptesync": : :"memory");
455 }
456
_tlbiel_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize,bool also_pwc)457 static inline void _tlbiel_va_range(unsigned long start, unsigned long end,
458 unsigned long pid, unsigned long page_size,
459 unsigned long psize, bool also_pwc)
460 {
461 asm volatile("ptesync": : :"memory");
462 if (also_pwc)
463 __tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
464 __tlbiel_va_range(start, end, pid, page_size, psize);
465 asm volatile("ptesync": : :"memory");
466 }
467
__tlbie_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize)468 static inline void __tlbie_va_range(unsigned long start, unsigned long end,
469 unsigned long pid, unsigned long page_size,
470 unsigned long psize)
471 {
472 unsigned long addr;
473 unsigned long ap = mmu_get_ap(psize);
474
475 for (addr = start; addr < end; addr += page_size)
476 __tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
477
478 fixup_tlbie_va_range(addr - page_size, pid, ap);
479 }
480
_tlbie_va(unsigned long va,unsigned long pid,unsigned long psize,unsigned long ric)481 static inline void _tlbie_va(unsigned long va, unsigned long pid,
482 unsigned long psize, unsigned long ric)
483 {
484 unsigned long ap = mmu_get_ap(psize);
485
486 asm volatile("ptesync": : :"memory");
487 __tlbie_va(va, pid, ap, ric);
488 fixup_tlbie_va(va, pid, ap);
489 asm volatile("eieio; tlbsync; ptesync": : :"memory");
490 }
491
_tlbie_lpid_va(unsigned long va,unsigned long lpid,unsigned long psize,unsigned long ric)492 static inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid,
493 unsigned long psize, unsigned long ric)
494 {
495 unsigned long ap = mmu_get_ap(psize);
496
497 asm volatile("ptesync": : :"memory");
498 __tlbie_lpid_va(va, lpid, ap, ric);
499 fixup_tlbie_lpid_va(va, lpid, ap);
500 asm volatile("eieio; tlbsync; ptesync": : :"memory");
501 }
502
_tlbie_va_range(unsigned long start,unsigned long end,unsigned long pid,unsigned long page_size,unsigned long psize,bool also_pwc)503 static inline void _tlbie_va_range(unsigned long start, unsigned long end,
504 unsigned long pid, unsigned long page_size,
505 unsigned long psize, bool also_pwc)
506 {
507 asm volatile("ptesync": : :"memory");
508 if (also_pwc)
509 __tlbie_pid(pid, RIC_FLUSH_PWC);
510 __tlbie_va_range(start, end, pid, page_size, psize);
511 asm volatile("eieio; tlbsync; ptesync": : :"memory");
512 }
513
514 /*
515 * Base TLB flushing operations:
516 *
517 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
518 * - flush_tlb_page(vma, vmaddr) flushes one page
519 * - flush_tlb_range(vma, start, end) flushes a range of pages
520 * - flush_tlb_kernel_range(start, end) flushes kernel pages
521 *
522 * - local_* variants of page and mm only apply to the current
523 * processor
524 */
radix__local_flush_tlb_mm(struct mm_struct * mm)525 void radix__local_flush_tlb_mm(struct mm_struct *mm)
526 {
527 unsigned long pid;
528
529 preempt_disable();
530 pid = mm->context.id;
531 if (pid != MMU_NO_CONTEXT)
532 _tlbiel_pid(pid, RIC_FLUSH_TLB);
533 preempt_enable();
534 }
535 EXPORT_SYMBOL(radix__local_flush_tlb_mm);
536
537 #ifndef CONFIG_SMP
radix__local_flush_all_mm(struct mm_struct * mm)538 void radix__local_flush_all_mm(struct mm_struct *mm)
539 {
540 unsigned long pid;
541
542 preempt_disable();
543 pid = mm->context.id;
544 if (pid != MMU_NO_CONTEXT)
545 _tlbiel_pid(pid, RIC_FLUSH_ALL);
546 preempt_enable();
547 }
548 EXPORT_SYMBOL(radix__local_flush_all_mm);
549 #endif /* CONFIG_SMP */
550
radix__local_flush_tlb_page_psize(struct mm_struct * mm,unsigned long vmaddr,int psize)551 void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
552 int psize)
553 {
554 unsigned long pid;
555
556 preempt_disable();
557 pid = mm->context.id;
558 if (pid != MMU_NO_CONTEXT)
559 _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
560 preempt_enable();
561 }
562
radix__local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)563 void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
564 {
565 #ifdef CONFIG_HUGETLB_PAGE
566 /* need the return fix for nohash.c */
567 if (is_vm_hugetlb_page(vma))
568 return radix__local_flush_hugetlb_page(vma, vmaddr);
569 #endif
570 radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
571 }
572 EXPORT_SYMBOL(radix__local_flush_tlb_page);
573
mm_is_singlethreaded(struct mm_struct * mm)574 static bool mm_is_singlethreaded(struct mm_struct *mm)
575 {
576 if (atomic_read(&mm->context.copros) > 0)
577 return false;
578 if (atomic_read(&mm->mm_users) <= 1 && current->mm == mm)
579 return true;
580 return false;
581 }
582
mm_needs_flush_escalation(struct mm_struct * mm)583 static bool mm_needs_flush_escalation(struct mm_struct *mm)
584 {
585 /*
586 * P9 nest MMU has issues with the page walk cache
587 * caching PTEs and not flushing them properly when
588 * RIC = 0 for a PID/LPID invalidate
589 */
590 if (atomic_read(&mm->context.copros) > 0)
591 return true;
592 return false;
593 }
594
595 #ifdef CONFIG_SMP
do_exit_flush_lazy_tlb(void * arg)596 static void do_exit_flush_lazy_tlb(void *arg)
597 {
598 struct mm_struct *mm = arg;
599 unsigned long pid = mm->context.id;
600
601 /*
602 * A kthread could have done a mmget_not_zero() after the flushing CPU
603 * checked mm_is_singlethreaded, and be in the process of
604 * kthread_use_mm when interrupted here. In that case, current->mm will
605 * be set to mm, because kthread_use_mm() setting ->mm and switching to
606 * the mm is done with interrupts off.
607 */
608 if (current->mm == mm)
609 goto out_flush;
610
611 if (current->active_mm == mm) {
612 WARN_ON_ONCE(current->mm != NULL);
613 /* Is a kernel thread and is using mm as the lazy tlb */
614 mmgrab(&init_mm);
615 current->active_mm = &init_mm;
616 switch_mm_irqs_off(mm, &init_mm, current);
617 mmdrop(mm);
618 }
619
620 atomic_dec(&mm->context.active_cpus);
621 cpumask_clear_cpu(smp_processor_id(), mm_cpumask(mm));
622
623 out_flush:
624 _tlbiel_pid(pid, RIC_FLUSH_ALL);
625 }
626
exit_flush_lazy_tlbs(struct mm_struct * mm)627 static void exit_flush_lazy_tlbs(struct mm_struct *mm)
628 {
629 /*
630 * Would be nice if this was async so it could be run in
631 * parallel with our local flush, but generic code does not
632 * give a good API for it. Could extend the generic code or
633 * make a special powerpc IPI for flushing TLBs.
634 * For now it's not too performance critical.
635 */
636 smp_call_function_many(mm_cpumask(mm), do_exit_flush_lazy_tlb,
637 (void *)mm, 1);
638 }
639
radix__flush_tlb_mm(struct mm_struct * mm)640 void radix__flush_tlb_mm(struct mm_struct *mm)
641 {
642 unsigned long pid;
643
644 pid = mm->context.id;
645 if (unlikely(pid == MMU_NO_CONTEXT))
646 return;
647
648 preempt_disable();
649 /*
650 * Order loads of mm_cpumask vs previous stores to clear ptes before
651 * the invalidate. See barrier in switch_mm_irqs_off
652 */
653 smp_mb();
654 if (!mm_is_thread_local(mm)) {
655 if (unlikely(mm_is_singlethreaded(mm))) {
656 exit_flush_lazy_tlbs(mm);
657 goto local;
658 }
659
660 if (mm_needs_flush_escalation(mm))
661 _tlbie_pid(pid, RIC_FLUSH_ALL);
662 else
663 _tlbie_pid(pid, RIC_FLUSH_TLB);
664 } else {
665 local:
666 _tlbiel_pid(pid, RIC_FLUSH_TLB);
667 }
668 preempt_enable();
669 }
670 EXPORT_SYMBOL(radix__flush_tlb_mm);
671
__flush_all_mm(struct mm_struct * mm,bool fullmm)672 static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
673 {
674 unsigned long pid;
675
676 pid = mm->context.id;
677 if (unlikely(pid == MMU_NO_CONTEXT))
678 return;
679
680 preempt_disable();
681 smp_mb(); /* see radix__flush_tlb_mm */
682 if (!mm_is_thread_local(mm)) {
683 if (unlikely(mm_is_singlethreaded(mm))) {
684 if (!fullmm) {
685 exit_flush_lazy_tlbs(mm);
686 goto local;
687 }
688 }
689 _tlbie_pid(pid, RIC_FLUSH_ALL);
690 } else {
691 local:
692 _tlbiel_pid(pid, RIC_FLUSH_ALL);
693 }
694 preempt_enable();
695 }
radix__flush_all_mm(struct mm_struct * mm)696 void radix__flush_all_mm(struct mm_struct *mm)
697 {
698 __flush_all_mm(mm, false);
699 }
700 EXPORT_SYMBOL(radix__flush_all_mm);
701
radix__flush_tlb_pwc(struct mmu_gather * tlb,unsigned long addr)702 void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr)
703 {
704 tlb->need_flush_all = 1;
705 }
706 EXPORT_SYMBOL(radix__flush_tlb_pwc);
707
radix__flush_tlb_page_psize(struct mm_struct * mm,unsigned long vmaddr,int psize)708 void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
709 int psize)
710 {
711 unsigned long pid;
712
713 pid = mm->context.id;
714 if (unlikely(pid == MMU_NO_CONTEXT))
715 return;
716
717 preempt_disable();
718 smp_mb(); /* see radix__flush_tlb_mm */
719 if (!mm_is_thread_local(mm)) {
720 if (unlikely(mm_is_singlethreaded(mm))) {
721 exit_flush_lazy_tlbs(mm);
722 goto local;
723 }
724 _tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
725 } else {
726 local:
727 _tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
728 }
729 preempt_enable();
730 }
731
radix__flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)732 void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
733 {
734 #ifdef CONFIG_HUGETLB_PAGE
735 if (is_vm_hugetlb_page(vma))
736 return radix__flush_hugetlb_page(vma, vmaddr);
737 #endif
738 radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
739 }
740 EXPORT_SYMBOL(radix__flush_tlb_page);
741
742 #else /* CONFIG_SMP */
743 #define radix__flush_all_mm radix__local_flush_all_mm
744 #endif /* CONFIG_SMP */
745
radix__flush_tlb_kernel_range(unsigned long start,unsigned long end)746 void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end)
747 {
748 _tlbie_pid(0, RIC_FLUSH_ALL);
749 }
750 EXPORT_SYMBOL(radix__flush_tlb_kernel_range);
751
752 #define TLB_FLUSH_ALL -1UL
753
754 /*
755 * Number of pages above which we invalidate the entire PID rather than
756 * flush individual pages, for local and global flushes respectively.
757 *
758 * tlbie goes out to the interconnect and individual ops are more costly.
759 * It also does not iterate over sets like the local tlbiel variant when
760 * invalidating a full PID, so it has a far lower threshold to change from
761 * individual page flushes to full-pid flushes.
762 */
763 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
764 static unsigned long tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2;
765
__radix__flush_tlb_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool flush_all_sizes)766 static inline void __radix__flush_tlb_range(struct mm_struct *mm,
767 unsigned long start, unsigned long end,
768 bool flush_all_sizes)
769
770 {
771 unsigned long pid;
772 unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift;
773 unsigned long page_size = 1UL << page_shift;
774 unsigned long nr_pages = (end - start) >> page_shift;
775 bool local, full;
776
777 pid = mm->context.id;
778 if (unlikely(pid == MMU_NO_CONTEXT))
779 return;
780
781 preempt_disable();
782 smp_mb(); /* see radix__flush_tlb_mm */
783 if (!mm_is_thread_local(mm)) {
784 if (unlikely(mm_is_singlethreaded(mm))) {
785 if (end != TLB_FLUSH_ALL) {
786 exit_flush_lazy_tlbs(mm);
787 goto is_local;
788 }
789 }
790 local = false;
791 full = (end == TLB_FLUSH_ALL ||
792 nr_pages > tlb_single_page_flush_ceiling);
793 } else {
794 is_local:
795 local = true;
796 full = (end == TLB_FLUSH_ALL ||
797 nr_pages > tlb_local_single_page_flush_ceiling);
798 }
799
800 if (full) {
801 if (local) {
802 _tlbiel_pid(pid, RIC_FLUSH_TLB);
803 } else {
804 if (mm_needs_flush_escalation(mm))
805 _tlbie_pid(pid, RIC_FLUSH_ALL);
806 else
807 _tlbie_pid(pid, RIC_FLUSH_TLB);
808 }
809 } else {
810 bool hflush = flush_all_sizes;
811 bool gflush = flush_all_sizes;
812 unsigned long hstart, hend;
813 unsigned long gstart, gend;
814
815 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
816 hflush = true;
817
818 if (hflush) {
819 hstart = (start + PMD_SIZE - 1) & PMD_MASK;
820 hend = end & PMD_MASK;
821 if (hstart == hend)
822 hflush = false;
823 }
824
825 if (gflush) {
826 gstart = (start + PUD_SIZE - 1) & PUD_MASK;
827 gend = end & PUD_MASK;
828 if (gstart == gend)
829 gflush = false;
830 }
831
832 asm volatile("ptesync": : :"memory");
833 if (local) {
834 __tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize);
835 if (hflush)
836 __tlbiel_va_range(hstart, hend, pid,
837 PMD_SIZE, MMU_PAGE_2M);
838 if (gflush)
839 __tlbiel_va_range(gstart, gend, pid,
840 PUD_SIZE, MMU_PAGE_1G);
841 asm volatile("ptesync": : :"memory");
842 } else {
843 __tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize);
844 if (hflush)
845 __tlbie_va_range(hstart, hend, pid,
846 PMD_SIZE, MMU_PAGE_2M);
847 if (gflush)
848 __tlbie_va_range(gstart, gend, pid,
849 PUD_SIZE, MMU_PAGE_1G);
850
851 asm volatile("eieio; tlbsync; ptesync": : :"memory");
852 }
853 }
854 preempt_enable();
855 }
856
radix__flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)857 void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
858 unsigned long end)
859
860 {
861 #ifdef CONFIG_HUGETLB_PAGE
862 if (is_vm_hugetlb_page(vma))
863 return radix__flush_hugetlb_tlb_range(vma, start, end);
864 #endif
865
866 __radix__flush_tlb_range(vma->vm_mm, start, end, false);
867 }
868 EXPORT_SYMBOL(radix__flush_tlb_range);
869
radix_get_mmu_psize(int page_size)870 static int radix_get_mmu_psize(int page_size)
871 {
872 int psize;
873
874 if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift))
875 psize = mmu_virtual_psize;
876 else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift))
877 psize = MMU_PAGE_2M;
878 else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift))
879 psize = MMU_PAGE_1G;
880 else
881 return -1;
882 return psize;
883 }
884
885 /*
886 * Flush partition scoped LPID address translation for all CPUs.
887 */
radix__flush_tlb_lpid_page(unsigned int lpid,unsigned long addr,unsigned long page_size)888 void radix__flush_tlb_lpid_page(unsigned int lpid,
889 unsigned long addr,
890 unsigned long page_size)
891 {
892 int psize = radix_get_mmu_psize(page_size);
893
894 _tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB);
895 }
896 EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page);
897
898 /*
899 * Flush partition scoped PWC from LPID for all CPUs.
900 */
radix__flush_pwc_lpid(unsigned int lpid)901 void radix__flush_pwc_lpid(unsigned int lpid)
902 {
903 _tlbie_lpid(lpid, RIC_FLUSH_PWC);
904 }
905 EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
906
907 /*
908 * Flush partition scoped translations from LPID (=LPIDR)
909 */
radix__local_flush_tlb_lpid(unsigned int lpid)910 void radix__local_flush_tlb_lpid(unsigned int lpid)
911 {
912 _tlbiel_lpid(lpid, RIC_FLUSH_ALL);
913 }
914 EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid);
915
916 /*
917 * Flush process scoped translations from LPID (=LPIDR).
918 * Important difference, the guest normally manages its own translations,
919 * but some cases e.g., vCPU CPU migration require KVM to flush.
920 */
radix__local_flush_tlb_lpid_guest(unsigned int lpid)921 void radix__local_flush_tlb_lpid_guest(unsigned int lpid)
922 {
923 _tlbiel_lpid_guest(lpid, RIC_FLUSH_ALL);
924 }
925 EXPORT_SYMBOL_GPL(radix__local_flush_tlb_lpid_guest);
926
927
928 static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
929 unsigned long end, int psize);
930
radix__tlb_flush(struct mmu_gather * tlb)931 void radix__tlb_flush(struct mmu_gather *tlb)
932 {
933 int psize = 0;
934 struct mm_struct *mm = tlb->mm;
935 int page_size = tlb->page_size;
936 unsigned long start = tlb->start;
937 unsigned long end = tlb->end;
938
939 /*
940 * if page size is not something we understand, do a full mm flush
941 *
942 * A "fullmm" flush must always do a flush_all_mm (RIC=2) flush
943 * that flushes the process table entry cache upon process teardown.
944 * See the comment for radix in arch_exit_mmap().
945 */
946 if (tlb->fullmm) {
947 __flush_all_mm(mm, true);
948 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
949 } else if (mm_tlb_flush_nested(mm)) {
950 /*
951 * If there is a concurrent invalidation that is clearing ptes,
952 * then it's possible this invalidation will miss one of those
953 * cleared ptes and miss flushing the TLB. If this invalidate
954 * returns before the other one flushes TLBs, that can result
955 * in it returning while there are still valid TLBs inside the
956 * range to be invalidated.
957 *
958 * See mm/memory.c:tlb_finish_mmu() for more details.
959 *
960 * The solution to this is ensure the entire range is always
961 * flushed here. The problem for powerpc is that the flushes
962 * are page size specific, so this "forced flush" would not
963 * do the right thing if there are a mix of page sizes in
964 * the range to be invalidated. So use __flush_tlb_range
965 * which invalidates all possible page sizes in the range.
966 *
967 * PWC flush probably is not be required because the core code
968 * shouldn't free page tables in this path, but accounting
969 * for the possibility makes us a bit more robust.
970 *
971 * need_flush_all is an uncommon case because page table
972 * teardown should be done with exclusive locks held (but
973 * after locks are dropped another invalidate could come
974 * in), it could be optimized further if necessary.
975 */
976 if (!tlb->need_flush_all)
977 __radix__flush_tlb_range(mm, start, end, true);
978 else
979 radix__flush_all_mm(mm);
980 #endif
981 } else if ( (psize = radix_get_mmu_psize(page_size)) == -1) {
982 if (!tlb->need_flush_all)
983 radix__flush_tlb_mm(mm);
984 else
985 radix__flush_all_mm(mm);
986 } else {
987 if (!tlb->need_flush_all)
988 radix__flush_tlb_range_psize(mm, start, end, psize);
989 else
990 radix__flush_tlb_pwc_range_psize(mm, start, end, psize);
991 }
992 tlb->need_flush_all = 0;
993 }
994
__radix__flush_tlb_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize,bool also_pwc)995 static inline void __radix__flush_tlb_range_psize(struct mm_struct *mm,
996 unsigned long start, unsigned long end,
997 int psize, bool also_pwc)
998 {
999 unsigned long pid;
1000 unsigned int page_shift = mmu_psize_defs[psize].shift;
1001 unsigned long page_size = 1UL << page_shift;
1002 unsigned long nr_pages = (end - start) >> page_shift;
1003 bool local, full;
1004
1005 pid = mm->context.id;
1006 if (unlikely(pid == MMU_NO_CONTEXT))
1007 return;
1008
1009 preempt_disable();
1010 smp_mb(); /* see radix__flush_tlb_mm */
1011 if (!mm_is_thread_local(mm)) {
1012 if (unlikely(mm_is_singlethreaded(mm))) {
1013 if (end != TLB_FLUSH_ALL) {
1014 exit_flush_lazy_tlbs(mm);
1015 goto is_local;
1016 }
1017 }
1018 local = false;
1019 full = (end == TLB_FLUSH_ALL ||
1020 nr_pages > tlb_single_page_flush_ceiling);
1021 } else {
1022 is_local:
1023 local = true;
1024 full = (end == TLB_FLUSH_ALL ||
1025 nr_pages > tlb_local_single_page_flush_ceiling);
1026 }
1027
1028 if (full) {
1029 if (local) {
1030 _tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
1031 } else {
1032 if (mm_needs_flush_escalation(mm))
1033 also_pwc = true;
1034
1035 _tlbie_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
1036 }
1037 } else {
1038 if (local)
1039 _tlbiel_va_range(start, end, pid, page_size, psize, also_pwc);
1040 else
1041 _tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
1042 }
1043 preempt_enable();
1044 }
1045
radix__flush_tlb_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize)1046 void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start,
1047 unsigned long end, int psize)
1048 {
1049 return __radix__flush_tlb_range_psize(mm, start, end, psize, false);
1050 }
1051
radix__flush_tlb_pwc_range_psize(struct mm_struct * mm,unsigned long start,unsigned long end,int psize)1052 static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
1053 unsigned long end, int psize)
1054 {
1055 __radix__flush_tlb_range_psize(mm, start, end, psize, true);
1056 }
1057
1058 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
radix__flush_tlb_collapsed_pmd(struct mm_struct * mm,unsigned long addr)1059 void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr)
1060 {
1061 unsigned long pid, end;
1062
1063 pid = mm->context.id;
1064 if (unlikely(pid == MMU_NO_CONTEXT))
1065 return;
1066
1067 /* 4k page size, just blow the world */
1068 if (PAGE_SIZE == 0x1000) {
1069 radix__flush_all_mm(mm);
1070 return;
1071 }
1072
1073 end = addr + HPAGE_PMD_SIZE;
1074
1075 /* Otherwise first do the PWC, then iterate the pages. */
1076 preempt_disable();
1077 smp_mb(); /* see radix__flush_tlb_mm */
1078 if (!mm_is_thread_local(mm)) {
1079 if (unlikely(mm_is_singlethreaded(mm))) {
1080 exit_flush_lazy_tlbs(mm);
1081 goto local;
1082 }
1083 _tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
1084 } else {
1085 local:
1086 _tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
1087 }
1088
1089 preempt_enable();
1090 }
1091 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1092
radix__flush_pmd_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1093 void radix__flush_pmd_tlb_range(struct vm_area_struct *vma,
1094 unsigned long start, unsigned long end)
1095 {
1096 radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M);
1097 }
1098 EXPORT_SYMBOL(radix__flush_pmd_tlb_range);
1099
radix__flush_tlb_all(void)1100 void radix__flush_tlb_all(void)
1101 {
1102 unsigned long rb,prs,r,rs;
1103 unsigned long ric = RIC_FLUSH_ALL;
1104
1105 rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */
1106 prs = 0; /* partition scoped */
1107 r = 1; /* radix format */
1108 rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */
1109
1110 asm volatile("ptesync": : :"memory");
1111 /*
1112 * now flush guest entries by passing PRS = 1 and LPID != 0
1113 */
1114 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
1115 : : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory");
1116 /*
1117 * now flush host entires by passing PRS = 0 and LPID == 0
1118 */
1119 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
1120 : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory");
1121 asm volatile("eieio; tlbsync; ptesync": : :"memory");
1122 }
1123
1124 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
radix_kvm_prefetch_workaround(struct mm_struct * mm)1125 extern void radix_kvm_prefetch_workaround(struct mm_struct *mm)
1126 {
1127 unsigned long pid = mm->context.id;
1128
1129 if (unlikely(pid == MMU_NO_CONTEXT))
1130 return;
1131
1132 /*
1133 * If this context hasn't run on that CPU before and KVM is
1134 * around, there's a slim chance that the guest on another
1135 * CPU just brought in obsolete translation into the TLB of
1136 * this CPU due to a bad prefetch using the guest PID on
1137 * the way into the hypervisor.
1138 *
1139 * We work around this here. If KVM is possible, we check if
1140 * any sibling thread is in KVM. If it is, the window may exist
1141 * and thus we flush that PID from the core.
1142 *
1143 * A potential future improvement would be to mark which PIDs
1144 * have never been used on the system and avoid it if the PID
1145 * is new and the process has no other cpumask bit set.
1146 */
1147 if (cpu_has_feature(CPU_FTR_HVMODE) && radix_enabled()) {
1148 int cpu = smp_processor_id();
1149 int sib = cpu_first_thread_sibling(cpu);
1150 bool flush = false;
1151
1152 for (; sib <= cpu_last_thread_sibling(cpu) && !flush; sib++) {
1153 if (sib == cpu)
1154 continue;
1155 if (!cpu_possible(sib))
1156 continue;
1157 if (paca_ptrs[sib]->kvm_hstate.kvm_vcpu)
1158 flush = true;
1159 }
1160 if (flush)
1161 _tlbiel_pid(pid, RIC_FLUSH_ALL);
1162 }
1163 }
1164 EXPORT_SYMBOL_GPL(radix_kvm_prefetch_workaround);
1165 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1166