/third_party/libxml2/ |
D | testRegexp.c | 187 xmlExpNodePtr sub, deriv; in testReduce() local 198 deriv = xmlExpExpDerive(ctxt, expr, sub); in testReduce() 199 if (deriv == NULL) { in testReduce() 203 xmlExpDump(xmlExpBuf, deriv); in testReduce() 204 if (xmlExpIsNillable(deriv)) in testReduce() 210 xmlExpFree(ctxt, deriv); in testReduce() 219 xmlExpNodePtr deriv; in exprDebug() local 242 deriv = xmlExpStringDerive(ctxt, expr, BAD_CAST list[i], -1); in exprDebug() 243 if (deriv == NULL) { in exprDebug() 247 xmlExpDump(xmlExpBuf, deriv); in exprDebug() [all …]
|
/third_party/boost/libs/numeric/odeint/test/ |
D | adaptive_adams_coefficients.cpp | 35 std::vector<double> deriv; in BOOST_AUTO_TEST_CASE_TEMPLATE() local 36 deriv.push_back(-1); in BOOST_AUTO_TEST_CASE_TEMPLATE() 45 coeff.do_step(deriv); in BOOST_AUTO_TEST_CASE_TEMPLATE() 90 deriv_type deriv(1); in BOOST_AUTO_TEST_CASE() local 91 deriv[0] = 1.0; in BOOST_AUTO_TEST_CASE() 99 c1.do_step(deriv); in BOOST_AUTO_TEST_CASE()
|
/third_party/pulseaudio/src/pulsecore/ |
D | time-smoother.c | 277 static void estimate(pa_smoother *s, pa_usec_t x, pa_usec_t *y, double *deriv) { in estimate() argument 295 if (deriv) in estimate() 296 *deriv = s->dp; in estimate() 309 if (deriv) in estimate() 310 *deriv = s->de; in estimate() 333 if (deriv) in estimate() 334 *deriv = s->c + (tx * (s->b*2 + tx * s->a*3)); in estimate() 340 if (deriv && *deriv < 0) in estimate() 341 *deriv = 0; in estimate()
|
/third_party/boost/boost/graph/ |
D | kamada_kawai_spring_layout.hpp | 224 deriv_type deriv = compute_partial_derivative(m, i); in compute_partial_derivatives() local 225 result += deriv; in compute_partial_derivatives() 280 deriv_type deriv = compute_partial_derivatives(*ui); in run() local 281 put(partial_derivatives, *ui, deriv); in run() 283 weight_type delta = topology.norm(deriv); in run() 394 deriv_type deriv = compute_partial_derivatives(p); in run() local 395 put(partial_derivatives, p, deriv); in run() 397 delta_p = topology.norm(deriv); in run() 409 deriv_type deriv = get(partial_derivatives, *ui); in run() local 411 deriv += old_p_partial - old_deriv_p; in run() [all …]
|
/third_party/boost/libs/local_function/test/ |
D | return_derivative_seq.cpp | 19 } BOOST_LOCAL_FUNCTION_NAME(deriv) in derivative() 21 return deriv; in derivative()
|
D | return_derivative.cpp | 24 } BOOST_LOCAL_FUNCTION_NAME(deriv) in derivative() 26 return deriv; in derivative()
|
/third_party/quickjs/tests/ |
D | test_qjscalc.js | 147 assert(deriv(a) == (6*X^2-4*X)); 148 assert(deriv(integ(a)) == a); 179 assert(deriv((X^2-X+1)/(X-1)) == (X^2-2*X)/(X^2-2*X+1)); 188 assert(deriv(b) == -1+2*X-3*X^2+4*X^3+O(X^4)); 189 assert(deriv(integ(b)) == b);
|
/third_party/boost/boost/numeric/odeint/stepper/base/ |
D | explicit_error_stepper_fsal_base.hpp | 287 void initialize( const DerivIn &deriv ) in initialize() argument 289 boost::numeric::odeint::copy( deriv , m_dxdt.m_v ); in initialize()
|
/third_party/quickjs/ |
D | qjscalc.js | 1021 p1 = p.deriv(); 1022 p2 = p1.deriv(); 1146 deriv() { 1484 deriv() { method 1486 return RationalFunction(n.deriv() * d - n * d.deriv(), d * d); 1806 deriv() { 1857 r = integ(deriv(a) / a); 2396 function deriv(a) function 2398 return a.deriv();
|
/third_party/boost/boost/numeric/odeint/stepper/ |
D | controlled_runge_kutta.hpp | 800 void initialize( const DerivIn &deriv ) in initialize() argument 802 boost::numeric::odeint::copy( deriv , m_dxdt.m_v ); in initialize()
|
/third_party/ffmpeg/libavfilter/opencl/ |
D | deshake.cl | 172 float deriv = convolve(grayscale, get_local_id(0) + j, get_local_id(1) + i, mask); 173 ret += deriv * deriv;
|
/third_party/boost/libs/gil/doc/html/ |
D | searchindex.js | 1 …deriv:[10,18,20],derived_image_typ:[12,28],derived_iterator_typ:[12,28],derived_pixel_reference_ty… property
|
/third_party/boost/libs/hof/doc/html/ |
D | searchindex.js | 1 …i:[10,37],depend:[10,17,37,66],depth:[6,39],derefer:48,dereferenc:[10,48],deriv:[0,19],descript:6,… property
|
/third_party/boost/libs/numeric/odeint/doc/ |
D | tutorial_special_topics.qbk | 117 state type, deriv type and time type and hand the `vector_space_algebra` to
|
D | details_steppers.qbk | 337 The types are needed in order to fulfill the stepper concept. As internal state and deriv type we u…
|