/third_party/skia/third_party/externals/libwebp/src/enc/ |
D | histogram_enc.c | 128 uint8_t* memory = (uint8_t*) (set->histograms); in HistogramSetResetPointers() 129 memory += set->max_size * sizeof(*set->histograms); in HistogramSetResetPointers() 132 set->histograms[i] = (VP8LHistogram*) memory; in HistogramSetResetPointers() 134 set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); in HistogramSetResetPointers() 155 set->histograms = (VP8LHistogram**)memory; in VP8LAllocateHistogramSet() 160 VP8LHistogramInit(set->histograms[i], cache_bits, /*init_arrays=*/ 0); in VP8LAllocateHistogramSet() 167 const int cache_bits = set->histograms[0]->palette_code_bits_; in VP8LHistogramSetClear() 174 set->histograms = (VP8LHistogram**)memory; in VP8LHistogramSetClear() 179 set->histograms[i]->palette_code_bits_ = cache_bits; in VP8LHistogramSetClear() 186 assert(set->histograms[i] != NULL); in HistogramSetRemoveHistogram() [all …]
|
D | histogram_enc.h | 55 VP8LHistogram** histograms; member
|
/third_party/flutter/skia/third_party/externals/libwebp/src/enc/ |
D | histogram_enc.c | 128 uint8_t* memory = (uint8_t*) (set->histograms); in HistogramSetResetPointers() 129 memory += set->max_size * sizeof(*set->histograms); in HistogramSetResetPointers() 132 set->histograms[i] = (VP8LHistogram*) memory; in HistogramSetResetPointers() 134 set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); in HistogramSetResetPointers() 155 set->histograms = (VP8LHistogram**)memory; in VP8LAllocateHistogramSet() 160 VP8LHistogramInit(set->histograms[i], cache_bits, /*init_arrays=*/ 0); in VP8LAllocateHistogramSet() 167 const int cache_bits = set->histograms[0]->palette_code_bits_; in VP8LHistogramSetClear() 174 set->histograms = (VP8LHistogram**)memory; in VP8LHistogramSetClear() 179 set->histograms[i]->palette_code_bits_ = cache_bits; in VP8LHistogramSetClear() 186 assert(set->histograms[i] != NULL); in HistogramSetRemoveHistogram() [all …]
|
/third_party/skia/third_party/externals/brotli/c/enc/ |
D | metablock_inc.h | 48 BlockSplit* split, HistogramType** histograms, size_t* histograms_size) { in FN() 70 BROTLI_DCHECK(*histograms == 0); in FN() 72 *histograms = BROTLI_ALLOC(m, HistogramType, *histograms_size); in FN() 73 self->histograms_ = *histograms; in FN() 74 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(*histograms)) return; in FN() 88 HistogramType* histograms = self->histograms_; in FN() local 96 BitsEntropy(histograms[0].data_, self->alphabet_size_); in FN() 102 FN(HistogramClear)(&histograms[self->curr_histogram_ix_]); in FN() 105 double entropy = BitsEntropy(histograms[self->curr_histogram_ix_].data_, in FN() 113 combined_histo[j] = histograms[self->curr_histogram_ix_]; in FN() [all …]
|
D | block_splitter_inc.h | 15 HistogramType* histograms) { in FN() 19 FN(ClearHistograms)(histograms, num_histograms); in FN() 28 FN(HistogramAddVector)(&histograms[i], data + pos, stride); in FN() 49 HistogramType* histograms) { in FN() 59 FN(HistogramAddHistogram)(&histograms[iter % num_histograms], &sample); in FN() 69 const HistogramType* histograms, in FN() 88 insert_cost[i] = FastLog2((uint32_t)histograms[i].total_count_); in FN() 94 insert_cost[j] - BitCost(histograms[j].data_[i]); in FN() 180 HistogramType* histograms) { in FN() 182 FN(ClearHistograms)(histograms, num_histograms); in FN() [all …]
|
D | metablock.c | 338 size_t num_symbols, BlockSplit* split, HistogramLiteral** histograms, in InitContextBlockSplitter() argument 368 BROTLI_DCHECK(*histograms == 0); in InitContextBlockSplitter() 370 *histograms = BROTLI_ALLOC(m, HistogramLiteral, *histograms_size); in InitContextBlockSplitter() 371 self->histograms_ = *histograms; in InitContextBlockSplitter() 372 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(*histograms)) return; in InitContextBlockSplitter() 387 HistogramLiteral* histograms = self->histograms_; in ContextBlockSplitterFinishBlock() local 400 BitsEntropy(histograms[i].data_, self->alphabet_size_); in ContextBlockSplitterFinishBlock() 426 entropy[i] = BitsEntropy(histograms[curr_histo_ix].data_, in ContextBlockSplitterFinishBlock() 431 combined_histo[jx] = histograms[curr_histo_ix]; in ContextBlockSplitterFinishBlock() 433 &histograms[last_histogram_ix]); in ContextBlockSplitterFinishBlock() [all …]
|
D | block_encoder_inc.h | 15 const HistogramType* histograms, const size_t histograms_size, in FN() 27 BuildAndStoreHuffmanTree(&histograms[i].data_[0], self->histogram_length_, in FN()
|
/third_party/node/deps/brotli/c/enc/ |
D | metablock_inc.h | 48 BlockSplit* split, HistogramType** histograms, size_t* histograms_size) { in FN() 70 BROTLI_DCHECK(*histograms == 0); in FN() 72 *histograms = BROTLI_ALLOC(m, HistogramType, *histograms_size); in FN() 73 self->histograms_ = *histograms; in FN() 74 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(*histograms)) return; in FN() 88 HistogramType* histograms = self->histograms_; in FN() local 96 BitsEntropy(histograms[0].data_, self->alphabet_size_); in FN() 102 FN(HistogramClear)(&histograms[self->curr_histogram_ix_]); in FN() 105 double entropy = BitsEntropy(histograms[self->curr_histogram_ix_].data_, in FN() 113 combined_histo[j] = histograms[self->curr_histogram_ix_]; in FN() [all …]
|
D | block_splitter_inc.h | 15 HistogramType* histograms) { in FN() 19 FN(ClearHistograms)(histograms, num_histograms); in FN() 28 FN(HistogramAddVector)(&histograms[i], data + pos, stride); in FN() 49 HistogramType* histograms) { in FN() 59 FN(HistogramAddHistogram)(&histograms[iter % num_histograms], &sample); in FN() 69 const HistogramType* histograms, in FN() 88 insert_cost[i] = FastLog2((uint32_t)histograms[i].total_count_); in FN() 94 insert_cost[j] - BitCost(histograms[j].data_[i]); in FN() 180 HistogramType* histograms) { in FN() 182 FN(ClearHistograms)(histograms, num_histograms); in FN() [all …]
|
D | metablock.c | 338 size_t num_symbols, BlockSplit* split, HistogramLiteral** histograms, in InitContextBlockSplitter() argument 368 BROTLI_DCHECK(*histograms == 0); in InitContextBlockSplitter() 370 *histograms = BROTLI_ALLOC(m, HistogramLiteral, *histograms_size); in InitContextBlockSplitter() 371 self->histograms_ = *histograms; in InitContextBlockSplitter() 372 if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(*histograms)) return; in InitContextBlockSplitter() 387 HistogramLiteral* histograms = self->histograms_; in ContextBlockSplitterFinishBlock() local 400 BitsEntropy(histograms[i].data_, self->alphabet_size_); in ContextBlockSplitterFinishBlock() 426 entropy[i] = BitsEntropy(histograms[curr_histo_ix].data_, in ContextBlockSplitterFinishBlock() 431 combined_histo[jx] = histograms[curr_histo_ix]; in ContextBlockSplitterFinishBlock() 433 &histograms[last_histogram_ix]); in ContextBlockSplitterFinishBlock() [all …]
|
D | block_encoder_inc.h | 15 const HistogramType* histograms, const size_t histograms_size, in FN() 27 BuildAndStoreHuffmanTree(&histograms[i].data_[0], self->histogram_length_, in FN()
|
/third_party/grpc/src/core/lib/debug/ |
D | stats.cc | 56 output->histograms[i] += gpr_atm_no_barrier_load( in grpc_stats_collect() 57 &grpc_stats_per_cpu_storage[core].histograms[i]); in grpc_stats_collect() 68 c->histograms[i] = b->histograms[i] - a->histograms[i]; in grpc_stats_diff() 94 stats->histograms[grpc_stats_histo_start[histogram] + i]); in grpc_stats_histo_count() 142 stats->histograms + grpc_stats_histo_start[histogram], in grpc_stats_histo_percentile() 160 data->histograms[grpc_stats_histo_start[i] + j])); in grpc_stats_data_as_json()
|
D | stats.h | 32 gpr_atm histograms[GRPC_STATS_HISTOGRAM_BUCKETS]; member 48 &GRPC_THREAD_STATS_DATA()->histograms[histogram##_FIRST_SLOT + (index)], \
|
/third_party/boost/libs/histogram/doc/ |
D | benchmarks.qbk | 14 …r (10-20) %, but this is not done here out of fairness, since the ROOT histograms do not compile w… 18 …histograms with 1, 2, 3, and 6 axes. 100 bins per axis are used for 1, 2, 3 axes. 10 bins per axis… 20 …histograms are filled with random normally distributed data that falls outside of the axis domain … 27 [[GSL] [[@https://www.gnu.org/software/gsl/doc/html/histogram.html GSL histograms] for 1D and 2D]] 34 …ither type of histogram is much faster (up to a factor 6) than filling histograms in other librari… 55 The access time per bin is compared for these two iteration strategies for histograms that hold the…
|
D | getting_started.qbk | 30 …ormation. Perhaps you want to write a command-line tool that generates histograms from input data,… 37 Run-time configurable histograms are a slower than their compile-time brethren, but still pretty fa… 51 … used, for example, to also provide profiles. Profiles are generalized histograms. A histogram cou… 67 [section Making classes that hold histograms] 69 …histograms get their great flexibility and performance from being templated, but this can make the…
|
D | changelog.qbk | 16 …* ASCII bar charts for 1D histograms when boost/histogram/ostream.hpp is included (contributed by … 62 * Performance improvements for 1D and 2D histograms 68 * Support histograms with some axis types with reduction support 69 * boost::histogram::algorithm::project accepts runtime indices for static histograms 72 …* boost::histogram::algorithm::reduce also works on histograms that have some axis types without r… 95 * Added indexed adaptor generator for convenient and fast iteration over histograms 133 * Support for efficient adding of multiple histograms and scaling 152 * Python interface changed: histograms are now iterable, returning axis classes
|
D | history.qbk | 14 …the category axis of the output histogram is the union of the category axes of the input histograms 69 …* ASCII bar charts for 1D histograms when boost/histogram/ostream.hpp is included (contributed by … 115 * Performance improvements for 1D and 2D histograms 121 * Support histograms with some axis types with reduction support 122 * boost::histogram::algorithm::project accepts runtime indices for static histograms 125 …* boost::histogram::algorithm::reduce also works on histograms that have some axis types without r… 148 * Added indexed adaptor generator for convenient and fast iteration over histograms 186 * Support for efficient adding of multiple histograms and scaling 205 * Python interface changed: histograms are now iterable, returning axis classes
|
D | rationale.qbk | 14 …histograms for one and two dimensions in C. The implementations are not customizable. ROOT has wel… 16 …histograms from input data. It is very customizable and extensible through user-provided classes. … 30 * Provide the same interface for one-dimensional and multi-dimensional histograms. This makes the i… 34 * Minimalism, STL and Boost compatibility. Focus the library on the task of creating histograms. Fu… 48 …overflow bins are useful in one-dimensional histograms, and nearly essential in multi-dimensional … 54 * Ability to reduce histograms: In multi-dimensional histograms, an out-of-range value along one ax… 98 …histograms filled with the same number of samples and you want to know whether they are in agreeme… 111 …e storage section] how integer overflow is avoided. However, sometimes histograms need to be fille… 115 When the [classref boost::histogram::weight_storage weight_storage] is used, histograms may be fill… 125 …nt code, it does not work with Python, which requires one to configure histograms at run-time with… [all …]
|
D | guide.qbk | 12 [section Making histograms] 36 [endsect] [/ how to make histograms] 201 [section Filling histograms and accessing cells] 244 The following operators are supported for pairs of histograms `+, -, *, /, ==, !=`. Histograms can … 246 …histograms have the same axis configuration. This checked at run-time. An exception is thrown if t… 261 …ary. In addition, a support library of algorithms is included with common operations on histograms. 268 * The iteration order for histograms with several axes is an implementation-detail, but for histogr… 283 …tract smaller or lower-dimensional versions from it. Lower-dimensional histograms are obtained by … 311 …stogram configurations and show the histogram content. One-dimensional histograms are rendered as … 327 [section Using histograms in APIs] [all …]
|
D | overview.qbk | 14 …histograms.]. Some information is lost in this way, but if the cells are small enough[footnote Wha… 16 …histograms, one for each coordinate. For example, if the two-dimensional image looks like a checke… 39 To understand the need for multi-dimensional histograms, think of point coordinates. If all points … 46 …histograms are the best kind, but cannot be used when histograms are to be created with an axis co… 82 …many more bins now. This means a small counter is often sufficient for high-dimensional histograms.
|
/third_party/ffmpeg/libavcodec/ |
D | idcinvideo.c | 150 unsigned char *histograms; in idcin_decode_init() local 162 histograms = (unsigned char *)s->avctx->extradata; in idcin_decode_init() 165 s->huff_nodes[i][j].count = histograms[histogram_index++]; in idcin_decode_init()
|
/third_party/grpc/src/cpp/util/ |
D | core_stats.cc | 43 b->set_count(core.histograms[grpc_stats_histo_start[i] + j]); in CoreStatsToProto() 80 core->histograms[grpc_stats_histo_start[i] + j] = in ProtoToCoreStats()
|
/third_party/skia/third_party/externals/angle2/src/tests/ |
D | run_perf_tests.py | 182 def _save_extra_output_files(args, results, histograms): argument 194 out_file.write(json.dumps(histograms.AsDicts(), indent=2)) 345 histograms = histogram_set.HistogramSet() 454 histograms.Merge(merged_histogram) 462 _save_extra_output_files(args, results, histograms) 466 out_file.write(json.dumps(histograms.AsDicts(), indent=2))
|
/third_party/skia/third_party/externals/angle2/scripts/ |
D | process_angle_perf_results.py | 337 histograms = histogram_set.HistogramSet() 338 histograms.ImportDicts(data) 339 return histograms 343 histograms = _load_histogram_set_from_dict(results) 361 histograms.AddSharedDiagnosticToAllHistograms(k.name, generic_set.GenericSet([v])) 363 return histograms.AsDicts()
|
/third_party/boost/libs/random/test/ |
D | histogram.cpp | 119 void histograms() in histograms() function 162 histograms<boost::mt19937>(); in main()
|