/third_party/skia/resources/sksl/intrinsics/ |
D | Sinh.sksl | 6 return (sinh(inputVal.x) == expected.x && 7 sinh(inputVal.xy) == expected.xy && 8 sinh(inputVal.xyz) == expected.xyz && 9 sinh(inputVal.xyzw) == expected.xyzw && 10 sinh(constVal.x) == expected.x && 11 sinh(constVal.xy) == expected.xy && 12 sinh(constVal.xyz) == expected.xyz && 13 sinh(constVal.xyzw) == expected.xyzw) ? colorGreen : colorRed;
|
/third_party/jerryscript/tests/jerry/es2015/ |
D | math-sinh.js | 23 assert(isNaN(Math.sinh(NaN))); 24 assert(isSameZero(Math.sinh(p_zero), p_zero)); 25 assert(isSameZero(Math.sinh(n_zero), n_zero)); 26 assert(Math.sinh(Number.POSITIVE_INFINITY) === Number.POSITIVE_INFINITY); 27 assert(Math.sinh(Number.NEGATIVE_INFINITY) === Number.NEGATIVE_INFINITY);
|
/third_party/jerryscript/tests/unit-libm/ |
D | test-libm.inc.h | 818 check_double ("sinh (0.0)", sinh (0.0), 0.00000000000000000000E+00); 819 check_double ("sinh (-0.0)", sinh (-0.0), -0.00000000000000000000E+00); 820 check_double ("sinh (1.0)", sinh (1.0), 1.17520119364380137839E+00); 821 check_double ("sinh (-1.0)", sinh (-1.0), -1.17520119364380137839E+00); 822 check_double ("sinh (INFINITY)", sinh (INFINITY), INF); 823 check_double ("sinh (-INFINITY)", sinh (-INFINITY), -INF); 824 check_double ("sinh (NAN)", sinh (NAN), NAN); 825 check_double ("sinh (M_PI)", sinh (M_PI), 1.15487393572577463630E+01); 826 check_double ("sinh (-M_PI)", sinh (-M_PI), -1.15487393572577463630E+01); 827 check_double ("sinh (2.0 * M_PI)", sinh (2.0 * M_PI), 2.67744894041016436859E+02); [all …]
|
/third_party/jerryscript/tools/unit-tests/ |
D | gen-test-libm.c | 1021 GEN_DBL_TEST (sinh (0.0)); in main() 1022 GEN_DBL_TEST (sinh (-0.0)); in main() 1023 GEN_DBL_TEST (sinh (1.0)); in main() 1024 GEN_DBL_TEST (sinh (-1.0)); in main() 1025 GEN_DBL_TEST (sinh (INFINITY)); in main() 1026 GEN_DBL_TEST (sinh (-INFINITY)); in main() 1027 GEN_DBL_TEST (sinh (NAN)); in main() 1028 GEN_DBL_TEST (sinh (M_PI)); in main() 1029 GEN_DBL_TEST (sinh (-M_PI)); in main() 1030 GEN_DBL_TEST (sinh (2.0 * M_PI)); in main() [all …]
|
/third_party/boost/boost/math/special_functions/ |
D | sinhc.hpp | 44 using ::sinh; in sinhc_pi_imp() 48 using ::std::sinh; in sinhc_pi_imp() 58 return(sinh(x)/x); in sinhc_pi_imp() 107 using ::sinh; in sinhc_pi() 111 using ::std::sinh; in sinhc_pi() 123 return(sinh(x)/x); in sinhc_pi()
|
/third_party/skia/tests/sksl/intrinsics/ |
D | Sinh.glsl | 8 …return ((((((sinh(inputVal.x) == expected.x && sinh(inputVal.xy) == expected.xy) && sinh(inputVal.…
|
D | Sinh.metal | 18 …sinh(_uniforms.inputVal.x) == _uniforms.expected.x && all(sinh(_uniforms.inputVal.xy) == _uniforms…
|
/third_party/python/Lib/test/ |
D | cmath_testcases.txt | 1580 -- For exp, cosh, sinh, tanh we limit tests to arguments whose 1822 -- sinh: Hyperbolic Sine -- 1826 sinh0000 sinh 0.0 0.0 -> 0.0 0.0 1827 sinh0001 sinh 0.0 -0.0 -> 0.0 -0.0 1828 sinh0002 sinh -0.0 0.0 -> -0.0 0.0 1829 sinh0003 sinh -0.0 -0.0 -> -0.0 -0.0 1832 sinh0004 sinh -17.282588091462742 -0.38187948694103546 -> -14867386.857248396 -5970648.6553516639 1833 sinh0005 sinh -343.91971203143208 -5.0172868877771525e-22 -> -1.1518691776521735e+149 -5.7792581214… 1834 sinh0006 sinh -14.178122253300922 -1.9387157579351293 -> 258440.37909034826 -670452.58500946441 1835 sinh0007 sinh -1.0343810581686239 -1.0970235266369905 -> -0.56070858278092739 -1.4098883258046697 [all …]
|
/third_party/boost/boost/math/quadrature/detail/ |
D | tanh_sinh_constants.hpp | 22 using std::sinh; in abscissa_at_t() 23 return tanh(constants::half_pi<Real>()*sinh(t)); in abscissa_at_t() 29 using std::sinh; in weight_at_t() 30 Real cs = cosh(constants::half_pi<Real>() * sinh(t)); in weight_at_t() 38 using std::sinh; in abscissa_complement_at_t() 39 Real u2 = constants::half_pi<Real>() * sinh(t); in abscissa_complement_at_t() 69 using std::sinh; in init()
|
/third_party/skia/third_party/externals/tint/test/intrinsics/gen/sinh/ |
D | b9860e.wgsl.expected.glsl | 5 vec2 res = sinh(vec2(0.0f, 0.0f)); 35 vec2 res = sinh(vec2(0.0f, 0.0f)); 55 vec2 res = sinh(vec2(0.0f, 0.0f));
|
D | 7bb598.wgsl.expected.glsl | 5 float res = sinh(1.0f); 35 float res = sinh(1.0f); 55 float res = sinh(1.0f);
|
D | 445e33.wgsl.expected.glsl | 5 vec4 res = sinh(vec4(0.0f, 0.0f, 0.0f, 0.0f)); 35 vec4 res = sinh(vec4(0.0f, 0.0f, 0.0f, 0.0f)); 55 vec4 res = sinh(vec4(0.0f, 0.0f, 0.0f, 0.0f));
|
D | c9a5eb.wgsl.expected.glsl | 5 vec3 res = sinh(vec3(0.0f, 0.0f, 0.0f)); 35 vec3 res = sinh(vec3(0.0f, 0.0f, 0.0f)); 55 vec3 res = sinh(vec3(0.0f, 0.0f, 0.0f));
|
/third_party/boost/libs/math/doc/quaternion/ |
D | output.txt | 24 Testing sinh for float. 25 Testing sinh for double. 26 Testing sinh for long double.
|
/third_party/boost/libs/math/test/ |
D | sinh_sinh_quadrature_test.cpp | 36 using std::sinh; 90 auto g = [](Real t) { return sinh(half_pi<Real>()*sinh(t)); }; in generate_constants() 91 auto w = [](Real t) { return cosh(t)*half_pi<Real>()*cosh(half_pi<Real>()*sinh(t)); }; in generate_constants() 208 using std::sinh; in test_crc() 212 return x/sinh(x); in test_crc() 222 using std::sin; using std::sinh; in test_crc() 226 return (Real) sin(x)/sinh(x); in test_crc()
|
D | sinc_test.hpp | 42 using ::std::sinh; in BOOST_TEST_CASE_TEMPLATE_FUNCTION() 54 ::std::complex<T>(sinh(static_cast<T>(1))))) in BOOST_TEST_CASE_TEMPLATE_FUNCTION()
|
D | asinh_test.hpp | 24 using ::std::sinh; in asinh_error_evaluator() 34 T y = sinh(x); in asinh_error_evaluator()
|
/third_party/boost/libs/multiprecision/test/ |
D | test_sinh.cpp | 124 T val = boost::multiprecision::sinh(x * x); in test() 129 val = boost::multiprecision::sinh(-x * x); in test() 194 T val = boost::multiprecision::sinh(v); in test() 201 val = boost::multiprecision::sinh(-v); in test()
|
/third_party/boost/boost/qvm/ |
D | math.hpp | 26 template <class T> T sinh( T ); 49 template <> BOOST_QVM_INLINE_TRIVIAL float sinh<float>( float x ) { return ::sinhf(x); } in sinh() function 71 template <> BOOST_QVM_INLINE_TRIVIAL double sinh<double>( double x ) { return ::sinh(x); } in sinh() function 93 …template <> BOOST_QVM_INLINE_TRIVIAL long double sinh<long double>( long double x ) { return ::sin… in sinh() function
|
/third_party/musl/src/math/ |
D | sinhl.c | 6 return sinh(x); in sinhl() 41 return sinh(x); in sinhl()
|
/third_party/musl/porting/liteos_a/kernel/src/math/ |
D | sinhl.c | 6 return sinh(x); in sinhl() 41 return sinh(x); in sinhl()
|
/third_party/boost/libs/qvm/test/ |
D | math_test.cpp | 46 test1<float>(&boost::qvm::sinh<float>, &::sinhf); in main() 67 test1<double>(&boost::qvm::sinh<double>, &::sinh); in main() 88 test1<long double>(&boost::qvm::sinh<long double>, &::sinhl); in main()
|
/third_party/boost/libs/math/test/float128/ |
D | test_std_lib.cpp | 80 …BOOST_CHECK_CLOSE_FRACTION(std::sinh(BOOST_FLOAT128_C(0.5)), BOOST_FLOAT128_C(0.521095305493747361… in BOOST_AUTO_TEST_CASE() 81 …BOOST_CHECK_CLOSE_FRACTION(std::sinh(BOOST_FLOAT128_C(-0.5)), BOOST_FLOAT128_C(-0.5210953054937473… in BOOST_AUTO_TEST_CASE() 82 …BOOST_CHECK_CLOSE_FRACTION(std::sinh(BOOST_FLOAT128_C(1.5)), BOOST_FLOAT128_C(2.129279455094817496… in BOOST_AUTO_TEST_CASE() 83 …BOOST_CHECK_CLOSE_FRACTION(std::sinh(BOOST_FLOAT128_C(-1.5)), BOOST_FLOAT128_C(-2.1292794550948174… in BOOST_AUTO_TEST_CASE() 84 …BOOST_CHECK_CLOSE_FRACTION(std::sinh(BOOST_FLOAT128_C(3.5)), BOOST_FLOAT128_C(16.54262728763499762… in BOOST_AUTO_TEST_CASE() 85 …BOOST_CHECK_CLOSE_FRACTION(std::sinh(BOOST_FLOAT128_C(-3.5)), BOOST_FLOAT128_C(-16.542627287634997… in BOOST_AUTO_TEST_CASE() 86 BOOST_CHECK_EQUAL(std::sinh(BOOST_FLOAT128_C(0.0)), 0); in BOOST_AUTO_TEST_CASE() 225 …BOOST_CHECK_CLOSE_FRACTION(real(sinh(cm)), BOOST_FLOATMAX_C(-5.66575444574645085564435171738630834… in BOOST_AUTO_TEST_CASE() 226 …BOOST_CHECK_CLOSE_FRACTION(imag(sinh(cm)), BOOST_FLOATMAX_C(-2.15110429680352723029881676360397937… in BOOST_AUTO_TEST_CASE()
|
/third_party/boost/libs/math/doc/quadrature/ |
D | double_exponential.qbk | 130 The `tanh-sinh` quadrature routine provided by boost is a rapidly convergent numerical integration … 133 If your integrand obeys these conditions, it can be shown that `tanh-sinh` integration is optimal, 136 A basic example of how to use the `tanh-sinh` quadrature is shown below: 145 The basic idea of `tanh-sinh` quadrature is that a variable transformation can cause the endpoint d… 153 One very nice property of tanh-sinh quadrature is that it can handle singularities at the endpoints… 160 Attempting to integrate a function which is not bounded on the unit disk by tanh-sinh can lead to v… 176 Like the trapezoidal quadrature, the tanh-sinh quadrature produces an estimate of the L[sub 1] norm… 203 …][159][This highly oscillatory integral isn't handled at all well by tanh-sinh quadrature: there i… 213 Although the `tanh-sinh` quadrature can compute integral over infinite domains by variable transfor… 214 … allow stable computation over infinite domains; these being the exp-sinh and sinh-sinh quadrature. [all …]
|
/third_party/boost/boost/numeric/interval/ |
D | rounded_transc.hpp | 35 BOOST_NUMERIC_INTERVAL_new_func(sinh) 66 BOOST_NUMERIC_INTERVAL_new_func(sinh) 111 BOOST_NUMERIC_INTERVAL_new_func(sinh)
|