• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright (c) 2017-2018 Richard Palethorpe <rpalethorpe@suse.com>
4  */
5 /**
6  * @file tst_fuzzy_sync.h
7  * Fuzzy Synchronisation - abbreviated to fzsync
8  *
9  * This library is intended to help reproduce race conditions by synchronising
10  * two threads at a given place by marking the range a race may occur
11  * in. Because the exact place where any race occurs is within the kernel,
12  * and therefore impossible to mark accurately, the library may add randomised
13  * delays to either thread in order to help find the exact race timing.
14  *
15  * Currently only two way races are explicitly supported, that is races
16  * involving two threads or processes. We refer to the main test thread as
17  * thread A and the child thread as thread B.
18  *
19  * In each thread you need a simple while- or for-loop which the tst_fzsync_*
20  * functions are called in. In the simplest case thread A will look something
21  * like:
22  *
23  * tst_fzsync_pair_reset(&pair, run_thread_b);
24  * while (tst_fzsync_run_a(&pair)) {
25  *	// Perform some setup which must happen before the race
26  *	tst_fzsync_start_race_a(&pair);
27  *	// Do some dodgy syscall
28  *	tst_fzsync_end_race_a(&pair);
29  * }
30  *
31  * Then in thread B (run_thread_b):
32  *
33  * while (tst_fzsync_run_b(&pair)) {
34  *	tst_fzsync_start_race_b(&pair);
35  *	// Do something which can race with the dodgy syscall in A
36  *	tst_fzsync_end_race_b(&pair)
37  * }
38  *
39  * The calls to tst_fzsync_start/end_race and tst_fzsync_run_a/b block (at
40  * least) until both threads have enter them. These functions can only be
41  * called once for each iteration, but further synchronisation points can be
42  * added by calling tst_fzsync_wait_a() and tst_fzsync_wait_b() in each
43  * thread.
44  *
45  * The execution of the loops in threads A and B are bounded by both iteration
46  * count and time. A slow machine is likely to be limited by time and a fast
47  * one by iteration count. The user can use the -i parameter to run the test
48  * multiple times or LTP_TIMEOUT_MUL to give the test more time.
49  *
50  * It is possible to use the library just for tst_fzsync_pair_wait() to get a
51  * basic spin wait. However if you are actually testing a race condition then
52  * it is recommended to use tst_fzsync_start_race_a/b even if the
53  * randomisation is not needed. It provides some semantic information which
54  * may be useful in the future.
55  *
56  * For a usage example see testcases/cve/cve-2016-7117.c or just run
57  * 'git grep tst_fuzzy_sync.h'
58  *
59  * @sa tst_fzsync_pair
60  */
61 
62 #include <sys/time.h>
63 #include <time.h>
64 #include <math.h>
65 #include <stdlib.h>
66 #include <pthread.h>
67 #include "tst_atomic.h"
68 #include "tst_timer.h"
69 #include "tst_safe_pthread.h"
70 
71 #ifndef TST_FUZZY_SYNC_H__
72 #define TST_FUZZY_SYNC_H__
73 
74 /* how much of exec time is sampling allowed to take */
75 #define SAMPLING_SLICE 0.5f
76 
77 /** Some statistics for a variable */
78 struct tst_fzsync_stat {
79 	float avg;
80 	float avg_dev;
81 	float dev_ratio;
82 };
83 
84 /**
85  * The state of a two way synchronisation or race.
86  *
87  * This contains all the necessary state for approximately synchronising two
88  * sections of code in different threads.
89  *
90  * Some of the fields can be configured before calling
91  * tst_fzsync_pair_reset(), however this is mainly for debugging purposes. If
92  * a test requires one of the parameters to be modified, we should consider
93  * finding a way of automatically selecting an appropriate value at runtime.
94  *
95  * Internal fields should only be accessed by library functions.
96  */
97 struct tst_fzsync_pair {
98 	/**
99 	 * The rate at which old diff samples are forgotten
100 	 *
101 	 * Defaults to 0.25.
102 	 */
103 	float avg_alpha;
104 	/** Internal; Thread A start time */
105 	struct timespec a_start;
106 	/** Internal; Thread B start time */
107 	struct timespec b_start;
108 	/** Internal; Thread A end time */
109 	struct timespec a_end;
110 	/** Internal; Thread B end time */
111 	struct timespec b_end;
112 	/** Internal; Avg. difference between a_start and b_start */
113 	struct tst_fzsync_stat diff_ss;
114 	/** Internal; Avg. difference between a_start and a_end */
115 	struct tst_fzsync_stat diff_sa;
116 	/** Internal; Avg. difference between b_start and b_end */
117 	struct tst_fzsync_stat diff_sb;
118 	/** Internal; Avg. difference between a_end and b_end */
119 	struct tst_fzsync_stat diff_ab;
120 	/** Internal; Number of spins while waiting for the slower thread */
121 	int spins;
122 	struct tst_fzsync_stat spins_avg;
123 	/**
124 	 * Internal; Number of spins to use in the delay.
125 	 *
126 	 * A negative value delays thread A and a positive delays thread B.
127 	 */
128 	int delay;
129 	int delay_bias;
130 	/**
131 	 *  Internal; The number of samples left or the sampling state.
132 	 *
133 	 *  A positive value is the number of remaining mandatory
134 	 *  samples. Zero or a negative indicate some other state.
135 	 */
136 	int sampling;
137 	/**
138 	 * The Minimum number of statistical samples which must be collected.
139 	 *
140 	 * The minimum number of iterations which must be performed before a
141 	 * random delay can be calculated. Defaults to 1024.
142 	 */
143 	int min_samples;
144 	/**
145 	 * The maximum allowed proportional average deviation.
146 	 *
147 	 * A value in the range (0, 1) which gives the maximum average
148 	 * deviation which must be attained before random delays can be
149 	 * calculated.
150 	 *
151 	 * It is a ratio of (average_deviation / total_time). The default is
152 	 * 0.1, so this allows an average deviation of at most 10%.
153 	 */
154 	float max_dev_ratio;
155 
156 	/** Internal; Atomic counter used by fzsync_pair_wait() */
157 	int a_cntr;
158 	/** Internal; Atomic counter used by fzsync_pair_wait() */
159 	int b_cntr;
160 	/** Internal; Used by tst_fzsync_pair_exit() and fzsync_pair_wait() */
161 	int exit;
162 	/**
163 	 * The maximum desired execution time as a proportion of the timeout
164 	 *
165 	 * A value x so that 0 < x < 1 which decides how long the test should
166 	 * be run for (assuming the loop limit is not exceeded first).
167 	 *
168 	 * Defaults to 0.5 (~150 seconds with default timeout).
169 	 */
170 	float exec_time_p;
171 	/** Internal; The test time remaining on tst_fzsync_pair_reset() */
172 	float exec_time_start;
173 	/**
174 	 * The maximum number of iterations to execute during the test
175 	 *
176 	 * Defaults to a large number, but not too large.
177 	 */
178 	int exec_loops;
179 	/** Internal; The current loop index  */
180 	int exec_loop;
181 	/** Internal; The second thread or 0 */
182 	pthread_t thread_b;
183 };
184 
185 #define CHK(param, low, hi, def) do {					      \
186 	pair->param = (pair->param ? pair->param : def);		      \
187 	if (pair->param < low)						      \
188 		tst_brk(TBROK, #param " is less than the lower bound " #low); \
189 	if (pair->param > hi)						      \
190 		tst_brk(TBROK, #param " is more than the upper bound " #hi);  \
191 	} while (0)
192 /**
193  * Ensures that any Fuzzy Sync parameters are properly set
194  *
195  * @relates tst_fzsync_pair
196  *
197  * Usually called from the setup function, it sets default parameter values or
198  * validates any existing non-defaults.
199  *
200  * @sa tst_fzsync_pair_reset()
201  */
tst_fzsync_pair_init(struct tst_fzsync_pair * pair)202 static void tst_fzsync_pair_init(struct tst_fzsync_pair *pair)
203 {
204 	CHK(avg_alpha, 0, 1, 0.25);
205 	CHK(min_samples, 20, INT_MAX, 1024);
206 	CHK(max_dev_ratio, 0, 1, 0.1);
207 	CHK(exec_time_p, 0, 1, 0.5);
208 	CHK(exec_loops, 20, INT_MAX, 3000000);
209 }
210 #undef CHK
211 
212 /**
213  * Exit and join thread B if necessary.
214  *
215  * @relates tst_fzsync_pair
216  *
217  * Call this from your cleanup function.
218  */
tst_fzsync_pair_cleanup(struct tst_fzsync_pair * pair)219 static void tst_fzsync_pair_cleanup(struct tst_fzsync_pair *pair)
220 {
221 	if (pair->thread_b) {
222 		/* Revoke thread B if parent hits accidental break */
223 		if (!pair->exit) {
224 			tst_atomic_store(1, &pair->exit);
225 			usleep(100000);
226 			pthread_cancel(pair->thread_b);
227 		}
228 		SAFE_PTHREAD_JOIN(pair->thread_b, NULL);
229 		pair->thread_b = 0;
230 	}
231 }
232 
233 /** To store the run_b pointer and pass to tst_fzsync_thread_wrapper */
234 struct tst_fzsync_run_thread {
235 	void *(*func)(void *);
236 	void *arg;
237 };
238 
239 /**
240  * Wrap run_b for tst_fzsync_pair_reset to enable pthread cancel
241  * at the start of the thread B.
242  */
tst_fzsync_thread_wrapper(void * run_thread)243 static void *tst_fzsync_thread_wrapper(void *run_thread)
244 {
245        struct tst_fzsync_run_thread t = *(struct tst_fzsync_run_thread *)run_thread;
246 
247        pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
248        pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
249        return t.func(t.arg);
250 }
251 
252 /**
253  * Zero some stat fields
254  *
255  * @relates tst_fzsync_stat
256  */
tst_init_stat(struct tst_fzsync_stat * s)257 static void tst_init_stat(struct tst_fzsync_stat *s)
258 {
259 	s->avg = 0;
260 	s->avg_dev = 0;
261 }
262 
263 /**
264  * Reset or initialise fzsync.
265  *
266  * @relates tst_fzsync_pair
267  * @param pair The state structure initialised with TST_FZSYNC_PAIR_INIT.
268  * @param run_b The function defining thread B or NULL.
269  *
270  * Call this from your main test function (thread A), just before entering the
271  * main loop. It will (re)set any variables needed by fzsync and (re)start
272  * thread B using the function provided.
273  *
274  * If you need to use fork or clone to start the second thread/process then
275  * you can pass NULL to run_b and handle starting and stopping thread B
276  * yourself. You may need to place tst_fzsync_pair in some shared memory as
277  * well.
278  *
279  * @sa tst_fzsync_pair_init()
280  */
tst_fzsync_pair_reset(struct tst_fzsync_pair * pair,void * (* run_b)(void *))281 static void tst_fzsync_pair_reset(struct tst_fzsync_pair *pair,
282 				  void *(*run_b)(void *))
283 {
284 	tst_fzsync_pair_cleanup(pair);
285 
286 	tst_init_stat(&pair->diff_ss);
287 	tst_init_stat(&pair->diff_sa);
288 	tst_init_stat(&pair->diff_sb);
289 	tst_init_stat(&pair->diff_ab);
290 	tst_init_stat(&pair->spins_avg);
291 	pair->delay = 0;
292 	pair->sampling = pair->min_samples;
293 
294 	pair->exec_loop = 0;
295 
296 	pair->a_cntr = 0;
297 	pair->b_cntr = 0;
298 	pair->exit = 0;
299 	if (run_b) {
300 		static struct tst_fzsync_run_thread wrap_run_b;
301 
302 		wrap_run_b.func = run_b;
303 		wrap_run_b.arg = NULL;
304 		SAFE_PTHREAD_CREATE(&pair->thread_b, 0, tst_fzsync_thread_wrapper, &wrap_run_b);
305 	}
306 
307 	pair->exec_time_start = (float)tst_timeout_remaining();
308 }
309 
310 /**
311  * Print stat
312  *
313  * @relates tst_fzsync_stat
314  */
tst_fzsync_stat_info(struct tst_fzsync_stat stat,char * unit,char * name)315 static inline void tst_fzsync_stat_info(struct tst_fzsync_stat stat,
316 					char *unit, char *name)
317 {
318 	tst_res(TINFO,
319 		"%1$-17s: { avg = %3$5.0f%2$s, avg_dev = %4$5.0f%2$s, dev_ratio = %5$.2f }",
320 		name, unit, stat.avg, stat.avg_dev, stat.dev_ratio);
321 }
322 
323 /**
324  * Print some synchronisation statistics
325  *
326  * @relates tst_fzsync_pair
327  */
tst_fzsync_pair_info(struct tst_fzsync_pair * pair)328 static void tst_fzsync_pair_info(struct tst_fzsync_pair *pair)
329 {
330 	tst_res(TINFO, "loop = %d, delay_bias = %d",
331 		pair->exec_loop, pair->delay_bias);
332 	tst_fzsync_stat_info(pair->diff_ss, "ns", "start_a - start_b");
333 	tst_fzsync_stat_info(pair->diff_sa, "ns", "end_a - start_a");
334 	tst_fzsync_stat_info(pair->diff_sb, "ns", "end_b - start_b");
335 	tst_fzsync_stat_info(pair->diff_ab, "ns", "end_a - end_b");
336 	tst_fzsync_stat_info(pair->spins_avg, "  ", "spins");
337 }
338 
339 /** Wraps clock_gettime */
tst_fzsync_time(struct timespec * t)340 static inline void tst_fzsync_time(struct timespec *t)
341 {
342 #ifdef CLOCK_MONOTONIC_RAW
343 	clock_gettime(CLOCK_MONOTONIC_RAW, t);
344 #else
345 	clock_gettime(CLOCK_MONOTONIC, t);
346 #endif
347 }
348 
349 /**
350  * Exponential moving average
351  *
352  * @param alpha The preference for recent samples over old ones.
353  * @param sample The current sample
354  * @param prev_avg The average of the all the previous samples
355  *
356  * @return The average including the current sample.
357  */
tst_exp_moving_avg(float alpha,float sample,float prev_avg)358 static inline float tst_exp_moving_avg(float alpha,
359 					float sample,
360 					float prev_avg)
361 {
362 	return alpha * sample + (1.0 - alpha) * prev_avg;
363 }
364 
365 /**
366  * Update a stat with a new sample
367  *
368  * @relates tst_fzsync_stat
369  */
tst_upd_stat(struct tst_fzsync_stat * s,float alpha,float sample)370 static inline void tst_upd_stat(struct tst_fzsync_stat *s,
371 				 float alpha,
372 				 float sample)
373 {
374 	s->avg = tst_exp_moving_avg(alpha, sample, s->avg);
375 	s->avg_dev = tst_exp_moving_avg(alpha,
376 					fabs(s->avg - sample), s->avg_dev);
377 	s->dev_ratio = fabs(s->avg ? s->avg_dev / s->avg : 0);
378 }
379 
380 /**
381  * Update a stat with a new diff sample
382  *
383  * @relates tst_fzsync_stat
384  */
tst_upd_diff_stat(struct tst_fzsync_stat * s,float alpha,struct timespec t1,struct timespec t2)385 static inline void tst_upd_diff_stat(struct tst_fzsync_stat *s,
386 				     float alpha,
387 				     struct timespec t1,
388 				     struct timespec t2)
389 {
390 	tst_upd_stat(s, alpha, tst_timespec_diff_ns(t1, t2));
391 }
392 
393 /**
394  * Calculate various statistics and the delay
395  *
396  * This function helps create the fuzz in fuzzy sync. Imagine we have the
397  * following timelines in threads A and B:
398  *
399  *  start_race_a
400  *      ^                    end_race_a (a)
401  *      |                        ^
402  *      |                        |
403  *  - --+------------------------+-- - -
404  *      |        Syscall A       |                 Thread A
405  *  - --+------------------------+-- - -
406  *  - --+----------------+-------+-- - -
407  *      |   Syscall B    | spin  |                 Thread B
408  *  - --+----------------+-------+-- - -
409  *      |                |
410  *      ^                ^
411  *  start_race_b     end_race_b
412  *
413  * Here we have synchronised the calls to syscall A and B with start_race_{a,
414  * b} so that they happen at approximately the same time in threads A and
415  * B. If the race condition occurs during the entry code for these two
416  * functions then we will quickly hit it. If it occurs during the exit code of
417  * B and mid way through A, then we will quickly hit it.
418  *
419  * However if the exit paths of A and B need to be aligned and (end_race_a -
420  * end_race_b) is large relative to the variation in call times, the
421  * probability of hitting the race condition is close to zero. To solve this
422  * scenario (and others) a randomised delay is introduced before the syscalls
423  * in A and B. Given enough time the following should happen where the exit
424  * paths are now synchronised:
425  *
426  *  start_race_a
427  *      ^                    end_race_a (a)
428  *      |                        ^
429  *      |                        |
430  *  - --+------------------------+-- - -
431  *      |        Syscall A       |                 Thread A
432  *  - --+------------------------+-- - -
433  *  - --+-------+----------------+-- - -
434  *      | delay |   Syscall B    |                 Thread B
435  *  - --+-------+----------------+-- - -
436  *      |                        |
437  *      ^                        ^
438  *  start_race_b             end_race_b
439  *
440  * The delay is not introduced immediately and the delay range is only
441  * calculated once the average relative deviation has dropped below some
442  * percentage of the total time.
443  *
444  * The delay range is chosen so that any point in Syscall A could be
445  * synchronised with any point in Syscall B using a value from the
446  * range. Because the delay range may be too large for a linear search, we use
447  * an evenly distributed random function to pick a value from it.
448  *
449  * The delay range goes from positive to negative. A negative delay will delay
450  * thread A and a positive one will delay thread B. The range is bounded by
451  * the point where the entry code to Syscall A is synchronised with the exit
452  * to Syscall B and the entry code to Syscall B is synchronised with the exit
453  * of A.
454  *
455  * In order to calculate the lower bound (the max delay of A) we can simply
456  * negate the execution time of Syscall B and convert it to a spin count. For
457  * the upper bound (the max delay of B), we just take the execution time of A
458  * and convert it to a spin count.
459  *
460  * In order to calculate spin count we need to know approximately how long a
461  * spin takes and divide the delay time with it. We find this by first
462  * counting how many spins one thread spends waiting for the other during
463  * end_race[1]. We also know when each syscall exits so we can take the
464  * difference between the exit times and divide it with the number of spins
465  * spent waiting.
466  *
467  * All the times and counts we use in the calculation are averaged over a
468  * variable number of iterations. There is an initial sampling period where we
469  * simply collect time and count samples then calculate their averages. When a
470  * minimum number of samples have been collected, and if the average deviation
471  * is below some proportion of the average sample magnitude, then the sampling
472  * period is ended. On all further iterations a random delay is calculated and
473  * applied, but the averages are not updated.
474  *
475  * [1] This assumes there is always a significant difference. The algorithm
476  * may fail to introduce a delay (when one is needed) in situations where
477  * Syscall A and B finish at approximately the same time.
478  *
479  * @relates tst_fzsync_pair
480  */
tst_fzsync_pair_update(struct tst_fzsync_pair * pair)481 static void tst_fzsync_pair_update(struct tst_fzsync_pair *pair)
482 {
483 	float alpha = pair->avg_alpha;
484 	float per_spin_time, time_delay;
485 	float max_dev = pair->max_dev_ratio;
486 	int over_max_dev;
487 
488 	pair->delay = pair->delay_bias;
489 
490 	over_max_dev = pair->diff_ss.dev_ratio > max_dev
491 		|| pair->diff_sa.dev_ratio > max_dev
492 		|| pair->diff_sb.dev_ratio > max_dev
493 		|| pair->diff_ab.dev_ratio > max_dev
494 		|| pair->spins_avg.dev_ratio > max_dev;
495 
496 	if (pair->sampling > 0 || over_max_dev) {
497 		tst_upd_diff_stat(&pair->diff_ss, alpha,
498 				  pair->a_start, pair->b_start);
499 		tst_upd_diff_stat(&pair->diff_sa, alpha,
500 				  pair->a_end, pair->a_start);
501 		tst_upd_diff_stat(&pair->diff_sb, alpha,
502 				  pair->b_end, pair->b_start);
503 		tst_upd_diff_stat(&pair->diff_ab, alpha,
504 				  pair->a_end, pair->b_end);
505 		tst_upd_stat(&pair->spins_avg, alpha, pair->spins);
506 		if (pair->sampling > 0 && --pair->sampling == 0) {
507 			tst_res(TINFO, "Minimum sampling period ended");
508 			tst_fzsync_pair_info(pair);
509 		}
510 	} else if (fabsf(pair->diff_ab.avg) >= 1) {
511 		per_spin_time = fabsf(pair->diff_ab.avg) / MAX(pair->spins_avg.avg, 1.0f);
512 		time_delay = drand48() * (pair->diff_sa.avg + pair->diff_sb.avg)
513 			- pair->diff_sb.avg;
514 		pair->delay += (int)(time_delay / per_spin_time);
515 
516 		if (!pair->sampling) {
517 			tst_res(TINFO,
518 				"Reached deviation ratios < %.2f, introducing randomness",
519 				pair->max_dev_ratio);
520 			tst_res(TINFO, "Delay range is [-%d, %d]",
521 				(int)(pair->diff_sb.avg / per_spin_time) + pair->delay_bias,
522 				(int)(pair->diff_sa.avg / per_spin_time) - pair->delay_bias);
523 			tst_fzsync_pair_info(pair);
524 			pair->sampling = -1;
525 		}
526 	} else if (!pair->sampling) {
527 		tst_res(TWARN, "Can't calculate random delay");
528 		tst_fzsync_pair_info(pair);
529 		pair->sampling = -1;
530 	}
531 
532 	pair->spins = 0;
533 }
534 
535 /**
536  * Wait for the other thread
537  *
538  * @relates tst_fzsync_pair
539  * @param our_cntr The counter for the thread we are on
540  * @param other_cntr The counter for the thread we are synchronising with
541  * @param spins A pointer to the spin counter or NULL
542  *
543  * Used by tst_fzsync_pair_wait_a(), tst_fzsync_pair_wait_b(),
544  * tst_fzsync_start_race_a(), etc. If the calling thread is ahead of the other
545  * thread, then it will spin wait. Unlike pthread_barrier_wait it will never
546  * use futex and can count the number of spins spent waiting.
547  *
548  * @return A non-zero value if the thread should continue otherwise the
549  * calling thread should exit.
550  */
tst_fzsync_pair_wait(int * our_cntr,int * other_cntr,int * spins)551 static inline void tst_fzsync_pair_wait(int *our_cntr,
552 					int *other_cntr,
553 					int *spins)
554 {
555 	if (tst_atomic_inc(other_cntr) == INT_MAX) {
556 		/*
557 		 * We are about to break the invariant that the thread with
558 		 * the lowest count is in front of the other. So we must wait
559 		 * here to ensure the other thread has at least reached the
560 		 * line above before doing that. If we are in rear position
561 		 * then our counter may already have been set to zero.
562 		 */
563 		while (tst_atomic_load(our_cntr) > 0
564 		       && tst_atomic_load(our_cntr) < INT_MAX) {
565 			if (spins)
566 				(*spins)++;
567 		}
568 
569 		tst_atomic_store(0, other_cntr);
570 		/*
571 		 * Once both counters have been set to zero the invariant
572 		 * is restored and we can continue.
573 		 */
574 		while (tst_atomic_load(our_cntr) > 1)
575 			;
576 	} else {
577 		/*
578 		 * If our counter is less than the other thread's we are ahead
579 		 * of it and need to wait.
580 		 */
581 		while (tst_atomic_load(our_cntr) < tst_atomic_load(other_cntr)) {
582 			if (spins)
583 				(*spins)++;
584 		}
585 	}
586 }
587 
588 /**
589  * Wait in thread A
590  *
591  * @relates tst_fzsync_pair
592  * @sa tst_fzsync_pair_wait
593  */
tst_fzsync_wait_a(struct tst_fzsync_pair * pair)594 static inline void tst_fzsync_wait_a(struct tst_fzsync_pair *pair)
595 {
596 	tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, NULL);
597 }
598 
599 /**
600  * Wait in thread B
601  *
602  * @relates tst_fzsync_pair
603  * @sa tst_fzsync_pair_wait
604  */
tst_fzsync_wait_b(struct tst_fzsync_pair * pair)605 static inline void tst_fzsync_wait_b(struct tst_fzsync_pair *pair)
606 {
607 	tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, NULL);
608 }
609 
610 /**
611  * Decide whether to continue running thread A
612  *
613  * @relates tst_fzsync_pair
614  *
615  * Checks some values and decides whether it is time to break the loop of
616  * thread A.
617  *
618  * @return True to continue and false to break.
619  * @sa tst_fzsync_run_a
620  */
tst_fzsync_run_a(struct tst_fzsync_pair * pair)621 static inline int tst_fzsync_run_a(struct tst_fzsync_pair *pair)
622 {
623 	int exit = 0;
624 	float rem_p = 1 - tst_timeout_remaining() / pair->exec_time_start;
625 
626 	if ((pair->exec_time_p * SAMPLING_SLICE < rem_p)
627 		&& (pair->sampling > 0)) {
628 		tst_res(TINFO, "Stopped sampling at %d (out of %d) samples, "
629 			"sampling time reached 50%% of the total time limit",
630 			pair->exec_loop, pair->min_samples);
631 		pair->sampling = 0;
632 		tst_fzsync_pair_info(pair);
633 	}
634 
635 	if (pair->exec_time_p < rem_p) {
636 		tst_res(TINFO,
637 			"Exceeded execution time, requesting exit");
638 		exit = 1;
639 	}
640 
641 	if (++pair->exec_loop > pair->exec_loops) {
642 		tst_res(TINFO,
643 			"Exceeded execution loops, requesting exit");
644 		exit = 1;
645 	}
646 
647 	tst_atomic_store(exit, &pair->exit);
648 	tst_fzsync_wait_a(pair);
649 
650 	if (exit) {
651 		tst_fzsync_pair_cleanup(pair);
652 		return 0;
653 	}
654 
655 	return 1;
656 }
657 
658 /**
659  * Decide whether to continue running thread B
660  *
661  * @relates tst_fzsync_pair
662  * @sa tst_fzsync_run_a
663  */
tst_fzsync_run_b(struct tst_fzsync_pair * pair)664 static inline int tst_fzsync_run_b(struct tst_fzsync_pair *pair)
665 {
666 	tst_fzsync_wait_b(pair);
667 	return !tst_atomic_load(&pair->exit);
668 }
669 
670 /**
671  * Marks the start of a race region in thread A
672  *
673  * @relates tst_fzsync_pair
674  *
675  * This should be placed just before performing whatever action can cause a
676  * race condition. Usually it is placed just before a syscall and
677  * tst_fzsync_end_race_a() is placed just afterwards.
678  *
679  * A corresponding call to tst_fzsync_start_race_b() should be made in thread
680  * B.
681  *
682  * @return A non-zero value if the calling thread should continue to loop. If
683  * it returns zero then tst_fzsync_exit() has been called and you must exit
684  * the thread.
685  *
686  * @sa tst_fzsync_pair_update
687  */
tst_fzsync_start_race_a(struct tst_fzsync_pair * pair)688 static inline void tst_fzsync_start_race_a(struct tst_fzsync_pair *pair)
689 {
690 	volatile int delay;
691 
692 	tst_fzsync_pair_update(pair);
693 
694 	tst_fzsync_wait_a(pair);
695 
696 	delay = pair->delay;
697 	while (delay < 0)
698 		delay++;
699 
700 	tst_fzsync_time(&pair->a_start);
701 }
702 
703 /**
704  * Marks the end of a race region in thread A
705  *
706  * @relates tst_fzsync_pair
707  * @sa tst_fzsync_start_race_a
708  */
tst_fzsync_end_race_a(struct tst_fzsync_pair * pair)709 static inline void tst_fzsync_end_race_a(struct tst_fzsync_pair *pair)
710 {
711 	tst_fzsync_time(&pair->a_end);
712 	tst_fzsync_pair_wait(&pair->a_cntr, &pair->b_cntr, &pair->spins);
713 }
714 
715 /**
716  * Marks the start of a race region in thread B
717  *
718  * @relates tst_fzsync_pair
719  * @sa tst_fzsync_start_race_a
720  */
tst_fzsync_start_race_b(struct tst_fzsync_pair * pair)721 static inline void tst_fzsync_start_race_b(struct tst_fzsync_pair *pair)
722 {
723 	volatile int delay;
724 
725 	tst_fzsync_wait_b(pair);
726 
727 	delay = pair->delay;
728 	while (delay > 0)
729 		delay--;
730 
731 	tst_fzsync_time(&pair->b_start);
732 }
733 
734 /**
735  * Marks the end of a race region in thread B
736  *
737  * @relates tst_fzsync_pair
738  * @sa tst_fzsync_start_race_a
739  */
tst_fzsync_end_race_b(struct tst_fzsync_pair * pair)740 static inline void tst_fzsync_end_race_b(struct tst_fzsync_pair *pair)
741 {
742 	tst_fzsync_time(&pair->b_end);
743 	tst_fzsync_pair_wait(&pair->b_cntr, &pair->a_cntr, &pair->spins);
744 }
745 
746 /**
747  * Add some amount to the delay bias
748  *
749  * @relates tst_fzsync_pair
750  * @param change The amount to add, can be negative
751  *
752  * A positive change delays thread B and a negative one delays thread
753  * A.
754  *
755  * It is intended to be used in tests where the time taken by syscall A and/or
756  * B are significantly affected by their chronological order. To the extent
757  * that the delay range will not include the correct values if too many of the
758  * initial samples are taken when the syscalls (or operations within the
759  * syscalls) happen in the wrong order.
760  *
761  * An example of this is cve/cve-2016-7117.c where a call to close() is racing
762  * with a call to recvmmsg(). If close() happens before recvmmsg() has chance
763  * to check if the file descriptor is open then recvmmsg() completes very
764  * quickly. If the call to close() happens once recvmmsg() has already checked
765  * the descriptor it takes much longer. The sample where recvmmsg() completes
766  * quickly is essentially invalid for our purposes. The test uses the simple
767  * heuristic of whether recvmmsg() returns EBADF, to decide if it should call
768  * tst_fzsync_pair_add_bias() to further delay syscall B.
769  */
tst_fzsync_pair_add_bias(struct tst_fzsync_pair * pair,int change)770 static inline void tst_fzsync_pair_add_bias(struct tst_fzsync_pair *pair, int change)
771 {
772 	if (pair->sampling > 0)
773 		pair->delay_bias += change;
774 }
775 
776 #endif /* TST_FUZZY_SYNC_H__ */
777