• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Development on Device Security Level Management
2
3## Overview
4
5### DSLM
6
7The OpenHarmony distributed technology can converge resources from different devices to form a Super Device. Poor security capabilities of any device may threaten the security of the Super Device.
8
9The Device Security Level Management (DSLM) module is introduced to manage the security levels of OpenHarmony devices. When different types of user data are hopped or processed in OpenHarmony distributed services, the DSLM APIs can be called to obtain the security levels of related devices for subsequent processing.
10
11### Basic Concepts
12
13- Device security level
14
15  The security level of an OpenHarmony device depends on the system security capabilities of the device. The OpenHarmony system security capabilities are based on the root of trust (RoT) for boot, RoT for storage, and RoT for compute on the hardware. Security technologies and capabilities focus on device integrity protection, data confidentiality protection, and vulnerability defense.
16
17  The following figure shows the OpenHarmony security architecture.
18
19  ![OpenHarmony system security architecture](figure/ohos_system_security_architecture.png)
20
21  The above figure shows the typical security architecture for a single device. The architecture may vary depending on the risk level as well as the software and hardware resources of the device. The security capabilities of OpenHarmony devices are classified into five levels from SL1 to SL5, based on an industry standard security classification model and actual OpenHarmony service scenarios and device types. In the OpenHarmony ecosystem, higher security levels include all the capabilities of lower security levels by default. The figure below shows the security levels of OpenHarmony devices.
22
23  ![OpenHarmony device security levels](figure/ohos_device_security_level.png)
24
25  - SL1: SL1 is the lowest security level of OpenHarmony devices. Usually equipped with a lightweight operating system and low-end microprocessors, such devices implement simple services and do not need to process sensitive data. SL1 devices are required to support software integrity protection and eliminate common errors. Devices that cannot meet the requirements of SL1 can only be controlled by OpenHarmony devices. They cannot control OpenHarmony devices for more complex service collaboration.
26
27  - SL2: OpenHarmony devices of SL2 can label their own data and define access control rules to implement discretionary access control (DAC). These devices must have basic anti-penetration capabilities. Devices of this level support a lightweight, secure, and isolated environment for deploying a small number of necessary security services.
28
29  - SL3: OpenHarmony devices of SL3 have comprehensive security protection capabilities, and their operating systems have relatively complete security semantics and support mandatory access control (MAC). The system data can be structured as critical elements and non-critical elements. The critical elements are protected by a well-defined security policy model. Devices of this level must have certain anti-penetration capabilities to defend against common vulnerability exploits.
30
31  - SL4: OpenHarmony devices of SL4 must have simplified trusted computing base (TCB) and come with anti-tampering capabilities. The implementation of SL4 should be concise and secure enough. Adequate authentication and arbitration are required for any access to critical elements. Devices of this level have considerable anti-penetration capabilities and can defend against most software attacks.
32
33  - SL5: SL5 indicates the highest security protection capabilities for OpenHarmony devices. The system core software modules must have passed formal verification. Key hardware modules, such as the RoT and cryptographic computing engine, must be able to defend against physical attacks and attacks simulated in labs. Devices at this level must have high-security units, such as dedicated security chips, to enhance the boot, storage, and running of the root of trust (RoT).
34
35- DSLM
36
37  DSLM is a module to manage the security levels of OpenHarmony devices. It verifies and updates device security level information for OpenHarmony devices in collaboration. It also provides an interface for querying the security level of each device.
38
39### Working Principles
40
41The security level of each device in a Super Device provides the decision-making criteria for processing or hopping various user data. For example, the distributed file storage service does not allow sensitive data to be stored on devices with security level lower than SL3.
42
43### Constraints
44
45The default security level of OpenHarmony devices is SL1. Device manufacturers can customize a higher security level based on service requirements. For details, see [Customizing Device Security Levels](#customizing-device-security-levels).
46
47## Development Guidelines
48
49### When to Use
50
51When processing or hopping various user data, a subsystem can invoke the APIs provided by the DSLM module to obtain the security level information of related devices. Then, the subsystems determine the subsequent processing based on the security level and data to be processed.
52
53### Available APIs
54
55All the APIs are native C interfaces for implementing underlying capabilities and are not open to apps. The APIs are described as follows:
56| API| Description|
57| :----------------------------------------------------------- | :------------------------------------------- |
58| int32_t RequestDeviceSecurityInfo(const DeviceIdentify \*identify, const RequestOption \*option, DeviceSecurityInfo \*\*info); | Requests the security level information of a device synchronously.|
59| int32_t RequestDeviceSecurityInfoAsync(const DeviceIdentify \*identify, const RequestOption \*option, DeviceSecurityInfoCallback callback); | Requests the security level information of a device asynchronously.|
60| void FreeDeviceSecurityInfo(DeviceSecurityInfo \*info);       | Releases the device security level information.|
61| int32\_t GetDeviceSecurityLevelValue(const DeviceSecurityInfo \*info, int32_t \*level); | Obtains the device security level from the security level information.|
62
63### How to Develop
64
651. Add the dependencies for compilation.
66
67    ```undefined
68    external_deps += [ "device_security_level:dslm_sdk" ]
69    ```
70
712. Add the header files of dependencies.
72
73    ```cpp
74    #include "device_security_defines.h" // Header file for defining critical data structures.
75    #include "device_security_info.h" // Header file for defining APIs.
76    ```
77
783. Call APIs.
79
80    ```cpp
81    // Obtain the unique device identifier (UDID) of the device of which the security level is to be queried.
82    const DeviceIdentify *device = GetDestDeviceUdid();
83
84    // Obtain the RequestOption.
85    const RequestOption *option = DEFAULT_OPTION;
86
87    // Define a pointer to the device security level obtained.
88    DeviceSecurityInfo *info = NULL;
89
90    // Call RequestDeviceSecurityInfo to obtain the device security level information of the peer device.
91    int32_t ret = RequestDeviceSecurityInfo(device, DEFAULT_OPTION, &info);
92
93    int32_t level = 0;
94    // Obtain the device security level from the device security level information.
95    ret = GetDeviceSecurityLevelValue(info, &level);
96    if (ret == SUCCESS) {
97        // The operation is successful.
98        return;
99    }
100    // Release the memory before the processing is complete.
101    FreeDeviceSecurityInfo(info);
102    ```
103
104### Development Example
105
106A service with the file sharing function needs to be developed. To prevent sensitive files from being shared unintentionally, the following judgments must be performed before any file is sent:
107
108- If the security level of the destination device is SL3 or higher, the service sends the file.
109- If the security level of the destination device is lower than SL3, the service denies the file transfer and display a dialog box to notify the user.
110
111**Example of synchronously obtaining the device security level**
112
113```cpp
114void CheckDestDeviceSecurityLevel(const DeviceIdentify *device, RequestOption *option)
115{
116    // Pointer to the device security level information.
117    DeviceSecurityInfo *info = NULL;
118    // Obtain the security level information of the device.
119    int32_t ret = RequestDeviceSecurityInfo(device, option, &info);
120    if (ret != SUCCESS) {
121        // Failed to obtain the information. You can develop a retry process as required.
122        return;
123    }
124    int32_t level = 0;
125    // Obtain the device security level from the device security level information.
126    ret = GetDeviceSecurityLevelValue(info, &level);
127    if (ret != SUCCESS) {
128        // Failed to obtain the security level. You can develop a retry process as required.
129        return;
130    }
131    // After the device security level is successfully obtained, check the lowest security level required for the current operation.
132    // The lowest device security level required for the current operation is 3.
133    if (level >= 3) {
134        // The security level of the target device meets the requirements. Services are processed properly.
135    } else {
136        // The security level of the target device does not meet the requirements. An alert or dialog box is displayed as required.
137    }
138    // Release the memory before the processing is complete.
139    FreeDeviceSecurityInfo(info);
140}
141```
142
143**Example of asynchronously obtaining the device security level**
144
145```cpp
146// Callback
147void DeviceSecurityInfoCallback(const DeviceIdentify *identify, struct DeviceSecurityInfo *info)
148{
149    int32_t level = 0;
150    // Obtain the device security level from the device security level information.
151    int32_t ret = GetDeviceSecurityLevelValue(info, &level);
152    if (ret != SUCCESS) {
153        // Failed to obtain the information. You can develop a retry process as required.
154        return;
155    }
156    // After the device security level is successfully obtained, check the lowest security level required for the current operation.
157    // The lowest device security level required for the current operation is 3.
158    if (level >= 3) {
159        // The security level of the target device meets the requirements. Services are processed properly.
160    } else {
161        // The security level of the target device does not meet the requirements. An alert or dialog box is displayed as required.
162    }
163    // Release the memory before the processing is complete.
164    FreeDeviceSecurityInfo(info);
165}
166
167void CheckDestDeviceSecurityLevelAsync(const DeviceIdentify *device, RequestOption *option)
168{
169    // Invoke the asynchronous callback to return the device security level obtained.
170    int ret = RequestDeviceSecurityInfoAsync(device, option, DeviceSecurityInfoCallback);
171    if (ret != SUCCESS) {
172        // Failed to obtain the security level. You can develop a retry process as required.
173        // In this case, the callback will not be invoked.
174        return;
175    }
176    // The callback is invoked. Wait for the callback to return the device security level.
177}
178```
179
180## Customizing Device Security Levels
181
182### Device Security Level Credential
183
184To ensure its integrity and non-repudiation, the security level information must be encapsulated in a "device security level credential" (credential for short) file for transmission between devices. In addition to the security level information of the device, the credential may include device attributes, such as the device model and version. Moreover, the credential must be signed using the public key infrastructure (PKI) technology. Other basic security capabilities of OpenHarmony, such as [Device Authentication](https://gitee.com/openharmony/security_deviceauth) and [HUKS](https://gitee.com/openharmony/security_huks), are used to ensure secure transmission of credentials.
185
186### Default Implementation
187
188The DSLM module provides default implementation of security level information synchronization and verification. It is assumed that the security level of all OpenHarmony devices is SL1, and a loose verification scheme is used. For details, see the [source code](https://gitee.com/openharmony/security_device_security_level/tree/master/oem_property/ohos).
189
190You can change the device security level as required. For details about the OpenHarmony device security levels, see [Basic Concepts](#basic-concepts). You can also use more severe verification schemes, including but are not limited to using device-specific credential, periodically downloading updated credentials from a server and strictly authenticating the issuer and validity period of the credentials, and using Trusted Execution Environment (TEE) or even Secure Element (SE) to sign credential files.
191
192### Generating a Credential File
193
194The credential file consists of four Base64-encoded strings, separated by periods (.). The following is an example:
195
196```undefined
197<base64-header>.<base64-payload>.<base64-signature>.<base64-attestation>
198```
199
200#### 1. Construct the `header`.
201
202The header is a fixed JSON string in the following format:
203
204``` json
205{
206    "typ": "DSL"
207}
208```
209
210Encode the header string to Base64 format to obtain `<base64-header>`.
211
212```undefined
213eyJ0eXAiOiAiRFNMIn0=
214```
215
216#### 2. Construct the `payload`.
217
218Construct the payload in a JSON string. The following is an example:
219
220``` json
221{
222    "type": "debug",
223    "manufacture": "ohos",
224    "brand": "rk3568",
225    "model": "rk3568",
226    "softwareVersion": "3.2.2",
227    "securityLevel": "SL1",
228    "signTime": "20220209150259",
229    "version": "1.0.1"
230}
231```
232
233Encode the payload string to Base64 format to obtain `<base64-payload>`.
234
235```undefined
236eyJ0eXBlIjogImRlYnVnIiwgIm1hbnVmYWN0dXJlIjogIm9ob3MiLCAiYnJhbmQiOiAicmszNTY4IiwgIm1vZGVsIjogInJrMzU2OCIsICJzb2Z0d2FyZVZlcnNpb24iOiAiMy4yLjIiLCAic2VjdXJpdHlMZXZlbCI6ICJTTDEiLCAic2lnblRpbWUiOiAiMjAyMjAyMDkxNTAyNTkiLCAidmVyc2lvbiI6ICIxLjAuMSJ9
237```
238
239The fields in the `payload` are described as follows:
240
241|     Field|      Description| Mandatory|       Value Range|
242| :-------------- | :----------------- | :----------- | :-------------------- |
243|      type       |    Credential type.|      Yes|    [debug release]    |
244|   manufacture   |   Device manufacturer information.|      Yes|    string [0..128]    |
245|      brand      |    Device brand.|      Yes|    string [0..128]    |
246|      model      |    Device model.|      Yes|    string [0..128]    |
247| softwareVersion | Device software version.|      Yes|    string [0..128]    |
248|  securityLevel  |  Device security level.|      Yes| [SL1 SL2 SL3 SL4 SL5] |
249|    signTime     |   Time when the credential was signed.|      Yes|    string [0..128]    |
250|     version     |    Credential version.|      Yes|    string [0..32]     |
251|       sn        |    Device SN.|      No|    string [0..128]    |
252|      udid       |   Device UDID.|      No|    string [0..128]    |
253
254#### 3. Construct the `signature`.
255
256Construct the signature of the header and payload.
257
258##### 3.1 Construct the raw data to be signed.
259
260Combine the Base64-encoded header and payload with a period (.) in between to obtain `<base64-head>.<base64-payload>`.
261Example:
262
263```undefined
264eyJ0eXAiOiAiRFNMIn0=.eyJ0eXBlIjogImRlYnVnIiwgIm1hbnVmYWN0dXJlIjogIm9ob3MiLCAiYnJhbmQiOiAicmszNTY4IiwgIm1vZGVsIjogInJrMzU2OCIsICJzb2Z0d2FyZVZlcnNpb24iOiAiMy4yLjIiLCAic2VjdXJpdHlMZXZlbCI6ICJTTDEiLCAic2lnblRpbWUiOiAiMjAyMjAyMDkxNTAyNTkiLCAidmVyc2lvbiI6ICIxLjAuMSJ9
265```
266
267##### 3.2 Generate a private key for signature.
268
269The Elliptic Curve Digital Signature algorithm (ECDSA) is used to sign the raw data in the credential file. Generate an ECDSA key pair `<ecc-l3-pk>` and `<ecc-l3-sk>` first.
270
271> ![notice](../public_sys-resources/icon-notice.gif)**NOTICE**
272>
273> This step must be performed in a secure and reliable environment, for example, a cryptographic machine that meets related security requirements, to ensure that the key used for signature is not disclosed.
274
275##### 3.3 Sign the raw data.
276
277Use the ECC private key `<ecc-l3-sk>` to sign `<base64-head>.<base64-payload>`, and encode the signature to Base64 format to obtain `<base64-signature>`.
278
279```undefined
280MGUCMDb9xoiFzTWVkHDU3VWSVQ59gLyw4TchZ0+eQ3vUfQsLt3Hkg0r7a/PmhkNr3X/mTgIxAIywIRE6vRTRs0xk6xKp8A0XwMMiIyjZlujPJfasCvFonpsvXLAqCAIYbe1J0k4Zfg==
281```
282
283#### 4. Construct the `attestation`.
284
285> ![notice](../public_sys-resources/icon-notice.gif)**NOTICE**
286>
287> This step must be performed in a secure and reliable environment, for example, a cryptographic machine that meets related security requirements, to ensure that the key used for signature is not disclosed.
288> The key pairs involved in this step do not need to be generated each time. Secure key pairs can be reused.
289
290##### 4.1 Generate verification information for an end-entity certificate signature.
291
2921. Generate an ECDSA key pair `<ecc-l2-pk>` and `<ecc-l2-sk>` for an intermediate CA certificate signature.
2932. Use `<ecc-l2-sk>` to sign `<ecc-l3-pk>` (generated in step 3.2) to obtain `<ecc-l3-pk-signature>`.
2943. Combine `<ecc-l3-pk>` and `<ecc-l3-pk-signature>` into a JSON string. The following is an example:
295
296``` json
297{
298    "userPublicKey": "<ecc-l3-pk>",
299    "signature": "<ecc-l3-pk-signature>"
300}
301```
302
303##### 4.2 Generate verification information for an intermediate CA certificate signature.
304
3051. Generate an ECDSA key pair `<ecc-root-pk>` and `<ecc-root-sk>` for a root certificate signature.
3062. Use `<ecc-root-sk>` to sign `<ecc-l2-pk>` (generated in step 4.1) to obtain `<ecc-l2-pk-signature>`.
3073. Combine `<ecc-l3-pk>` and `<ecc-l3-pk-signature>` into a JSON string.
308The following is an example:
309
310``` json
311{
312    "userPublicKey": "<ecc-l2-pk>",
313    "signature": "<ecc-l2-pk-signature>"
314}
315```
316
317##### 4.3 Generate root signature verification information.
318
3191. Use `<ecc-root-sk>` to sign the `<ecc-root-pk>` (generated in step 4.2) to obtain `<ecc-root-pk-self-signature>` (a self-signature).
3202. Combine `<ecc-root-pk>` and `<ecc-root-pk-self-signature>` into a JSON string. The following is an example:
321
322``` json
323{
324    "userPublicKey": "<ecc-root-pk>",
325    "signature": "<ecc-root-pk-self-signature>"
326}
327```
328
329##### 4.4 Generate the `attestation`.
330
3311. Combine the preceding three pieces of signature information into a JSON array.
332
333    ```json
334    [
335        {
336            "userPublicKey": "<ecc-l3-pk>",
337            "signature": "<ecc-l3-pk-signature>"
338        },
339        {
340            "userPublicKey": "<ecc-l2-pk>",
341            "signature": "<ecc-l2-pk-signature>"
342        },
343        {
344            "userPublicKey": "<ecc-root-pk>",
345            "signature": "<ecc-root-pk-self-signature>"
346        }
347    ]
348    ```
349
3502. Encode the JSON array to Base64 format to obtain `<base64-attestation>`.
351
352    ```undefined
353    W3sidXNlclB1YmxpY0tleSI6ICJNSG93RkFZSEtvWkl6ajBDQVFZSkt5UURBd0lJQVFFTEEySUFCREdOMU9xYWZrWFc2a0l1SEZrMVQ0TS84RVJUY3p0eWRDaGtramFROEkzNEc2Q3E1aTNJcnczVnRhQS9KTTF2a0lHOUZDVWRUaHZFUlJFUTFUdG9xemdxZW9SUzVwQW1EYUUyalEwYzdDem8rOHVUWTRIYW1weXZ1TENtenlYUXFnPT0iLCAic2lnbmF0dXJlIjogIk1HTUNMeHVjUnoyZndKZ092QkxyU1U3K1hlVTA3R0EyVXhZbDFMbEJLUnVIUS9wZlNWVHBEd0ZHSTNTb3h5ODR3NThIQWpBeGRtNEY3b3YvYUtEL0NFZi9QZlZDWHVlbE1mQys1L3pkUExXUUJEVnlGdWQrNVdYL3g4U083VXM5UGFhRW1mZz0ifSwgeyJ1c2VyUHVibGljS2V5IjogIk1Ib3dGQVlIS29aSXpqMENBUVlKS3lRREF3SUlBUUVMQTJJQUJHMWU3TDJVd1AyWWxTajB2RWViUGJpNVpLMDh5NS9UeHRWb3VrRFpIUGtSNlRtb2JoVGpyMVRVNzZpUkU4bDlWQlhuU1h1QVB6cjBuSHdKVkdVZVJMdmp4MVh0YUZReE9QNjhjNlIvRTdFWkZ2STdRUFg1N0tvRkhYdkEvVlJaNnc9PSIsICJzaWduYXR1cmUiOiAiTUdRQ01FUVdFNnk0Rm42SFg1ekFvTzNkYzl5cG1Sd2lBclplc2o5aVBROTZEaEhuNXJkRTdNaGFMdWNRZ0MvaXhjSWJsZ0l3QkN5aFBvRUg2RjFITFlwM2xqbWVncVlZQ1E5NHEyZm1kbDB6dHhrWEVTOVpPOVRNSUZQRVpKYlpmUnU5ZHcyOSJ9LCB7InVzZXJQdWJsaWNLZXkiOiAiTUhvd0ZBWUhLb1pJemowQ0FRWUpLeVFEQXdJSUFRRUxBMklBQkZRUUlDWmpWUTV4bkE0c2RMbUJzUmVaMzRJeWdkSmZhanA3SnRReFBzU2RwWTJXV0FneXp6Rm40OFFRRWhoU1BtdzhJYUU3VlJKRENBT3FYRnhGektJbFBFTDFvcFJDUmhhWmJrRzc5Y3ZrWC9HVVhlaFVYc2V2ZGhyb2VRVERFdz09IiwgInNpZ25hdHVyZSI6ICJNR1FDTUdQRndvSDJLbHhwbVZhWXRWV1ViMHpDSUJxYXFXY2F6czFqOVp4YklLUmVkR2tJY0VJdHN0UFoxdnVTanYvNDJnSXdSeGZPcTRoQTdNMHlGV2ZPSndqRTlTc2JsYXhvRDNiRTZCYzN2QjUyMmsyQ0ZJNWJqelpkeUFTVW04d2J2TW5WIn1d
354    ```
355
356#### 5. Construct a complete credential.
357
358Put the four pieces of data together with a period (.) in between to obtain `<base64-header>.<base64-payload>.<base64-signature>.<base64-attestation>`. The following is an example:
359
360```undefined
361eyJ0eXAiOiAiRFNMIn0=.eyJ0eXBlIjogImRlYnVnIiwgIm1hbnVmYWN0dXJlIjogIm9ob3MiLCAiYnJhbmQiOiAicmszNTY4IiwgIm1vZGVsIjogInJrMzU2OCIsICJzb2Z0d2FyZVZlcnNpb24iOiAiMy4yLjIiLCAic2VjdXJpdHlMZXZlbCI6ICJTTDEiLCAic2lnblRpbWUiOiAiMjAyMjAyMDkxNTAyNTkiLCAidmVyc2lvbiI6ICIxLjAuMSJ9.MGUCMDb9xoiFzTWVkHDU3VWSVQ59gLyw4TchZ0+eQ3vUfQsLt3Hkg0r7a/PmhkNr3X/mTgIxAIywIRE6vRTRs0xk6xKp8A0XwMMiIyjZlujPJfasCvFonpsvXLAqCAIYbe1J0k4Zfg==.W3sidXNlclB1YmxpY0tleSI6ICJNSG93RkFZSEtvWkl6ajBDQVFZSkt5UURBd0lJQVFFTEEySUFCREdOMU9xYWZrWFc2a0l1SEZrMVQ0TS84RVJUY3p0eWRDaGtramFROEkzNEc2Q3E1aTNJcnczVnRhQS9KTTF2a0lHOUZDVWRUaHZFUlJFUTFUdG9xemdxZW9SUzVwQW1EYUUyalEwYzdDem8rOHVUWTRIYW1weXZ1TENtenlYUXFnPT0iLCAic2lnbmF0dXJlIjogIk1HTUNMeHVjUnoyZndKZ092QkxyU1U3K1hlVTA3R0EyVXhZbDFMbEJLUnVIUS9wZlNWVHBEd0ZHSTNTb3h5ODR3NThIQWpBeGRtNEY3b3YvYUtEL0NFZi9QZlZDWHVlbE1mQys1L3pkUExXUUJEVnlGdWQrNVdYL3g4U083VXM5UGFhRW1mZz0ifSwgeyJ1c2VyUHVibGljS2V5IjogIk1Ib3dGQVlIS29aSXpqMENBUVlKS3lRREF3SUlBUUVMQTJJQUJHMWU3TDJVd1AyWWxTajB2RWViUGJpNVpLMDh5NS9UeHRWb3VrRFpIUGtSNlRtb2JoVGpyMVRVNzZpUkU4bDlWQlhuU1h1QVB6cjBuSHdKVkdVZVJMdmp4MVh0YUZReE9QNjhjNlIvRTdFWkZ2STdRUFg1N0tvRkhYdkEvVlJaNnc9PSIsICJzaWduYXR1cmUiOiAiTUdRQ01FUVdFNnk0Rm42SFg1ekFvTzNkYzl5cG1Sd2lBclplc2o5aVBROTZEaEhuNXJkRTdNaGFMdWNRZ0MvaXhjSWJsZ0l3QkN5aFBvRUg2RjFITFlwM2xqbWVncVlZQ1E5NHEyZm1kbDB6dHhrWEVTOVpPOVRNSUZQRVpKYlpmUnU5ZHcyOSJ9LCB7InVzZXJQdWJsaWNLZXkiOiAiTUhvd0ZBWUhLb1pJemowQ0FRWUpLeVFEQXdJSUFRRUxBMklBQkZRUUlDWmpWUTV4bkE0c2RMbUJzUmVaMzRJeWdkSmZhanA3SnRReFBzU2RwWTJXV0FneXp6Rm40OFFRRWhoU1BtdzhJYUU3VlJKRENBT3FYRnhGektJbFBFTDFvcFJDUmhhWmJrRzc5Y3ZrWC9HVVhlaFVYc2V2ZGhyb2VRVERFdz09IiwgInNpZ25hdHVyZSI6ICJNR1FDTUdQRndvSDJLbHhwbVZhWXRWV1ViMHpDSUJxYXFXY2F6czFqOVp4YklLUmVkR2tJY0VJdHN0UFoxdnVTanYvNDJnSXdSeGZPcTRoQTdNMHlGV2ZPSndqRTlTc2JsYXhvRDNiRTZCYzN2QjUyMmsyQ0ZJNWJqelpkeUFTVW04d2J2TW5WIn1d
362```
363
364### Credential Exchange Protocol
365
366When detecting a device goes online, the DSLM module requests the device security level credential from the device through the channel provided by [DSoftBus](https://gitee.com/openharmony/communication_dsoftbus).
367
368The packet for requesting the credential is in the following format:
369
370``` json
371{
372    "message": 1,
373    "payload": {
374        "version": 196608,
375        "challenge": "0102030405060708",
376        "support": [
377            300
378        ]
379    }
380}
381```
382
383The fields in the request message are described as follows:
384
385|  Field|               Description|
386| :-------- | :------------------------------------ |
387|  message  | Message header. The value **1** indicates a request for the device security level credential.|
388|  payload  |      Message payload, which is the specific request information.|
389|  version  |           Version of the protocol used by the requester.|
390| challenge |       Challenge value corresponding to this request.|
391|  support  |       List of credential formats supported by the requester.|
392
393After receiving the request, the peer device returns a response in the following format:
394
395``` json
396{
397    "message": 2,
398    "payload": {
399        "version": 196608,
400        "type": 300,
401        "challenge": "0102030405060708",
402        "info": "YWJjZAEDBQcJ..."
403    }
404}
405```
406
407The fields in the response message are described as follows:
408|  Field|                          Description|
409| :-------- | :--------------------------------------------------------- |
410|  message  |           Message header. The value **2** indicates a response to the request for the device security level credential.|
411|  payload  |                Message payload, which is the specific response information.|
412|  version  |                      Version of the protocol used by the responder. |
413|   type    |     Format of the credential returned, which describes how to parse the **info** field.|
414| challenge |                  Challenge value corresponding to this response message.|
415|   info    | Signed credential information, which also includes the device information and challenge value verification information.|
416
417### Tool
418
419The DSLM module provides a [credential tool](https://gitee.com/openharmony/security_device_security_level/blob/master/oem_property/ohos/dslm_cred_tool.py) to help you better understand the issuing and verification of credentials. This tool is a Python script encapsulated with OpenSSL commands.
420You can use the tool as follows:
421
4221. Initialize the signature key.
423
424    ``` undefined
425    ./dslm_cred_tool.py init
426    ```
427
4282. Generate a credential.
429
430   For example, to generate a credential file **cred.txt** with the device model of **rk3568**, device version of **3.0.0**, and device security level of **SL3**, run the following command:
431
432    ``` undefined
433    ./dslm_cred_tool.py create --field-manufacture OHOS --field-brand rk3568  --field-model rk3568 --field-software-version 3.0.0 --field-security-level SL3 --cred-file cred.txt
434    ```
435
436    A credential file is generated as follows:
437
438    ``` undefined
439    cat cred.txt
440    eyJ0eXAiOiAiRFNMIn0=.eyJ0eXBlIjogImRlYnVnIiwgIm1hbnVmYWN0dXJlIjogIk9IT1MiLCAiYnJhbmQiOiAicmszNTY4IiwgIm1vZGVsIjogInJrMzU2OCIsICJzb2Z0d2FyZVZlcnNpb24iOiAiMy4wLjAiLCAic2VjdXJpdHlMZXZlbCI6ICJTTDMiLCAic2lnblRpbWUiOiAiMjAyMjAyMDkxNTUzMDMiLCAidmVyc2lvbiI6ICIxLjAuMSJ9.MGQCMEqZy/snsRyjMupnEvTpQfhQn+IcdCc5Q3NGxllNQVhoZX8PNyw6ATTgyx+26ghmtQIwVH5KwQ4/VejxckeHmtkBVhofhgmRapzvyVnyiB3PdsU7nvHk8A/zC7PFy1CWBG3z.W3sidXNlclB1YmxpY0tleSI6ICJNSG93RkFZSEtvWkl6ajBDQVFZSkt5UURBd0lJQVFFTEEySUFCQzFXRUxSVlU1NGp1U1ZXWlUrT29CM3hacFd5MWg3QW5uSFdKWm5QbTB3S2l0ZlJZelJKZ3FiUGQyZ3ltVXBUWVl1cmhyRDQxbFdPbUNzcmt0VWdaNTFXdGNCTmc5SG1GODkzc2ZHVFM5eUJNS0JoMGcxSHZaSVFSN1k0S3FXaWpnPT0iLCAic2lnbmF0dXJlIjogIk1HUUNNRFVicTZ2Z2R1YVF0bFVwOTR0azd4VjRJcEx2WVZWY3Y4aFNOTkw0azdPRHhmbEVGTHJFaUdPRWhwMUcweGFGYlFJd1pUbTk1cWx4OTBFZnptV3VIOGlEY2ZWYVlQS2N5SEYwR2ZFcEUzb1NESzQwZEFOZ0FJMWVQY09rTzBPOTdnTFAifSwgeyJ1c2VyUHVibGljS2V5IjogIk1Ib3dGQVlIS29aSXpqMENBUVlKS3lRREF3SUlBUUVMQTJJQUJGKzY1a0lSYTM2dkE4QVZWNXFrcUozYXpXTkdGQy9oaVdPL0tFNHR0S1pMOUsyNlhzQ2hQbjVNc3BlT2F3b1dqSU02bTVLOFZTcU1DYlZNN0svY0VRU0tYdDJTeVJGZERVZU9TaFZmQm9YVmxqaXRUU2puN0V5Q2pERVZiWjFRNEE9PSIsICJzaWduYXR1cmUiOiAiTUdRQ01HanF2cnZ5VW1YNVZLVVc1UkFkUTNkZ2hBYmNBazBRQnppQlFWMVFZUTNQMVFPSzdMckM1b0RObXh6T2Y0QUtmd0l3SzVWU2x3ZG5JSUR6Zm9PUXBEUVAycGhTVGgxSGVjbXJRK1F4VGxWelo0aHJsdnJyd2xCNnp0T3pWRFdNblRELyJ9LCB7InVzZXJQdWJsaWNLZXkiOiAiTUhvd0ZBWUhLb1pJemowQ0FRWUpLeVFEQXdJSUFRRUxBMklBQkZCa2FDNE9mc2VTREt2cW8vbU5VaUtXQ3JtK1VDNGFQcjVsODRNM2tMVCtDdkd3OWhqOGJ6d2I1MzNtVVlFZVhWWWtUdFlRYWRURkRJZXV1dGIzNU1QZDlEKytNMFRFWnZvcTY4NFhoYTVQMzBUbVRhK0ZvOG02UWliZWc3TmFQdz09IiwgInNpZ25hdHVyZSI6ICJNR1FDTURJcmpNYzhvODVPRHFZT0R4c05PcmpYdUhvWjM5endpZlhVTkdDc0lkN2xjU2FWcnhCVlNqRjRyaWg5Y1R6T3dRSXdWQXA3RUF5c1pucEI5REJWVWczQzlMeGQ3eTQxWEMwYVVPcGZUKzI3REVvWmM1WVVldDFGa1FwdmFQckduaFhVIn1d
441    ```
442
4433. Verify a credential.
444
445    ``` undefined
446    ./dslm_cred_tool.py verify --cred-file cred.txt
447    ```
448
449    The command output is as follows:
450
451    ``` undefined
452    head:
453    {
454      "typ": "DSL"
455    }
456    payload:
457    {
458      "type": "debug",
459      "manufacture": "OHOS",
460      "brand": "rk3568",
461      "model": "rk3568",
462      "softwareVersion": "3.0.0",
463      "securityLevel": "SL3",
464      "signTime": "20220209155303",
465      "version": "1.0.1"
466    }
467    verify success!
468    ```
469
470## FAQs
471
472- Q: How can I use the credential tool in a production environment?
473
474    A: The credential tool cannot be directly used in the production environment. It is used to demonstrate the format and generation process of credentials. In the production environment, you are advised to generate credentials and save related keys in a cryptographic machine that meets related security requirements.
475
476- Q: How do I verify a credential in a production environment?
477
478    A: You are advised to use a properly kept private key to sign the credential and use more severe signature verification process instead of the default verification process provided by the DSLM module. For example, allow only the credentials issued by trusted certification authorities (CAs), and bind the credential and device ID to enhance the security.
479
480## References
481
482None
483