1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37 #include "coproc.h"
38
39
40 /******************************************************************************
41 * Co-processor emulation
42 *****************************************************************************/
43
write_to_read_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)44 static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 const struct coproc_params *params)
46 {
47 WARN_ONCE(1, "CP15 write to read-only register\n");
48 print_cp_instr(params);
49 kvm_inject_undefined(vcpu);
50 return false;
51 }
52
read_from_write_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)53 static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 const struct coproc_params *params)
55 {
56 WARN_ONCE(1, "CP15 read to write-only register\n");
57 print_cp_instr(params);
58 kvm_inject_undefined(vcpu);
59 return false;
60 }
61
62 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63 static u32 cache_levels;
64
65 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66 #define CSSELR_MAX 12
67
68 /*
69 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70 * of cp15 registers can be viewed either as couple of two u32 registers
71 * or one u64 register. Current u64 register encoding is that least
72 * significant u32 word is followed by most significant u32 word.
73 */
vcpu_cp15_reg64_set(struct kvm_vcpu * vcpu,const struct coproc_reg * r,u64 val)74 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 const struct coproc_reg *r,
76 u64 val)
77 {
78 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80 }
81
vcpu_cp15_reg64_get(struct kvm_vcpu * vcpu,const struct coproc_reg * r)82 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 const struct coproc_reg *r)
84 {
85 u64 val;
86
87 val = vcpu_cp15(vcpu, r->reg + 1);
88 val = val << 32;
89 val = val | vcpu_cp15(vcpu, r->reg);
90 return val;
91 }
92
kvm_handle_cp10_id(struct kvm_vcpu * vcpu,struct kvm_run * run)93 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94 {
95 kvm_inject_undefined(vcpu);
96 return 1;
97 }
98
kvm_handle_cp_0_13_access(struct kvm_vcpu * vcpu,struct kvm_run * run)99 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100 {
101 /*
102 * We can get here, if the host has been built without VFPv3 support,
103 * but the guest attempted a floating point operation.
104 */
105 kvm_inject_undefined(vcpu);
106 return 1;
107 }
108
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)109 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110 {
111 kvm_inject_undefined(vcpu);
112 return 1;
113 }
114
reset_mpidr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)115 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116 {
117 /*
118 * Compute guest MPIDR. We build a virtual cluster out of the
119 * vcpu_id, but we read the 'U' bit from the underlying
120 * hardware directly.
121 */
122 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124 (vcpu->vcpu_id & 3));
125 }
126
127 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
access_actlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)128 static bool access_actlr(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131 {
132 if (p->is_write)
133 return ignore_write(vcpu, p);
134
135 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136 return true;
137 }
138
139 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
access_cbar(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)140 static bool access_cbar(struct kvm_vcpu *vcpu,
141 const struct coproc_params *p,
142 const struct coproc_reg *r)
143 {
144 if (p->is_write)
145 return write_to_read_only(vcpu, p);
146 return read_zero(vcpu, p);
147 }
148
149 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
access_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)150 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151 const struct coproc_params *p,
152 const struct coproc_reg *r)
153 {
154 if (p->is_write)
155 return ignore_write(vcpu, p);
156
157 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158 return true;
159 }
160
reset_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)161 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162 {
163 u32 l2ctlr, ncores;
164
165 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166 l2ctlr &= ~(3 << 24);
167 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168 /* How many cores in the current cluster and the next ones */
169 ncores -= (vcpu->vcpu_id & ~3);
170 /* Cap it to the maximum number of cores in a single cluster */
171 ncores = min(ncores, 3U);
172 l2ctlr |= (ncores & 3) << 24;
173
174 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175 }
176
reset_actlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)177 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178 {
179 u32 actlr;
180
181 /* ACTLR contains SMP bit: make sure you create all cpus first! */
182 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183 /* Make the SMP bit consistent with the guest configuration */
184 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185 actlr |= 1U << 6;
186 else
187 actlr &= ~(1U << 6);
188
189 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190 }
191
192 /*
193 * TRM entries: A7:4.3.50, A15:4.3.49
194 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195 */
access_l2ectlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)196 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197 const struct coproc_params *p,
198 const struct coproc_reg *r)
199 {
200 if (p->is_write)
201 return ignore_write(vcpu, p);
202
203 *vcpu_reg(vcpu, p->Rt1) = 0;
204 return true;
205 }
206
207 /*
208 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209 */
access_dcsw(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)210 static bool access_dcsw(struct kvm_vcpu *vcpu,
211 const struct coproc_params *p,
212 const struct coproc_reg *r)
213 {
214 if (!p->is_write)
215 return read_from_write_only(vcpu, p);
216
217 kvm_set_way_flush(vcpu);
218 return true;
219 }
220
221 /*
222 * Generic accessor for VM registers. Only called as long as HCR_TVM
223 * is set. If the guest enables the MMU, we stop trapping the VM
224 * sys_regs and leave it in complete control of the caches.
225 *
226 * Used by the cpu-specific code.
227 */
access_vm_reg(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)228 bool access_vm_reg(struct kvm_vcpu *vcpu,
229 const struct coproc_params *p,
230 const struct coproc_reg *r)
231 {
232 bool was_enabled = vcpu_has_cache_enabled(vcpu);
233
234 BUG_ON(!p->is_write);
235
236 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237 if (p->is_64bit)
238 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239
240 kvm_toggle_cache(vcpu, was_enabled);
241 return true;
242 }
243
access_gic_sgi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)244 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245 const struct coproc_params *p,
246 const struct coproc_reg *r)
247 {
248 u64 reg;
249 bool g1;
250
251 if (!p->is_write)
252 return read_from_write_only(vcpu, p);
253
254 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
255 reg |= *vcpu_reg(vcpu, p->Rt1) ;
256
257 /*
258 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
259 * Group0 SGIs only, while ICC_SGI1R can generate either group,
260 * depending on the SGI configuration. ICC_ASGI1R is effectively
261 * equivalent to ICC_SGI0R, as there is no "alternative" secure
262 * group.
263 */
264 switch (p->Op1) {
265 default: /* Keep GCC quiet */
266 case 0: /* ICC_SGI1R */
267 g1 = true;
268 break;
269 case 1: /* ICC_ASGI1R */
270 case 2: /* ICC_SGI0R */
271 g1 = false;
272 break;
273 }
274
275 vgic_v3_dispatch_sgi(vcpu, reg, g1);
276
277 return true;
278 }
279
access_gic_sre(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)280 static bool access_gic_sre(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283 {
284 if (p->is_write)
285 return ignore_write(vcpu, p);
286
287 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
288
289 return true;
290 }
291
access_cntp_tval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)292 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
293 const struct coproc_params *p,
294 const struct coproc_reg *r)
295 {
296 u64 now = kvm_phys_timer_read();
297 u64 val;
298
299 if (p->is_write) {
300 val = *vcpu_reg(vcpu, p->Rt1);
301 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
302 } else {
303 val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
304 *vcpu_reg(vcpu, p->Rt1) = val - now;
305 }
306
307 return true;
308 }
309
access_cntp_ctl(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)310 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
311 const struct coproc_params *p,
312 const struct coproc_reg *r)
313 {
314 u32 val;
315
316 if (p->is_write) {
317 val = *vcpu_reg(vcpu, p->Rt1);
318 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
319 } else {
320 val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
321 *vcpu_reg(vcpu, p->Rt1) = val;
322 }
323
324 return true;
325 }
326
access_cntp_cval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)327 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
328 const struct coproc_params *p,
329 const struct coproc_reg *r)
330 {
331 u64 val;
332
333 if (p->is_write) {
334 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
335 val |= *vcpu_reg(vcpu, p->Rt1);
336 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
337 } else {
338 val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
339 *vcpu_reg(vcpu, p->Rt1) = val;
340 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
341 }
342
343 return true;
344 }
345
346 /*
347 * We could trap ID_DFR0 and tell the guest we don't support performance
348 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
349 * NAKed, so it will read the PMCR anyway.
350 *
351 * Therefore we tell the guest we have 0 counters. Unfortunately, we
352 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
353 * all PM registers, which doesn't crash the guest kernel at least.
354 */
trap_raz_wi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)355 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
356 const struct coproc_params *p,
357 const struct coproc_reg *r)
358 {
359 if (p->is_write)
360 return ignore_write(vcpu, p);
361 else
362 return read_zero(vcpu, p);
363 }
364
365 #define access_pmcr trap_raz_wi
366 #define access_pmcntenset trap_raz_wi
367 #define access_pmcntenclr trap_raz_wi
368 #define access_pmovsr trap_raz_wi
369 #define access_pmselr trap_raz_wi
370 #define access_pmceid0 trap_raz_wi
371 #define access_pmceid1 trap_raz_wi
372 #define access_pmccntr trap_raz_wi
373 #define access_pmxevtyper trap_raz_wi
374 #define access_pmxevcntr trap_raz_wi
375 #define access_pmuserenr trap_raz_wi
376 #define access_pmintenset trap_raz_wi
377 #define access_pmintenclr trap_raz_wi
378
379 /* Architected CP15 registers.
380 * CRn denotes the primary register number, but is copied to the CRm in the
381 * user space API for 64-bit register access in line with the terminology used
382 * in the ARM ARM.
383 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
384 * registers preceding 32-bit ones.
385 */
386 static const struct coproc_reg cp15_regs[] = {
387 /* MPIDR: we use VMPIDR for guest access. */
388 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
389 NULL, reset_mpidr, c0_MPIDR },
390
391 /* CSSELR: swapped by interrupt.S. */
392 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
393 NULL, reset_unknown, c0_CSSELR },
394
395 /* ACTLR: trapped by HCR.TAC bit. */
396 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
397 access_actlr, reset_actlr, c1_ACTLR },
398
399 /* CPACR: swapped by interrupt.S. */
400 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
401 NULL, reset_val, c1_CPACR, 0x00000000 },
402
403 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
404 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
405 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
406 access_vm_reg, reset_unknown, c2_TTBR0 },
407 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
408 access_vm_reg, reset_unknown, c2_TTBR1 },
409 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
410 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
411 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
412
413
414 /* DACR: swapped by interrupt.S. */
415 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
416 access_vm_reg, reset_unknown, c3_DACR },
417
418 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
419 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
420 access_vm_reg, reset_unknown, c5_DFSR },
421 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
422 access_vm_reg, reset_unknown, c5_IFSR },
423 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
424 access_vm_reg, reset_unknown, c5_ADFSR },
425 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
426 access_vm_reg, reset_unknown, c5_AIFSR },
427
428 /* DFAR/IFAR: swapped by interrupt.S. */
429 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
430 access_vm_reg, reset_unknown, c6_DFAR },
431 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
432 access_vm_reg, reset_unknown, c6_IFAR },
433
434 /* PAR swapped by interrupt.S */
435 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
436
437 /*
438 * DC{C,I,CI}SW operations:
439 */
440 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
441 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
442 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
443 /*
444 * L2CTLR access (guest wants to know #CPUs).
445 */
446 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
447 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
448 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
449
450 /*
451 * Dummy performance monitor implementation.
452 */
453 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
454 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
455 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
456 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
457 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
458 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
459 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
460 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
461 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
462 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
463 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
464 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
465 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
466
467 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
468 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
469 access_vm_reg, reset_unknown, c10_PRRR},
470 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
471 access_vm_reg, reset_unknown, c10_NMRR},
472
473 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
474 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
475 access_vm_reg, reset_unknown, c10_AMAIR0},
476 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
477 access_vm_reg, reset_unknown, c10_AMAIR1},
478
479 /* ICC_SGI1R */
480 { CRm64(12), Op1( 0), is64, access_gic_sgi},
481
482 /* VBAR: swapped by interrupt.S. */
483 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
484 NULL, reset_val, c12_VBAR, 0x00000000 },
485
486 /* ICC_ASGI1R */
487 { CRm64(12), Op1( 1), is64, access_gic_sgi},
488 /* ICC_SGI0R */
489 { CRm64(12), Op1( 2), is64, access_gic_sgi},
490 /* ICC_SRE */
491 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
492
493 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
494 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
495 access_vm_reg, reset_val, c13_CID, 0x00000000 },
496 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
497 NULL, reset_unknown, c13_TID_URW },
498 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
499 NULL, reset_unknown, c13_TID_URO },
500 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
501 NULL, reset_unknown, c13_TID_PRIV },
502
503 /* CNTP */
504 { CRm64(14), Op1( 2), is64, access_cntp_cval},
505
506 /* CNTKCTL: swapped by interrupt.S. */
507 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
508 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
509
510 /* CNTP */
511 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
512 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
513
514 /* The Configuration Base Address Register. */
515 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
516 };
517
check_reg_table(const struct coproc_reg * table,unsigned int n)518 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
519 {
520 unsigned int i;
521
522 for (i = 1; i < n; i++) {
523 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
524 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
525 return 1;
526 }
527 }
528
529 return 0;
530 }
531
532 /* Target specific emulation tables */
533 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
534
kvm_register_target_coproc_table(struct kvm_coproc_target_table * table)535 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
536 {
537 BUG_ON(check_reg_table(table->table, table->num));
538 target_tables[table->target] = table;
539 }
540
541 /* Get specific register table for this target. */
get_target_table(unsigned target,size_t * num)542 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
543 {
544 struct kvm_coproc_target_table *table;
545
546 table = target_tables[target];
547 *num = table->num;
548 return table->table;
549 }
550
551 #define reg_to_match_value(x) \
552 ({ \
553 unsigned long val; \
554 val = (x)->CRn << 11; \
555 val |= (x)->CRm << 7; \
556 val |= (x)->Op1 << 4; \
557 val |= (x)->Op2 << 1; \
558 val |= !(x)->is_64bit; \
559 val; \
560 })
561
match_reg(const void * key,const void * elt)562 static int match_reg(const void *key, const void *elt)
563 {
564 const unsigned long pval = (unsigned long)key;
565 const struct coproc_reg *r = elt;
566
567 return pval - reg_to_match_value(r);
568 }
569
find_reg(const struct coproc_params * params,const struct coproc_reg table[],unsigned int num)570 static const struct coproc_reg *find_reg(const struct coproc_params *params,
571 const struct coproc_reg table[],
572 unsigned int num)
573 {
574 unsigned long pval = reg_to_match_value(params);
575
576 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
577 }
578
emulate_cp15(struct kvm_vcpu * vcpu,const struct coproc_params * params)579 static int emulate_cp15(struct kvm_vcpu *vcpu,
580 const struct coproc_params *params)
581 {
582 size_t num;
583 const struct coproc_reg *table, *r;
584
585 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
586 params->CRm, params->Op2, params->is_write);
587
588 table = get_target_table(vcpu->arch.target, &num);
589
590 /* Search target-specific then generic table. */
591 r = find_reg(params, table, num);
592 if (!r)
593 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
594
595 if (likely(r)) {
596 /* If we don't have an accessor, we should never get here! */
597 BUG_ON(!r->access);
598
599 if (likely(r->access(vcpu, params, r))) {
600 /* Skip instruction, since it was emulated */
601 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
602 }
603 } else {
604 /* If access function fails, it should complain. */
605 kvm_err("Unsupported guest CP15 access at: %08lx\n",
606 *vcpu_pc(vcpu));
607 print_cp_instr(params);
608 kvm_inject_undefined(vcpu);
609 }
610
611 return 1;
612 }
613
decode_64bit_hsr(struct kvm_vcpu * vcpu)614 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
615 {
616 struct coproc_params params;
617
618 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
619 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
620 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
621 params.is_64bit = true;
622
623 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
624 params.Op2 = 0;
625 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
626 params.CRm = 0;
627
628 return params;
629 }
630
631 /**
632 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
633 * @vcpu: The VCPU pointer
634 * @run: The kvm_run struct
635 */
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)636 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
637 {
638 struct coproc_params params = decode_64bit_hsr(vcpu);
639
640 return emulate_cp15(vcpu, ¶ms);
641 }
642
643 /**
644 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
645 * @vcpu: The VCPU pointer
646 * @run: The kvm_run struct
647 */
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)648 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
649 {
650 struct coproc_params params = decode_64bit_hsr(vcpu);
651
652 /* raz_wi cp14 */
653 trap_raz_wi(vcpu, ¶ms, NULL);
654
655 /* handled */
656 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
657 return 1;
658 }
659
reset_coproc_regs(struct kvm_vcpu * vcpu,const struct coproc_reg * table,size_t num,unsigned long * bmap)660 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
661 const struct coproc_reg *table, size_t num,
662 unsigned long *bmap)
663 {
664 unsigned long i;
665
666 for (i = 0; i < num; i++)
667 if (table[i].reset) {
668 int reg = table[i].reg;
669
670 table[i].reset(vcpu, &table[i]);
671 if (reg > 0 && reg < NR_CP15_REGS) {
672 set_bit(reg, bmap);
673 if (table[i].is_64bit)
674 set_bit(reg + 1, bmap);
675 }
676 }
677 }
678
decode_32bit_hsr(struct kvm_vcpu * vcpu)679 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
680 {
681 struct coproc_params params;
682
683 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
684 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
685 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
686 params.is_64bit = false;
687
688 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
689 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
690 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
691 params.Rt2 = 0;
692
693 return params;
694 }
695
696 /**
697 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
698 * @vcpu: The VCPU pointer
699 * @run: The kvm_run struct
700 */
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)701 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
702 {
703 struct coproc_params params = decode_32bit_hsr(vcpu);
704 return emulate_cp15(vcpu, ¶ms);
705 }
706
707 /**
708 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
709 * @vcpu: The VCPU pointer
710 * @run: The kvm_run struct
711 */
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)712 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
713 {
714 struct coproc_params params = decode_32bit_hsr(vcpu);
715
716 /* raz_wi cp14 */
717 trap_raz_wi(vcpu, ¶ms, NULL);
718
719 /* handled */
720 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
721 return 1;
722 }
723
724 /******************************************************************************
725 * Userspace API
726 *****************************************************************************/
727
index_to_params(u64 id,struct coproc_params * params)728 static bool index_to_params(u64 id, struct coproc_params *params)
729 {
730 switch (id & KVM_REG_SIZE_MASK) {
731 case KVM_REG_SIZE_U32:
732 /* Any unused index bits means it's not valid. */
733 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
734 | KVM_REG_ARM_COPROC_MASK
735 | KVM_REG_ARM_32_CRN_MASK
736 | KVM_REG_ARM_CRM_MASK
737 | KVM_REG_ARM_OPC1_MASK
738 | KVM_REG_ARM_32_OPC2_MASK))
739 return false;
740
741 params->is_64bit = false;
742 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
743 >> KVM_REG_ARM_32_CRN_SHIFT);
744 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
745 >> KVM_REG_ARM_CRM_SHIFT);
746 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
747 >> KVM_REG_ARM_OPC1_SHIFT);
748 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
749 >> KVM_REG_ARM_32_OPC2_SHIFT);
750 return true;
751 case KVM_REG_SIZE_U64:
752 /* Any unused index bits means it's not valid. */
753 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
754 | KVM_REG_ARM_COPROC_MASK
755 | KVM_REG_ARM_CRM_MASK
756 | KVM_REG_ARM_OPC1_MASK))
757 return false;
758 params->is_64bit = true;
759 /* CRm to CRn: see cp15_to_index for details */
760 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
761 >> KVM_REG_ARM_CRM_SHIFT);
762 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
763 >> KVM_REG_ARM_OPC1_SHIFT);
764 params->Op2 = 0;
765 params->CRm = 0;
766 return true;
767 default:
768 return false;
769 }
770 }
771
772 /* Decode an index value, and find the cp15 coproc_reg entry. */
index_to_coproc_reg(struct kvm_vcpu * vcpu,u64 id)773 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
774 u64 id)
775 {
776 size_t num;
777 const struct coproc_reg *table, *r;
778 struct coproc_params params;
779
780 /* We only do cp15 for now. */
781 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
782 return NULL;
783
784 if (!index_to_params(id, ¶ms))
785 return NULL;
786
787 table = get_target_table(vcpu->arch.target, &num);
788 r = find_reg(¶ms, table, num);
789 if (!r)
790 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
791
792 /* Not saved in the cp15 array? */
793 if (r && !r->reg)
794 r = NULL;
795
796 return r;
797 }
798
799 /*
800 * These are the invariant cp15 registers: we let the guest see the host
801 * versions of these, so they're part of the guest state.
802 *
803 * A future CPU may provide a mechanism to present different values to
804 * the guest, or a future kvm may trap them.
805 */
806 /* Unfortunately, there's no register-argument for mrc, so generate. */
807 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
808 static void get_##name(struct kvm_vcpu *v, \
809 const struct coproc_reg *r) \
810 { \
811 u32 val; \
812 \
813 asm volatile("mrc p15, " __stringify(op1) \
814 ", %0, c" __stringify(crn) \
815 ", c" __stringify(crm) \
816 ", " __stringify(op2) "\n" : "=r" (val)); \
817 ((struct coproc_reg *)r)->val = val; \
818 }
819
820 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
821 FUNCTION_FOR32(0, 0, 0, 1, CTR)
822 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
823 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
824 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
825 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
826 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
827 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
828 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
829 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
830 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
831 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
832 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
833 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
834 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
835 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
836 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
837 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
838 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
839 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
840 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
841
842 /* ->val is filled in by kvm_invariant_coproc_table_init() */
843 static struct coproc_reg invariant_cp15[] = {
844 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
845 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
846 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
847 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
848 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
849
850 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
851 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
852
853 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
854 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
855 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
856 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
857 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
858 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
859 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
860 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
861
862 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
863 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
864 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
865 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
866 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
867 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
868 };
869
870 /*
871 * Reads a register value from a userspace address to a kernel
872 * variable. Make sure that register size matches sizeof(*__val).
873 */
reg_from_user(void * val,const void __user * uaddr,u64 id)874 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
875 {
876 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
877 return -EFAULT;
878 return 0;
879 }
880
881 /*
882 * Writes a register value to a userspace address from a kernel variable.
883 * Make sure that register size matches sizeof(*__val).
884 */
reg_to_user(void __user * uaddr,const void * val,u64 id)885 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
886 {
887 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
888 return -EFAULT;
889 return 0;
890 }
891
get_invariant_cp15(u64 id,void __user * uaddr)892 static int get_invariant_cp15(u64 id, void __user *uaddr)
893 {
894 struct coproc_params params;
895 const struct coproc_reg *r;
896 int ret;
897
898 if (!index_to_params(id, ¶ms))
899 return -ENOENT;
900
901 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
902 if (!r)
903 return -ENOENT;
904
905 ret = -ENOENT;
906 if (KVM_REG_SIZE(id) == 4) {
907 u32 val = r->val;
908
909 ret = reg_to_user(uaddr, &val, id);
910 } else if (KVM_REG_SIZE(id) == 8) {
911 ret = reg_to_user(uaddr, &r->val, id);
912 }
913 return ret;
914 }
915
set_invariant_cp15(u64 id,void __user * uaddr)916 static int set_invariant_cp15(u64 id, void __user *uaddr)
917 {
918 struct coproc_params params;
919 const struct coproc_reg *r;
920 int err;
921 u64 val;
922
923 if (!index_to_params(id, ¶ms))
924 return -ENOENT;
925 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
926 if (!r)
927 return -ENOENT;
928
929 err = -ENOENT;
930 if (KVM_REG_SIZE(id) == 4) {
931 u32 val32;
932
933 err = reg_from_user(&val32, uaddr, id);
934 if (!err)
935 val = val32;
936 } else if (KVM_REG_SIZE(id) == 8) {
937 err = reg_from_user(&val, uaddr, id);
938 }
939 if (err)
940 return err;
941
942 /* This is what we mean by invariant: you can't change it. */
943 if (r->val != val)
944 return -EINVAL;
945
946 return 0;
947 }
948
is_valid_cache(u32 val)949 static bool is_valid_cache(u32 val)
950 {
951 u32 level, ctype;
952
953 if (val >= CSSELR_MAX)
954 return false;
955
956 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
957 level = (val >> 1);
958 ctype = (cache_levels >> (level * 3)) & 7;
959
960 switch (ctype) {
961 case 0: /* No cache */
962 return false;
963 case 1: /* Instruction cache only */
964 return (val & 1);
965 case 2: /* Data cache only */
966 case 4: /* Unified cache */
967 return !(val & 1);
968 case 3: /* Separate instruction and data caches */
969 return true;
970 default: /* Reserved: we can't know instruction or data. */
971 return false;
972 }
973 }
974
975 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)976 static u32 get_ccsidr(u32 csselr)
977 {
978 u32 ccsidr;
979
980 /* Make sure noone else changes CSSELR during this! */
981 local_irq_disable();
982 /* Put value into CSSELR */
983 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
984 isb();
985 /* Read result out of CCSIDR */
986 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
987 local_irq_enable();
988
989 return ccsidr;
990 }
991
demux_c15_get(u64 id,void __user * uaddr)992 static int demux_c15_get(u64 id, void __user *uaddr)
993 {
994 u32 val;
995 u32 __user *uval = uaddr;
996
997 /* Fail if we have unknown bits set. */
998 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
999 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1000 return -ENOENT;
1001
1002 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1003 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1004 if (KVM_REG_SIZE(id) != 4)
1005 return -ENOENT;
1006 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1007 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1008 if (!is_valid_cache(val))
1009 return -ENOENT;
1010
1011 return put_user(get_ccsidr(val), uval);
1012 default:
1013 return -ENOENT;
1014 }
1015 }
1016
demux_c15_set(u64 id,void __user * uaddr)1017 static int demux_c15_set(u64 id, void __user *uaddr)
1018 {
1019 u32 val, newval;
1020 u32 __user *uval = uaddr;
1021
1022 /* Fail if we have unknown bits set. */
1023 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1024 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1025 return -ENOENT;
1026
1027 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1028 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1029 if (KVM_REG_SIZE(id) != 4)
1030 return -ENOENT;
1031 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1032 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1033 if (!is_valid_cache(val))
1034 return -ENOENT;
1035
1036 if (get_user(newval, uval))
1037 return -EFAULT;
1038
1039 /* This is also invariant: you can't change it. */
1040 if (newval != get_ccsidr(val))
1041 return -EINVAL;
1042 return 0;
1043 default:
1044 return -ENOENT;
1045 }
1046 }
1047
1048 #ifdef CONFIG_VFPv3
1049 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1050 KVM_REG_ARM_VFP_FPSCR,
1051 KVM_REG_ARM_VFP_FPINST,
1052 KVM_REG_ARM_VFP_FPINST2,
1053 KVM_REG_ARM_VFP_MVFR0,
1054 KVM_REG_ARM_VFP_MVFR1,
1055 KVM_REG_ARM_VFP_FPSID };
1056
num_fp_regs(void)1057 static unsigned int num_fp_regs(void)
1058 {
1059 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1060 return 32;
1061 else
1062 return 16;
1063 }
1064
num_vfp_regs(void)1065 static unsigned int num_vfp_regs(void)
1066 {
1067 /* Normal FP regs + control regs. */
1068 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1069 }
1070
copy_vfp_regids(u64 __user * uindices)1071 static int copy_vfp_regids(u64 __user *uindices)
1072 {
1073 unsigned int i;
1074 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1075 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1076
1077 for (i = 0; i < num_fp_regs(); i++) {
1078 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1079 uindices))
1080 return -EFAULT;
1081 uindices++;
1082 }
1083
1084 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1085 if (put_user(u32reg | vfp_sysregs[i], uindices))
1086 return -EFAULT;
1087 uindices++;
1088 }
1089
1090 return num_vfp_regs();
1091 }
1092
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1093 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1094 {
1095 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1096 u32 val;
1097
1098 /* Fail if we have unknown bits set. */
1099 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1100 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1101 return -ENOENT;
1102
1103 if (vfpid < num_fp_regs()) {
1104 if (KVM_REG_SIZE(id) != 8)
1105 return -ENOENT;
1106 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1107 id);
1108 }
1109
1110 /* FP control registers are all 32 bit. */
1111 if (KVM_REG_SIZE(id) != 4)
1112 return -ENOENT;
1113
1114 switch (vfpid) {
1115 case KVM_REG_ARM_VFP_FPEXC:
1116 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1117 case KVM_REG_ARM_VFP_FPSCR:
1118 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1119 case KVM_REG_ARM_VFP_FPINST:
1120 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1121 case KVM_REG_ARM_VFP_FPINST2:
1122 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1123 case KVM_REG_ARM_VFP_MVFR0:
1124 val = fmrx(MVFR0);
1125 return reg_to_user(uaddr, &val, id);
1126 case KVM_REG_ARM_VFP_MVFR1:
1127 val = fmrx(MVFR1);
1128 return reg_to_user(uaddr, &val, id);
1129 case KVM_REG_ARM_VFP_FPSID:
1130 val = fmrx(FPSID);
1131 return reg_to_user(uaddr, &val, id);
1132 default:
1133 return -ENOENT;
1134 }
1135 }
1136
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1137 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1138 {
1139 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1140 u32 val;
1141
1142 /* Fail if we have unknown bits set. */
1143 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1144 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1145 return -ENOENT;
1146
1147 if (vfpid < num_fp_regs()) {
1148 if (KVM_REG_SIZE(id) != 8)
1149 return -ENOENT;
1150 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1151 uaddr, id);
1152 }
1153
1154 /* FP control registers are all 32 bit. */
1155 if (KVM_REG_SIZE(id) != 4)
1156 return -ENOENT;
1157
1158 switch (vfpid) {
1159 case KVM_REG_ARM_VFP_FPEXC:
1160 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1161 case KVM_REG_ARM_VFP_FPSCR:
1162 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1163 case KVM_REG_ARM_VFP_FPINST:
1164 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1165 case KVM_REG_ARM_VFP_FPINST2:
1166 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1167 /* These are invariant. */
1168 case KVM_REG_ARM_VFP_MVFR0:
1169 if (reg_from_user(&val, uaddr, id))
1170 return -EFAULT;
1171 if (val != fmrx(MVFR0))
1172 return -EINVAL;
1173 return 0;
1174 case KVM_REG_ARM_VFP_MVFR1:
1175 if (reg_from_user(&val, uaddr, id))
1176 return -EFAULT;
1177 if (val != fmrx(MVFR1))
1178 return -EINVAL;
1179 return 0;
1180 case KVM_REG_ARM_VFP_FPSID:
1181 if (reg_from_user(&val, uaddr, id))
1182 return -EFAULT;
1183 if (val != fmrx(FPSID))
1184 return -EINVAL;
1185 return 0;
1186 default:
1187 return -ENOENT;
1188 }
1189 }
1190 #else /* !CONFIG_VFPv3 */
num_vfp_regs(void)1191 static unsigned int num_vfp_regs(void)
1192 {
1193 return 0;
1194 }
1195
copy_vfp_regids(u64 __user * uindices)1196 static int copy_vfp_regids(u64 __user *uindices)
1197 {
1198 return 0;
1199 }
1200
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1201 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1202 {
1203 return -ENOENT;
1204 }
1205
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1206 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1207 {
1208 return -ENOENT;
1209 }
1210 #endif /* !CONFIG_VFPv3 */
1211
kvm_arm_coproc_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1212 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1213 {
1214 const struct coproc_reg *r;
1215 void __user *uaddr = (void __user *)(long)reg->addr;
1216 int ret;
1217
1218 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1219 return demux_c15_get(reg->id, uaddr);
1220
1221 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1222 return vfp_get_reg(vcpu, reg->id, uaddr);
1223
1224 r = index_to_coproc_reg(vcpu, reg->id);
1225 if (!r)
1226 return get_invariant_cp15(reg->id, uaddr);
1227
1228 ret = -ENOENT;
1229 if (KVM_REG_SIZE(reg->id) == 8) {
1230 u64 val;
1231
1232 val = vcpu_cp15_reg64_get(vcpu, r);
1233 ret = reg_to_user(uaddr, &val, reg->id);
1234 } else if (KVM_REG_SIZE(reg->id) == 4) {
1235 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1236 }
1237
1238 return ret;
1239 }
1240
kvm_arm_coproc_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1241 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1242 {
1243 const struct coproc_reg *r;
1244 void __user *uaddr = (void __user *)(long)reg->addr;
1245 int ret;
1246
1247 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1248 return demux_c15_set(reg->id, uaddr);
1249
1250 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1251 return vfp_set_reg(vcpu, reg->id, uaddr);
1252
1253 r = index_to_coproc_reg(vcpu, reg->id);
1254 if (!r)
1255 return set_invariant_cp15(reg->id, uaddr);
1256
1257 ret = -ENOENT;
1258 if (KVM_REG_SIZE(reg->id) == 8) {
1259 u64 val;
1260
1261 ret = reg_from_user(&val, uaddr, reg->id);
1262 if (!ret)
1263 vcpu_cp15_reg64_set(vcpu, r, val);
1264 } else if (KVM_REG_SIZE(reg->id) == 4) {
1265 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1266 }
1267
1268 return ret;
1269 }
1270
num_demux_regs(void)1271 static unsigned int num_demux_regs(void)
1272 {
1273 unsigned int i, count = 0;
1274
1275 for (i = 0; i < CSSELR_MAX; i++)
1276 if (is_valid_cache(i))
1277 count++;
1278
1279 return count;
1280 }
1281
write_demux_regids(u64 __user * uindices)1282 static int write_demux_regids(u64 __user *uindices)
1283 {
1284 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1285 unsigned int i;
1286
1287 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1288 for (i = 0; i < CSSELR_MAX; i++) {
1289 if (!is_valid_cache(i))
1290 continue;
1291 if (put_user(val | i, uindices))
1292 return -EFAULT;
1293 uindices++;
1294 }
1295 return 0;
1296 }
1297
cp15_to_index(const struct coproc_reg * reg)1298 static u64 cp15_to_index(const struct coproc_reg *reg)
1299 {
1300 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1301 if (reg->is_64bit) {
1302 val |= KVM_REG_SIZE_U64;
1303 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1304 /*
1305 * CRn always denotes the primary coproc. reg. nr. for the
1306 * in-kernel representation, but the user space API uses the
1307 * CRm for the encoding, because it is modelled after the
1308 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1309 * B3-1445
1310 */
1311 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1312 } else {
1313 val |= KVM_REG_SIZE_U32;
1314 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1315 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1316 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1317 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1318 }
1319 return val;
1320 }
1321
copy_reg_to_user(const struct coproc_reg * reg,u64 __user ** uind)1322 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1323 {
1324 if (!*uind)
1325 return true;
1326
1327 if (put_user(cp15_to_index(reg), *uind))
1328 return false;
1329
1330 (*uind)++;
1331 return true;
1332 }
1333
1334 /* Assumed ordered tables, see kvm_coproc_table_init. */
walk_cp15(struct kvm_vcpu * vcpu,u64 __user * uind)1335 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1336 {
1337 const struct coproc_reg *i1, *i2, *end1, *end2;
1338 unsigned int total = 0;
1339 size_t num;
1340
1341 /* We check for duplicates here, to allow arch-specific overrides. */
1342 i1 = get_target_table(vcpu->arch.target, &num);
1343 end1 = i1 + num;
1344 i2 = cp15_regs;
1345 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1346
1347 BUG_ON(i1 == end1 || i2 == end2);
1348
1349 /* Walk carefully, as both tables may refer to the same register. */
1350 while (i1 || i2) {
1351 int cmp = cmp_reg(i1, i2);
1352 /* target-specific overrides generic entry. */
1353 if (cmp <= 0) {
1354 /* Ignore registers we trap but don't save. */
1355 if (i1->reg) {
1356 if (!copy_reg_to_user(i1, &uind))
1357 return -EFAULT;
1358 total++;
1359 }
1360 } else {
1361 /* Ignore registers we trap but don't save. */
1362 if (i2->reg) {
1363 if (!copy_reg_to_user(i2, &uind))
1364 return -EFAULT;
1365 total++;
1366 }
1367 }
1368
1369 if (cmp <= 0 && ++i1 == end1)
1370 i1 = NULL;
1371 if (cmp >= 0 && ++i2 == end2)
1372 i2 = NULL;
1373 }
1374 return total;
1375 }
1376
kvm_arm_num_coproc_regs(struct kvm_vcpu * vcpu)1377 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1378 {
1379 return ARRAY_SIZE(invariant_cp15)
1380 + num_demux_regs()
1381 + num_vfp_regs()
1382 + walk_cp15(vcpu, (u64 __user *)NULL);
1383 }
1384
kvm_arm_copy_coproc_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)1385 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1386 {
1387 unsigned int i;
1388 int err;
1389
1390 /* Then give them all the invariant registers' indices. */
1391 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1392 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1393 return -EFAULT;
1394 uindices++;
1395 }
1396
1397 err = walk_cp15(vcpu, uindices);
1398 if (err < 0)
1399 return err;
1400 uindices += err;
1401
1402 err = copy_vfp_regids(uindices);
1403 if (err < 0)
1404 return err;
1405 uindices += err;
1406
1407 return write_demux_regids(uindices);
1408 }
1409
kvm_coproc_table_init(void)1410 void kvm_coproc_table_init(void)
1411 {
1412 unsigned int i;
1413
1414 /* Make sure tables are unique and in order. */
1415 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1416 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1417
1418 /* We abuse the reset function to overwrite the table itself. */
1419 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1420 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1421
1422 /*
1423 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1424 *
1425 * If software reads the Cache Type fields from Ctype1
1426 * upwards, once it has seen a value of 0b000, no caches
1427 * exist at further-out levels of the hierarchy. So, for
1428 * example, if Ctype3 is the first Cache Type field with a
1429 * value of 0b000, the values of Ctype4 to Ctype7 must be
1430 * ignored.
1431 */
1432 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1433 for (i = 0; i < 7; i++)
1434 if (((cache_levels >> (i*3)) & 7) == 0)
1435 break;
1436 /* Clear all higher bits. */
1437 cache_levels &= (1 << (i*3))-1;
1438 }
1439
1440 /**
1441 * kvm_reset_coprocs - sets cp15 registers to reset value
1442 * @vcpu: The VCPU pointer
1443 *
1444 * This function finds the right table above and sets the registers on the
1445 * virtual CPU struct to their architecturally defined reset values.
1446 */
kvm_reset_coprocs(struct kvm_vcpu * vcpu)1447 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1448 {
1449 size_t num;
1450 const struct coproc_reg *table;
1451 DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1452
1453 /* Generic chip reset first (so target could override). */
1454 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1455
1456 table = get_target_table(vcpu->arch.target, &num);
1457 reset_coproc_regs(vcpu, table, num, bmap);
1458
1459 for (num = 1; num < NR_CP15_REGS; num++)
1460 WARN(!test_bit(num, bmap),
1461 "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1462 }
1463