• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Authors: Rusty Russell <rusty@rustcorp.com.au>
4  *          Christoffer Dall <c.dall@virtualopensystems.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18  */
19 
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37 #include "coproc.h"
38 
39 
40 /******************************************************************************
41  * Co-processor emulation
42  *****************************************************************************/
43 
write_to_read_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)44 static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 			       const struct coproc_params *params)
46 {
47 	WARN_ONCE(1, "CP15 write to read-only register\n");
48 	print_cp_instr(params);
49 	kvm_inject_undefined(vcpu);
50 	return false;
51 }
52 
read_from_write_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)53 static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 				 const struct coproc_params *params)
55 {
56 	WARN_ONCE(1, "CP15 read to write-only register\n");
57 	print_cp_instr(params);
58 	kvm_inject_undefined(vcpu);
59 	return false;
60 }
61 
62 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63 static u32 cache_levels;
64 
65 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66 #define CSSELR_MAX 12
67 
68 /*
69  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70  * of cp15 registers can be viewed either as couple of two u32 registers
71  * or one u64 register. Current u64 register encoding is that least
72  * significant u32 word is followed by most significant u32 word.
73  */
vcpu_cp15_reg64_set(struct kvm_vcpu * vcpu,const struct coproc_reg * r,u64 val)74 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 				       const struct coproc_reg *r,
76 				       u64 val)
77 {
78 	vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 	vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80 }
81 
vcpu_cp15_reg64_get(struct kvm_vcpu * vcpu,const struct coproc_reg * r)82 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 				      const struct coproc_reg *r)
84 {
85 	u64 val;
86 
87 	val = vcpu_cp15(vcpu, r->reg + 1);
88 	val = val << 32;
89 	val = val | vcpu_cp15(vcpu, r->reg);
90 	return val;
91 }
92 
kvm_handle_cp10_id(struct kvm_vcpu * vcpu,struct kvm_run * run)93 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94 {
95 	kvm_inject_undefined(vcpu);
96 	return 1;
97 }
98 
kvm_handle_cp_0_13_access(struct kvm_vcpu * vcpu,struct kvm_run * run)99 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100 {
101 	/*
102 	 * We can get here, if the host has been built without VFPv3 support,
103 	 * but the guest attempted a floating point operation.
104 	 */
105 	kvm_inject_undefined(vcpu);
106 	return 1;
107 }
108 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)109 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110 {
111 	kvm_inject_undefined(vcpu);
112 	return 1;
113 }
114 
reset_mpidr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)115 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116 {
117 	/*
118 	 * Compute guest MPIDR. We build a virtual cluster out of the
119 	 * vcpu_id, but we read the 'U' bit from the underlying
120 	 * hardware directly.
121 	 */
122 	vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123 				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124 				     (vcpu->vcpu_id & 3));
125 }
126 
127 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
access_actlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)128 static bool access_actlr(struct kvm_vcpu *vcpu,
129 			 const struct coproc_params *p,
130 			 const struct coproc_reg *r)
131 {
132 	if (p->is_write)
133 		return ignore_write(vcpu, p);
134 
135 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136 	return true;
137 }
138 
139 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
access_cbar(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)140 static bool access_cbar(struct kvm_vcpu *vcpu,
141 			const struct coproc_params *p,
142 			const struct coproc_reg *r)
143 {
144 	if (p->is_write)
145 		return write_to_read_only(vcpu, p);
146 	return read_zero(vcpu, p);
147 }
148 
149 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
access_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)150 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151 			  const struct coproc_params *p,
152 			  const struct coproc_reg *r)
153 {
154 	if (p->is_write)
155 		return ignore_write(vcpu, p);
156 
157 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158 	return true;
159 }
160 
reset_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)161 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162 {
163 	u32 l2ctlr, ncores;
164 
165 	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166 	l2ctlr &= ~(3 << 24);
167 	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168 	/* How many cores in the current cluster and the next ones */
169 	ncores -= (vcpu->vcpu_id & ~3);
170 	/* Cap it to the maximum number of cores in a single cluster */
171 	ncores = min(ncores, 3U);
172 	l2ctlr |= (ncores & 3) << 24;
173 
174 	vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175 }
176 
reset_actlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)177 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178 {
179 	u32 actlr;
180 
181 	/* ACTLR contains SMP bit: make sure you create all cpus first! */
182 	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183 	/* Make the SMP bit consistent with the guest configuration */
184 	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185 		actlr |= 1U << 6;
186 	else
187 		actlr &= ~(1U << 6);
188 
189 	vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190 }
191 
192 /*
193  * TRM entries: A7:4.3.50, A15:4.3.49
194  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195  */
access_l2ectlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)196 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197 			   const struct coproc_params *p,
198 			   const struct coproc_reg *r)
199 {
200 	if (p->is_write)
201 		return ignore_write(vcpu, p);
202 
203 	*vcpu_reg(vcpu, p->Rt1) = 0;
204 	return true;
205 }
206 
207 /*
208  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209  */
access_dcsw(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)210 static bool access_dcsw(struct kvm_vcpu *vcpu,
211 			const struct coproc_params *p,
212 			const struct coproc_reg *r)
213 {
214 	if (!p->is_write)
215 		return read_from_write_only(vcpu, p);
216 
217 	kvm_set_way_flush(vcpu);
218 	return true;
219 }
220 
221 /*
222  * Generic accessor for VM registers. Only called as long as HCR_TVM
223  * is set.  If the guest enables the MMU, we stop trapping the VM
224  * sys_regs and leave it in complete control of the caches.
225  *
226  * Used by the cpu-specific code.
227  */
access_vm_reg(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)228 bool access_vm_reg(struct kvm_vcpu *vcpu,
229 		   const struct coproc_params *p,
230 		   const struct coproc_reg *r)
231 {
232 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
233 
234 	BUG_ON(!p->is_write);
235 
236 	vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237 	if (p->is_64bit)
238 		vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239 
240 	kvm_toggle_cache(vcpu, was_enabled);
241 	return true;
242 }
243 
access_gic_sgi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)244 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245 			   const struct coproc_params *p,
246 			   const struct coproc_reg *r)
247 {
248 	u64 reg;
249 	bool g1;
250 
251 	if (!p->is_write)
252 		return read_from_write_only(vcpu, p);
253 
254 	reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
255 	reg |= *vcpu_reg(vcpu, p->Rt1) ;
256 
257 	/*
258 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
259 	 * Group0 SGIs only, while ICC_SGI1R can generate either group,
260 	 * depending on the SGI configuration. ICC_ASGI1R is effectively
261 	 * equivalent to ICC_SGI0R, as there is no "alternative" secure
262 	 * group.
263 	 */
264 	switch (p->Op1) {
265 	default:		/* Keep GCC quiet */
266 	case 0:			/* ICC_SGI1R */
267 		g1 = true;
268 		break;
269 	case 1:			/* ICC_ASGI1R */
270 	case 2:			/* ICC_SGI0R */
271 		g1 = false;
272 		break;
273 	}
274 
275 	vgic_v3_dispatch_sgi(vcpu, reg, g1);
276 
277 	return true;
278 }
279 
access_gic_sre(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)280 static bool access_gic_sre(struct kvm_vcpu *vcpu,
281 			   const struct coproc_params *p,
282 			   const struct coproc_reg *r)
283 {
284 	if (p->is_write)
285 		return ignore_write(vcpu, p);
286 
287 	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
288 
289 	return true;
290 }
291 
access_cntp_tval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)292 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
293 			     const struct coproc_params *p,
294 			     const struct coproc_reg *r)
295 {
296 	u64 now = kvm_phys_timer_read();
297 	u64 val;
298 
299 	if (p->is_write) {
300 		val = *vcpu_reg(vcpu, p->Rt1);
301 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
302 	} else {
303 		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
304 		*vcpu_reg(vcpu, p->Rt1) = val - now;
305 	}
306 
307 	return true;
308 }
309 
access_cntp_ctl(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)310 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
311 			    const struct coproc_params *p,
312 			    const struct coproc_reg *r)
313 {
314 	u32 val;
315 
316 	if (p->is_write) {
317 		val = *vcpu_reg(vcpu, p->Rt1);
318 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
319 	} else {
320 		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
321 		*vcpu_reg(vcpu, p->Rt1) = val;
322 	}
323 
324 	return true;
325 }
326 
access_cntp_cval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)327 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
328 			     const struct coproc_params *p,
329 			     const struct coproc_reg *r)
330 {
331 	u64 val;
332 
333 	if (p->is_write) {
334 		val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
335 		val |= *vcpu_reg(vcpu, p->Rt1);
336 		kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
337 	} else {
338 		val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
339 		*vcpu_reg(vcpu, p->Rt1) = val;
340 		*vcpu_reg(vcpu, p->Rt2) = val >> 32;
341 	}
342 
343 	return true;
344 }
345 
346 /*
347  * We could trap ID_DFR0 and tell the guest we don't support performance
348  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
349  * NAKed, so it will read the PMCR anyway.
350  *
351  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
352  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
353  * all PM registers, which doesn't crash the guest kernel at least.
354  */
trap_raz_wi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)355 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
356 		    const struct coproc_params *p,
357 		    const struct coproc_reg *r)
358 {
359 	if (p->is_write)
360 		return ignore_write(vcpu, p);
361 	else
362 		return read_zero(vcpu, p);
363 }
364 
365 #define access_pmcr trap_raz_wi
366 #define access_pmcntenset trap_raz_wi
367 #define access_pmcntenclr trap_raz_wi
368 #define access_pmovsr trap_raz_wi
369 #define access_pmselr trap_raz_wi
370 #define access_pmceid0 trap_raz_wi
371 #define access_pmceid1 trap_raz_wi
372 #define access_pmccntr trap_raz_wi
373 #define access_pmxevtyper trap_raz_wi
374 #define access_pmxevcntr trap_raz_wi
375 #define access_pmuserenr trap_raz_wi
376 #define access_pmintenset trap_raz_wi
377 #define access_pmintenclr trap_raz_wi
378 
379 /* Architected CP15 registers.
380  * CRn denotes the primary register number, but is copied to the CRm in the
381  * user space API for 64-bit register access in line with the terminology used
382  * in the ARM ARM.
383  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
384  *            registers preceding 32-bit ones.
385  */
386 static const struct coproc_reg cp15_regs[] = {
387 	/* MPIDR: we use VMPIDR for guest access. */
388 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
389 			NULL, reset_mpidr, c0_MPIDR },
390 
391 	/* CSSELR: swapped by interrupt.S. */
392 	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
393 			NULL, reset_unknown, c0_CSSELR },
394 
395 	/* ACTLR: trapped by HCR.TAC bit. */
396 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
397 			access_actlr, reset_actlr, c1_ACTLR },
398 
399 	/* CPACR: swapped by interrupt.S. */
400 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
401 			NULL, reset_val, c1_CPACR, 0x00000000 },
402 
403 	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
404 	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
405 	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
406 			access_vm_reg, reset_unknown, c2_TTBR0 },
407 	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
408 			access_vm_reg, reset_unknown, c2_TTBR1 },
409 	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
410 			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
411 	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
412 
413 
414 	/* DACR: swapped by interrupt.S. */
415 	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
416 			access_vm_reg, reset_unknown, c3_DACR },
417 
418 	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
419 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
420 			access_vm_reg, reset_unknown, c5_DFSR },
421 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
422 			access_vm_reg, reset_unknown, c5_IFSR },
423 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
424 			access_vm_reg, reset_unknown, c5_ADFSR },
425 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
426 			access_vm_reg, reset_unknown, c5_AIFSR },
427 
428 	/* DFAR/IFAR: swapped by interrupt.S. */
429 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
430 			access_vm_reg, reset_unknown, c6_DFAR },
431 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
432 			access_vm_reg, reset_unknown, c6_IFAR },
433 
434 	/* PAR swapped by interrupt.S */
435 	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
436 
437 	/*
438 	 * DC{C,I,CI}SW operations:
439 	 */
440 	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
441 	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
442 	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
443 	/*
444 	 * L2CTLR access (guest wants to know #CPUs).
445 	 */
446 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
447 			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
448 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
449 
450 	/*
451 	 * Dummy performance monitor implementation.
452 	 */
453 	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
454 	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
455 	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
456 	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
457 	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
458 	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
459 	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
460 	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
461 	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
462 	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
463 	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
464 	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
465 	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
466 
467 	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
468 	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
469 			access_vm_reg, reset_unknown, c10_PRRR},
470 	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
471 			access_vm_reg, reset_unknown, c10_NMRR},
472 
473 	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
474 	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
475 			access_vm_reg, reset_unknown, c10_AMAIR0},
476 	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
477 			access_vm_reg, reset_unknown, c10_AMAIR1},
478 
479 	/* ICC_SGI1R */
480 	{ CRm64(12), Op1( 0), is64, access_gic_sgi},
481 
482 	/* VBAR: swapped by interrupt.S. */
483 	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
484 			NULL, reset_val, c12_VBAR, 0x00000000 },
485 
486 	/* ICC_ASGI1R */
487 	{ CRm64(12), Op1( 1), is64, access_gic_sgi},
488 	/* ICC_SGI0R */
489 	{ CRm64(12), Op1( 2), is64, access_gic_sgi},
490 	/* ICC_SRE */
491 	{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
492 
493 	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
494 	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
495 			access_vm_reg, reset_val, c13_CID, 0x00000000 },
496 	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
497 			NULL, reset_unknown, c13_TID_URW },
498 	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
499 			NULL, reset_unknown, c13_TID_URO },
500 	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
501 			NULL, reset_unknown, c13_TID_PRIV },
502 
503 	/* CNTP */
504 	{ CRm64(14), Op1( 2), is64, access_cntp_cval},
505 
506 	/* CNTKCTL: swapped by interrupt.S. */
507 	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
508 			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
509 
510 	/* CNTP */
511 	{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
512 	{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
513 
514 	/* The Configuration Base Address Register. */
515 	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
516 };
517 
check_reg_table(const struct coproc_reg * table,unsigned int n)518 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
519 {
520 	unsigned int i;
521 
522 	for (i = 1; i < n; i++) {
523 		if (cmp_reg(&table[i-1], &table[i]) >= 0) {
524 			kvm_err("reg table %p out of order (%d)\n", table, i - 1);
525 			return 1;
526 		}
527 	}
528 
529 	return 0;
530 }
531 
532 /* Target specific emulation tables */
533 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
534 
kvm_register_target_coproc_table(struct kvm_coproc_target_table * table)535 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
536 {
537 	BUG_ON(check_reg_table(table->table, table->num));
538 	target_tables[table->target] = table;
539 }
540 
541 /* Get specific register table for this target. */
get_target_table(unsigned target,size_t * num)542 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
543 {
544 	struct kvm_coproc_target_table *table;
545 
546 	table = target_tables[target];
547 	*num = table->num;
548 	return table->table;
549 }
550 
551 #define reg_to_match_value(x)						\
552 	({								\
553 		unsigned long val;					\
554 		val  = (x)->CRn << 11;					\
555 		val |= (x)->CRm << 7;					\
556 		val |= (x)->Op1 << 4;					\
557 		val |= (x)->Op2 << 1;					\
558 		val |= !(x)->is_64bit;					\
559 		val;							\
560 	 })
561 
match_reg(const void * key,const void * elt)562 static int match_reg(const void *key, const void *elt)
563 {
564 	const unsigned long pval = (unsigned long)key;
565 	const struct coproc_reg *r = elt;
566 
567 	return pval - reg_to_match_value(r);
568 }
569 
find_reg(const struct coproc_params * params,const struct coproc_reg table[],unsigned int num)570 static const struct coproc_reg *find_reg(const struct coproc_params *params,
571 					 const struct coproc_reg table[],
572 					 unsigned int num)
573 {
574 	unsigned long pval = reg_to_match_value(params);
575 
576 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
577 }
578 
emulate_cp15(struct kvm_vcpu * vcpu,const struct coproc_params * params)579 static int emulate_cp15(struct kvm_vcpu *vcpu,
580 			const struct coproc_params *params)
581 {
582 	size_t num;
583 	const struct coproc_reg *table, *r;
584 
585 	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
586 				   params->CRm, params->Op2, params->is_write);
587 
588 	table = get_target_table(vcpu->arch.target, &num);
589 
590 	/* Search target-specific then generic table. */
591 	r = find_reg(params, table, num);
592 	if (!r)
593 		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
594 
595 	if (likely(r)) {
596 		/* If we don't have an accessor, we should never get here! */
597 		BUG_ON(!r->access);
598 
599 		if (likely(r->access(vcpu, params, r))) {
600 			/* Skip instruction, since it was emulated */
601 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
602 		}
603 	} else {
604 		/* If access function fails, it should complain. */
605 		kvm_err("Unsupported guest CP15 access at: %08lx\n",
606 			*vcpu_pc(vcpu));
607 		print_cp_instr(params);
608 		kvm_inject_undefined(vcpu);
609 	}
610 
611 	return 1;
612 }
613 
decode_64bit_hsr(struct kvm_vcpu * vcpu)614 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
615 {
616 	struct coproc_params params;
617 
618 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
619 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
620 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
621 	params.is_64bit = true;
622 
623 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
624 	params.Op2 = 0;
625 	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
626 	params.CRm = 0;
627 
628 	return params;
629 }
630 
631 /**
632  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
633  * @vcpu: The VCPU pointer
634  * @run:  The kvm_run struct
635  */
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)636 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
637 {
638 	struct coproc_params params = decode_64bit_hsr(vcpu);
639 
640 	return emulate_cp15(vcpu, &params);
641 }
642 
643 /**
644  * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
645  * @vcpu: The VCPU pointer
646  * @run:  The kvm_run struct
647  */
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)648 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
649 {
650 	struct coproc_params params = decode_64bit_hsr(vcpu);
651 
652 	/* raz_wi cp14 */
653 	trap_raz_wi(vcpu, &params, NULL);
654 
655 	/* handled */
656 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
657 	return 1;
658 }
659 
reset_coproc_regs(struct kvm_vcpu * vcpu,const struct coproc_reg * table,size_t num,unsigned long * bmap)660 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
661 			      const struct coproc_reg *table, size_t num,
662 			      unsigned long *bmap)
663 {
664 	unsigned long i;
665 
666 	for (i = 0; i < num; i++)
667 		if (table[i].reset) {
668 			int reg = table[i].reg;
669 
670 			table[i].reset(vcpu, &table[i]);
671 			if (reg > 0 && reg < NR_CP15_REGS) {
672 				set_bit(reg, bmap);
673 				if (table[i].is_64bit)
674 					set_bit(reg + 1, bmap);
675 			}
676 		}
677 }
678 
decode_32bit_hsr(struct kvm_vcpu * vcpu)679 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
680 {
681 	struct coproc_params params;
682 
683 	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
684 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
685 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
686 	params.is_64bit = false;
687 
688 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
689 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
690 	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
691 	params.Rt2 = 0;
692 
693 	return params;
694 }
695 
696 /**
697  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
698  * @vcpu: The VCPU pointer
699  * @run:  The kvm_run struct
700  */
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)701 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
702 {
703 	struct coproc_params params = decode_32bit_hsr(vcpu);
704 	return emulate_cp15(vcpu, &params);
705 }
706 
707 /**
708  * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
709  * @vcpu: The VCPU pointer
710  * @run:  The kvm_run struct
711  */
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)712 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
713 {
714 	struct coproc_params params = decode_32bit_hsr(vcpu);
715 
716 	/* raz_wi cp14 */
717 	trap_raz_wi(vcpu, &params, NULL);
718 
719 	/* handled */
720 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
721 	return 1;
722 }
723 
724 /******************************************************************************
725  * Userspace API
726  *****************************************************************************/
727 
index_to_params(u64 id,struct coproc_params * params)728 static bool index_to_params(u64 id, struct coproc_params *params)
729 {
730 	switch (id & KVM_REG_SIZE_MASK) {
731 	case KVM_REG_SIZE_U32:
732 		/* Any unused index bits means it's not valid. */
733 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
734 			   | KVM_REG_ARM_COPROC_MASK
735 			   | KVM_REG_ARM_32_CRN_MASK
736 			   | KVM_REG_ARM_CRM_MASK
737 			   | KVM_REG_ARM_OPC1_MASK
738 			   | KVM_REG_ARM_32_OPC2_MASK))
739 			return false;
740 
741 		params->is_64bit = false;
742 		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
743 			       >> KVM_REG_ARM_32_CRN_SHIFT);
744 		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
745 			       >> KVM_REG_ARM_CRM_SHIFT);
746 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
747 			       >> KVM_REG_ARM_OPC1_SHIFT);
748 		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
749 			       >> KVM_REG_ARM_32_OPC2_SHIFT);
750 		return true;
751 	case KVM_REG_SIZE_U64:
752 		/* Any unused index bits means it's not valid. */
753 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
754 			      | KVM_REG_ARM_COPROC_MASK
755 			      | KVM_REG_ARM_CRM_MASK
756 			      | KVM_REG_ARM_OPC1_MASK))
757 			return false;
758 		params->is_64bit = true;
759 		/* CRm to CRn: see cp15_to_index for details */
760 		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
761 			       >> KVM_REG_ARM_CRM_SHIFT);
762 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
763 			       >> KVM_REG_ARM_OPC1_SHIFT);
764 		params->Op2 = 0;
765 		params->CRm = 0;
766 		return true;
767 	default:
768 		return false;
769 	}
770 }
771 
772 /* Decode an index value, and find the cp15 coproc_reg entry. */
index_to_coproc_reg(struct kvm_vcpu * vcpu,u64 id)773 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
774 						    u64 id)
775 {
776 	size_t num;
777 	const struct coproc_reg *table, *r;
778 	struct coproc_params params;
779 
780 	/* We only do cp15 for now. */
781 	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
782 		return NULL;
783 
784 	if (!index_to_params(id, &params))
785 		return NULL;
786 
787 	table = get_target_table(vcpu->arch.target, &num);
788 	r = find_reg(&params, table, num);
789 	if (!r)
790 		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
791 
792 	/* Not saved in the cp15 array? */
793 	if (r && !r->reg)
794 		r = NULL;
795 
796 	return r;
797 }
798 
799 /*
800  * These are the invariant cp15 registers: we let the guest see the host
801  * versions of these, so they're part of the guest state.
802  *
803  * A future CPU may provide a mechanism to present different values to
804  * the guest, or a future kvm may trap them.
805  */
806 /* Unfortunately, there's no register-argument for mrc, so generate. */
807 #define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
808 	static void get_##name(struct kvm_vcpu *v,			\
809 			       const struct coproc_reg *r)		\
810 	{								\
811 		u32 val;						\
812 									\
813 		asm volatile("mrc p15, " __stringify(op1)		\
814 			     ", %0, c" __stringify(crn)			\
815 			     ", c" __stringify(crm)			\
816 			     ", " __stringify(op2) "\n" : "=r" (val));	\
817 		((struct coproc_reg *)r)->val = val;			\
818 	}
819 
820 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
821 FUNCTION_FOR32(0, 0, 0, 1, CTR)
822 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
823 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
824 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
825 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
826 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
827 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
828 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
829 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
830 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
831 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
832 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
833 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
834 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
835 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
836 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
837 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
838 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
839 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
840 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
841 
842 /* ->val is filled in by kvm_invariant_coproc_table_init() */
843 static struct coproc_reg invariant_cp15[] = {
844 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
845 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
846 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
847 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
848 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
849 
850 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
851 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
852 
853 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
854 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
855 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
856 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
857 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
858 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
859 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
860 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
861 
862 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
863 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
864 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
865 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
866 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
867 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
868 };
869 
870 /*
871  * Reads a register value from a userspace address to a kernel
872  * variable. Make sure that register size matches sizeof(*__val).
873  */
reg_from_user(void * val,const void __user * uaddr,u64 id)874 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
875 {
876 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
877 		return -EFAULT;
878 	return 0;
879 }
880 
881 /*
882  * Writes a register value to a userspace address from a kernel variable.
883  * Make sure that register size matches sizeof(*__val).
884  */
reg_to_user(void __user * uaddr,const void * val,u64 id)885 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
886 {
887 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
888 		return -EFAULT;
889 	return 0;
890 }
891 
get_invariant_cp15(u64 id,void __user * uaddr)892 static int get_invariant_cp15(u64 id, void __user *uaddr)
893 {
894 	struct coproc_params params;
895 	const struct coproc_reg *r;
896 	int ret;
897 
898 	if (!index_to_params(id, &params))
899 		return -ENOENT;
900 
901 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
902 	if (!r)
903 		return -ENOENT;
904 
905 	ret = -ENOENT;
906 	if (KVM_REG_SIZE(id) == 4) {
907 		u32 val = r->val;
908 
909 		ret = reg_to_user(uaddr, &val, id);
910 	} else if (KVM_REG_SIZE(id) == 8) {
911 		ret = reg_to_user(uaddr, &r->val, id);
912 	}
913 	return ret;
914 }
915 
set_invariant_cp15(u64 id,void __user * uaddr)916 static int set_invariant_cp15(u64 id, void __user *uaddr)
917 {
918 	struct coproc_params params;
919 	const struct coproc_reg *r;
920 	int err;
921 	u64 val;
922 
923 	if (!index_to_params(id, &params))
924 		return -ENOENT;
925 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
926 	if (!r)
927 		return -ENOENT;
928 
929 	err = -ENOENT;
930 	if (KVM_REG_SIZE(id) == 4) {
931 		u32 val32;
932 
933 		err = reg_from_user(&val32, uaddr, id);
934 		if (!err)
935 			val = val32;
936 	} else if (KVM_REG_SIZE(id) == 8) {
937 		err = reg_from_user(&val, uaddr, id);
938 	}
939 	if (err)
940 		return err;
941 
942 	/* This is what we mean by invariant: you can't change it. */
943 	if (r->val != val)
944 		return -EINVAL;
945 
946 	return 0;
947 }
948 
is_valid_cache(u32 val)949 static bool is_valid_cache(u32 val)
950 {
951 	u32 level, ctype;
952 
953 	if (val >= CSSELR_MAX)
954 		return false;
955 
956 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
957         level = (val >> 1);
958         ctype = (cache_levels >> (level * 3)) & 7;
959 
960 	switch (ctype) {
961 	case 0: /* No cache */
962 		return false;
963 	case 1: /* Instruction cache only */
964 		return (val & 1);
965 	case 2: /* Data cache only */
966 	case 4: /* Unified cache */
967 		return !(val & 1);
968 	case 3: /* Separate instruction and data caches */
969 		return true;
970 	default: /* Reserved: we can't know instruction or data. */
971 		return false;
972 	}
973 }
974 
975 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)976 static u32 get_ccsidr(u32 csselr)
977 {
978 	u32 ccsidr;
979 
980 	/* Make sure noone else changes CSSELR during this! */
981 	local_irq_disable();
982 	/* Put value into CSSELR */
983 	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
984 	isb();
985 	/* Read result out of CCSIDR */
986 	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
987 	local_irq_enable();
988 
989 	return ccsidr;
990 }
991 
demux_c15_get(u64 id,void __user * uaddr)992 static int demux_c15_get(u64 id, void __user *uaddr)
993 {
994 	u32 val;
995 	u32 __user *uval = uaddr;
996 
997 	/* Fail if we have unknown bits set. */
998 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
999 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1000 		return -ENOENT;
1001 
1002 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1003 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1004 		if (KVM_REG_SIZE(id) != 4)
1005 			return -ENOENT;
1006 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1007 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1008 		if (!is_valid_cache(val))
1009 			return -ENOENT;
1010 
1011 		return put_user(get_ccsidr(val), uval);
1012 	default:
1013 		return -ENOENT;
1014 	}
1015 }
1016 
demux_c15_set(u64 id,void __user * uaddr)1017 static int demux_c15_set(u64 id, void __user *uaddr)
1018 {
1019 	u32 val, newval;
1020 	u32 __user *uval = uaddr;
1021 
1022 	/* Fail if we have unknown bits set. */
1023 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1024 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1025 		return -ENOENT;
1026 
1027 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1028 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1029 		if (KVM_REG_SIZE(id) != 4)
1030 			return -ENOENT;
1031 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1032 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1033 		if (!is_valid_cache(val))
1034 			return -ENOENT;
1035 
1036 		if (get_user(newval, uval))
1037 			return -EFAULT;
1038 
1039 		/* This is also invariant: you can't change it. */
1040 		if (newval != get_ccsidr(val))
1041 			return -EINVAL;
1042 		return 0;
1043 	default:
1044 		return -ENOENT;
1045 	}
1046 }
1047 
1048 #ifdef CONFIG_VFPv3
1049 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1050 				   KVM_REG_ARM_VFP_FPSCR,
1051 				   KVM_REG_ARM_VFP_FPINST,
1052 				   KVM_REG_ARM_VFP_FPINST2,
1053 				   KVM_REG_ARM_VFP_MVFR0,
1054 				   KVM_REG_ARM_VFP_MVFR1,
1055 				   KVM_REG_ARM_VFP_FPSID };
1056 
num_fp_regs(void)1057 static unsigned int num_fp_regs(void)
1058 {
1059 	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1060 		return 32;
1061 	else
1062 		return 16;
1063 }
1064 
num_vfp_regs(void)1065 static unsigned int num_vfp_regs(void)
1066 {
1067 	/* Normal FP regs + control regs. */
1068 	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1069 }
1070 
copy_vfp_regids(u64 __user * uindices)1071 static int copy_vfp_regids(u64 __user *uindices)
1072 {
1073 	unsigned int i;
1074 	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1075 	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1076 
1077 	for (i = 0; i < num_fp_regs(); i++) {
1078 		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1079 			     uindices))
1080 			return -EFAULT;
1081 		uindices++;
1082 	}
1083 
1084 	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1085 		if (put_user(u32reg | vfp_sysregs[i], uindices))
1086 			return -EFAULT;
1087 		uindices++;
1088 	}
1089 
1090 	return num_vfp_regs();
1091 }
1092 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1093 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1094 {
1095 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1096 	u32 val;
1097 
1098 	/* Fail if we have unknown bits set. */
1099 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1100 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1101 		return -ENOENT;
1102 
1103 	if (vfpid < num_fp_regs()) {
1104 		if (KVM_REG_SIZE(id) != 8)
1105 			return -ENOENT;
1106 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1107 				   id);
1108 	}
1109 
1110 	/* FP control registers are all 32 bit. */
1111 	if (KVM_REG_SIZE(id) != 4)
1112 		return -ENOENT;
1113 
1114 	switch (vfpid) {
1115 	case KVM_REG_ARM_VFP_FPEXC:
1116 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1117 	case KVM_REG_ARM_VFP_FPSCR:
1118 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1119 	case KVM_REG_ARM_VFP_FPINST:
1120 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1121 	case KVM_REG_ARM_VFP_FPINST2:
1122 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1123 	case KVM_REG_ARM_VFP_MVFR0:
1124 		val = fmrx(MVFR0);
1125 		return reg_to_user(uaddr, &val, id);
1126 	case KVM_REG_ARM_VFP_MVFR1:
1127 		val = fmrx(MVFR1);
1128 		return reg_to_user(uaddr, &val, id);
1129 	case KVM_REG_ARM_VFP_FPSID:
1130 		val = fmrx(FPSID);
1131 		return reg_to_user(uaddr, &val, id);
1132 	default:
1133 		return -ENOENT;
1134 	}
1135 }
1136 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1137 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1138 {
1139 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1140 	u32 val;
1141 
1142 	/* Fail if we have unknown bits set. */
1143 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1144 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1145 		return -ENOENT;
1146 
1147 	if (vfpid < num_fp_regs()) {
1148 		if (KVM_REG_SIZE(id) != 8)
1149 			return -ENOENT;
1150 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1151 				     uaddr, id);
1152 	}
1153 
1154 	/* FP control registers are all 32 bit. */
1155 	if (KVM_REG_SIZE(id) != 4)
1156 		return -ENOENT;
1157 
1158 	switch (vfpid) {
1159 	case KVM_REG_ARM_VFP_FPEXC:
1160 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1161 	case KVM_REG_ARM_VFP_FPSCR:
1162 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1163 	case KVM_REG_ARM_VFP_FPINST:
1164 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1165 	case KVM_REG_ARM_VFP_FPINST2:
1166 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1167 	/* These are invariant. */
1168 	case KVM_REG_ARM_VFP_MVFR0:
1169 		if (reg_from_user(&val, uaddr, id))
1170 			return -EFAULT;
1171 		if (val != fmrx(MVFR0))
1172 			return -EINVAL;
1173 		return 0;
1174 	case KVM_REG_ARM_VFP_MVFR1:
1175 		if (reg_from_user(&val, uaddr, id))
1176 			return -EFAULT;
1177 		if (val != fmrx(MVFR1))
1178 			return -EINVAL;
1179 		return 0;
1180 	case KVM_REG_ARM_VFP_FPSID:
1181 		if (reg_from_user(&val, uaddr, id))
1182 			return -EFAULT;
1183 		if (val != fmrx(FPSID))
1184 			return -EINVAL;
1185 		return 0;
1186 	default:
1187 		return -ENOENT;
1188 	}
1189 }
1190 #else /* !CONFIG_VFPv3 */
num_vfp_regs(void)1191 static unsigned int num_vfp_regs(void)
1192 {
1193 	return 0;
1194 }
1195 
copy_vfp_regids(u64 __user * uindices)1196 static int copy_vfp_regids(u64 __user *uindices)
1197 {
1198 	return 0;
1199 }
1200 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1201 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1202 {
1203 	return -ENOENT;
1204 }
1205 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1206 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1207 {
1208 	return -ENOENT;
1209 }
1210 #endif /* !CONFIG_VFPv3 */
1211 
kvm_arm_coproc_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1212 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1213 {
1214 	const struct coproc_reg *r;
1215 	void __user *uaddr = (void __user *)(long)reg->addr;
1216 	int ret;
1217 
1218 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1219 		return demux_c15_get(reg->id, uaddr);
1220 
1221 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1222 		return vfp_get_reg(vcpu, reg->id, uaddr);
1223 
1224 	r = index_to_coproc_reg(vcpu, reg->id);
1225 	if (!r)
1226 		return get_invariant_cp15(reg->id, uaddr);
1227 
1228 	ret = -ENOENT;
1229 	if (KVM_REG_SIZE(reg->id) == 8) {
1230 		u64 val;
1231 
1232 		val = vcpu_cp15_reg64_get(vcpu, r);
1233 		ret = reg_to_user(uaddr, &val, reg->id);
1234 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1235 		ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1236 	}
1237 
1238 	return ret;
1239 }
1240 
kvm_arm_coproc_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1241 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1242 {
1243 	const struct coproc_reg *r;
1244 	void __user *uaddr = (void __user *)(long)reg->addr;
1245 	int ret;
1246 
1247 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1248 		return demux_c15_set(reg->id, uaddr);
1249 
1250 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1251 		return vfp_set_reg(vcpu, reg->id, uaddr);
1252 
1253 	r = index_to_coproc_reg(vcpu, reg->id);
1254 	if (!r)
1255 		return set_invariant_cp15(reg->id, uaddr);
1256 
1257 	ret = -ENOENT;
1258 	if (KVM_REG_SIZE(reg->id) == 8) {
1259 		u64 val;
1260 
1261 		ret = reg_from_user(&val, uaddr, reg->id);
1262 		if (!ret)
1263 			vcpu_cp15_reg64_set(vcpu, r, val);
1264 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1265 		ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1266 	}
1267 
1268 	return ret;
1269 }
1270 
num_demux_regs(void)1271 static unsigned int num_demux_regs(void)
1272 {
1273 	unsigned int i, count = 0;
1274 
1275 	for (i = 0; i < CSSELR_MAX; i++)
1276 		if (is_valid_cache(i))
1277 			count++;
1278 
1279 	return count;
1280 }
1281 
write_demux_regids(u64 __user * uindices)1282 static int write_demux_regids(u64 __user *uindices)
1283 {
1284 	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1285 	unsigned int i;
1286 
1287 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1288 	for (i = 0; i < CSSELR_MAX; i++) {
1289 		if (!is_valid_cache(i))
1290 			continue;
1291 		if (put_user(val | i, uindices))
1292 			return -EFAULT;
1293 		uindices++;
1294 	}
1295 	return 0;
1296 }
1297 
cp15_to_index(const struct coproc_reg * reg)1298 static u64 cp15_to_index(const struct coproc_reg *reg)
1299 {
1300 	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1301 	if (reg->is_64bit) {
1302 		val |= KVM_REG_SIZE_U64;
1303 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1304 		/*
1305 		 * CRn always denotes the primary coproc. reg. nr. for the
1306 		 * in-kernel representation, but the user space API uses the
1307 		 * CRm for the encoding, because it is modelled after the
1308 		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1309 		 * B3-1445
1310 		 */
1311 		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1312 	} else {
1313 		val |= KVM_REG_SIZE_U32;
1314 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1315 		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1316 		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1317 		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1318 	}
1319 	return val;
1320 }
1321 
copy_reg_to_user(const struct coproc_reg * reg,u64 __user ** uind)1322 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1323 {
1324 	if (!*uind)
1325 		return true;
1326 
1327 	if (put_user(cp15_to_index(reg), *uind))
1328 		return false;
1329 
1330 	(*uind)++;
1331 	return true;
1332 }
1333 
1334 /* Assumed ordered tables, see kvm_coproc_table_init. */
walk_cp15(struct kvm_vcpu * vcpu,u64 __user * uind)1335 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1336 {
1337 	const struct coproc_reg *i1, *i2, *end1, *end2;
1338 	unsigned int total = 0;
1339 	size_t num;
1340 
1341 	/* We check for duplicates here, to allow arch-specific overrides. */
1342 	i1 = get_target_table(vcpu->arch.target, &num);
1343 	end1 = i1 + num;
1344 	i2 = cp15_regs;
1345 	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1346 
1347 	BUG_ON(i1 == end1 || i2 == end2);
1348 
1349 	/* Walk carefully, as both tables may refer to the same register. */
1350 	while (i1 || i2) {
1351 		int cmp = cmp_reg(i1, i2);
1352 		/* target-specific overrides generic entry. */
1353 		if (cmp <= 0) {
1354 			/* Ignore registers we trap but don't save. */
1355 			if (i1->reg) {
1356 				if (!copy_reg_to_user(i1, &uind))
1357 					return -EFAULT;
1358 				total++;
1359 			}
1360 		} else {
1361 			/* Ignore registers we trap but don't save. */
1362 			if (i2->reg) {
1363 				if (!copy_reg_to_user(i2, &uind))
1364 					return -EFAULT;
1365 				total++;
1366 			}
1367 		}
1368 
1369 		if (cmp <= 0 && ++i1 == end1)
1370 			i1 = NULL;
1371 		if (cmp >= 0 && ++i2 == end2)
1372 			i2 = NULL;
1373 	}
1374 	return total;
1375 }
1376 
kvm_arm_num_coproc_regs(struct kvm_vcpu * vcpu)1377 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1378 {
1379 	return ARRAY_SIZE(invariant_cp15)
1380 		+ num_demux_regs()
1381 		+ num_vfp_regs()
1382 		+ walk_cp15(vcpu, (u64 __user *)NULL);
1383 }
1384 
kvm_arm_copy_coproc_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)1385 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1386 {
1387 	unsigned int i;
1388 	int err;
1389 
1390 	/* Then give them all the invariant registers' indices. */
1391 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1392 		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1393 			return -EFAULT;
1394 		uindices++;
1395 	}
1396 
1397 	err = walk_cp15(vcpu, uindices);
1398 	if (err < 0)
1399 		return err;
1400 	uindices += err;
1401 
1402 	err = copy_vfp_regids(uindices);
1403 	if (err < 0)
1404 		return err;
1405 	uindices += err;
1406 
1407 	return write_demux_regids(uindices);
1408 }
1409 
kvm_coproc_table_init(void)1410 void kvm_coproc_table_init(void)
1411 {
1412 	unsigned int i;
1413 
1414 	/* Make sure tables are unique and in order. */
1415 	BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1416 	BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1417 
1418 	/* We abuse the reset function to overwrite the table itself. */
1419 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1420 		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1421 
1422 	/*
1423 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1424 	 *
1425 	 *   If software reads the Cache Type fields from Ctype1
1426 	 *   upwards, once it has seen a value of 0b000, no caches
1427 	 *   exist at further-out levels of the hierarchy. So, for
1428 	 *   example, if Ctype3 is the first Cache Type field with a
1429 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1430 	 *   ignored.
1431 	 */
1432 	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1433 	for (i = 0; i < 7; i++)
1434 		if (((cache_levels >> (i*3)) & 7) == 0)
1435 			break;
1436 	/* Clear all higher bits. */
1437 	cache_levels &= (1 << (i*3))-1;
1438 }
1439 
1440 /**
1441  * kvm_reset_coprocs - sets cp15 registers to reset value
1442  * @vcpu: The VCPU pointer
1443  *
1444  * This function finds the right table above and sets the registers on the
1445  * virtual CPU struct to their architecturally defined reset values.
1446  */
kvm_reset_coprocs(struct kvm_vcpu * vcpu)1447 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1448 {
1449 	size_t num;
1450 	const struct coproc_reg *table;
1451 	DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1452 
1453 	/* Generic chip reset first (so target could override). */
1454 	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1455 
1456 	table = get_target_table(vcpu->arch.target, &num);
1457 	reset_coproc_regs(vcpu, table, num, bmap);
1458 
1459 	for (num = 1; num < NR_CP15_REGS; num++)
1460 		WARN(!test_bit(num, bmap),
1461 		     "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1462 }
1463