• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016,2017 IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #define pr_fmt(fmt) "xive: " fmt
11 
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
26 #include <linux/vmalloc.h>
27 
28 #include <asm/prom.h>
29 #include <asm/io.h>
30 #include <asm/smp.h>
31 #include <asm/machdep.h>
32 #include <asm/irq.h>
33 #include <asm/errno.h>
34 #include <asm/xive.h>
35 #include <asm/xive-regs.h>
36 #include <asm/xmon.h>
37 
38 #include "xive-internal.h"
39 
40 #undef DEBUG_FLUSH
41 #undef DEBUG_ALL
42 
43 #ifdef DEBUG_ALL
44 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
45 					 smp_processor_id(), ## __VA_ARGS__)
46 #else
47 #define DBG_VERBOSE(fmt...)	do { } while(0)
48 #endif
49 
50 bool __xive_enabled;
51 EXPORT_SYMBOL_GPL(__xive_enabled);
52 bool xive_cmdline_disabled;
53 
54 /* We use only one priority for now */
55 static u8 xive_irq_priority;
56 
57 /* TIMA exported to KVM */
58 void __iomem *xive_tima;
59 EXPORT_SYMBOL_GPL(xive_tima);
60 u32 xive_tima_offset;
61 
62 /* Backend ops */
63 static const struct xive_ops *xive_ops;
64 
65 /* Our global interrupt domain */
66 static struct irq_domain *xive_irq_domain;
67 
68 #ifdef CONFIG_SMP
69 /* The IPIs all use the same logical irq number */
70 static u32 xive_ipi_irq;
71 #endif
72 
73 /* Xive state for each CPU */
74 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
75 
76 /* An invalid CPU target */
77 #define XIVE_INVALID_TARGET	(-1)
78 
79 /*
80  * Read the next entry in a queue, return its content if it's valid
81  * or 0 if there is no new entry.
82  *
83  * The queue pointer is moved forward unless "just_peek" is set
84  */
xive_read_eq(struct xive_q * q,bool just_peek)85 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
86 {
87 	u32 cur;
88 
89 	if (!q->qpage)
90 		return 0;
91 	cur = be32_to_cpup(q->qpage + q->idx);
92 
93 	/* Check valid bit (31) vs current toggle polarity */
94 	if ((cur >> 31) == q->toggle)
95 		return 0;
96 
97 	/* If consuming from the queue ... */
98 	if (!just_peek) {
99 		/* Next entry */
100 		q->idx = (q->idx + 1) & q->msk;
101 
102 		/* Wrap around: flip valid toggle */
103 		if (q->idx == 0)
104 			q->toggle ^= 1;
105 	}
106 	/* Mask out the valid bit (31) */
107 	return cur & 0x7fffffff;
108 }
109 
110 /*
111  * Scans all the queue that may have interrupts in them
112  * (based on "pending_prio") in priority order until an
113  * interrupt is found or all the queues are empty.
114  *
115  * Then updates the CPPR (Current Processor Priority
116  * Register) based on the most favored interrupt found
117  * (0xff if none) and return what was found (0 if none).
118  *
119  * If just_peek is set, return the most favored pending
120  * interrupt if any but don't update the queue pointers.
121  *
122  * Note: This function can operate generically on any number
123  * of queues (up to 8). The current implementation of the XIVE
124  * driver only uses a single queue however.
125  *
126  * Note2: This will also "flush" "the pending_count" of a queue
127  * into the "count" when that queue is observed to be empty.
128  * This is used to keep track of the amount of interrupts
129  * targetting a queue. When an interrupt is moved away from
130  * a queue, we only decrement that queue count once the queue
131  * has been observed empty to avoid races.
132  */
xive_scan_interrupts(struct xive_cpu * xc,bool just_peek)133 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
134 {
135 	u32 irq = 0;
136 	u8 prio;
137 
138 	/* Find highest pending priority */
139 	while (xc->pending_prio != 0) {
140 		struct xive_q *q;
141 
142 		prio = ffs(xc->pending_prio) - 1;
143 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
144 
145 		/* Try to fetch */
146 		irq = xive_read_eq(&xc->queue[prio], just_peek);
147 
148 		/* Found something ? That's it */
149 		if (irq)
150 			break;
151 
152 		/* Clear pending bits */
153 		xc->pending_prio &= ~(1 << prio);
154 
155 		/*
156 		 * Check if the queue count needs adjusting due to
157 		 * interrupts being moved away. See description of
158 		 * xive_dec_target_count()
159 		 */
160 		q = &xc->queue[prio];
161 		if (atomic_read(&q->pending_count)) {
162 			int p = atomic_xchg(&q->pending_count, 0);
163 			if (p) {
164 				WARN_ON(p > atomic_read(&q->count));
165 				atomic_sub(p, &q->count);
166 			}
167 		}
168 	}
169 
170 	/* If nothing was found, set CPPR to 0xff */
171 	if (irq == 0)
172 		prio = 0xff;
173 
174 	/* Update HW CPPR to match if necessary */
175 	if (prio != xc->cppr) {
176 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
177 		xc->cppr = prio;
178 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
179 	}
180 
181 	return irq;
182 }
183 
184 /*
185  * This is used to perform the magic loads from an ESB
186  * described in xive.h
187  */
xive_esb_read(struct xive_irq_data * xd,u32 offset)188 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
189 {
190 	u64 val;
191 
192 	/* Handle HW errata */
193 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
194 		offset |= offset << 4;
195 
196 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
197 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
198 	else
199 		val = in_be64(xd->eoi_mmio + offset);
200 
201 	return (u8)val;
202 }
203 
xive_esb_write(struct xive_irq_data * xd,u32 offset,u64 data)204 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
205 {
206 	/* Handle HW errata */
207 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
208 		offset |= offset << 4;
209 
210 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
211 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
212 	else
213 		out_be64(xd->eoi_mmio + offset, data);
214 }
215 
216 #ifdef CONFIG_XMON
xive_dump_eq(const char * name,struct xive_q * q)217 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
218 {
219 	u32 i0, i1, idx;
220 
221 	if (!q->qpage)
222 		return;
223 	idx = q->idx;
224 	i0 = be32_to_cpup(q->qpage + idx);
225 	idx = (idx + 1) & q->msk;
226 	i1 = be32_to_cpup(q->qpage + idx);
227 	xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
228 		    q->toggle, i0, i1);
229 }
230 
xmon_xive_do_dump(int cpu)231 notrace void xmon_xive_do_dump(int cpu)
232 {
233 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
234 
235 	xmon_printf("XIVE state for CPU %d:\n", cpu);
236 	xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
237 	xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
238 #ifdef CONFIG_SMP
239 	{
240 		u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
241 		xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
242 			val & XIVE_ESB_VAL_P ? 'P' : 'p',
243 			val & XIVE_ESB_VAL_Q ? 'Q' : 'q');
244 	}
245 #endif
246 }
247 #endif /* CONFIG_XMON */
248 
xive_get_irq(void)249 static unsigned int xive_get_irq(void)
250 {
251 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
252 	u32 irq;
253 
254 	/*
255 	 * This can be called either as a result of a HW interrupt or
256 	 * as a "replay" because EOI decided there was still something
257 	 * in one of the queues.
258 	 *
259 	 * First we perform an ACK cycle in order to update our mask
260 	 * of pending priorities. This will also have the effect of
261 	 * updating the CPPR to the most favored pending interrupts.
262 	 *
263 	 * In the future, if we have a way to differentiate a first
264 	 * entry (on HW interrupt) from a replay triggered by EOI,
265 	 * we could skip this on replays unless we soft-mask tells us
266 	 * that a new HW interrupt occurred.
267 	 */
268 	xive_ops->update_pending(xc);
269 
270 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
271 
272 	/* Scan our queue(s) for interrupts */
273 	irq = xive_scan_interrupts(xc, false);
274 
275 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
276 	    irq, xc->pending_prio);
277 
278 	/* Return pending interrupt if any */
279 	if (irq == XIVE_BAD_IRQ)
280 		return 0;
281 	return irq;
282 }
283 
284 /*
285  * After EOI'ing an interrupt, we need to re-check the queue
286  * to see if another interrupt is pending since multiple
287  * interrupts can coalesce into a single notification to the
288  * CPU.
289  *
290  * If we find that there is indeed more in there, we call
291  * force_external_irq_replay() to make Linux synthetize an
292  * external interrupt on the next call to local_irq_restore().
293  */
xive_do_queue_eoi(struct xive_cpu * xc)294 static void xive_do_queue_eoi(struct xive_cpu *xc)
295 {
296 	if (xive_scan_interrupts(xc, true) != 0) {
297 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
298 		force_external_irq_replay();
299 	}
300 }
301 
302 /*
303  * EOI an interrupt at the source. There are several methods
304  * to do this depending on the HW version and source type
305  */
xive_do_source_eoi(u32 hw_irq,struct xive_irq_data * xd)306 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
307 {
308 	/* If the XIVE supports the new "store EOI facility, use it */
309 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
310 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
311 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
312 		/*
313 		 * The FW told us to call it. This happens for some
314 		 * interrupt sources that need additional HW whacking
315 		 * beyond the ESB manipulation. For example LPC interrupts
316 		 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
317 		 * itself. The Firmware will take care of it.
318 		 */
319 		if (WARN_ON_ONCE(!xive_ops->eoi))
320 			return;
321 		xive_ops->eoi(hw_irq);
322 	} else {
323 		u8 eoi_val;
324 
325 		/*
326 		 * Otherwise for EOI, we use the special MMIO that does
327 		 * a clear of both P and Q and returns the old Q,
328 		 * except for LSIs where we use the "EOI cycle" special
329 		 * load.
330 		 *
331 		 * This allows us to then do a re-trigger if Q was set
332 		 * rather than synthesizing an interrupt in software
333 		 *
334 		 * For LSIs the HW EOI cycle is used rather than PQ bits,
335 		 * as they are automatically re-triggred in HW when still
336 		 * pending.
337 		 */
338 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
339 			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
340 		else {
341 			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
342 			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
343 
344 			/* Re-trigger if needed */
345 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
346 				out_be64(xd->trig_mmio, 0);
347 		}
348 	}
349 }
350 
351 /* irq_chip eoi callback */
xive_irq_eoi(struct irq_data * d)352 static void xive_irq_eoi(struct irq_data *d)
353 {
354 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
355 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
356 
357 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
358 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
359 
360 	/*
361 	 * EOI the source if it hasn't been disabled and hasn't
362 	 * been passed-through to a KVM guest
363 	 */
364 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
365 	    !(xd->flags & XIVE_IRQ_NO_EOI))
366 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
367 
368 	/*
369 	 * Clear saved_p to indicate that it's no longer occupying
370 	 * a queue slot on the target queue
371 	 */
372 	xd->saved_p = false;
373 
374 	/* Check for more work in the queue */
375 	xive_do_queue_eoi(xc);
376 }
377 
378 /*
379  * Helper used to mask and unmask an interrupt source. This
380  * is only called for normal interrupts that do not require
381  * masking/unmasking via firmware.
382  */
xive_do_source_set_mask(struct xive_irq_data * xd,bool mask)383 static void xive_do_source_set_mask(struct xive_irq_data *xd,
384 				    bool mask)
385 {
386 	u64 val;
387 
388 	/*
389 	 * If the interrupt had P set, it may be in a queue.
390 	 *
391 	 * We need to make sure we don't re-enable it until it
392 	 * has been fetched from that queue and EOId. We keep
393 	 * a copy of that P state and use it to restore the
394 	 * ESB accordingly on unmask.
395 	 */
396 	if (mask) {
397 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
398 		xd->saved_p = !!(val & XIVE_ESB_VAL_P);
399 	} else if (xd->saved_p)
400 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
401 	else
402 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
403 }
404 
405 /*
406  * Try to chose "cpu" as a new interrupt target. Increments
407  * the queue accounting for that target if it's not already
408  * full.
409  */
xive_try_pick_target(int cpu)410 static bool xive_try_pick_target(int cpu)
411 {
412 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
413 	struct xive_q *q = &xc->queue[xive_irq_priority];
414 	int max;
415 
416 	/*
417 	 * Calculate max number of interrupts in that queue.
418 	 *
419 	 * We leave a gap of 1 just in case...
420 	 */
421 	max = (q->msk + 1) - 1;
422 	return !!atomic_add_unless(&q->count, 1, max);
423 }
424 
425 /*
426  * Un-account an interrupt for a target CPU. We don't directly
427  * decrement q->count since the interrupt might still be present
428  * in the queue.
429  *
430  * Instead increment a separate counter "pending_count" which
431  * will be substracted from "count" later when that CPU observes
432  * the queue to be empty.
433  */
xive_dec_target_count(int cpu)434 static void xive_dec_target_count(int cpu)
435 {
436 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
437 	struct xive_q *q = &xc->queue[xive_irq_priority];
438 
439 	if (unlikely(WARN_ON(cpu < 0 || !xc))) {
440 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
441 		return;
442 	}
443 
444 	/*
445 	 * We increment the "pending count" which will be used
446 	 * to decrement the target queue count whenever it's next
447 	 * processed and found empty. This ensure that we don't
448 	 * decrement while we still have the interrupt there
449 	 * occupying a slot.
450 	 */
451 	atomic_inc(&q->pending_count);
452 }
453 
454 /* Find a tentative CPU target in a CPU mask */
xive_find_target_in_mask(const struct cpumask * mask,unsigned int fuzz)455 static int xive_find_target_in_mask(const struct cpumask *mask,
456 				    unsigned int fuzz)
457 {
458 	int cpu, first, num, i;
459 
460 	/* Pick up a starting point CPU in the mask based on  fuzz */
461 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
462 	first = fuzz % num;
463 
464 	/* Locate it */
465 	cpu = cpumask_first(mask);
466 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
467 		cpu = cpumask_next(cpu, mask);
468 
469 	/* Sanity check */
470 	if (WARN_ON(cpu >= nr_cpu_ids))
471 		cpu = cpumask_first(cpu_online_mask);
472 
473 	/* Remember first one to handle wrap-around */
474 	first = cpu;
475 
476 	/*
477 	 * Now go through the entire mask until we find a valid
478 	 * target.
479 	 */
480 	do {
481 		/*
482 		 * We re-check online as the fallback case passes us
483 		 * an untested affinity mask
484 		 */
485 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
486 			return cpu;
487 		cpu = cpumask_next(cpu, mask);
488 		/* Wrap around */
489 		if (cpu >= nr_cpu_ids)
490 			cpu = cpumask_first(mask);
491 	} while (cpu != first);
492 
493 	return -1;
494 }
495 
496 /*
497  * Pick a target CPU for an interrupt. This is done at
498  * startup or if the affinity is changed in a way that
499  * invalidates the current target.
500  */
xive_pick_irq_target(struct irq_data * d,const struct cpumask * affinity)501 static int xive_pick_irq_target(struct irq_data *d,
502 				const struct cpumask *affinity)
503 {
504 	static unsigned int fuzz;
505 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
506 	cpumask_var_t mask;
507 	int cpu = -1;
508 
509 	/*
510 	 * If we have chip IDs, first we try to build a mask of
511 	 * CPUs matching the CPU and find a target in there
512 	 */
513 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
514 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
515 		/* Build a mask of matching chip IDs */
516 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
517 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
518 			if (xc->chip_id == xd->src_chip)
519 				cpumask_set_cpu(cpu, mask);
520 		}
521 		/* Try to find a target */
522 		if (cpumask_empty(mask))
523 			cpu = -1;
524 		else
525 			cpu = xive_find_target_in_mask(mask, fuzz++);
526 		free_cpumask_var(mask);
527 		if (cpu >= 0)
528 			return cpu;
529 		fuzz--;
530 	}
531 
532 	/* No chip IDs, fallback to using the affinity mask */
533 	return xive_find_target_in_mask(affinity, fuzz++);
534 }
535 
xive_irq_startup(struct irq_data * d)536 static unsigned int xive_irq_startup(struct irq_data *d)
537 {
538 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
539 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
540 	int target, rc;
541 
542 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
543 		 d->irq, hw_irq, d);
544 
545 #ifdef CONFIG_PCI_MSI
546 	/*
547 	 * The generic MSI code returns with the interrupt disabled on the
548 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
549 	 * at that level, so we do it here by hand.
550 	 */
551 	if (irq_data_get_msi_desc(d))
552 		pci_msi_unmask_irq(d);
553 #endif
554 
555 	/* Pick a target */
556 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
557 	if (target == XIVE_INVALID_TARGET) {
558 		/* Try again breaking affinity */
559 		target = xive_pick_irq_target(d, cpu_online_mask);
560 		if (target == XIVE_INVALID_TARGET)
561 			return -ENXIO;
562 		pr_warn("irq %d started with broken affinity\n", d->irq);
563 	}
564 
565 	/* Sanity check */
566 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
567 		    target >= nr_cpu_ids))
568 		target = smp_processor_id();
569 
570 	xd->target = target;
571 
572 	/*
573 	 * Configure the logical number to be the Linux IRQ number
574 	 * and set the target queue
575 	 */
576 	rc = xive_ops->configure_irq(hw_irq,
577 				     get_hard_smp_processor_id(target),
578 				     xive_irq_priority, d->irq);
579 	if (rc)
580 		return rc;
581 
582 	/* Unmask the ESB */
583 	xive_do_source_set_mask(xd, false);
584 
585 	return 0;
586 }
587 
xive_irq_shutdown(struct irq_data * d)588 static void xive_irq_shutdown(struct irq_data *d)
589 {
590 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
591 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
592 
593 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
594 		 d->irq, hw_irq, d);
595 
596 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
597 		return;
598 
599 	/* Mask the interrupt at the source */
600 	xive_do_source_set_mask(xd, true);
601 
602 	/*
603 	 * The above may have set saved_p. We clear it otherwise it
604 	 * will prevent re-enabling later on. It is ok to forget the
605 	 * fact that the interrupt might be in a queue because we are
606 	 * accounting that already in xive_dec_target_count() and will
607 	 * be re-routing it to a new queue with proper accounting when
608 	 * it's started up again
609 	 */
610 	xd->saved_p = false;
611 
612 	/*
613 	 * Mask the interrupt in HW in the IVT/EAS and set the number
614 	 * to be the "bad" IRQ number
615 	 */
616 	xive_ops->configure_irq(hw_irq,
617 				get_hard_smp_processor_id(xd->target),
618 				0xff, XIVE_BAD_IRQ);
619 
620 	xive_dec_target_count(xd->target);
621 	xd->target = XIVE_INVALID_TARGET;
622 }
623 
xive_irq_unmask(struct irq_data * d)624 static void xive_irq_unmask(struct irq_data *d)
625 {
626 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
627 
628 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
629 
630 	/*
631 	 * This is a workaround for PCI LSI problems on P9, for
632 	 * these, we call FW to set the mask. The problems might
633 	 * be fixed by P9 DD2.0, if that is the case, firmware
634 	 * will no longer set that flag.
635 	 */
636 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
637 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
638 		xive_ops->configure_irq(hw_irq,
639 					get_hard_smp_processor_id(xd->target),
640 					xive_irq_priority, d->irq);
641 		return;
642 	}
643 
644 	xive_do_source_set_mask(xd, false);
645 }
646 
xive_irq_mask(struct irq_data * d)647 static void xive_irq_mask(struct irq_data *d)
648 {
649 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
650 
651 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
652 
653 	/*
654 	 * This is a workaround for PCI LSI problems on P9, for
655 	 * these, we call OPAL to set the mask. The problems might
656 	 * be fixed by P9 DD2.0, if that is the case, firmware
657 	 * will no longer set that flag.
658 	 */
659 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
660 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
661 		xive_ops->configure_irq(hw_irq,
662 					get_hard_smp_processor_id(xd->target),
663 					0xff, d->irq);
664 		return;
665 	}
666 
667 	xive_do_source_set_mask(xd, true);
668 }
669 
xive_irq_set_affinity(struct irq_data * d,const struct cpumask * cpumask,bool force)670 static int xive_irq_set_affinity(struct irq_data *d,
671 				 const struct cpumask *cpumask,
672 				 bool force)
673 {
674 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
675 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
676 	u32 target, old_target;
677 	int rc = 0;
678 
679 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
680 
681 	/* Is this valid ? */
682 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
683 		return -EINVAL;
684 
685 	/* Don't do anything if the interrupt isn't started */
686 	if (!irqd_is_started(d))
687 		return IRQ_SET_MASK_OK;
688 
689 	/*
690 	 * If existing target is already in the new mask, and is
691 	 * online then do nothing.
692 	 */
693 	if (xd->target != XIVE_INVALID_TARGET &&
694 	    cpu_online(xd->target) &&
695 	    cpumask_test_cpu(xd->target, cpumask))
696 		return IRQ_SET_MASK_OK;
697 
698 	/* Pick a new target */
699 	target = xive_pick_irq_target(d, cpumask);
700 
701 	/* No target found */
702 	if (target == XIVE_INVALID_TARGET)
703 		return -ENXIO;
704 
705 	/* Sanity check */
706 	if (WARN_ON(target >= nr_cpu_ids))
707 		target = smp_processor_id();
708 
709 	old_target = xd->target;
710 
711 	/*
712 	 * Only configure the irq if it's not currently passed-through to
713 	 * a KVM guest
714 	 */
715 	if (!irqd_is_forwarded_to_vcpu(d))
716 		rc = xive_ops->configure_irq(hw_irq,
717 					     get_hard_smp_processor_id(target),
718 					     xive_irq_priority, d->irq);
719 	if (rc < 0) {
720 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
721 		return rc;
722 	}
723 
724 	pr_devel("  target: 0x%x\n", target);
725 	xd->target = target;
726 
727 	/* Give up previous target */
728 	if (old_target != XIVE_INVALID_TARGET)
729 	    xive_dec_target_count(old_target);
730 
731 	return IRQ_SET_MASK_OK;
732 }
733 
xive_irq_set_type(struct irq_data * d,unsigned int flow_type)734 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
735 {
736 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
737 
738 	/*
739 	 * We only support these. This has really no effect other than setting
740 	 * the corresponding descriptor bits mind you but those will in turn
741 	 * affect the resend function when re-enabling an edge interrupt.
742 	 *
743 	 * Set set the default to edge as explained in map().
744 	 */
745 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
746 		flow_type = IRQ_TYPE_EDGE_RISING;
747 
748 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
749 	    flow_type != IRQ_TYPE_LEVEL_LOW)
750 		return -EINVAL;
751 
752 	irqd_set_trigger_type(d, flow_type);
753 
754 	/*
755 	 * Double check it matches what the FW thinks
756 	 *
757 	 * NOTE: We don't know yet if the PAPR interface will provide
758 	 * the LSI vs MSI information apart from the device-tree so
759 	 * this check might have to move into an optional backend call
760 	 * that is specific to the native backend
761 	 */
762 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
763 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
764 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
765 			d->irq, (u32)irqd_to_hwirq(d),
766 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
767 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
768 	}
769 
770 	return IRQ_SET_MASK_OK_NOCOPY;
771 }
772 
xive_irq_retrigger(struct irq_data * d)773 static int xive_irq_retrigger(struct irq_data *d)
774 {
775 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
776 
777 	/* This should be only for MSIs */
778 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
779 		return 0;
780 
781 	/*
782 	 * To perform a retrigger, we first set the PQ bits to
783 	 * 11, then perform an EOI.
784 	 */
785 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
786 
787 	/*
788 	 * Note: We pass "0" to the hw_irq argument in order to
789 	 * avoid calling into the backend EOI code which we don't
790 	 * want to do in the case of a re-trigger. Backends typically
791 	 * only do EOI for LSIs anyway.
792 	 */
793 	xive_do_source_eoi(0, xd);
794 
795 	return 1;
796 }
797 
xive_irq_set_vcpu_affinity(struct irq_data * d,void * state)798 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
799 {
800 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
801 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
802 	int rc;
803 	u8 pq;
804 
805 	/*
806 	 * We only support this on interrupts that do not require
807 	 * firmware calls for masking and unmasking
808 	 */
809 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
810 		return -EIO;
811 
812 	/*
813 	 * This is called by KVM with state non-NULL for enabling
814 	 * pass-through or NULL for disabling it
815 	 */
816 	if (state) {
817 		irqd_set_forwarded_to_vcpu(d);
818 
819 		/* Set it to PQ=10 state to prevent further sends */
820 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
821 
822 		/* No target ? nothing to do */
823 		if (xd->target == XIVE_INVALID_TARGET) {
824 			/*
825 			 * An untargetted interrupt should have been
826 			 * also masked at the source
827 			 */
828 			WARN_ON(pq & 2);
829 
830 			return 0;
831 		}
832 
833 		/*
834 		 * If P was set, adjust state to PQ=11 to indicate
835 		 * that a resend is needed for the interrupt to reach
836 		 * the guest. Also remember the value of P.
837 		 *
838 		 * This also tells us that it's in flight to a host queue
839 		 * or has already been fetched but hasn't been EOIed yet
840 		 * by the host. This it's potentially using up a host
841 		 * queue slot. This is important to know because as long
842 		 * as this is the case, we must not hard-unmask it when
843 		 * "returning" that interrupt to the host.
844 		 *
845 		 * This saved_p is cleared by the host EOI, when we know
846 		 * for sure the queue slot is no longer in use.
847 		 */
848 		if (pq & 2) {
849 			pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
850 			xd->saved_p = true;
851 
852 			/*
853 			 * Sync the XIVE source HW to ensure the interrupt
854 			 * has gone through the EAS before we change its
855 			 * target to the guest. That should guarantee us
856 			 * that we *will* eventually get an EOI for it on
857 			 * the host. Otherwise there would be a small window
858 			 * for P to be seen here but the interrupt going
859 			 * to the guest queue.
860 			 */
861 			if (xive_ops->sync_source)
862 				xive_ops->sync_source(hw_irq);
863 		} else
864 			xd->saved_p = false;
865 	} else {
866 		irqd_clr_forwarded_to_vcpu(d);
867 
868 		/* No host target ? hard mask and return */
869 		if (xd->target == XIVE_INVALID_TARGET) {
870 			xive_do_source_set_mask(xd, true);
871 			return 0;
872 		}
873 
874 		/*
875 		 * Sync the XIVE source HW to ensure the interrupt
876 		 * has gone through the EAS before we change its
877 		 * target to the host.
878 		 */
879 		if (xive_ops->sync_source)
880 			xive_ops->sync_source(hw_irq);
881 
882 		/*
883 		 * By convention we are called with the interrupt in
884 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
885 		 * have latched in Q whether there's a pending HW
886 		 * interrupt or not.
887 		 *
888 		 * First reconfigure the target.
889 		 */
890 		rc = xive_ops->configure_irq(hw_irq,
891 					     get_hard_smp_processor_id(xd->target),
892 					     xive_irq_priority, d->irq);
893 		if (rc)
894 			return rc;
895 
896 		/*
897 		 * Then if saved_p is not set, effectively re-enable the
898 		 * interrupt with an EOI. If it is set, we know there is
899 		 * still a message in a host queue somewhere that will be
900 		 * EOId eventually.
901 		 *
902 		 * Note: We don't check irqd_irq_disabled(). Effectively,
903 		 * we *will* let the irq get through even if masked if the
904 		 * HW is still firing it in order to deal with the whole
905 		 * saved_p business properly. If the interrupt triggers
906 		 * while masked, the generic code will re-mask it anyway.
907 		 */
908 		if (!xd->saved_p)
909 			xive_do_source_eoi(hw_irq, xd);
910 
911 	}
912 	return 0;
913 }
914 
915 static struct irq_chip xive_irq_chip = {
916 	.name = "XIVE-IRQ",
917 	.irq_startup = xive_irq_startup,
918 	.irq_shutdown = xive_irq_shutdown,
919 	.irq_eoi = xive_irq_eoi,
920 	.irq_mask = xive_irq_mask,
921 	.irq_unmask = xive_irq_unmask,
922 	.irq_set_affinity = xive_irq_set_affinity,
923 	.irq_set_type = xive_irq_set_type,
924 	.irq_retrigger = xive_irq_retrigger,
925 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
926 };
927 
is_xive_irq(struct irq_chip * chip)928 bool is_xive_irq(struct irq_chip *chip)
929 {
930 	return chip == &xive_irq_chip;
931 }
932 EXPORT_SYMBOL_GPL(is_xive_irq);
933 
xive_cleanup_irq_data(struct xive_irq_data * xd)934 void xive_cleanup_irq_data(struct xive_irq_data *xd)
935 {
936 	if (xd->eoi_mmio) {
937 		unmap_kernel_range((unsigned long)xd->eoi_mmio,
938 				   1u << xd->esb_shift);
939 		iounmap(xd->eoi_mmio);
940 		if (xd->eoi_mmio == xd->trig_mmio)
941 			xd->trig_mmio = NULL;
942 		xd->eoi_mmio = NULL;
943 	}
944 	if (xd->trig_mmio) {
945 		unmap_kernel_range((unsigned long)xd->trig_mmio,
946 				   1u << xd->esb_shift);
947 		iounmap(xd->trig_mmio);
948 		xd->trig_mmio = NULL;
949 	}
950 }
951 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
952 
xive_irq_alloc_data(unsigned int virq,irq_hw_number_t hw)953 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
954 {
955 	struct xive_irq_data *xd;
956 	int rc;
957 
958 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
959 	if (!xd)
960 		return -ENOMEM;
961 	rc = xive_ops->populate_irq_data(hw, xd);
962 	if (rc) {
963 		kfree(xd);
964 		return rc;
965 	}
966 	xd->target = XIVE_INVALID_TARGET;
967 	irq_set_handler_data(virq, xd);
968 
969 	/*
970 	 * Turn OFF by default the interrupt being mapped. A side
971 	 * effect of this check is the mapping the ESB page of the
972 	 * interrupt in the Linux address space. This prevents page
973 	 * fault issues in the crash handler which masks all
974 	 * interrupts.
975 	 */
976 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
977 
978 	return 0;
979 }
980 
xive_irq_free_data(unsigned int virq)981 static void xive_irq_free_data(unsigned int virq)
982 {
983 	struct xive_irq_data *xd = irq_get_handler_data(virq);
984 
985 	if (!xd)
986 		return;
987 	irq_set_handler_data(virq, NULL);
988 	xive_cleanup_irq_data(xd);
989 	kfree(xd);
990 }
991 
992 #ifdef CONFIG_SMP
993 
xive_cause_ipi(int cpu)994 static void xive_cause_ipi(int cpu)
995 {
996 	struct xive_cpu *xc;
997 	struct xive_irq_data *xd;
998 
999 	xc = per_cpu(xive_cpu, cpu);
1000 
1001 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1002 		    smp_processor_id(), cpu, xc->hw_ipi);
1003 
1004 	xd = &xc->ipi_data;
1005 	if (WARN_ON(!xd->trig_mmio))
1006 		return;
1007 	out_be64(xd->trig_mmio, 0);
1008 }
1009 
xive_muxed_ipi_action(int irq,void * dev_id)1010 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1011 {
1012 	return smp_ipi_demux();
1013 }
1014 
xive_ipi_eoi(struct irq_data * d)1015 static void xive_ipi_eoi(struct irq_data *d)
1016 {
1017 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1018 
1019 	/* Handle possible race with unplug and drop stale IPIs */
1020 	if (!xc)
1021 		return;
1022 
1023 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1024 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1025 
1026 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1027 	xive_do_queue_eoi(xc);
1028 }
1029 
xive_ipi_do_nothing(struct irq_data * d)1030 static void xive_ipi_do_nothing(struct irq_data *d)
1031 {
1032 	/*
1033 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1034 	 * has to exist for the struct irq_chip.
1035 	 */
1036 }
1037 
1038 static struct irq_chip xive_ipi_chip = {
1039 	.name = "XIVE-IPI",
1040 	.irq_eoi = xive_ipi_eoi,
1041 	.irq_mask = xive_ipi_do_nothing,
1042 	.irq_unmask = xive_ipi_do_nothing,
1043 };
1044 
xive_request_ipi(void)1045 static void __init xive_request_ipi(void)
1046 {
1047 	unsigned int virq;
1048 
1049 	/*
1050 	 * Initialization failed, move on, we might manage to
1051 	 * reach the point where we display our errors before
1052 	 * the system falls appart
1053 	 */
1054 	if (!xive_irq_domain)
1055 		return;
1056 
1057 	/* Initialize it */
1058 	virq = irq_create_mapping(xive_irq_domain, 0);
1059 	xive_ipi_irq = virq;
1060 
1061 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1062 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1063 }
1064 
xive_setup_cpu_ipi(unsigned int cpu)1065 static int xive_setup_cpu_ipi(unsigned int cpu)
1066 {
1067 	struct xive_cpu *xc;
1068 	int rc;
1069 
1070 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1071 
1072 	xc = per_cpu(xive_cpu, cpu);
1073 
1074 	/* Check if we are already setup */
1075 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1076 		return 0;
1077 
1078 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1079 	if (xive_ops->get_ipi(cpu, xc))
1080 		return -EIO;
1081 
1082 	/*
1083 	 * Populate the IRQ data in the xive_cpu structure and
1084 	 * configure the HW / enable the IPIs.
1085 	 */
1086 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1087 	if (rc) {
1088 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1089 		return -EIO;
1090 	}
1091 	rc = xive_ops->configure_irq(xc->hw_ipi,
1092 				     get_hard_smp_processor_id(cpu),
1093 				     xive_irq_priority, xive_ipi_irq);
1094 	if (rc) {
1095 		pr_err("Failed to map IPI CPU %d\n", cpu);
1096 		return -EIO;
1097 	}
1098 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1099 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1100 
1101 	/* Unmask it */
1102 	xive_do_source_set_mask(&xc->ipi_data, false);
1103 
1104 	return 0;
1105 }
1106 
xive_cleanup_cpu_ipi(unsigned int cpu,struct xive_cpu * xc)1107 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1108 {
1109 	/* Disable the IPI and free the IRQ data */
1110 
1111 	/* Already cleaned up ? */
1112 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1113 		return;
1114 
1115 	/* Mask the IPI */
1116 	xive_do_source_set_mask(&xc->ipi_data, true);
1117 
1118 	/*
1119 	 * Note: We don't call xive_cleanup_irq_data() to free
1120 	 * the mappings as this is called from an IPI on kexec
1121 	 * which is not a safe environment to call iounmap()
1122 	 */
1123 
1124 	/* Deconfigure/mask in the backend */
1125 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1126 				0xff, xive_ipi_irq);
1127 
1128 	/* Free the IPIs in the backend */
1129 	xive_ops->put_ipi(cpu, xc);
1130 }
1131 
xive_smp_probe(void)1132 void __init xive_smp_probe(void)
1133 {
1134 	smp_ops->cause_ipi = xive_cause_ipi;
1135 
1136 	/* Register the IPI */
1137 	xive_request_ipi();
1138 
1139 	/* Allocate and setup IPI for the boot CPU */
1140 	xive_setup_cpu_ipi(smp_processor_id());
1141 }
1142 
1143 #endif /* CONFIG_SMP */
1144 
xive_irq_domain_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1145 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1146 			       irq_hw_number_t hw)
1147 {
1148 	int rc;
1149 
1150 	/*
1151 	 * Mark interrupts as edge sensitive by default so that resend
1152 	 * actually works. Will fix that up below if needed.
1153 	 */
1154 	irq_clear_status_flags(virq, IRQ_LEVEL);
1155 
1156 #ifdef CONFIG_SMP
1157 	/* IPIs are special and come up with HW number 0 */
1158 	if (hw == 0) {
1159 		/*
1160 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1161 		 * the hood but associated with the same "linux" interrupt
1162 		 */
1163 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1164 					 handle_percpu_irq);
1165 		return 0;
1166 	}
1167 #endif
1168 
1169 	rc = xive_irq_alloc_data(virq, hw);
1170 	if (rc)
1171 		return rc;
1172 
1173 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1174 
1175 	return 0;
1176 }
1177 
xive_irq_domain_unmap(struct irq_domain * d,unsigned int virq)1178 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1179 {
1180 	struct irq_data *data = irq_get_irq_data(virq);
1181 	unsigned int hw_irq;
1182 
1183 	/* XXX Assign BAD number */
1184 	if (!data)
1185 		return;
1186 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1187 	if (hw_irq)
1188 		xive_irq_free_data(virq);
1189 }
1190 
xive_irq_domain_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)1191 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1192 				 const u32 *intspec, unsigned int intsize,
1193 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1194 
1195 {
1196 	*out_hwirq = intspec[0];
1197 
1198 	/*
1199 	 * If intsize is at least 2, we look for the type in the second cell,
1200 	 * we assume the LSB indicates a level interrupt.
1201 	 */
1202 	if (intsize > 1) {
1203 		if (intspec[1] & 1)
1204 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1205 		else
1206 			*out_flags = IRQ_TYPE_EDGE_RISING;
1207 	} else
1208 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1209 
1210 	return 0;
1211 }
1212 
xive_irq_domain_match(struct irq_domain * h,struct device_node * node,enum irq_domain_bus_token bus_token)1213 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1214 				 enum irq_domain_bus_token bus_token)
1215 {
1216 	return xive_ops->match(node);
1217 }
1218 
1219 static const struct irq_domain_ops xive_irq_domain_ops = {
1220 	.match = xive_irq_domain_match,
1221 	.map = xive_irq_domain_map,
1222 	.unmap = xive_irq_domain_unmap,
1223 	.xlate = xive_irq_domain_xlate,
1224 };
1225 
xive_init_host(void)1226 static void __init xive_init_host(void)
1227 {
1228 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1229 					       &xive_irq_domain_ops, NULL);
1230 	if (WARN_ON(xive_irq_domain == NULL))
1231 		return;
1232 	irq_set_default_host(xive_irq_domain);
1233 }
1234 
xive_cleanup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1235 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1236 {
1237 	if (xc->queue[xive_irq_priority].qpage)
1238 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1239 }
1240 
xive_setup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1241 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1242 {
1243 	int rc = 0;
1244 
1245 	/* We setup 1 queues for now with a 64k page */
1246 	if (!xc->queue[xive_irq_priority].qpage)
1247 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1248 
1249 	return rc;
1250 }
1251 
xive_prepare_cpu(unsigned int cpu)1252 static int xive_prepare_cpu(unsigned int cpu)
1253 {
1254 	struct xive_cpu *xc;
1255 
1256 	xc = per_cpu(xive_cpu, cpu);
1257 	if (!xc) {
1258 		struct device_node *np;
1259 
1260 		xc = kzalloc_node(sizeof(struct xive_cpu),
1261 				  GFP_KERNEL, cpu_to_node(cpu));
1262 		if (!xc)
1263 			return -ENOMEM;
1264 		np = of_get_cpu_node(cpu, NULL);
1265 		if (np)
1266 			xc->chip_id = of_get_ibm_chip_id(np);
1267 		of_node_put(np);
1268 		xc->hw_ipi = XIVE_BAD_IRQ;
1269 
1270 		per_cpu(xive_cpu, cpu) = xc;
1271 	}
1272 
1273 	/* Setup EQs if not already */
1274 	return xive_setup_cpu_queues(cpu, xc);
1275 }
1276 
xive_setup_cpu(void)1277 static void xive_setup_cpu(void)
1278 {
1279 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1280 
1281 	/* The backend might have additional things to do */
1282 	if (xive_ops->setup_cpu)
1283 		xive_ops->setup_cpu(smp_processor_id(), xc);
1284 
1285 	/* Set CPPR to 0xff to enable flow of interrupts */
1286 	xc->cppr = 0xff;
1287 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1288 }
1289 
1290 #ifdef CONFIG_SMP
xive_smp_setup_cpu(void)1291 void xive_smp_setup_cpu(void)
1292 {
1293 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1294 
1295 	/* This will have already been done on the boot CPU */
1296 	if (smp_processor_id() != boot_cpuid)
1297 		xive_setup_cpu();
1298 
1299 }
1300 
xive_smp_prepare_cpu(unsigned int cpu)1301 int xive_smp_prepare_cpu(unsigned int cpu)
1302 {
1303 	int rc;
1304 
1305 	/* Allocate per-CPU data and queues */
1306 	rc = xive_prepare_cpu(cpu);
1307 	if (rc)
1308 		return rc;
1309 
1310 	/* Allocate and setup IPI for the new CPU */
1311 	return xive_setup_cpu_ipi(cpu);
1312 }
1313 
1314 #ifdef CONFIG_HOTPLUG_CPU
xive_flush_cpu_queue(unsigned int cpu,struct xive_cpu * xc)1315 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1316 {
1317 	u32 irq;
1318 
1319 	/* We assume local irqs are disabled */
1320 	WARN_ON(!irqs_disabled());
1321 
1322 	/* Check what's already in the CPU queue */
1323 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1324 		/*
1325 		 * We need to re-route that interrupt to its new destination.
1326 		 * First get and lock the descriptor
1327 		 */
1328 		struct irq_desc *desc = irq_to_desc(irq);
1329 		struct irq_data *d = irq_desc_get_irq_data(desc);
1330 		struct xive_irq_data *xd;
1331 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1332 
1333 		/*
1334 		 * Ignore anything that isn't a XIVE irq and ignore
1335 		 * IPIs, so can just be dropped.
1336 		 */
1337 		if (d->domain != xive_irq_domain || hw_irq == 0)
1338 			continue;
1339 
1340 		/*
1341 		 * The IRQ should have already been re-routed, it's just a
1342 		 * stale in the old queue, so re-trigger it in order to make
1343 		 * it reach is new destination.
1344 		 */
1345 #ifdef DEBUG_FLUSH
1346 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1347 			cpu, irq);
1348 #endif
1349 		raw_spin_lock(&desc->lock);
1350 		xd = irq_desc_get_handler_data(desc);
1351 
1352 		/*
1353 		 * For LSIs, we EOI, this will cause a resend if it's
1354 		 * still asserted. Otherwise do an MSI retrigger.
1355 		 */
1356 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1357 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1358 		else
1359 			xive_irq_retrigger(d);
1360 
1361 		raw_spin_unlock(&desc->lock);
1362 	}
1363 }
1364 
xive_smp_disable_cpu(void)1365 void xive_smp_disable_cpu(void)
1366 {
1367 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1368 	unsigned int cpu = smp_processor_id();
1369 
1370 	/* Migrate interrupts away from the CPU */
1371 	irq_migrate_all_off_this_cpu();
1372 
1373 	/* Set CPPR to 0 to disable flow of interrupts */
1374 	xc->cppr = 0;
1375 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1376 
1377 	/* Flush everything still in the queue */
1378 	xive_flush_cpu_queue(cpu, xc);
1379 
1380 	/* Re-enable CPPR  */
1381 	xc->cppr = 0xff;
1382 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1383 }
1384 
xive_flush_interrupt(void)1385 void xive_flush_interrupt(void)
1386 {
1387 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1388 	unsigned int cpu = smp_processor_id();
1389 
1390 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1391 	xive_flush_cpu_queue(cpu, xc);
1392 }
1393 
1394 #endif /* CONFIG_HOTPLUG_CPU */
1395 
1396 #endif /* CONFIG_SMP */
1397 
xive_teardown_cpu(void)1398 void xive_teardown_cpu(void)
1399 {
1400 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1401 	unsigned int cpu = smp_processor_id();
1402 
1403 	/* Set CPPR to 0 to disable flow of interrupts */
1404 	xc->cppr = 0;
1405 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1406 
1407 	if (xive_ops->teardown_cpu)
1408 		xive_ops->teardown_cpu(cpu, xc);
1409 
1410 #ifdef CONFIG_SMP
1411 	/* Get rid of IPI */
1412 	xive_cleanup_cpu_ipi(cpu, xc);
1413 #endif
1414 
1415 	/* Disable and free the queues */
1416 	xive_cleanup_cpu_queues(cpu, xc);
1417 }
1418 
xive_shutdown(void)1419 void xive_shutdown(void)
1420 {
1421 	xive_ops->shutdown();
1422 }
1423 
xive_core_init(const struct xive_ops * ops,void __iomem * area,u32 offset,u8 max_prio)1424 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1425 			   u8 max_prio)
1426 {
1427 	xive_tima = area;
1428 	xive_tima_offset = offset;
1429 	xive_ops = ops;
1430 	xive_irq_priority = max_prio;
1431 
1432 	ppc_md.get_irq = xive_get_irq;
1433 	__xive_enabled = true;
1434 
1435 	pr_devel("Initializing host..\n");
1436 	xive_init_host();
1437 
1438 	pr_devel("Initializing boot CPU..\n");
1439 
1440 	/* Allocate per-CPU data and queues */
1441 	xive_prepare_cpu(smp_processor_id());
1442 
1443 	/* Get ready for interrupts */
1444 	xive_setup_cpu();
1445 
1446 	pr_info("Interrupt handling initialized with %s backend\n",
1447 		xive_ops->name);
1448 	pr_info("Using priority %d for all interrupts\n", max_prio);
1449 
1450 	return true;
1451 }
1452 
xive_queue_page_alloc(unsigned int cpu,u32 queue_shift)1453 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1454 {
1455 	unsigned int alloc_order;
1456 	struct page *pages;
1457 	__be32 *qpage;
1458 
1459 	alloc_order = xive_alloc_order(queue_shift);
1460 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1461 	if (!pages)
1462 		return ERR_PTR(-ENOMEM);
1463 	qpage = (__be32 *)page_address(pages);
1464 	memset(qpage, 0, 1 << queue_shift);
1465 
1466 	return qpage;
1467 }
1468 
xive_off(char * arg)1469 static int __init xive_off(char *arg)
1470 {
1471 	xive_cmdline_disabled = true;
1472 	return 0;
1473 }
1474 __setup("xive=off", xive_off);
1475