1 /*
2 * Copyright 2016,2017 IBM Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10 #define pr_fmt(fmt) "xive: " fmt
11
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
26 #include <linux/vmalloc.h>
27
28 #include <asm/prom.h>
29 #include <asm/io.h>
30 #include <asm/smp.h>
31 #include <asm/machdep.h>
32 #include <asm/irq.h>
33 #include <asm/errno.h>
34 #include <asm/xive.h>
35 #include <asm/xive-regs.h>
36 #include <asm/xmon.h>
37
38 #include "xive-internal.h"
39
40 #undef DEBUG_FLUSH
41 #undef DEBUG_ALL
42
43 #ifdef DEBUG_ALL
44 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
45 smp_processor_id(), ## __VA_ARGS__)
46 #else
47 #define DBG_VERBOSE(fmt...) do { } while(0)
48 #endif
49
50 bool __xive_enabled;
51 EXPORT_SYMBOL_GPL(__xive_enabled);
52 bool xive_cmdline_disabled;
53
54 /* We use only one priority for now */
55 static u8 xive_irq_priority;
56
57 /* TIMA exported to KVM */
58 void __iomem *xive_tima;
59 EXPORT_SYMBOL_GPL(xive_tima);
60 u32 xive_tima_offset;
61
62 /* Backend ops */
63 static const struct xive_ops *xive_ops;
64
65 /* Our global interrupt domain */
66 static struct irq_domain *xive_irq_domain;
67
68 #ifdef CONFIG_SMP
69 /* The IPIs all use the same logical irq number */
70 static u32 xive_ipi_irq;
71 #endif
72
73 /* Xive state for each CPU */
74 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
75
76 /* An invalid CPU target */
77 #define XIVE_INVALID_TARGET (-1)
78
79 /*
80 * Read the next entry in a queue, return its content if it's valid
81 * or 0 if there is no new entry.
82 *
83 * The queue pointer is moved forward unless "just_peek" is set
84 */
xive_read_eq(struct xive_q * q,bool just_peek)85 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
86 {
87 u32 cur;
88
89 if (!q->qpage)
90 return 0;
91 cur = be32_to_cpup(q->qpage + q->idx);
92
93 /* Check valid bit (31) vs current toggle polarity */
94 if ((cur >> 31) == q->toggle)
95 return 0;
96
97 /* If consuming from the queue ... */
98 if (!just_peek) {
99 /* Next entry */
100 q->idx = (q->idx + 1) & q->msk;
101
102 /* Wrap around: flip valid toggle */
103 if (q->idx == 0)
104 q->toggle ^= 1;
105 }
106 /* Mask out the valid bit (31) */
107 return cur & 0x7fffffff;
108 }
109
110 /*
111 * Scans all the queue that may have interrupts in them
112 * (based on "pending_prio") in priority order until an
113 * interrupt is found or all the queues are empty.
114 *
115 * Then updates the CPPR (Current Processor Priority
116 * Register) based on the most favored interrupt found
117 * (0xff if none) and return what was found (0 if none).
118 *
119 * If just_peek is set, return the most favored pending
120 * interrupt if any but don't update the queue pointers.
121 *
122 * Note: This function can operate generically on any number
123 * of queues (up to 8). The current implementation of the XIVE
124 * driver only uses a single queue however.
125 *
126 * Note2: This will also "flush" "the pending_count" of a queue
127 * into the "count" when that queue is observed to be empty.
128 * This is used to keep track of the amount of interrupts
129 * targetting a queue. When an interrupt is moved away from
130 * a queue, we only decrement that queue count once the queue
131 * has been observed empty to avoid races.
132 */
xive_scan_interrupts(struct xive_cpu * xc,bool just_peek)133 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
134 {
135 u32 irq = 0;
136 u8 prio;
137
138 /* Find highest pending priority */
139 while (xc->pending_prio != 0) {
140 struct xive_q *q;
141
142 prio = ffs(xc->pending_prio) - 1;
143 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
144
145 /* Try to fetch */
146 irq = xive_read_eq(&xc->queue[prio], just_peek);
147
148 /* Found something ? That's it */
149 if (irq)
150 break;
151
152 /* Clear pending bits */
153 xc->pending_prio &= ~(1 << prio);
154
155 /*
156 * Check if the queue count needs adjusting due to
157 * interrupts being moved away. See description of
158 * xive_dec_target_count()
159 */
160 q = &xc->queue[prio];
161 if (atomic_read(&q->pending_count)) {
162 int p = atomic_xchg(&q->pending_count, 0);
163 if (p) {
164 WARN_ON(p > atomic_read(&q->count));
165 atomic_sub(p, &q->count);
166 }
167 }
168 }
169
170 /* If nothing was found, set CPPR to 0xff */
171 if (irq == 0)
172 prio = 0xff;
173
174 /* Update HW CPPR to match if necessary */
175 if (prio != xc->cppr) {
176 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
177 xc->cppr = prio;
178 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
179 }
180
181 return irq;
182 }
183
184 /*
185 * This is used to perform the magic loads from an ESB
186 * described in xive.h
187 */
xive_esb_read(struct xive_irq_data * xd,u32 offset)188 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
189 {
190 u64 val;
191
192 /* Handle HW errata */
193 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
194 offset |= offset << 4;
195
196 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
197 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
198 else
199 val = in_be64(xd->eoi_mmio + offset);
200
201 return (u8)val;
202 }
203
xive_esb_write(struct xive_irq_data * xd,u32 offset,u64 data)204 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
205 {
206 /* Handle HW errata */
207 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
208 offset |= offset << 4;
209
210 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
211 xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
212 else
213 out_be64(xd->eoi_mmio + offset, data);
214 }
215
216 #ifdef CONFIG_XMON
xive_dump_eq(const char * name,struct xive_q * q)217 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
218 {
219 u32 i0, i1, idx;
220
221 if (!q->qpage)
222 return;
223 idx = q->idx;
224 i0 = be32_to_cpup(q->qpage + idx);
225 idx = (idx + 1) & q->msk;
226 i1 = be32_to_cpup(q->qpage + idx);
227 xmon_printf(" %s Q T=%d %08x %08x ...\n", name,
228 q->toggle, i0, i1);
229 }
230
xmon_xive_do_dump(int cpu)231 notrace void xmon_xive_do_dump(int cpu)
232 {
233 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
234
235 xmon_printf("XIVE state for CPU %d:\n", cpu);
236 xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
237 xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
238 #ifdef CONFIG_SMP
239 {
240 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
241 xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi,
242 val & XIVE_ESB_VAL_P ? 'P' : 'p',
243 val & XIVE_ESB_VAL_Q ? 'Q' : 'q');
244 }
245 #endif
246 }
247 #endif /* CONFIG_XMON */
248
xive_get_irq(void)249 static unsigned int xive_get_irq(void)
250 {
251 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
252 u32 irq;
253
254 /*
255 * This can be called either as a result of a HW interrupt or
256 * as a "replay" because EOI decided there was still something
257 * in one of the queues.
258 *
259 * First we perform an ACK cycle in order to update our mask
260 * of pending priorities. This will also have the effect of
261 * updating the CPPR to the most favored pending interrupts.
262 *
263 * In the future, if we have a way to differentiate a first
264 * entry (on HW interrupt) from a replay triggered by EOI,
265 * we could skip this on replays unless we soft-mask tells us
266 * that a new HW interrupt occurred.
267 */
268 xive_ops->update_pending(xc);
269
270 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
271
272 /* Scan our queue(s) for interrupts */
273 irq = xive_scan_interrupts(xc, false);
274
275 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
276 irq, xc->pending_prio);
277
278 /* Return pending interrupt if any */
279 if (irq == XIVE_BAD_IRQ)
280 return 0;
281 return irq;
282 }
283
284 /*
285 * After EOI'ing an interrupt, we need to re-check the queue
286 * to see if another interrupt is pending since multiple
287 * interrupts can coalesce into a single notification to the
288 * CPU.
289 *
290 * If we find that there is indeed more in there, we call
291 * force_external_irq_replay() to make Linux synthetize an
292 * external interrupt on the next call to local_irq_restore().
293 */
xive_do_queue_eoi(struct xive_cpu * xc)294 static void xive_do_queue_eoi(struct xive_cpu *xc)
295 {
296 if (xive_scan_interrupts(xc, true) != 0) {
297 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
298 force_external_irq_replay();
299 }
300 }
301
302 /*
303 * EOI an interrupt at the source. There are several methods
304 * to do this depending on the HW version and source type
305 */
xive_do_source_eoi(u32 hw_irq,struct xive_irq_data * xd)306 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
307 {
308 /* If the XIVE supports the new "store EOI facility, use it */
309 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
310 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
311 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
312 /*
313 * The FW told us to call it. This happens for some
314 * interrupt sources that need additional HW whacking
315 * beyond the ESB manipulation. For example LPC interrupts
316 * on P9 DD1.0 needed a latch to be clared in the LPC bridge
317 * itself. The Firmware will take care of it.
318 */
319 if (WARN_ON_ONCE(!xive_ops->eoi))
320 return;
321 xive_ops->eoi(hw_irq);
322 } else {
323 u8 eoi_val;
324
325 /*
326 * Otherwise for EOI, we use the special MMIO that does
327 * a clear of both P and Q and returns the old Q,
328 * except for LSIs where we use the "EOI cycle" special
329 * load.
330 *
331 * This allows us to then do a re-trigger if Q was set
332 * rather than synthesizing an interrupt in software
333 *
334 * For LSIs the HW EOI cycle is used rather than PQ bits,
335 * as they are automatically re-triggred in HW when still
336 * pending.
337 */
338 if (xd->flags & XIVE_IRQ_FLAG_LSI)
339 xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
340 else {
341 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
342 DBG_VERBOSE("eoi_val=%x\n", eoi_val);
343
344 /* Re-trigger if needed */
345 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
346 out_be64(xd->trig_mmio, 0);
347 }
348 }
349 }
350
351 /* irq_chip eoi callback */
xive_irq_eoi(struct irq_data * d)352 static void xive_irq_eoi(struct irq_data *d)
353 {
354 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
355 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
356
357 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
358 d->irq, irqd_to_hwirq(d), xc->pending_prio);
359
360 /*
361 * EOI the source if it hasn't been disabled and hasn't
362 * been passed-through to a KVM guest
363 */
364 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
365 !(xd->flags & XIVE_IRQ_NO_EOI))
366 xive_do_source_eoi(irqd_to_hwirq(d), xd);
367
368 /*
369 * Clear saved_p to indicate that it's no longer occupying
370 * a queue slot on the target queue
371 */
372 xd->saved_p = false;
373
374 /* Check for more work in the queue */
375 xive_do_queue_eoi(xc);
376 }
377
378 /*
379 * Helper used to mask and unmask an interrupt source. This
380 * is only called for normal interrupts that do not require
381 * masking/unmasking via firmware.
382 */
xive_do_source_set_mask(struct xive_irq_data * xd,bool mask)383 static void xive_do_source_set_mask(struct xive_irq_data *xd,
384 bool mask)
385 {
386 u64 val;
387
388 /*
389 * If the interrupt had P set, it may be in a queue.
390 *
391 * We need to make sure we don't re-enable it until it
392 * has been fetched from that queue and EOId. We keep
393 * a copy of that P state and use it to restore the
394 * ESB accordingly on unmask.
395 */
396 if (mask) {
397 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
398 xd->saved_p = !!(val & XIVE_ESB_VAL_P);
399 } else if (xd->saved_p)
400 xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
401 else
402 xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
403 }
404
405 /*
406 * Try to chose "cpu" as a new interrupt target. Increments
407 * the queue accounting for that target if it's not already
408 * full.
409 */
xive_try_pick_target(int cpu)410 static bool xive_try_pick_target(int cpu)
411 {
412 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
413 struct xive_q *q = &xc->queue[xive_irq_priority];
414 int max;
415
416 /*
417 * Calculate max number of interrupts in that queue.
418 *
419 * We leave a gap of 1 just in case...
420 */
421 max = (q->msk + 1) - 1;
422 return !!atomic_add_unless(&q->count, 1, max);
423 }
424
425 /*
426 * Un-account an interrupt for a target CPU. We don't directly
427 * decrement q->count since the interrupt might still be present
428 * in the queue.
429 *
430 * Instead increment a separate counter "pending_count" which
431 * will be substracted from "count" later when that CPU observes
432 * the queue to be empty.
433 */
xive_dec_target_count(int cpu)434 static void xive_dec_target_count(int cpu)
435 {
436 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
437 struct xive_q *q = &xc->queue[xive_irq_priority];
438
439 if (unlikely(WARN_ON(cpu < 0 || !xc))) {
440 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
441 return;
442 }
443
444 /*
445 * We increment the "pending count" which will be used
446 * to decrement the target queue count whenever it's next
447 * processed and found empty. This ensure that we don't
448 * decrement while we still have the interrupt there
449 * occupying a slot.
450 */
451 atomic_inc(&q->pending_count);
452 }
453
454 /* Find a tentative CPU target in a CPU mask */
xive_find_target_in_mask(const struct cpumask * mask,unsigned int fuzz)455 static int xive_find_target_in_mask(const struct cpumask *mask,
456 unsigned int fuzz)
457 {
458 int cpu, first, num, i;
459
460 /* Pick up a starting point CPU in the mask based on fuzz */
461 num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
462 first = fuzz % num;
463
464 /* Locate it */
465 cpu = cpumask_first(mask);
466 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
467 cpu = cpumask_next(cpu, mask);
468
469 /* Sanity check */
470 if (WARN_ON(cpu >= nr_cpu_ids))
471 cpu = cpumask_first(cpu_online_mask);
472
473 /* Remember first one to handle wrap-around */
474 first = cpu;
475
476 /*
477 * Now go through the entire mask until we find a valid
478 * target.
479 */
480 do {
481 /*
482 * We re-check online as the fallback case passes us
483 * an untested affinity mask
484 */
485 if (cpu_online(cpu) && xive_try_pick_target(cpu))
486 return cpu;
487 cpu = cpumask_next(cpu, mask);
488 /* Wrap around */
489 if (cpu >= nr_cpu_ids)
490 cpu = cpumask_first(mask);
491 } while (cpu != first);
492
493 return -1;
494 }
495
496 /*
497 * Pick a target CPU for an interrupt. This is done at
498 * startup or if the affinity is changed in a way that
499 * invalidates the current target.
500 */
xive_pick_irq_target(struct irq_data * d,const struct cpumask * affinity)501 static int xive_pick_irq_target(struct irq_data *d,
502 const struct cpumask *affinity)
503 {
504 static unsigned int fuzz;
505 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
506 cpumask_var_t mask;
507 int cpu = -1;
508
509 /*
510 * If we have chip IDs, first we try to build a mask of
511 * CPUs matching the CPU and find a target in there
512 */
513 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
514 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
515 /* Build a mask of matching chip IDs */
516 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
517 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
518 if (xc->chip_id == xd->src_chip)
519 cpumask_set_cpu(cpu, mask);
520 }
521 /* Try to find a target */
522 if (cpumask_empty(mask))
523 cpu = -1;
524 else
525 cpu = xive_find_target_in_mask(mask, fuzz++);
526 free_cpumask_var(mask);
527 if (cpu >= 0)
528 return cpu;
529 fuzz--;
530 }
531
532 /* No chip IDs, fallback to using the affinity mask */
533 return xive_find_target_in_mask(affinity, fuzz++);
534 }
535
xive_irq_startup(struct irq_data * d)536 static unsigned int xive_irq_startup(struct irq_data *d)
537 {
538 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
539 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
540 int target, rc;
541
542 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
543 d->irq, hw_irq, d);
544
545 #ifdef CONFIG_PCI_MSI
546 /*
547 * The generic MSI code returns with the interrupt disabled on the
548 * card, using the MSI mask bits. Firmware doesn't appear to unmask
549 * at that level, so we do it here by hand.
550 */
551 if (irq_data_get_msi_desc(d))
552 pci_msi_unmask_irq(d);
553 #endif
554
555 /* Pick a target */
556 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
557 if (target == XIVE_INVALID_TARGET) {
558 /* Try again breaking affinity */
559 target = xive_pick_irq_target(d, cpu_online_mask);
560 if (target == XIVE_INVALID_TARGET)
561 return -ENXIO;
562 pr_warn("irq %d started with broken affinity\n", d->irq);
563 }
564
565 /* Sanity check */
566 if (WARN_ON(target == XIVE_INVALID_TARGET ||
567 target >= nr_cpu_ids))
568 target = smp_processor_id();
569
570 xd->target = target;
571
572 /*
573 * Configure the logical number to be the Linux IRQ number
574 * and set the target queue
575 */
576 rc = xive_ops->configure_irq(hw_irq,
577 get_hard_smp_processor_id(target),
578 xive_irq_priority, d->irq);
579 if (rc)
580 return rc;
581
582 /* Unmask the ESB */
583 xive_do_source_set_mask(xd, false);
584
585 return 0;
586 }
587
xive_irq_shutdown(struct irq_data * d)588 static void xive_irq_shutdown(struct irq_data *d)
589 {
590 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
591 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
592
593 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
594 d->irq, hw_irq, d);
595
596 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
597 return;
598
599 /* Mask the interrupt at the source */
600 xive_do_source_set_mask(xd, true);
601
602 /*
603 * The above may have set saved_p. We clear it otherwise it
604 * will prevent re-enabling later on. It is ok to forget the
605 * fact that the interrupt might be in a queue because we are
606 * accounting that already in xive_dec_target_count() and will
607 * be re-routing it to a new queue with proper accounting when
608 * it's started up again
609 */
610 xd->saved_p = false;
611
612 /*
613 * Mask the interrupt in HW in the IVT/EAS and set the number
614 * to be the "bad" IRQ number
615 */
616 xive_ops->configure_irq(hw_irq,
617 get_hard_smp_processor_id(xd->target),
618 0xff, XIVE_BAD_IRQ);
619
620 xive_dec_target_count(xd->target);
621 xd->target = XIVE_INVALID_TARGET;
622 }
623
xive_irq_unmask(struct irq_data * d)624 static void xive_irq_unmask(struct irq_data *d)
625 {
626 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
627
628 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
629
630 /*
631 * This is a workaround for PCI LSI problems on P9, for
632 * these, we call FW to set the mask. The problems might
633 * be fixed by P9 DD2.0, if that is the case, firmware
634 * will no longer set that flag.
635 */
636 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
637 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
638 xive_ops->configure_irq(hw_irq,
639 get_hard_smp_processor_id(xd->target),
640 xive_irq_priority, d->irq);
641 return;
642 }
643
644 xive_do_source_set_mask(xd, false);
645 }
646
xive_irq_mask(struct irq_data * d)647 static void xive_irq_mask(struct irq_data *d)
648 {
649 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
650
651 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
652
653 /*
654 * This is a workaround for PCI LSI problems on P9, for
655 * these, we call OPAL to set the mask. The problems might
656 * be fixed by P9 DD2.0, if that is the case, firmware
657 * will no longer set that flag.
658 */
659 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
660 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
661 xive_ops->configure_irq(hw_irq,
662 get_hard_smp_processor_id(xd->target),
663 0xff, d->irq);
664 return;
665 }
666
667 xive_do_source_set_mask(xd, true);
668 }
669
xive_irq_set_affinity(struct irq_data * d,const struct cpumask * cpumask,bool force)670 static int xive_irq_set_affinity(struct irq_data *d,
671 const struct cpumask *cpumask,
672 bool force)
673 {
674 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
675 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
676 u32 target, old_target;
677 int rc = 0;
678
679 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
680
681 /* Is this valid ? */
682 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
683 return -EINVAL;
684
685 /* Don't do anything if the interrupt isn't started */
686 if (!irqd_is_started(d))
687 return IRQ_SET_MASK_OK;
688
689 /*
690 * If existing target is already in the new mask, and is
691 * online then do nothing.
692 */
693 if (xd->target != XIVE_INVALID_TARGET &&
694 cpu_online(xd->target) &&
695 cpumask_test_cpu(xd->target, cpumask))
696 return IRQ_SET_MASK_OK;
697
698 /* Pick a new target */
699 target = xive_pick_irq_target(d, cpumask);
700
701 /* No target found */
702 if (target == XIVE_INVALID_TARGET)
703 return -ENXIO;
704
705 /* Sanity check */
706 if (WARN_ON(target >= nr_cpu_ids))
707 target = smp_processor_id();
708
709 old_target = xd->target;
710
711 /*
712 * Only configure the irq if it's not currently passed-through to
713 * a KVM guest
714 */
715 if (!irqd_is_forwarded_to_vcpu(d))
716 rc = xive_ops->configure_irq(hw_irq,
717 get_hard_smp_processor_id(target),
718 xive_irq_priority, d->irq);
719 if (rc < 0) {
720 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
721 return rc;
722 }
723
724 pr_devel(" target: 0x%x\n", target);
725 xd->target = target;
726
727 /* Give up previous target */
728 if (old_target != XIVE_INVALID_TARGET)
729 xive_dec_target_count(old_target);
730
731 return IRQ_SET_MASK_OK;
732 }
733
xive_irq_set_type(struct irq_data * d,unsigned int flow_type)734 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
735 {
736 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
737
738 /*
739 * We only support these. This has really no effect other than setting
740 * the corresponding descriptor bits mind you but those will in turn
741 * affect the resend function when re-enabling an edge interrupt.
742 *
743 * Set set the default to edge as explained in map().
744 */
745 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
746 flow_type = IRQ_TYPE_EDGE_RISING;
747
748 if (flow_type != IRQ_TYPE_EDGE_RISING &&
749 flow_type != IRQ_TYPE_LEVEL_LOW)
750 return -EINVAL;
751
752 irqd_set_trigger_type(d, flow_type);
753
754 /*
755 * Double check it matches what the FW thinks
756 *
757 * NOTE: We don't know yet if the PAPR interface will provide
758 * the LSI vs MSI information apart from the device-tree so
759 * this check might have to move into an optional backend call
760 * that is specific to the native backend
761 */
762 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
763 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
764 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
765 d->irq, (u32)irqd_to_hwirq(d),
766 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
767 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
768 }
769
770 return IRQ_SET_MASK_OK_NOCOPY;
771 }
772
xive_irq_retrigger(struct irq_data * d)773 static int xive_irq_retrigger(struct irq_data *d)
774 {
775 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
776
777 /* This should be only for MSIs */
778 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
779 return 0;
780
781 /*
782 * To perform a retrigger, we first set the PQ bits to
783 * 11, then perform an EOI.
784 */
785 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
786
787 /*
788 * Note: We pass "0" to the hw_irq argument in order to
789 * avoid calling into the backend EOI code which we don't
790 * want to do in the case of a re-trigger. Backends typically
791 * only do EOI for LSIs anyway.
792 */
793 xive_do_source_eoi(0, xd);
794
795 return 1;
796 }
797
xive_irq_set_vcpu_affinity(struct irq_data * d,void * state)798 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
799 {
800 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
801 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
802 int rc;
803 u8 pq;
804
805 /*
806 * We only support this on interrupts that do not require
807 * firmware calls for masking and unmasking
808 */
809 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
810 return -EIO;
811
812 /*
813 * This is called by KVM with state non-NULL for enabling
814 * pass-through or NULL for disabling it
815 */
816 if (state) {
817 irqd_set_forwarded_to_vcpu(d);
818
819 /* Set it to PQ=10 state to prevent further sends */
820 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
821
822 /* No target ? nothing to do */
823 if (xd->target == XIVE_INVALID_TARGET) {
824 /*
825 * An untargetted interrupt should have been
826 * also masked at the source
827 */
828 WARN_ON(pq & 2);
829
830 return 0;
831 }
832
833 /*
834 * If P was set, adjust state to PQ=11 to indicate
835 * that a resend is needed for the interrupt to reach
836 * the guest. Also remember the value of P.
837 *
838 * This also tells us that it's in flight to a host queue
839 * or has already been fetched but hasn't been EOIed yet
840 * by the host. This it's potentially using up a host
841 * queue slot. This is important to know because as long
842 * as this is the case, we must not hard-unmask it when
843 * "returning" that interrupt to the host.
844 *
845 * This saved_p is cleared by the host EOI, when we know
846 * for sure the queue slot is no longer in use.
847 */
848 if (pq & 2) {
849 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
850 xd->saved_p = true;
851
852 /*
853 * Sync the XIVE source HW to ensure the interrupt
854 * has gone through the EAS before we change its
855 * target to the guest. That should guarantee us
856 * that we *will* eventually get an EOI for it on
857 * the host. Otherwise there would be a small window
858 * for P to be seen here but the interrupt going
859 * to the guest queue.
860 */
861 if (xive_ops->sync_source)
862 xive_ops->sync_source(hw_irq);
863 } else
864 xd->saved_p = false;
865 } else {
866 irqd_clr_forwarded_to_vcpu(d);
867
868 /* No host target ? hard mask and return */
869 if (xd->target == XIVE_INVALID_TARGET) {
870 xive_do_source_set_mask(xd, true);
871 return 0;
872 }
873
874 /*
875 * Sync the XIVE source HW to ensure the interrupt
876 * has gone through the EAS before we change its
877 * target to the host.
878 */
879 if (xive_ops->sync_source)
880 xive_ops->sync_source(hw_irq);
881
882 /*
883 * By convention we are called with the interrupt in
884 * a PQ=10 or PQ=11 state, ie, it won't fire and will
885 * have latched in Q whether there's a pending HW
886 * interrupt or not.
887 *
888 * First reconfigure the target.
889 */
890 rc = xive_ops->configure_irq(hw_irq,
891 get_hard_smp_processor_id(xd->target),
892 xive_irq_priority, d->irq);
893 if (rc)
894 return rc;
895
896 /*
897 * Then if saved_p is not set, effectively re-enable the
898 * interrupt with an EOI. If it is set, we know there is
899 * still a message in a host queue somewhere that will be
900 * EOId eventually.
901 *
902 * Note: We don't check irqd_irq_disabled(). Effectively,
903 * we *will* let the irq get through even if masked if the
904 * HW is still firing it in order to deal with the whole
905 * saved_p business properly. If the interrupt triggers
906 * while masked, the generic code will re-mask it anyway.
907 */
908 if (!xd->saved_p)
909 xive_do_source_eoi(hw_irq, xd);
910
911 }
912 return 0;
913 }
914
915 static struct irq_chip xive_irq_chip = {
916 .name = "XIVE-IRQ",
917 .irq_startup = xive_irq_startup,
918 .irq_shutdown = xive_irq_shutdown,
919 .irq_eoi = xive_irq_eoi,
920 .irq_mask = xive_irq_mask,
921 .irq_unmask = xive_irq_unmask,
922 .irq_set_affinity = xive_irq_set_affinity,
923 .irq_set_type = xive_irq_set_type,
924 .irq_retrigger = xive_irq_retrigger,
925 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
926 };
927
is_xive_irq(struct irq_chip * chip)928 bool is_xive_irq(struct irq_chip *chip)
929 {
930 return chip == &xive_irq_chip;
931 }
932 EXPORT_SYMBOL_GPL(is_xive_irq);
933
xive_cleanup_irq_data(struct xive_irq_data * xd)934 void xive_cleanup_irq_data(struct xive_irq_data *xd)
935 {
936 if (xd->eoi_mmio) {
937 unmap_kernel_range((unsigned long)xd->eoi_mmio,
938 1u << xd->esb_shift);
939 iounmap(xd->eoi_mmio);
940 if (xd->eoi_mmio == xd->trig_mmio)
941 xd->trig_mmio = NULL;
942 xd->eoi_mmio = NULL;
943 }
944 if (xd->trig_mmio) {
945 unmap_kernel_range((unsigned long)xd->trig_mmio,
946 1u << xd->esb_shift);
947 iounmap(xd->trig_mmio);
948 xd->trig_mmio = NULL;
949 }
950 }
951 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
952
xive_irq_alloc_data(unsigned int virq,irq_hw_number_t hw)953 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
954 {
955 struct xive_irq_data *xd;
956 int rc;
957
958 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
959 if (!xd)
960 return -ENOMEM;
961 rc = xive_ops->populate_irq_data(hw, xd);
962 if (rc) {
963 kfree(xd);
964 return rc;
965 }
966 xd->target = XIVE_INVALID_TARGET;
967 irq_set_handler_data(virq, xd);
968
969 /*
970 * Turn OFF by default the interrupt being mapped. A side
971 * effect of this check is the mapping the ESB page of the
972 * interrupt in the Linux address space. This prevents page
973 * fault issues in the crash handler which masks all
974 * interrupts.
975 */
976 xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
977
978 return 0;
979 }
980
xive_irq_free_data(unsigned int virq)981 static void xive_irq_free_data(unsigned int virq)
982 {
983 struct xive_irq_data *xd = irq_get_handler_data(virq);
984
985 if (!xd)
986 return;
987 irq_set_handler_data(virq, NULL);
988 xive_cleanup_irq_data(xd);
989 kfree(xd);
990 }
991
992 #ifdef CONFIG_SMP
993
xive_cause_ipi(int cpu)994 static void xive_cause_ipi(int cpu)
995 {
996 struct xive_cpu *xc;
997 struct xive_irq_data *xd;
998
999 xc = per_cpu(xive_cpu, cpu);
1000
1001 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1002 smp_processor_id(), cpu, xc->hw_ipi);
1003
1004 xd = &xc->ipi_data;
1005 if (WARN_ON(!xd->trig_mmio))
1006 return;
1007 out_be64(xd->trig_mmio, 0);
1008 }
1009
xive_muxed_ipi_action(int irq,void * dev_id)1010 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1011 {
1012 return smp_ipi_demux();
1013 }
1014
xive_ipi_eoi(struct irq_data * d)1015 static void xive_ipi_eoi(struct irq_data *d)
1016 {
1017 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1018
1019 /* Handle possible race with unplug and drop stale IPIs */
1020 if (!xc)
1021 return;
1022
1023 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1024 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1025
1026 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1027 xive_do_queue_eoi(xc);
1028 }
1029
xive_ipi_do_nothing(struct irq_data * d)1030 static void xive_ipi_do_nothing(struct irq_data *d)
1031 {
1032 /*
1033 * Nothing to do, we never mask/unmask IPIs, but the callback
1034 * has to exist for the struct irq_chip.
1035 */
1036 }
1037
1038 static struct irq_chip xive_ipi_chip = {
1039 .name = "XIVE-IPI",
1040 .irq_eoi = xive_ipi_eoi,
1041 .irq_mask = xive_ipi_do_nothing,
1042 .irq_unmask = xive_ipi_do_nothing,
1043 };
1044
xive_request_ipi(void)1045 static void __init xive_request_ipi(void)
1046 {
1047 unsigned int virq;
1048
1049 /*
1050 * Initialization failed, move on, we might manage to
1051 * reach the point where we display our errors before
1052 * the system falls appart
1053 */
1054 if (!xive_irq_domain)
1055 return;
1056
1057 /* Initialize it */
1058 virq = irq_create_mapping(xive_irq_domain, 0);
1059 xive_ipi_irq = virq;
1060
1061 WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1062 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1063 }
1064
xive_setup_cpu_ipi(unsigned int cpu)1065 static int xive_setup_cpu_ipi(unsigned int cpu)
1066 {
1067 struct xive_cpu *xc;
1068 int rc;
1069
1070 pr_debug("Setting up IPI for CPU %d\n", cpu);
1071
1072 xc = per_cpu(xive_cpu, cpu);
1073
1074 /* Check if we are already setup */
1075 if (xc->hw_ipi != XIVE_BAD_IRQ)
1076 return 0;
1077
1078 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1079 if (xive_ops->get_ipi(cpu, xc))
1080 return -EIO;
1081
1082 /*
1083 * Populate the IRQ data in the xive_cpu structure and
1084 * configure the HW / enable the IPIs.
1085 */
1086 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1087 if (rc) {
1088 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1089 return -EIO;
1090 }
1091 rc = xive_ops->configure_irq(xc->hw_ipi,
1092 get_hard_smp_processor_id(cpu),
1093 xive_irq_priority, xive_ipi_irq);
1094 if (rc) {
1095 pr_err("Failed to map IPI CPU %d\n", cpu);
1096 return -EIO;
1097 }
1098 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1099 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1100
1101 /* Unmask it */
1102 xive_do_source_set_mask(&xc->ipi_data, false);
1103
1104 return 0;
1105 }
1106
xive_cleanup_cpu_ipi(unsigned int cpu,struct xive_cpu * xc)1107 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1108 {
1109 /* Disable the IPI and free the IRQ data */
1110
1111 /* Already cleaned up ? */
1112 if (xc->hw_ipi == XIVE_BAD_IRQ)
1113 return;
1114
1115 /* Mask the IPI */
1116 xive_do_source_set_mask(&xc->ipi_data, true);
1117
1118 /*
1119 * Note: We don't call xive_cleanup_irq_data() to free
1120 * the mappings as this is called from an IPI on kexec
1121 * which is not a safe environment to call iounmap()
1122 */
1123
1124 /* Deconfigure/mask in the backend */
1125 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1126 0xff, xive_ipi_irq);
1127
1128 /* Free the IPIs in the backend */
1129 xive_ops->put_ipi(cpu, xc);
1130 }
1131
xive_smp_probe(void)1132 void __init xive_smp_probe(void)
1133 {
1134 smp_ops->cause_ipi = xive_cause_ipi;
1135
1136 /* Register the IPI */
1137 xive_request_ipi();
1138
1139 /* Allocate and setup IPI for the boot CPU */
1140 xive_setup_cpu_ipi(smp_processor_id());
1141 }
1142
1143 #endif /* CONFIG_SMP */
1144
xive_irq_domain_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)1145 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1146 irq_hw_number_t hw)
1147 {
1148 int rc;
1149
1150 /*
1151 * Mark interrupts as edge sensitive by default so that resend
1152 * actually works. Will fix that up below if needed.
1153 */
1154 irq_clear_status_flags(virq, IRQ_LEVEL);
1155
1156 #ifdef CONFIG_SMP
1157 /* IPIs are special and come up with HW number 0 */
1158 if (hw == 0) {
1159 /*
1160 * IPIs are marked per-cpu. We use separate HW interrupts under
1161 * the hood but associated with the same "linux" interrupt
1162 */
1163 irq_set_chip_and_handler(virq, &xive_ipi_chip,
1164 handle_percpu_irq);
1165 return 0;
1166 }
1167 #endif
1168
1169 rc = xive_irq_alloc_data(virq, hw);
1170 if (rc)
1171 return rc;
1172
1173 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1174
1175 return 0;
1176 }
1177
xive_irq_domain_unmap(struct irq_domain * d,unsigned int virq)1178 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1179 {
1180 struct irq_data *data = irq_get_irq_data(virq);
1181 unsigned int hw_irq;
1182
1183 /* XXX Assign BAD number */
1184 if (!data)
1185 return;
1186 hw_irq = (unsigned int)irqd_to_hwirq(data);
1187 if (hw_irq)
1188 xive_irq_free_data(virq);
1189 }
1190
xive_irq_domain_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)1191 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1192 const u32 *intspec, unsigned int intsize,
1193 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1194
1195 {
1196 *out_hwirq = intspec[0];
1197
1198 /*
1199 * If intsize is at least 2, we look for the type in the second cell,
1200 * we assume the LSB indicates a level interrupt.
1201 */
1202 if (intsize > 1) {
1203 if (intspec[1] & 1)
1204 *out_flags = IRQ_TYPE_LEVEL_LOW;
1205 else
1206 *out_flags = IRQ_TYPE_EDGE_RISING;
1207 } else
1208 *out_flags = IRQ_TYPE_LEVEL_LOW;
1209
1210 return 0;
1211 }
1212
xive_irq_domain_match(struct irq_domain * h,struct device_node * node,enum irq_domain_bus_token bus_token)1213 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1214 enum irq_domain_bus_token bus_token)
1215 {
1216 return xive_ops->match(node);
1217 }
1218
1219 static const struct irq_domain_ops xive_irq_domain_ops = {
1220 .match = xive_irq_domain_match,
1221 .map = xive_irq_domain_map,
1222 .unmap = xive_irq_domain_unmap,
1223 .xlate = xive_irq_domain_xlate,
1224 };
1225
xive_init_host(void)1226 static void __init xive_init_host(void)
1227 {
1228 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1229 &xive_irq_domain_ops, NULL);
1230 if (WARN_ON(xive_irq_domain == NULL))
1231 return;
1232 irq_set_default_host(xive_irq_domain);
1233 }
1234
xive_cleanup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1235 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1236 {
1237 if (xc->queue[xive_irq_priority].qpage)
1238 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1239 }
1240
xive_setup_cpu_queues(unsigned int cpu,struct xive_cpu * xc)1241 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1242 {
1243 int rc = 0;
1244
1245 /* We setup 1 queues for now with a 64k page */
1246 if (!xc->queue[xive_irq_priority].qpage)
1247 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1248
1249 return rc;
1250 }
1251
xive_prepare_cpu(unsigned int cpu)1252 static int xive_prepare_cpu(unsigned int cpu)
1253 {
1254 struct xive_cpu *xc;
1255
1256 xc = per_cpu(xive_cpu, cpu);
1257 if (!xc) {
1258 struct device_node *np;
1259
1260 xc = kzalloc_node(sizeof(struct xive_cpu),
1261 GFP_KERNEL, cpu_to_node(cpu));
1262 if (!xc)
1263 return -ENOMEM;
1264 np = of_get_cpu_node(cpu, NULL);
1265 if (np)
1266 xc->chip_id = of_get_ibm_chip_id(np);
1267 of_node_put(np);
1268 xc->hw_ipi = XIVE_BAD_IRQ;
1269
1270 per_cpu(xive_cpu, cpu) = xc;
1271 }
1272
1273 /* Setup EQs if not already */
1274 return xive_setup_cpu_queues(cpu, xc);
1275 }
1276
xive_setup_cpu(void)1277 static void xive_setup_cpu(void)
1278 {
1279 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1280
1281 /* The backend might have additional things to do */
1282 if (xive_ops->setup_cpu)
1283 xive_ops->setup_cpu(smp_processor_id(), xc);
1284
1285 /* Set CPPR to 0xff to enable flow of interrupts */
1286 xc->cppr = 0xff;
1287 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1288 }
1289
1290 #ifdef CONFIG_SMP
xive_smp_setup_cpu(void)1291 void xive_smp_setup_cpu(void)
1292 {
1293 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1294
1295 /* This will have already been done on the boot CPU */
1296 if (smp_processor_id() != boot_cpuid)
1297 xive_setup_cpu();
1298
1299 }
1300
xive_smp_prepare_cpu(unsigned int cpu)1301 int xive_smp_prepare_cpu(unsigned int cpu)
1302 {
1303 int rc;
1304
1305 /* Allocate per-CPU data and queues */
1306 rc = xive_prepare_cpu(cpu);
1307 if (rc)
1308 return rc;
1309
1310 /* Allocate and setup IPI for the new CPU */
1311 return xive_setup_cpu_ipi(cpu);
1312 }
1313
1314 #ifdef CONFIG_HOTPLUG_CPU
xive_flush_cpu_queue(unsigned int cpu,struct xive_cpu * xc)1315 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1316 {
1317 u32 irq;
1318
1319 /* We assume local irqs are disabled */
1320 WARN_ON(!irqs_disabled());
1321
1322 /* Check what's already in the CPU queue */
1323 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1324 /*
1325 * We need to re-route that interrupt to its new destination.
1326 * First get and lock the descriptor
1327 */
1328 struct irq_desc *desc = irq_to_desc(irq);
1329 struct irq_data *d = irq_desc_get_irq_data(desc);
1330 struct xive_irq_data *xd;
1331 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1332
1333 /*
1334 * Ignore anything that isn't a XIVE irq and ignore
1335 * IPIs, so can just be dropped.
1336 */
1337 if (d->domain != xive_irq_domain || hw_irq == 0)
1338 continue;
1339
1340 /*
1341 * The IRQ should have already been re-routed, it's just a
1342 * stale in the old queue, so re-trigger it in order to make
1343 * it reach is new destination.
1344 */
1345 #ifdef DEBUG_FLUSH
1346 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1347 cpu, irq);
1348 #endif
1349 raw_spin_lock(&desc->lock);
1350 xd = irq_desc_get_handler_data(desc);
1351
1352 /*
1353 * For LSIs, we EOI, this will cause a resend if it's
1354 * still asserted. Otherwise do an MSI retrigger.
1355 */
1356 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1357 xive_do_source_eoi(irqd_to_hwirq(d), xd);
1358 else
1359 xive_irq_retrigger(d);
1360
1361 raw_spin_unlock(&desc->lock);
1362 }
1363 }
1364
xive_smp_disable_cpu(void)1365 void xive_smp_disable_cpu(void)
1366 {
1367 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1368 unsigned int cpu = smp_processor_id();
1369
1370 /* Migrate interrupts away from the CPU */
1371 irq_migrate_all_off_this_cpu();
1372
1373 /* Set CPPR to 0 to disable flow of interrupts */
1374 xc->cppr = 0;
1375 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1376
1377 /* Flush everything still in the queue */
1378 xive_flush_cpu_queue(cpu, xc);
1379
1380 /* Re-enable CPPR */
1381 xc->cppr = 0xff;
1382 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1383 }
1384
xive_flush_interrupt(void)1385 void xive_flush_interrupt(void)
1386 {
1387 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1388 unsigned int cpu = smp_processor_id();
1389
1390 /* Called if an interrupt occurs while the CPU is hot unplugged */
1391 xive_flush_cpu_queue(cpu, xc);
1392 }
1393
1394 #endif /* CONFIG_HOTPLUG_CPU */
1395
1396 #endif /* CONFIG_SMP */
1397
xive_teardown_cpu(void)1398 void xive_teardown_cpu(void)
1399 {
1400 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1401 unsigned int cpu = smp_processor_id();
1402
1403 /* Set CPPR to 0 to disable flow of interrupts */
1404 xc->cppr = 0;
1405 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1406
1407 if (xive_ops->teardown_cpu)
1408 xive_ops->teardown_cpu(cpu, xc);
1409
1410 #ifdef CONFIG_SMP
1411 /* Get rid of IPI */
1412 xive_cleanup_cpu_ipi(cpu, xc);
1413 #endif
1414
1415 /* Disable and free the queues */
1416 xive_cleanup_cpu_queues(cpu, xc);
1417 }
1418
xive_shutdown(void)1419 void xive_shutdown(void)
1420 {
1421 xive_ops->shutdown();
1422 }
1423
xive_core_init(const struct xive_ops * ops,void __iomem * area,u32 offset,u8 max_prio)1424 bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1425 u8 max_prio)
1426 {
1427 xive_tima = area;
1428 xive_tima_offset = offset;
1429 xive_ops = ops;
1430 xive_irq_priority = max_prio;
1431
1432 ppc_md.get_irq = xive_get_irq;
1433 __xive_enabled = true;
1434
1435 pr_devel("Initializing host..\n");
1436 xive_init_host();
1437
1438 pr_devel("Initializing boot CPU..\n");
1439
1440 /* Allocate per-CPU data and queues */
1441 xive_prepare_cpu(smp_processor_id());
1442
1443 /* Get ready for interrupts */
1444 xive_setup_cpu();
1445
1446 pr_info("Interrupt handling initialized with %s backend\n",
1447 xive_ops->name);
1448 pr_info("Using priority %d for all interrupts\n", max_prio);
1449
1450 return true;
1451 }
1452
xive_queue_page_alloc(unsigned int cpu,u32 queue_shift)1453 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1454 {
1455 unsigned int alloc_order;
1456 struct page *pages;
1457 __be32 *qpage;
1458
1459 alloc_order = xive_alloc_order(queue_shift);
1460 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1461 if (!pages)
1462 return ERR_PTR(-ENOMEM);
1463 qpage = (__be32 *)page_address(pages);
1464 memset(qpage, 0, 1 << queue_shift);
1465
1466 return qpage;
1467 }
1468
xive_off(char * arg)1469 static int __init xive_off(char *arg)
1470 {
1471 xive_cmdline_disabled = true;
1472 return 0;
1473 }
1474 __setup("xive=off", xive_off);
1475