• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * vMTRR implementation
3  *
4  * Copyright (C) 2006 Qumranet, Inc.
5  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6  * Copyright(C) 2015 Intel Corporation.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Marcelo Tosatti <mtosatti@redhat.com>
12  *   Paolo Bonzini <pbonzini@redhat.com>
13  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
21 
22 #include "cpuid.h"
23 #include "mmu.h"
24 
25 #define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
28 
msr_mtrr_valid(unsigned msr)29 static bool msr_mtrr_valid(unsigned msr)
30 {
31 	switch (msr) {
32 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 	case MSR_MTRRfix64K_00000:
34 	case MSR_MTRRfix16K_80000:
35 	case MSR_MTRRfix16K_A0000:
36 	case MSR_MTRRfix4K_C0000:
37 	case MSR_MTRRfix4K_C8000:
38 	case MSR_MTRRfix4K_D0000:
39 	case MSR_MTRRfix4K_D8000:
40 	case MSR_MTRRfix4K_E0000:
41 	case MSR_MTRRfix4K_E8000:
42 	case MSR_MTRRfix4K_F0000:
43 	case MSR_MTRRfix4K_F8000:
44 	case MSR_MTRRdefType:
45 	case MSR_IA32_CR_PAT:
46 		return true;
47 	}
48 	return false;
49 }
50 
valid_mtrr_type(unsigned t)51 static bool valid_mtrr_type(unsigned t)
52 {
53 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
54 }
55 
kvm_mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)56 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
57 {
58 	int i;
59 	u64 mask;
60 
61 	if (!msr_mtrr_valid(msr))
62 		return false;
63 
64 	if (msr == MSR_IA32_CR_PAT) {
65 		return kvm_pat_valid(data);
66 	} else if (msr == MSR_MTRRdefType) {
67 		if (data & ~0xcff)
68 			return false;
69 		return valid_mtrr_type(data & 0xff);
70 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
71 		for (i = 0; i < 8 ; i++)
72 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
73 				return false;
74 		return true;
75 	}
76 
77 	/* variable MTRRs */
78 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
79 
80 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
81 	if ((msr & 1) == 0) {
82 		/* MTRR base */
83 		if (!valid_mtrr_type(data & 0xff))
84 			return false;
85 		mask |= 0xf00;
86 	} else
87 		/* MTRR mask */
88 		mask |= 0x7ff;
89 	if (data & mask) {
90 		kvm_inject_gp(vcpu, 0);
91 		return false;
92 	}
93 
94 	return true;
95 }
96 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
97 
mtrr_is_enabled(struct kvm_mtrr * mtrr_state)98 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
99 {
100 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
101 }
102 
fixed_mtrr_is_enabled(struct kvm_mtrr * mtrr_state)103 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
104 {
105 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
106 }
107 
mtrr_default_type(struct kvm_mtrr * mtrr_state)108 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
109 {
110 	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
111 }
112 
mtrr_disabled_type(struct kvm_vcpu * vcpu)113 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
114 {
115 	/*
116 	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
117 	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
118 	 * memory type is applied to all of physical memory.
119 	 *
120 	 * However, virtual machines can be run with CPUID such that
121 	 * there are no MTRRs.  In that case, the firmware will never
122 	 * enable MTRRs and it is obviously undesirable to run the
123 	 * guest entirely with UC memory and we use WB.
124 	 */
125 	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
126 		return MTRR_TYPE_UNCACHABLE;
127 	else
128 		return MTRR_TYPE_WRBACK;
129 }
130 
131 /*
132 * Three terms are used in the following code:
133 * - segment, it indicates the address segments covered by fixed MTRRs.
134 * - unit, it corresponds to the MSR entry in the segment.
135 * - range, a range is covered in one memory cache type.
136 */
137 struct fixed_mtrr_segment {
138 	u64 start;
139 	u64 end;
140 
141 	int range_shift;
142 
143 	/* the start position in kvm_mtrr.fixed_ranges[]. */
144 	int range_start;
145 };
146 
147 static struct fixed_mtrr_segment fixed_seg_table[] = {
148 	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
149 	{
150 		.start = 0x0,
151 		.end = 0x80000,
152 		.range_shift = 16, /* 64K */
153 		.range_start = 0,
154 	},
155 
156 	/*
157 	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
158 	 * 16K fixed mtrr.
159 	 */
160 	{
161 		.start = 0x80000,
162 		.end = 0xc0000,
163 		.range_shift = 14, /* 16K */
164 		.range_start = 8,
165 	},
166 
167 	/*
168 	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
169 	 * 4K fixed mtrr.
170 	 */
171 	{
172 		.start = 0xc0000,
173 		.end = 0x100000,
174 		.range_shift = 12, /* 12K */
175 		.range_start = 24,
176 	}
177 };
178 
179 /*
180  * The size of unit is covered in one MSR, one MSR entry contains
181  * 8 ranges so that unit size is always 8 * 2^range_shift.
182  */
fixed_mtrr_seg_unit_size(int seg)183 static u64 fixed_mtrr_seg_unit_size(int seg)
184 {
185 	return 8 << fixed_seg_table[seg].range_shift;
186 }
187 
fixed_msr_to_seg_unit(u32 msr,int * seg,int * unit)188 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
189 {
190 	switch (msr) {
191 	case MSR_MTRRfix64K_00000:
192 		*seg = 0;
193 		*unit = 0;
194 		break;
195 	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
196 		*seg = 1;
197 		*unit = array_index_nospec(
198 			msr - MSR_MTRRfix16K_80000,
199 			MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
200 		break;
201 	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
202 		*seg = 2;
203 		*unit = array_index_nospec(
204 			msr - MSR_MTRRfix4K_C0000,
205 			MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
206 		break;
207 	default:
208 		return false;
209 	}
210 
211 	return true;
212 }
213 
fixed_mtrr_seg_unit_range(int seg,int unit,u64 * start,u64 * end)214 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
215 {
216 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
217 	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
218 
219 	*start = mtrr_seg->start + unit * unit_size;
220 	*end = *start + unit_size;
221 	WARN_ON(*end > mtrr_seg->end);
222 }
223 
fixed_mtrr_seg_unit_range_index(int seg,int unit)224 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
225 {
226 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
227 
228 	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
229 		> mtrr_seg->end);
230 
231 	/* each unit has 8 ranges. */
232 	return mtrr_seg->range_start + 8 * unit;
233 }
234 
fixed_mtrr_seg_end_range_index(int seg)235 static int fixed_mtrr_seg_end_range_index(int seg)
236 {
237 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
238 	int n;
239 
240 	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
241 	return mtrr_seg->range_start + n - 1;
242 }
243 
fixed_msr_to_range(u32 msr,u64 * start,u64 * end)244 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
245 {
246 	int seg, unit;
247 
248 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
249 		return false;
250 
251 	fixed_mtrr_seg_unit_range(seg, unit, start, end);
252 	return true;
253 }
254 
fixed_msr_to_range_index(u32 msr)255 static int fixed_msr_to_range_index(u32 msr)
256 {
257 	int seg, unit;
258 
259 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
260 		return -1;
261 
262 	return fixed_mtrr_seg_unit_range_index(seg, unit);
263 }
264 
fixed_mtrr_addr_to_seg(u64 addr)265 static int fixed_mtrr_addr_to_seg(u64 addr)
266 {
267 	struct fixed_mtrr_segment *mtrr_seg;
268 	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
269 
270 	for (seg = 0; seg < seg_num; seg++) {
271 		mtrr_seg = &fixed_seg_table[seg];
272 		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
273 			return seg;
274 	}
275 
276 	return -1;
277 }
278 
fixed_mtrr_addr_seg_to_range_index(u64 addr,int seg)279 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
280 {
281 	struct fixed_mtrr_segment *mtrr_seg;
282 	int index;
283 
284 	mtrr_seg = &fixed_seg_table[seg];
285 	index = mtrr_seg->range_start;
286 	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
287 	return index;
288 }
289 
fixed_mtrr_range_end_addr(int seg,int index)290 static u64 fixed_mtrr_range_end_addr(int seg, int index)
291 {
292 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
293 	int pos = index - mtrr_seg->range_start;
294 
295 	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
296 }
297 
var_mtrr_range(struct kvm_mtrr_range * range,u64 * start,u64 * end)298 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
299 {
300 	u64 mask;
301 
302 	*start = range->base & PAGE_MASK;
303 
304 	mask = range->mask & PAGE_MASK;
305 
306 	/* This cannot overflow because writing to the reserved bits of
307 	 * variable MTRRs causes a #GP.
308 	 */
309 	*end = (*start | ~mask) + 1;
310 }
311 
update_mtrr(struct kvm_vcpu * vcpu,u32 msr)312 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
313 {
314 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
315 	gfn_t start, end;
316 	int index;
317 
318 	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
319 	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
320 		return;
321 
322 	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
323 		return;
324 
325 	/* fixed MTRRs. */
326 	if (fixed_msr_to_range(msr, &start, &end)) {
327 		if (!fixed_mtrr_is_enabled(mtrr_state))
328 			return;
329 	} else if (msr == MSR_MTRRdefType) {
330 		start = 0x0;
331 		end = ~0ULL;
332 	} else {
333 		/* variable range MTRRs. */
334 		index = (msr - 0x200) / 2;
335 		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
336 	}
337 
338 	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
339 }
340 
var_mtrr_range_is_valid(struct kvm_mtrr_range * range)341 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
342 {
343 	return (range->mask & (1 << 11)) != 0;
344 }
345 
set_var_mtrr_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data)346 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
347 {
348 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
349 	struct kvm_mtrr_range *tmp, *cur;
350 	int index, is_mtrr_mask;
351 
352 	index = (msr - 0x200) / 2;
353 	is_mtrr_mask = msr - 0x200 - 2 * index;
354 	cur = &mtrr_state->var_ranges[index];
355 
356 	/* remove the entry if it's in the list. */
357 	if (var_mtrr_range_is_valid(cur))
358 		list_del(&mtrr_state->var_ranges[index].node);
359 
360 	/* Extend the mask with all 1 bits to the left, since those
361 	 * bits must implicitly be 0.  The bits are then cleared
362 	 * when reading them.
363 	 */
364 	if (!is_mtrr_mask)
365 		cur->base = data;
366 	else
367 		cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
368 
369 	/* add it to the list if it's enabled. */
370 	if (var_mtrr_range_is_valid(cur)) {
371 		list_for_each_entry(tmp, &mtrr_state->head, node)
372 			if (cur->base >= tmp->base)
373 				break;
374 		list_add_tail(&cur->node, &tmp->node);
375 	}
376 }
377 
kvm_mtrr_set_msr(struct kvm_vcpu * vcpu,u32 msr,u64 data)378 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
379 {
380 	int index;
381 
382 	if (!kvm_mtrr_valid(vcpu, msr, data))
383 		return 1;
384 
385 	index = fixed_msr_to_range_index(msr);
386 	if (index >= 0)
387 		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
388 	else if (msr == MSR_MTRRdefType)
389 		vcpu->arch.mtrr_state.deftype = data;
390 	else if (msr == MSR_IA32_CR_PAT)
391 		vcpu->arch.pat = data;
392 	else
393 		set_var_mtrr_msr(vcpu, msr, data);
394 
395 	update_mtrr(vcpu, msr);
396 	return 0;
397 }
398 
kvm_mtrr_get_msr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)399 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
400 {
401 	int index;
402 
403 	/* MSR_MTRRcap is a readonly MSR. */
404 	if (msr == MSR_MTRRcap) {
405 		/*
406 		 * SMRR = 0
407 		 * WC = 1
408 		 * FIX = 1
409 		 * VCNT = KVM_NR_VAR_MTRR
410 		 */
411 		*pdata = 0x500 | KVM_NR_VAR_MTRR;
412 		return 0;
413 	}
414 
415 	if (!msr_mtrr_valid(msr))
416 		return 1;
417 
418 	index = fixed_msr_to_range_index(msr);
419 	if (index >= 0)
420 		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
421 	else if (msr == MSR_MTRRdefType)
422 		*pdata = vcpu->arch.mtrr_state.deftype;
423 	else if (msr == MSR_IA32_CR_PAT)
424 		*pdata = vcpu->arch.pat;
425 	else {	/* Variable MTRRs */
426 		int is_mtrr_mask;
427 
428 		index = (msr - 0x200) / 2;
429 		is_mtrr_mask = msr - 0x200 - 2 * index;
430 		if (!is_mtrr_mask)
431 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
432 		else
433 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
434 
435 		*pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
436 	}
437 
438 	return 0;
439 }
440 
kvm_vcpu_mtrr_init(struct kvm_vcpu * vcpu)441 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
442 {
443 	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
444 }
445 
446 struct mtrr_iter {
447 	/* input fields. */
448 	struct kvm_mtrr *mtrr_state;
449 	u64 start;
450 	u64 end;
451 
452 	/* output fields. */
453 	int mem_type;
454 	/* mtrr is completely disabled? */
455 	bool mtrr_disabled;
456 	/* [start, end) is not fully covered in MTRRs? */
457 	bool partial_map;
458 
459 	/* private fields. */
460 	union {
461 		/* used for fixed MTRRs. */
462 		struct {
463 			int index;
464 			int seg;
465 		};
466 
467 		/* used for var MTRRs. */
468 		struct {
469 			struct kvm_mtrr_range *range;
470 			/* max address has been covered in var MTRRs. */
471 			u64 start_max;
472 		};
473 	};
474 
475 	bool fixed;
476 };
477 
mtrr_lookup_fixed_start(struct mtrr_iter * iter)478 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
479 {
480 	int seg, index;
481 
482 	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
483 		return false;
484 
485 	seg = fixed_mtrr_addr_to_seg(iter->start);
486 	if (seg < 0)
487 		return false;
488 
489 	iter->fixed = true;
490 	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
491 	iter->index = index;
492 	iter->seg = seg;
493 	return true;
494 }
495 
match_var_range(struct mtrr_iter * iter,struct kvm_mtrr_range * range)496 static bool match_var_range(struct mtrr_iter *iter,
497 			    struct kvm_mtrr_range *range)
498 {
499 	u64 start, end;
500 
501 	var_mtrr_range(range, &start, &end);
502 	if (!(start >= iter->end || end <= iter->start)) {
503 		iter->range = range;
504 
505 		/*
506 		 * the function is called when we do kvm_mtrr.head walking.
507 		 * Range has the minimum base address which interleaves
508 		 * [looker->start_max, looker->end).
509 		 */
510 		iter->partial_map |= iter->start_max < start;
511 
512 		/* update the max address has been covered. */
513 		iter->start_max = max(iter->start_max, end);
514 		return true;
515 	}
516 
517 	return false;
518 }
519 
__mtrr_lookup_var_next(struct mtrr_iter * iter)520 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
521 {
522 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
523 
524 	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
525 		if (match_var_range(iter, iter->range))
526 			return;
527 
528 	iter->range = NULL;
529 	iter->partial_map |= iter->start_max < iter->end;
530 }
531 
mtrr_lookup_var_start(struct mtrr_iter * iter)532 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
533 {
534 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
535 
536 	iter->fixed = false;
537 	iter->start_max = iter->start;
538 	iter->range = NULL;
539 	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
540 
541 	__mtrr_lookup_var_next(iter);
542 }
543 
mtrr_lookup_fixed_next(struct mtrr_iter * iter)544 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
545 {
546 	/* terminate the lookup. */
547 	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
548 		iter->fixed = false;
549 		iter->range = NULL;
550 		return;
551 	}
552 
553 	iter->index++;
554 
555 	/* have looked up for all fixed MTRRs. */
556 	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
557 		return mtrr_lookup_var_start(iter);
558 
559 	/* switch to next segment. */
560 	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
561 		iter->seg++;
562 }
563 
mtrr_lookup_var_next(struct mtrr_iter * iter)564 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
565 {
566 	__mtrr_lookup_var_next(iter);
567 }
568 
mtrr_lookup_start(struct mtrr_iter * iter)569 static void mtrr_lookup_start(struct mtrr_iter *iter)
570 {
571 	if (!mtrr_is_enabled(iter->mtrr_state)) {
572 		iter->mtrr_disabled = true;
573 		return;
574 	}
575 
576 	if (!mtrr_lookup_fixed_start(iter))
577 		mtrr_lookup_var_start(iter);
578 }
579 
mtrr_lookup_init(struct mtrr_iter * iter,struct kvm_mtrr * mtrr_state,u64 start,u64 end)580 static void mtrr_lookup_init(struct mtrr_iter *iter,
581 			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
582 {
583 	iter->mtrr_state = mtrr_state;
584 	iter->start = start;
585 	iter->end = end;
586 	iter->mtrr_disabled = false;
587 	iter->partial_map = false;
588 	iter->fixed = false;
589 	iter->range = NULL;
590 
591 	mtrr_lookup_start(iter);
592 }
593 
mtrr_lookup_okay(struct mtrr_iter * iter)594 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
595 {
596 	if (iter->fixed) {
597 		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
598 		return true;
599 	}
600 
601 	if (iter->range) {
602 		iter->mem_type = iter->range->base & 0xff;
603 		return true;
604 	}
605 
606 	return false;
607 }
608 
mtrr_lookup_next(struct mtrr_iter * iter)609 static void mtrr_lookup_next(struct mtrr_iter *iter)
610 {
611 	if (iter->fixed)
612 		mtrr_lookup_fixed_next(iter);
613 	else
614 		mtrr_lookup_var_next(iter);
615 }
616 
617 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
618 	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
619 	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
620 
kvm_mtrr_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)621 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
622 {
623 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
624 	struct mtrr_iter iter;
625 	u64 start, end;
626 	int type = -1;
627 	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
628 			       | (1 << MTRR_TYPE_WRTHROUGH);
629 
630 	start = gfn_to_gpa(gfn);
631 	end = start + PAGE_SIZE;
632 
633 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
634 		int curr_type = iter.mem_type;
635 
636 		/*
637 		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
638 		 * Precedences.
639 		 */
640 
641 		if (type == -1) {
642 			type = curr_type;
643 			continue;
644 		}
645 
646 		/*
647 		 * If two or more variable memory ranges match and the
648 		 * memory types are identical, then that memory type is
649 		 * used.
650 		 */
651 		if (type == curr_type)
652 			continue;
653 
654 		/*
655 		 * If two or more variable memory ranges match and one of
656 		 * the memory types is UC, the UC memory type used.
657 		 */
658 		if (curr_type == MTRR_TYPE_UNCACHABLE)
659 			return MTRR_TYPE_UNCACHABLE;
660 
661 		/*
662 		 * If two or more variable memory ranges match and the
663 		 * memory types are WT and WB, the WT memory type is used.
664 		 */
665 		if (((1 << type) & wt_wb_mask) &&
666 		      ((1 << curr_type) & wt_wb_mask)) {
667 			type = MTRR_TYPE_WRTHROUGH;
668 			continue;
669 		}
670 
671 		/*
672 		 * For overlaps not defined by the above rules, processor
673 		 * behavior is undefined.
674 		 */
675 
676 		/* We use WB for this undefined behavior. :( */
677 		return MTRR_TYPE_WRBACK;
678 	}
679 
680 	if (iter.mtrr_disabled)
681 		return mtrr_disabled_type(vcpu);
682 
683 	/* not contained in any MTRRs. */
684 	if (type == -1)
685 		return mtrr_default_type(mtrr_state);
686 
687 	/*
688 	 * We just check one page, partially covered by MTRRs is
689 	 * impossible.
690 	 */
691 	WARN_ON(iter.partial_map);
692 
693 	return type;
694 }
695 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
696 
kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int page_num)697 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
698 					  int page_num)
699 {
700 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
701 	struct mtrr_iter iter;
702 	u64 start, end;
703 	int type = -1;
704 
705 	start = gfn_to_gpa(gfn);
706 	end = gfn_to_gpa(gfn + page_num);
707 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
708 		if (type == -1) {
709 			type = iter.mem_type;
710 			continue;
711 		}
712 
713 		if (type != iter.mem_type)
714 			return false;
715 	}
716 
717 	if (iter.mtrr_disabled)
718 		return true;
719 
720 	if (!iter.partial_map)
721 		return true;
722 
723 	if (type == -1)
724 		return true;
725 
726 	return type == mtrr_default_type(mtrr_state);
727 }
728