1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/spec-ctrl.h>
53
54 #include <asm/virtext.h>
55 #include "trace.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 static const struct x86_cpu_id svm_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_SVM),
64 {}
65 };
66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
67
68 #define IOPM_ALLOC_ORDER 2
69 #define MSRPM_ALLOC_ORDER 1
70
71 #define SEG_TYPE_LDT 2
72 #define SEG_TYPE_BUSY_TSS16 3
73
74 #define SVM_FEATURE_NPT (1 << 0)
75 #define SVM_FEATURE_LBRV (1 << 1)
76 #define SVM_FEATURE_SVML (1 << 2)
77 #define SVM_FEATURE_NRIP (1 << 3)
78 #define SVM_FEATURE_TSC_RATE (1 << 4)
79 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
80 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
81 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
82 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
83
84 #define SVM_AVIC_DOORBELL 0xc001011b
85
86 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
87 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
88 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
89
90 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
91
92 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
93 #define TSC_RATIO_MIN 0x0000000000000001ULL
94 #define TSC_RATIO_MAX 0x000000ffffffffffULL
95
96 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
97
98 /*
99 * 0xff is broadcast, so the max index allowed for physical APIC ID
100 * table is 0xfe. APIC IDs above 0xff are reserved.
101 */
102 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
103
104 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
105 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
106 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
107
108 /* AVIC GATAG is encoded using VM and VCPU IDs */
109 #define AVIC_VCPU_ID_BITS 8
110 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
111
112 #define AVIC_VM_ID_BITS 24
113 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
114 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
115
116 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
117 (y & AVIC_VCPU_ID_MASK))
118 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
119 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
120
121 static bool erratum_383_found __read_mostly;
122
123 static const u32 host_save_user_msrs[] = {
124 #ifdef CONFIG_X86_64
125 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
126 MSR_FS_BASE,
127 #endif
128 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
129 MSR_TSC_AUX,
130 };
131
132 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
133
134 struct kvm_sev_info {
135 bool active; /* SEV enabled guest */
136 unsigned int asid; /* ASID used for this guest */
137 unsigned int handle; /* SEV firmware handle */
138 int fd; /* SEV device fd */
139 unsigned long pages_locked; /* Number of pages locked */
140 struct list_head regions_list; /* List of registered regions */
141 };
142
143 struct kvm_svm {
144 struct kvm kvm;
145
146 /* Struct members for AVIC */
147 u32 avic_vm_id;
148 u32 ldr_mode;
149 struct page *avic_logical_id_table_page;
150 struct page *avic_physical_id_table_page;
151 struct hlist_node hnode;
152
153 struct kvm_sev_info sev_info;
154 };
155
156 struct kvm_vcpu;
157
158 struct nested_state {
159 struct vmcb *hsave;
160 u64 hsave_msr;
161 u64 vm_cr_msr;
162 u64 vmcb;
163
164 /* These are the merged vectors */
165 u32 *msrpm;
166
167 /* gpa pointers to the real vectors */
168 u64 vmcb_msrpm;
169 u64 vmcb_iopm;
170
171 /* A VMEXIT is required but not yet emulated */
172 bool exit_required;
173
174 /* cache for intercepts of the guest */
175 u32 intercept_cr;
176 u32 intercept_dr;
177 u32 intercept_exceptions;
178 u64 intercept;
179
180 /* Nested Paging related state */
181 u64 nested_cr3;
182 };
183
184 #define MSRPM_OFFSETS 16
185 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
186
187 /*
188 * Set osvw_len to higher value when updated Revision Guides
189 * are published and we know what the new status bits are
190 */
191 static uint64_t osvw_len = 4, osvw_status;
192
193 struct vcpu_svm {
194 struct kvm_vcpu vcpu;
195 struct vmcb *vmcb;
196 unsigned long vmcb_pa;
197 struct svm_cpu_data *svm_data;
198 uint64_t asid_generation;
199 uint64_t sysenter_esp;
200 uint64_t sysenter_eip;
201 uint64_t tsc_aux;
202
203 u64 msr_decfg;
204
205 u64 next_rip;
206
207 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
208 struct {
209 u16 fs;
210 u16 gs;
211 u16 ldt;
212 u64 gs_base;
213 } host;
214
215 u64 spec_ctrl;
216 /*
217 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
218 * translated into the appropriate L2_CFG bits on the host to
219 * perform speculative control.
220 */
221 u64 virt_spec_ctrl;
222
223 u32 *msrpm;
224
225 ulong nmi_iret_rip;
226
227 struct nested_state nested;
228
229 bool nmi_singlestep;
230 u64 nmi_singlestep_guest_rflags;
231
232 unsigned int3_injected;
233 unsigned long int3_rip;
234
235 /* cached guest cpuid flags for faster access */
236 bool nrips_enabled : 1;
237
238 u32 ldr_reg;
239 struct page *avic_backing_page;
240 u64 *avic_physical_id_cache;
241 bool avic_is_running;
242
243 /*
244 * Per-vcpu list of struct amd_svm_iommu_ir:
245 * This is used mainly to store interrupt remapping information used
246 * when update the vcpu affinity. This avoids the need to scan for
247 * IRTE and try to match ga_tag in the IOMMU driver.
248 */
249 struct list_head ir_list;
250 spinlock_t ir_list_lock;
251
252 /* which host CPU was used for running this vcpu */
253 unsigned int last_cpu;
254 };
255
256 /*
257 * This is a wrapper of struct amd_iommu_ir_data.
258 */
259 struct amd_svm_iommu_ir {
260 struct list_head node; /* Used by SVM for per-vcpu ir_list */
261 void *data; /* Storing pointer to struct amd_ir_data */
262 };
263
264 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
265 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
266
267 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
268 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
269 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
270 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
271
272 static DEFINE_PER_CPU(u64, current_tsc_ratio);
273 #define TSC_RATIO_DEFAULT 0x0100000000ULL
274
275 #define MSR_INVALID 0xffffffffU
276
277 static const struct svm_direct_access_msrs {
278 u32 index; /* Index of the MSR */
279 bool always; /* True if intercept is always on */
280 } direct_access_msrs[] = {
281 { .index = MSR_STAR, .always = true },
282 { .index = MSR_IA32_SYSENTER_CS, .always = true },
283 #ifdef CONFIG_X86_64
284 { .index = MSR_GS_BASE, .always = true },
285 { .index = MSR_FS_BASE, .always = true },
286 { .index = MSR_KERNEL_GS_BASE, .always = true },
287 { .index = MSR_LSTAR, .always = true },
288 { .index = MSR_CSTAR, .always = true },
289 { .index = MSR_SYSCALL_MASK, .always = true },
290 #endif
291 { .index = MSR_IA32_SPEC_CTRL, .always = false },
292 { .index = MSR_IA32_PRED_CMD, .always = false },
293 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
294 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
295 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
296 { .index = MSR_IA32_LASTINTTOIP, .always = false },
297 { .index = MSR_INVALID, .always = false },
298 };
299
300 /* enable NPT for AMD64 and X86 with PAE */
301 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
302 static bool npt_enabled = true;
303 #else
304 static bool npt_enabled;
305 #endif
306
307 /*
308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
309 * pause_filter_count: On processors that support Pause filtering(indicated
310 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
311 * count value. On VMRUN this value is loaded into an internal counter.
312 * Each time a pause instruction is executed, this counter is decremented
313 * until it reaches zero at which time a #VMEXIT is generated if pause
314 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
315 * Intercept Filtering for more details.
316 * This also indicate if ple logic enabled.
317 *
318 * pause_filter_thresh: In addition, some processor families support advanced
319 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
320 * the amount of time a guest is allowed to execute in a pause loop.
321 * In this mode, a 16-bit pause filter threshold field is added in the
322 * VMCB. The threshold value is a cycle count that is used to reset the
323 * pause counter. As with simple pause filtering, VMRUN loads the pause
324 * count value from VMCB into an internal counter. Then, on each pause
325 * instruction the hardware checks the elapsed number of cycles since
326 * the most recent pause instruction against the pause filter threshold.
327 * If the elapsed cycle count is greater than the pause filter threshold,
328 * then the internal pause count is reloaded from the VMCB and execution
329 * continues. If the elapsed cycle count is less than the pause filter
330 * threshold, then the internal pause count is decremented. If the count
331 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
332 * triggered. If advanced pause filtering is supported and pause filter
333 * threshold field is set to zero, the filter will operate in the simpler,
334 * count only mode.
335 */
336
337 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
338 module_param(pause_filter_thresh, ushort, 0444);
339
340 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
341 module_param(pause_filter_count, ushort, 0444);
342
343 /* Default doubles per-vcpu window every exit. */
344 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
345 module_param(pause_filter_count_grow, ushort, 0444);
346
347 /* Default resets per-vcpu window every exit to pause_filter_count. */
348 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
349 module_param(pause_filter_count_shrink, ushort, 0444);
350
351 /* Default is to compute the maximum so we can never overflow. */
352 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
353 module_param(pause_filter_count_max, ushort, 0444);
354
355 /* allow nested paging (virtualized MMU) for all guests */
356 static int npt = true;
357 module_param(npt, int, S_IRUGO);
358
359 /* allow nested virtualization in KVM/SVM */
360 static int nested = true;
361 module_param(nested, int, S_IRUGO);
362
363 /* enable / disable AVIC */
364 static int avic;
365 #ifdef CONFIG_X86_LOCAL_APIC
366 module_param(avic, int, S_IRUGO);
367 #endif
368
369 /* enable/disable Virtual VMLOAD VMSAVE */
370 static int vls = true;
371 module_param(vls, int, 0444);
372
373 /* enable/disable Virtual GIF */
374 static int vgif = true;
375 module_param(vgif, int, 0444);
376
377 /* enable/disable SEV support */
378 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
379 module_param(sev, int, 0444);
380
381 static u8 rsm_ins_bytes[] = "\x0f\xaa";
382
383 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
384 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
385 static void svm_complete_interrupts(struct vcpu_svm *svm);
386
387 static int nested_svm_exit_handled(struct vcpu_svm *svm);
388 static int nested_svm_intercept(struct vcpu_svm *svm);
389 static int nested_svm_vmexit(struct vcpu_svm *svm);
390 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
391 bool has_error_code, u32 error_code);
392
393 enum {
394 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
395 pause filter count */
396 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
397 VMCB_ASID, /* ASID */
398 VMCB_INTR, /* int_ctl, int_vector */
399 VMCB_NPT, /* npt_en, nCR3, gPAT */
400 VMCB_CR, /* CR0, CR3, CR4, EFER */
401 VMCB_DR, /* DR6, DR7 */
402 VMCB_DT, /* GDT, IDT */
403 VMCB_SEG, /* CS, DS, SS, ES, CPL */
404 VMCB_CR2, /* CR2 only */
405 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
406 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
407 * AVIC PHYSICAL_TABLE pointer,
408 * AVIC LOGICAL_TABLE pointer
409 */
410 VMCB_DIRTY_MAX,
411 };
412
413 /* TPR and CR2 are always written before VMRUN */
414 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
415
416 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
417
418 static unsigned int max_sev_asid;
419 static unsigned int min_sev_asid;
420 static unsigned long *sev_asid_bitmap;
421 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
422
423 struct enc_region {
424 struct list_head list;
425 unsigned long npages;
426 struct page **pages;
427 unsigned long uaddr;
428 unsigned long size;
429 };
430
431
to_kvm_svm(struct kvm * kvm)432 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
433 {
434 return container_of(kvm, struct kvm_svm, kvm);
435 }
436
svm_sev_enabled(void)437 static inline bool svm_sev_enabled(void)
438 {
439 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
440 }
441
sev_guest(struct kvm * kvm)442 static inline bool sev_guest(struct kvm *kvm)
443 {
444 #ifdef CONFIG_KVM_AMD_SEV
445 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
446
447 return sev->active;
448 #else
449 return false;
450 #endif
451 }
452
sev_get_asid(struct kvm * kvm)453 static inline int sev_get_asid(struct kvm *kvm)
454 {
455 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
456
457 return sev->asid;
458 }
459
mark_all_dirty(struct vmcb * vmcb)460 static inline void mark_all_dirty(struct vmcb *vmcb)
461 {
462 vmcb->control.clean = 0;
463 }
464
mark_all_clean(struct vmcb * vmcb)465 static inline void mark_all_clean(struct vmcb *vmcb)
466 {
467 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
468 & ~VMCB_ALWAYS_DIRTY_MASK;
469 }
470
mark_dirty(struct vmcb * vmcb,int bit)471 static inline void mark_dirty(struct vmcb *vmcb, int bit)
472 {
473 vmcb->control.clean &= ~(1 << bit);
474 }
475
to_svm(struct kvm_vcpu * vcpu)476 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
477 {
478 return container_of(vcpu, struct vcpu_svm, vcpu);
479 }
480
avic_update_vapic_bar(struct vcpu_svm * svm,u64 data)481 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
482 {
483 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
484 mark_dirty(svm->vmcb, VMCB_AVIC);
485 }
486
avic_vcpu_is_running(struct kvm_vcpu * vcpu)487 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
488 {
489 struct vcpu_svm *svm = to_svm(vcpu);
490 u64 *entry = svm->avic_physical_id_cache;
491
492 if (!entry)
493 return false;
494
495 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
496 }
497
recalc_intercepts(struct vcpu_svm * svm)498 static void recalc_intercepts(struct vcpu_svm *svm)
499 {
500 struct vmcb_control_area *c, *h;
501 struct nested_state *g;
502
503 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
504
505 if (!is_guest_mode(&svm->vcpu))
506 return;
507
508 c = &svm->vmcb->control;
509 h = &svm->nested.hsave->control;
510 g = &svm->nested;
511
512 c->intercept_cr = h->intercept_cr | g->intercept_cr;
513 c->intercept_dr = h->intercept_dr | g->intercept_dr;
514 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
515 c->intercept = h->intercept | g->intercept;
516
517 c->intercept |= (1ULL << INTERCEPT_VMLOAD);
518 c->intercept |= (1ULL << INTERCEPT_VMSAVE);
519 }
520
get_host_vmcb(struct vcpu_svm * svm)521 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
522 {
523 if (is_guest_mode(&svm->vcpu))
524 return svm->nested.hsave;
525 else
526 return svm->vmcb;
527 }
528
set_cr_intercept(struct vcpu_svm * svm,int bit)529 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
530 {
531 struct vmcb *vmcb = get_host_vmcb(svm);
532
533 vmcb->control.intercept_cr |= (1U << bit);
534
535 recalc_intercepts(svm);
536 }
537
clr_cr_intercept(struct vcpu_svm * svm,int bit)538 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
539 {
540 struct vmcb *vmcb = get_host_vmcb(svm);
541
542 vmcb->control.intercept_cr &= ~(1U << bit);
543
544 recalc_intercepts(svm);
545 }
546
is_cr_intercept(struct vcpu_svm * svm,int bit)547 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
548 {
549 struct vmcb *vmcb = get_host_vmcb(svm);
550
551 return vmcb->control.intercept_cr & (1U << bit);
552 }
553
set_dr_intercepts(struct vcpu_svm * svm)554 static inline void set_dr_intercepts(struct vcpu_svm *svm)
555 {
556 struct vmcb *vmcb = get_host_vmcb(svm);
557
558 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
559 | (1 << INTERCEPT_DR1_READ)
560 | (1 << INTERCEPT_DR2_READ)
561 | (1 << INTERCEPT_DR3_READ)
562 | (1 << INTERCEPT_DR4_READ)
563 | (1 << INTERCEPT_DR5_READ)
564 | (1 << INTERCEPT_DR6_READ)
565 | (1 << INTERCEPT_DR7_READ)
566 | (1 << INTERCEPT_DR0_WRITE)
567 | (1 << INTERCEPT_DR1_WRITE)
568 | (1 << INTERCEPT_DR2_WRITE)
569 | (1 << INTERCEPT_DR3_WRITE)
570 | (1 << INTERCEPT_DR4_WRITE)
571 | (1 << INTERCEPT_DR5_WRITE)
572 | (1 << INTERCEPT_DR6_WRITE)
573 | (1 << INTERCEPT_DR7_WRITE);
574
575 recalc_intercepts(svm);
576 }
577
clr_dr_intercepts(struct vcpu_svm * svm)578 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
579 {
580 struct vmcb *vmcb = get_host_vmcb(svm);
581
582 vmcb->control.intercept_dr = 0;
583
584 recalc_intercepts(svm);
585 }
586
set_exception_intercept(struct vcpu_svm * svm,int bit)587 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
588 {
589 struct vmcb *vmcb = get_host_vmcb(svm);
590
591 vmcb->control.intercept_exceptions |= (1U << bit);
592
593 recalc_intercepts(svm);
594 }
595
clr_exception_intercept(struct vcpu_svm * svm,int bit)596 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
597 {
598 struct vmcb *vmcb = get_host_vmcb(svm);
599
600 vmcb->control.intercept_exceptions &= ~(1U << bit);
601
602 recalc_intercepts(svm);
603 }
604
set_intercept(struct vcpu_svm * svm,int bit)605 static inline void set_intercept(struct vcpu_svm *svm, int bit)
606 {
607 struct vmcb *vmcb = get_host_vmcb(svm);
608
609 vmcb->control.intercept |= (1ULL << bit);
610
611 recalc_intercepts(svm);
612 }
613
clr_intercept(struct vcpu_svm * svm,int bit)614 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
615 {
616 struct vmcb *vmcb = get_host_vmcb(svm);
617
618 vmcb->control.intercept &= ~(1ULL << bit);
619
620 recalc_intercepts(svm);
621 }
622
vgif_enabled(struct vcpu_svm * svm)623 static inline bool vgif_enabled(struct vcpu_svm *svm)
624 {
625 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
626 }
627
enable_gif(struct vcpu_svm * svm)628 static inline void enable_gif(struct vcpu_svm *svm)
629 {
630 if (vgif_enabled(svm))
631 svm->vmcb->control.int_ctl |= V_GIF_MASK;
632 else
633 svm->vcpu.arch.hflags |= HF_GIF_MASK;
634 }
635
disable_gif(struct vcpu_svm * svm)636 static inline void disable_gif(struct vcpu_svm *svm)
637 {
638 if (vgif_enabled(svm))
639 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
640 else
641 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
642 }
643
gif_set(struct vcpu_svm * svm)644 static inline bool gif_set(struct vcpu_svm *svm)
645 {
646 if (vgif_enabled(svm))
647 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
648 else
649 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
650 }
651
652 static unsigned long iopm_base;
653
654 struct kvm_ldttss_desc {
655 u16 limit0;
656 u16 base0;
657 unsigned base1:8, type:5, dpl:2, p:1;
658 unsigned limit1:4, zero0:3, g:1, base2:8;
659 u32 base3;
660 u32 zero1;
661 } __attribute__((packed));
662
663 struct svm_cpu_data {
664 int cpu;
665
666 u64 asid_generation;
667 u32 max_asid;
668 u32 next_asid;
669 u32 min_asid;
670 struct kvm_ldttss_desc *tss_desc;
671
672 struct page *save_area;
673 struct vmcb *current_vmcb;
674
675 /* index = sev_asid, value = vmcb pointer */
676 struct vmcb **sev_vmcbs;
677 };
678
679 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
680
681 struct svm_init_data {
682 int cpu;
683 int r;
684 };
685
686 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
687
688 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
689 #define MSRS_RANGE_SIZE 2048
690 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
691
svm_msrpm_offset(u32 msr)692 static u32 svm_msrpm_offset(u32 msr)
693 {
694 u32 offset;
695 int i;
696
697 for (i = 0; i < NUM_MSR_MAPS; i++) {
698 if (msr < msrpm_ranges[i] ||
699 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
700 continue;
701
702 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
703 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
704
705 /* Now we have the u8 offset - but need the u32 offset */
706 return offset / 4;
707 }
708
709 /* MSR not in any range */
710 return MSR_INVALID;
711 }
712
713 #define MAX_INST_SIZE 15
714
clgi(void)715 static inline void clgi(void)
716 {
717 asm volatile (__ex(SVM_CLGI));
718 }
719
stgi(void)720 static inline void stgi(void)
721 {
722 asm volatile (__ex(SVM_STGI));
723 }
724
invlpga(unsigned long addr,u32 asid)725 static inline void invlpga(unsigned long addr, u32 asid)
726 {
727 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
728 }
729
get_npt_level(struct kvm_vcpu * vcpu)730 static int get_npt_level(struct kvm_vcpu *vcpu)
731 {
732 #ifdef CONFIG_X86_64
733 return PT64_ROOT_4LEVEL;
734 #else
735 return PT32E_ROOT_LEVEL;
736 #endif
737 }
738
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)739 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
740 {
741 vcpu->arch.efer = efer;
742
743 if (!npt_enabled) {
744 /* Shadow paging assumes NX to be available. */
745 efer |= EFER_NX;
746
747 if (!(efer & EFER_LMA))
748 efer &= ~EFER_LME;
749 }
750
751 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
752 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
753 }
754
is_external_interrupt(u32 info)755 static int is_external_interrupt(u32 info)
756 {
757 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
758 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
759 }
760
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)761 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
762 {
763 struct vcpu_svm *svm = to_svm(vcpu);
764 u32 ret = 0;
765
766 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
767 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
768 return ret;
769 }
770
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)771 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
772 {
773 struct vcpu_svm *svm = to_svm(vcpu);
774
775 if (mask == 0)
776 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
777 else
778 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
779
780 }
781
skip_emulated_instruction(struct kvm_vcpu * vcpu)782 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
783 {
784 struct vcpu_svm *svm = to_svm(vcpu);
785
786 if (svm->vmcb->control.next_rip != 0) {
787 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
788 svm->next_rip = svm->vmcb->control.next_rip;
789 }
790
791 if (!svm->next_rip) {
792 if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
793 EMULATE_DONE)
794 printk(KERN_DEBUG "%s: NOP\n", __func__);
795 return;
796 }
797 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
798 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
799 __func__, kvm_rip_read(vcpu), svm->next_rip);
800
801 kvm_rip_write(vcpu, svm->next_rip);
802 svm_set_interrupt_shadow(vcpu, 0);
803 }
804
svm_queue_exception(struct kvm_vcpu * vcpu)805 static void svm_queue_exception(struct kvm_vcpu *vcpu)
806 {
807 struct vcpu_svm *svm = to_svm(vcpu);
808 unsigned nr = vcpu->arch.exception.nr;
809 bool has_error_code = vcpu->arch.exception.has_error_code;
810 bool reinject = vcpu->arch.exception.injected;
811 u32 error_code = vcpu->arch.exception.error_code;
812
813 /*
814 * If we are within a nested VM we'd better #VMEXIT and let the guest
815 * handle the exception
816 */
817 if (!reinject &&
818 nested_svm_check_exception(svm, nr, has_error_code, error_code))
819 return;
820
821 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
822 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
823
824 /*
825 * For guest debugging where we have to reinject #BP if some
826 * INT3 is guest-owned:
827 * Emulate nRIP by moving RIP forward. Will fail if injection
828 * raises a fault that is not intercepted. Still better than
829 * failing in all cases.
830 */
831 skip_emulated_instruction(&svm->vcpu);
832 rip = kvm_rip_read(&svm->vcpu);
833 svm->int3_rip = rip + svm->vmcb->save.cs.base;
834 svm->int3_injected = rip - old_rip;
835 }
836
837 svm->vmcb->control.event_inj = nr
838 | SVM_EVTINJ_VALID
839 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
840 | SVM_EVTINJ_TYPE_EXEPT;
841 svm->vmcb->control.event_inj_err = error_code;
842 }
843
svm_init_erratum_383(void)844 static void svm_init_erratum_383(void)
845 {
846 u32 low, high;
847 int err;
848 u64 val;
849
850 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
851 return;
852
853 /* Use _safe variants to not break nested virtualization */
854 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
855 if (err)
856 return;
857
858 val |= (1ULL << 47);
859
860 low = lower_32_bits(val);
861 high = upper_32_bits(val);
862
863 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
864
865 erratum_383_found = true;
866 }
867
svm_init_osvw(struct kvm_vcpu * vcpu)868 static void svm_init_osvw(struct kvm_vcpu *vcpu)
869 {
870 /*
871 * Guests should see errata 400 and 415 as fixed (assuming that
872 * HLT and IO instructions are intercepted).
873 */
874 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
875 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
876
877 /*
878 * By increasing VCPU's osvw.length to 3 we are telling the guest that
879 * all osvw.status bits inside that length, including bit 0 (which is
880 * reserved for erratum 298), are valid. However, if host processor's
881 * osvw_len is 0 then osvw_status[0] carries no information. We need to
882 * be conservative here and therefore we tell the guest that erratum 298
883 * is present (because we really don't know).
884 */
885 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
886 vcpu->arch.osvw.status |= 1;
887 }
888
has_svm(void)889 static int has_svm(void)
890 {
891 const char *msg;
892
893 if (!cpu_has_svm(&msg)) {
894 printk(KERN_INFO "has_svm: %s\n", msg);
895 return 0;
896 }
897
898 return 1;
899 }
900
svm_hardware_disable(void)901 static void svm_hardware_disable(void)
902 {
903 /* Make sure we clean up behind us */
904 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
905 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
906
907 cpu_svm_disable();
908
909 amd_pmu_disable_virt();
910 }
911
svm_hardware_enable(void)912 static int svm_hardware_enable(void)
913 {
914
915 struct svm_cpu_data *sd;
916 uint64_t efer;
917 struct desc_struct *gdt;
918 int me = raw_smp_processor_id();
919
920 rdmsrl(MSR_EFER, efer);
921 if (efer & EFER_SVME)
922 return -EBUSY;
923
924 if (!has_svm()) {
925 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
926 return -EINVAL;
927 }
928 sd = per_cpu(svm_data, me);
929 if (!sd) {
930 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
931 return -EINVAL;
932 }
933
934 sd->asid_generation = 1;
935 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
936 sd->next_asid = sd->max_asid + 1;
937 sd->min_asid = max_sev_asid + 1;
938
939 gdt = get_current_gdt_rw();
940 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
941
942 wrmsrl(MSR_EFER, efer | EFER_SVME);
943
944 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
945
946 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
947 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
948 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
949 }
950
951
952 /*
953 * Get OSVW bits.
954 *
955 * Note that it is possible to have a system with mixed processor
956 * revisions and therefore different OSVW bits. If bits are not the same
957 * on different processors then choose the worst case (i.e. if erratum
958 * is present on one processor and not on another then assume that the
959 * erratum is present everywhere).
960 */
961 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
962 uint64_t len, status = 0;
963 int err;
964
965 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
966 if (!err)
967 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
968 &err);
969
970 if (err)
971 osvw_status = osvw_len = 0;
972 else {
973 if (len < osvw_len)
974 osvw_len = len;
975 osvw_status |= status;
976 osvw_status &= (1ULL << osvw_len) - 1;
977 }
978 } else
979 osvw_status = osvw_len = 0;
980
981 svm_init_erratum_383();
982
983 amd_pmu_enable_virt();
984
985 return 0;
986 }
987
svm_cpu_uninit(int cpu)988 static void svm_cpu_uninit(int cpu)
989 {
990 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
991
992 if (!sd)
993 return;
994
995 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
996 kfree(sd->sev_vmcbs);
997 __free_page(sd->save_area);
998 kfree(sd);
999 }
1000
svm_cpu_init(int cpu)1001 static int svm_cpu_init(int cpu)
1002 {
1003 struct svm_cpu_data *sd;
1004
1005 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1006 if (!sd)
1007 return -ENOMEM;
1008 sd->cpu = cpu;
1009 sd->save_area = alloc_page(GFP_KERNEL);
1010 if (!sd->save_area)
1011 goto free_cpu_data;
1012
1013 if (svm_sev_enabled()) {
1014 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1015 sizeof(void *),
1016 GFP_KERNEL);
1017 if (!sd->sev_vmcbs)
1018 goto free_save_area;
1019 }
1020
1021 per_cpu(svm_data, cpu) = sd;
1022
1023 return 0;
1024
1025 free_save_area:
1026 __free_page(sd->save_area);
1027 free_cpu_data:
1028 kfree(sd);
1029 return -ENOMEM;
1030
1031 }
1032
valid_msr_intercept(u32 index)1033 static bool valid_msr_intercept(u32 index)
1034 {
1035 int i;
1036
1037 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1038 if (direct_access_msrs[i].index == index)
1039 return true;
1040
1041 return false;
1042 }
1043
msr_write_intercepted(struct kvm_vcpu * vcpu,unsigned msr)1044 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1045 {
1046 u8 bit_write;
1047 unsigned long tmp;
1048 u32 offset;
1049 u32 *msrpm;
1050
1051 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1052 to_svm(vcpu)->msrpm;
1053
1054 offset = svm_msrpm_offset(msr);
1055 bit_write = 2 * (msr & 0x0f) + 1;
1056 tmp = msrpm[offset];
1057
1058 BUG_ON(offset == MSR_INVALID);
1059
1060 return !!test_bit(bit_write, &tmp);
1061 }
1062
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)1063 static void set_msr_interception(u32 *msrpm, unsigned msr,
1064 int read, int write)
1065 {
1066 u8 bit_read, bit_write;
1067 unsigned long tmp;
1068 u32 offset;
1069
1070 /*
1071 * If this warning triggers extend the direct_access_msrs list at the
1072 * beginning of the file
1073 */
1074 WARN_ON(!valid_msr_intercept(msr));
1075
1076 offset = svm_msrpm_offset(msr);
1077 bit_read = 2 * (msr & 0x0f);
1078 bit_write = 2 * (msr & 0x0f) + 1;
1079 tmp = msrpm[offset];
1080
1081 BUG_ON(offset == MSR_INVALID);
1082
1083 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1084 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1085
1086 msrpm[offset] = tmp;
1087 }
1088
svm_vcpu_init_msrpm(u32 * msrpm)1089 static void svm_vcpu_init_msrpm(u32 *msrpm)
1090 {
1091 int i;
1092
1093 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1094
1095 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1096 if (!direct_access_msrs[i].always)
1097 continue;
1098
1099 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1100 }
1101 }
1102
add_msr_offset(u32 offset)1103 static void add_msr_offset(u32 offset)
1104 {
1105 int i;
1106
1107 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1108
1109 /* Offset already in list? */
1110 if (msrpm_offsets[i] == offset)
1111 return;
1112
1113 /* Slot used by another offset? */
1114 if (msrpm_offsets[i] != MSR_INVALID)
1115 continue;
1116
1117 /* Add offset to list */
1118 msrpm_offsets[i] = offset;
1119
1120 return;
1121 }
1122
1123 /*
1124 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1125 * increase MSRPM_OFFSETS in this case.
1126 */
1127 BUG();
1128 }
1129
init_msrpm_offsets(void)1130 static void init_msrpm_offsets(void)
1131 {
1132 int i;
1133
1134 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1135
1136 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1137 u32 offset;
1138
1139 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1140 BUG_ON(offset == MSR_INVALID);
1141
1142 add_msr_offset(offset);
1143 }
1144 }
1145
svm_enable_lbrv(struct vcpu_svm * svm)1146 static void svm_enable_lbrv(struct vcpu_svm *svm)
1147 {
1148 u32 *msrpm = svm->msrpm;
1149
1150 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1151 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1152 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1153 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1154 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1155 }
1156
svm_disable_lbrv(struct vcpu_svm * svm)1157 static void svm_disable_lbrv(struct vcpu_svm *svm)
1158 {
1159 u32 *msrpm = svm->msrpm;
1160
1161 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1162 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1163 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1164 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1165 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1166 }
1167
disable_nmi_singlestep(struct vcpu_svm * svm)1168 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1169 {
1170 svm->nmi_singlestep = false;
1171
1172 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1173 /* Clear our flags if they were not set by the guest */
1174 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1175 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1176 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1177 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1178 }
1179 }
1180
1181 /* Note:
1182 * This hash table is used to map VM_ID to a struct kvm_svm,
1183 * when handling AMD IOMMU GALOG notification to schedule in
1184 * a particular vCPU.
1185 */
1186 #define SVM_VM_DATA_HASH_BITS 8
1187 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1188 static u32 next_vm_id = 0;
1189 static bool next_vm_id_wrapped = 0;
1190 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1191
1192 /* Note:
1193 * This function is called from IOMMU driver to notify
1194 * SVM to schedule in a particular vCPU of a particular VM.
1195 */
avic_ga_log_notifier(u32 ga_tag)1196 static int avic_ga_log_notifier(u32 ga_tag)
1197 {
1198 unsigned long flags;
1199 struct kvm_svm *kvm_svm;
1200 struct kvm_vcpu *vcpu = NULL;
1201 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1202 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1203
1204 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1205
1206 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1207 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1208 if (kvm_svm->avic_vm_id != vm_id)
1209 continue;
1210 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1211 break;
1212 }
1213 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1214
1215 /* Note:
1216 * At this point, the IOMMU should have already set the pending
1217 * bit in the vAPIC backing page. So, we just need to schedule
1218 * in the vcpu.
1219 */
1220 if (vcpu)
1221 kvm_vcpu_wake_up(vcpu);
1222
1223 return 0;
1224 }
1225
sev_hardware_setup(void)1226 static __init int sev_hardware_setup(void)
1227 {
1228 struct sev_user_data_status *status;
1229 int rc;
1230
1231 /* Maximum number of encrypted guests supported simultaneously */
1232 max_sev_asid = cpuid_ecx(0x8000001F);
1233
1234 if (!max_sev_asid)
1235 return 1;
1236
1237 /* Minimum ASID value that should be used for SEV guest */
1238 min_sev_asid = cpuid_edx(0x8000001F);
1239
1240 /* Initialize SEV ASID bitmap */
1241 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1242 if (!sev_asid_bitmap)
1243 return 1;
1244
1245 status = kmalloc(sizeof(*status), GFP_KERNEL);
1246 if (!status)
1247 return 1;
1248
1249 /*
1250 * Check SEV platform status.
1251 *
1252 * PLATFORM_STATUS can be called in any state, if we failed to query
1253 * the PLATFORM status then either PSP firmware does not support SEV
1254 * feature or SEV firmware is dead.
1255 */
1256 rc = sev_platform_status(status, NULL);
1257 if (rc)
1258 goto err;
1259
1260 pr_info("SEV supported\n");
1261
1262 err:
1263 kfree(status);
1264 return rc;
1265 }
1266
grow_ple_window(struct kvm_vcpu * vcpu)1267 static void grow_ple_window(struct kvm_vcpu *vcpu)
1268 {
1269 struct vcpu_svm *svm = to_svm(vcpu);
1270 struct vmcb_control_area *control = &svm->vmcb->control;
1271 int old = control->pause_filter_count;
1272
1273 control->pause_filter_count = __grow_ple_window(old,
1274 pause_filter_count,
1275 pause_filter_count_grow,
1276 pause_filter_count_max);
1277
1278 if (control->pause_filter_count != old)
1279 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1280
1281 trace_kvm_ple_window_grow(vcpu->vcpu_id,
1282 control->pause_filter_count, old);
1283 }
1284
shrink_ple_window(struct kvm_vcpu * vcpu)1285 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1286 {
1287 struct vcpu_svm *svm = to_svm(vcpu);
1288 struct vmcb_control_area *control = &svm->vmcb->control;
1289 int old = control->pause_filter_count;
1290
1291 control->pause_filter_count =
1292 __shrink_ple_window(old,
1293 pause_filter_count,
1294 pause_filter_count_shrink,
1295 pause_filter_count);
1296 if (control->pause_filter_count != old)
1297 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1298
1299 trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1300 control->pause_filter_count, old);
1301 }
1302
1303 /*
1304 * The default MMIO mask is a single bit (excluding the present bit),
1305 * which could conflict with the memory encryption bit. Check for
1306 * memory encryption support and override the default MMIO mask if
1307 * memory encryption is enabled.
1308 */
svm_adjust_mmio_mask(void)1309 static __init void svm_adjust_mmio_mask(void)
1310 {
1311 unsigned int enc_bit, mask_bit;
1312 u64 msr, mask;
1313
1314 /* If there is no memory encryption support, use existing mask */
1315 if (cpuid_eax(0x80000000) < 0x8000001f)
1316 return;
1317
1318 /* If memory encryption is not enabled, use existing mask */
1319 rdmsrl(MSR_K8_SYSCFG, msr);
1320 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
1321 return;
1322
1323 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
1324 mask_bit = boot_cpu_data.x86_phys_bits;
1325
1326 /* Increment the mask bit if it is the same as the encryption bit */
1327 if (enc_bit == mask_bit)
1328 mask_bit++;
1329
1330 /*
1331 * If the mask bit location is below 52, then some bits above the
1332 * physical addressing limit will always be reserved, so use the
1333 * rsvd_bits() function to generate the mask. This mask, along with
1334 * the present bit, will be used to generate a page fault with
1335 * PFER.RSV = 1.
1336 *
1337 * If the mask bit location is 52 (or above), then clear the mask.
1338 */
1339 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
1340
1341 kvm_mmu_set_mmio_spte_mask(mask, mask);
1342 }
1343
svm_hardware_setup(void)1344 static __init int svm_hardware_setup(void)
1345 {
1346 int cpu;
1347 struct page *iopm_pages;
1348 void *iopm_va;
1349 int r;
1350
1351 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1352
1353 if (!iopm_pages)
1354 return -ENOMEM;
1355
1356 iopm_va = page_address(iopm_pages);
1357 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1358 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1359
1360 init_msrpm_offsets();
1361
1362 if (boot_cpu_has(X86_FEATURE_NX))
1363 kvm_enable_efer_bits(EFER_NX);
1364
1365 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1366 kvm_enable_efer_bits(EFER_FFXSR);
1367
1368 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1369 kvm_has_tsc_control = true;
1370 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1371 kvm_tsc_scaling_ratio_frac_bits = 32;
1372 }
1373
1374 /* Check for pause filtering support */
1375 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1376 pause_filter_count = 0;
1377 pause_filter_thresh = 0;
1378 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1379 pause_filter_thresh = 0;
1380 }
1381
1382 if (nested) {
1383 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1384 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1385 }
1386
1387 if (sev) {
1388 if (boot_cpu_has(X86_FEATURE_SEV) &&
1389 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1390 r = sev_hardware_setup();
1391 if (r)
1392 sev = false;
1393 } else {
1394 sev = false;
1395 }
1396 }
1397
1398 svm_adjust_mmio_mask();
1399
1400 for_each_possible_cpu(cpu) {
1401 r = svm_cpu_init(cpu);
1402 if (r)
1403 goto err;
1404 }
1405
1406 if (!boot_cpu_has(X86_FEATURE_NPT))
1407 npt_enabled = false;
1408
1409 if (npt_enabled && !npt) {
1410 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1411 npt_enabled = false;
1412 }
1413
1414 if (npt_enabled) {
1415 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1416 kvm_enable_tdp();
1417 } else
1418 kvm_disable_tdp();
1419
1420 if (avic) {
1421 if (!npt_enabled ||
1422 !boot_cpu_has(X86_FEATURE_AVIC) ||
1423 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1424 avic = false;
1425 } else {
1426 pr_info("AVIC enabled\n");
1427
1428 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1429 }
1430 }
1431
1432 if (vls) {
1433 if (!npt_enabled ||
1434 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1435 !IS_ENABLED(CONFIG_X86_64)) {
1436 vls = false;
1437 } else {
1438 pr_info("Virtual VMLOAD VMSAVE supported\n");
1439 }
1440 }
1441
1442 vgif = false; /* Disabled for CVE-2021-3653 */
1443
1444 return 0;
1445
1446 err:
1447 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1448 iopm_base = 0;
1449 return r;
1450 }
1451
svm_hardware_unsetup(void)1452 static __exit void svm_hardware_unsetup(void)
1453 {
1454 int cpu;
1455
1456 if (svm_sev_enabled())
1457 bitmap_free(sev_asid_bitmap);
1458
1459 for_each_possible_cpu(cpu)
1460 svm_cpu_uninit(cpu);
1461
1462 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1463 iopm_base = 0;
1464 }
1465
init_seg(struct vmcb_seg * seg)1466 static void init_seg(struct vmcb_seg *seg)
1467 {
1468 seg->selector = 0;
1469 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1470 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1471 seg->limit = 0xffff;
1472 seg->base = 0;
1473 }
1474
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1475 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1476 {
1477 seg->selector = 0;
1478 seg->attrib = SVM_SELECTOR_P_MASK | type;
1479 seg->limit = 0xffff;
1480 seg->base = 0;
1481 }
1482
svm_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1483 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1484 {
1485 struct vcpu_svm *svm = to_svm(vcpu);
1486
1487 if (is_guest_mode(vcpu))
1488 return svm->nested.hsave->control.tsc_offset;
1489
1490 return vcpu->arch.tsc_offset;
1491 }
1492
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1493 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1494 {
1495 struct vcpu_svm *svm = to_svm(vcpu);
1496 u64 g_tsc_offset = 0;
1497
1498 if (is_guest_mode(vcpu)) {
1499 /* Write L1's TSC offset. */
1500 g_tsc_offset = svm->vmcb->control.tsc_offset -
1501 svm->nested.hsave->control.tsc_offset;
1502 svm->nested.hsave->control.tsc_offset = offset;
1503 } else
1504 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1505 svm->vmcb->control.tsc_offset,
1506 offset);
1507
1508 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1509
1510 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1511 return svm->vmcb->control.tsc_offset;
1512 }
1513
avic_init_vmcb(struct vcpu_svm * svm)1514 static void avic_init_vmcb(struct vcpu_svm *svm)
1515 {
1516 struct vmcb *vmcb = svm->vmcb;
1517 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1518 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1519 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1520 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1521
1522 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1523 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1524 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1525 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1526 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1527 }
1528
init_vmcb(struct vcpu_svm * svm)1529 static void init_vmcb(struct vcpu_svm *svm)
1530 {
1531 struct vmcb_control_area *control = &svm->vmcb->control;
1532 struct vmcb_save_area *save = &svm->vmcb->save;
1533
1534 svm->vcpu.arch.hflags = 0;
1535
1536 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1537 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1538 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1539 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1540 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1541 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1542 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1543 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1544
1545 set_dr_intercepts(svm);
1546
1547 set_exception_intercept(svm, PF_VECTOR);
1548 set_exception_intercept(svm, UD_VECTOR);
1549 set_exception_intercept(svm, MC_VECTOR);
1550 set_exception_intercept(svm, AC_VECTOR);
1551 set_exception_intercept(svm, DB_VECTOR);
1552 /*
1553 * Guest access to VMware backdoor ports could legitimately
1554 * trigger #GP because of TSS I/O permission bitmap.
1555 * We intercept those #GP and allow access to them anyway
1556 * as VMware does.
1557 */
1558 if (enable_vmware_backdoor)
1559 set_exception_intercept(svm, GP_VECTOR);
1560
1561 set_intercept(svm, INTERCEPT_INTR);
1562 set_intercept(svm, INTERCEPT_NMI);
1563 set_intercept(svm, INTERCEPT_SMI);
1564 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1565 set_intercept(svm, INTERCEPT_RDPMC);
1566 set_intercept(svm, INTERCEPT_CPUID);
1567 set_intercept(svm, INTERCEPT_INVD);
1568 set_intercept(svm, INTERCEPT_INVLPG);
1569 set_intercept(svm, INTERCEPT_INVLPGA);
1570 set_intercept(svm, INTERCEPT_IOIO_PROT);
1571 set_intercept(svm, INTERCEPT_MSR_PROT);
1572 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1573 set_intercept(svm, INTERCEPT_SHUTDOWN);
1574 set_intercept(svm, INTERCEPT_VMRUN);
1575 set_intercept(svm, INTERCEPT_VMMCALL);
1576 set_intercept(svm, INTERCEPT_VMLOAD);
1577 set_intercept(svm, INTERCEPT_VMSAVE);
1578 set_intercept(svm, INTERCEPT_STGI);
1579 set_intercept(svm, INTERCEPT_CLGI);
1580 set_intercept(svm, INTERCEPT_SKINIT);
1581 set_intercept(svm, INTERCEPT_WBINVD);
1582 set_intercept(svm, INTERCEPT_XSETBV);
1583 set_intercept(svm, INTERCEPT_RSM);
1584
1585 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1586 set_intercept(svm, INTERCEPT_MONITOR);
1587 set_intercept(svm, INTERCEPT_MWAIT);
1588 }
1589
1590 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1591 set_intercept(svm, INTERCEPT_HLT);
1592
1593 control->iopm_base_pa = __sme_set(iopm_base);
1594 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1595 control->int_ctl = V_INTR_MASKING_MASK;
1596
1597 init_seg(&save->es);
1598 init_seg(&save->ss);
1599 init_seg(&save->ds);
1600 init_seg(&save->fs);
1601 init_seg(&save->gs);
1602
1603 save->cs.selector = 0xf000;
1604 save->cs.base = 0xffff0000;
1605 /* Executable/Readable Code Segment */
1606 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1607 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1608 save->cs.limit = 0xffff;
1609
1610 save->gdtr.limit = 0xffff;
1611 save->idtr.limit = 0xffff;
1612
1613 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1614 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1615
1616 svm_set_efer(&svm->vcpu, 0);
1617 save->dr6 = 0xffff0ff0;
1618 kvm_set_rflags(&svm->vcpu, 2);
1619 save->rip = 0x0000fff0;
1620 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1621
1622 /*
1623 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1624 * It also updates the guest-visible cr0 value.
1625 */
1626 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1627 kvm_mmu_reset_context(&svm->vcpu);
1628
1629 save->cr4 = X86_CR4_PAE;
1630 /* rdx = ?? */
1631
1632 if (npt_enabled) {
1633 /* Setup VMCB for Nested Paging */
1634 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1635 clr_intercept(svm, INTERCEPT_INVLPG);
1636 clr_exception_intercept(svm, PF_VECTOR);
1637 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1638 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1639 save->g_pat = svm->vcpu.arch.pat;
1640 save->cr3 = 0;
1641 save->cr4 = 0;
1642 }
1643 svm->asid_generation = 0;
1644
1645 svm->nested.vmcb = 0;
1646 svm->vcpu.arch.hflags = 0;
1647
1648 if (pause_filter_count) {
1649 control->pause_filter_count = pause_filter_count;
1650 if (pause_filter_thresh)
1651 control->pause_filter_thresh = pause_filter_thresh;
1652 set_intercept(svm, INTERCEPT_PAUSE);
1653 } else {
1654 clr_intercept(svm, INTERCEPT_PAUSE);
1655 }
1656
1657 if (kvm_vcpu_apicv_active(&svm->vcpu))
1658 avic_init_vmcb(svm);
1659
1660 /*
1661 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1662 * in VMCB and clear intercepts to avoid #VMEXIT.
1663 */
1664 if (vls) {
1665 clr_intercept(svm, INTERCEPT_VMLOAD);
1666 clr_intercept(svm, INTERCEPT_VMSAVE);
1667 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1668 }
1669
1670 if (vgif) {
1671 clr_intercept(svm, INTERCEPT_STGI);
1672 clr_intercept(svm, INTERCEPT_CLGI);
1673 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1674 }
1675
1676 if (sev_guest(svm->vcpu.kvm)) {
1677 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1678 clr_exception_intercept(svm, UD_VECTOR);
1679 }
1680
1681 mark_all_dirty(svm->vmcb);
1682
1683 enable_gif(svm);
1684
1685 }
1686
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)1687 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1688 unsigned int index)
1689 {
1690 u64 *avic_physical_id_table;
1691 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1692
1693 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1694 return NULL;
1695
1696 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1697
1698 return &avic_physical_id_table[index];
1699 }
1700
1701 /**
1702 * Note:
1703 * AVIC hardware walks the nested page table to check permissions,
1704 * but does not use the SPA address specified in the leaf page
1705 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1706 * field of the VMCB. Therefore, we set up the
1707 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1708 */
avic_init_access_page(struct kvm_vcpu * vcpu)1709 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1710 {
1711 struct kvm *kvm = vcpu->kvm;
1712 int ret = 0;
1713
1714 mutex_lock(&kvm->slots_lock);
1715 if (kvm->arch.apic_access_page_done)
1716 goto out;
1717
1718 ret = __x86_set_memory_region(kvm,
1719 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1720 APIC_DEFAULT_PHYS_BASE,
1721 PAGE_SIZE);
1722 if (ret)
1723 goto out;
1724
1725 kvm->arch.apic_access_page_done = true;
1726 out:
1727 mutex_unlock(&kvm->slots_lock);
1728 return ret;
1729 }
1730
avic_init_backing_page(struct kvm_vcpu * vcpu)1731 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1732 {
1733 int ret;
1734 u64 *entry, new_entry;
1735 int id = vcpu->vcpu_id;
1736 struct vcpu_svm *svm = to_svm(vcpu);
1737
1738 ret = avic_init_access_page(vcpu);
1739 if (ret)
1740 return ret;
1741
1742 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1743 return -EINVAL;
1744
1745 if (!svm->vcpu.arch.apic->regs)
1746 return -EINVAL;
1747
1748 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1749
1750 /* Setting AVIC backing page address in the phy APIC ID table */
1751 entry = avic_get_physical_id_entry(vcpu, id);
1752 if (!entry)
1753 return -EINVAL;
1754
1755 new_entry = READ_ONCE(*entry);
1756 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1757 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1758 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1759 WRITE_ONCE(*entry, new_entry);
1760
1761 svm->avic_physical_id_cache = entry;
1762
1763 return 0;
1764 }
1765
__sev_asid_free(int asid)1766 static void __sev_asid_free(int asid)
1767 {
1768 struct svm_cpu_data *sd;
1769 int cpu, pos;
1770
1771 pos = asid - 1;
1772 clear_bit(pos, sev_asid_bitmap);
1773
1774 for_each_possible_cpu(cpu) {
1775 sd = per_cpu(svm_data, cpu);
1776 sd->sev_vmcbs[pos] = NULL;
1777 }
1778 }
1779
sev_asid_free(struct kvm * kvm)1780 static void sev_asid_free(struct kvm *kvm)
1781 {
1782 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1783
1784 __sev_asid_free(sev->asid);
1785 }
1786
sev_unbind_asid(struct kvm * kvm,unsigned int handle)1787 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1788 {
1789 struct sev_data_decommission *decommission;
1790 struct sev_data_deactivate *data;
1791
1792 if (!handle)
1793 return;
1794
1795 data = kzalloc(sizeof(*data), GFP_KERNEL);
1796 if (!data)
1797 return;
1798
1799 /* deactivate handle */
1800 data->handle = handle;
1801 sev_guest_deactivate(data, NULL);
1802
1803 wbinvd_on_all_cpus();
1804 sev_guest_df_flush(NULL);
1805 kfree(data);
1806
1807 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1808 if (!decommission)
1809 return;
1810
1811 /* decommission handle */
1812 decommission->handle = handle;
1813 sev_guest_decommission(decommission, NULL);
1814
1815 kfree(decommission);
1816 }
1817
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)1818 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1819 unsigned long ulen, unsigned long *n,
1820 int write)
1821 {
1822 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1823 unsigned long npages, npinned, size;
1824 unsigned long locked, lock_limit;
1825 struct page **pages;
1826 unsigned long first, last;
1827
1828 if (ulen == 0 || uaddr + ulen < uaddr)
1829 return NULL;
1830
1831 /* Calculate number of pages. */
1832 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1833 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1834 npages = (last - first + 1);
1835
1836 locked = sev->pages_locked + npages;
1837 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1838 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1839 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1840 return NULL;
1841 }
1842
1843 /* Avoid using vmalloc for smaller buffers. */
1844 size = npages * sizeof(struct page *);
1845 if (size > PAGE_SIZE)
1846 pages = vmalloc(size);
1847 else
1848 pages = kmalloc(size, GFP_KERNEL);
1849
1850 if (!pages)
1851 return NULL;
1852
1853 /* Pin the user virtual address. */
1854 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1855 if (npinned != npages) {
1856 pr_err("SEV: Failure locking %lu pages.\n", npages);
1857 goto err;
1858 }
1859
1860 *n = npages;
1861 sev->pages_locked = locked;
1862
1863 return pages;
1864
1865 err:
1866 if (npinned > 0)
1867 release_pages(pages, npinned);
1868
1869 kvfree(pages);
1870 return NULL;
1871 }
1872
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)1873 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1874 unsigned long npages)
1875 {
1876 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1877
1878 release_pages(pages, npages);
1879 kvfree(pages);
1880 sev->pages_locked -= npages;
1881 }
1882
sev_clflush_pages(struct page * pages[],unsigned long npages)1883 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1884 {
1885 uint8_t *page_virtual;
1886 unsigned long i;
1887
1888 if (npages == 0 || pages == NULL)
1889 return;
1890
1891 for (i = 0; i < npages; i++) {
1892 page_virtual = kmap_atomic(pages[i]);
1893 clflush_cache_range(page_virtual, PAGE_SIZE);
1894 kunmap_atomic(page_virtual);
1895 }
1896 }
1897
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1898 static void __unregister_enc_region_locked(struct kvm *kvm,
1899 struct enc_region *region)
1900 {
1901 /*
1902 * The guest may change the memory encryption attribute from C=0 -> C=1
1903 * or vice versa for this memory range. Lets make sure caches are
1904 * flushed to ensure that guest data gets written into memory with
1905 * correct C-bit.
1906 */
1907 sev_clflush_pages(region->pages, region->npages);
1908
1909 sev_unpin_memory(kvm, region->pages, region->npages);
1910 list_del(®ion->list);
1911 kfree(region);
1912 }
1913
svm_vm_alloc(void)1914 static struct kvm *svm_vm_alloc(void)
1915 {
1916 struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
1917
1918 if (!kvm_svm)
1919 return NULL;
1920
1921 return &kvm_svm->kvm;
1922 }
1923
svm_vm_free(struct kvm * kvm)1924 static void svm_vm_free(struct kvm *kvm)
1925 {
1926 vfree(to_kvm_svm(kvm));
1927 }
1928
sev_vm_destroy(struct kvm * kvm)1929 static void sev_vm_destroy(struct kvm *kvm)
1930 {
1931 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1932 struct list_head *head = &sev->regions_list;
1933 struct list_head *pos, *q;
1934
1935 if (!sev_guest(kvm))
1936 return;
1937
1938 mutex_lock(&kvm->lock);
1939
1940 /*
1941 * if userspace was terminated before unregistering the memory regions
1942 * then lets unpin all the registered memory.
1943 */
1944 if (!list_empty(head)) {
1945 list_for_each_safe(pos, q, head) {
1946 __unregister_enc_region_locked(kvm,
1947 list_entry(pos, struct enc_region, list));
1948 cond_resched();
1949 }
1950 }
1951
1952 mutex_unlock(&kvm->lock);
1953
1954 sev_unbind_asid(kvm, sev->handle);
1955 sev_asid_free(kvm);
1956 }
1957
avic_vm_destroy(struct kvm * kvm)1958 static void avic_vm_destroy(struct kvm *kvm)
1959 {
1960 unsigned long flags;
1961 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1962
1963 if (!avic)
1964 return;
1965
1966 if (kvm_svm->avic_logical_id_table_page)
1967 __free_page(kvm_svm->avic_logical_id_table_page);
1968 if (kvm_svm->avic_physical_id_table_page)
1969 __free_page(kvm_svm->avic_physical_id_table_page);
1970
1971 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1972 hash_del(&kvm_svm->hnode);
1973 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1974 }
1975
svm_vm_destroy(struct kvm * kvm)1976 static void svm_vm_destroy(struct kvm *kvm)
1977 {
1978 avic_vm_destroy(kvm);
1979 sev_vm_destroy(kvm);
1980 }
1981
avic_vm_init(struct kvm * kvm)1982 static int avic_vm_init(struct kvm *kvm)
1983 {
1984 unsigned long flags;
1985 int err = -ENOMEM;
1986 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1987 struct kvm_svm *k2;
1988 struct page *p_page;
1989 struct page *l_page;
1990 u32 vm_id;
1991
1992 if (!avic)
1993 return 0;
1994
1995 /* Allocating physical APIC ID table (4KB) */
1996 p_page = alloc_page(GFP_KERNEL);
1997 if (!p_page)
1998 goto free_avic;
1999
2000 kvm_svm->avic_physical_id_table_page = p_page;
2001 clear_page(page_address(p_page));
2002
2003 /* Allocating logical APIC ID table (4KB) */
2004 l_page = alloc_page(GFP_KERNEL);
2005 if (!l_page)
2006 goto free_avic;
2007
2008 kvm_svm->avic_logical_id_table_page = l_page;
2009 clear_page(page_address(l_page));
2010
2011 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
2012 again:
2013 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
2014 if (vm_id == 0) { /* id is 1-based, zero is not okay */
2015 next_vm_id_wrapped = 1;
2016 goto again;
2017 }
2018 /* Is it still in use? Only possible if wrapped at least once */
2019 if (next_vm_id_wrapped) {
2020 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
2021 if (k2->avic_vm_id == vm_id)
2022 goto again;
2023 }
2024 }
2025 kvm_svm->avic_vm_id = vm_id;
2026 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
2027 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2028
2029 return 0;
2030
2031 free_avic:
2032 avic_vm_destroy(kvm);
2033 return err;
2034 }
2035
2036 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)2037 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2038 {
2039 int ret = 0;
2040 unsigned long flags;
2041 struct amd_svm_iommu_ir *ir;
2042 struct vcpu_svm *svm = to_svm(vcpu);
2043
2044 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2045 return 0;
2046
2047 /*
2048 * Here, we go through the per-vcpu ir_list to update all existing
2049 * interrupt remapping table entry targeting this vcpu.
2050 */
2051 spin_lock_irqsave(&svm->ir_list_lock, flags);
2052
2053 if (list_empty(&svm->ir_list))
2054 goto out;
2055
2056 list_for_each_entry(ir, &svm->ir_list, node) {
2057 ret = amd_iommu_update_ga(cpu, r, ir->data);
2058 if (ret)
2059 break;
2060 }
2061 out:
2062 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2063 return ret;
2064 }
2065
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2066 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2067 {
2068 u64 entry;
2069 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2070 int h_physical_id = kvm_cpu_get_apicid(cpu);
2071 struct vcpu_svm *svm = to_svm(vcpu);
2072
2073 if (!kvm_vcpu_apicv_active(vcpu))
2074 return;
2075
2076 /*
2077 * Since the host physical APIC id is 8 bits,
2078 * we can support host APIC ID upto 255.
2079 */
2080 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2081 return;
2082
2083 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2084 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2085
2086 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2087 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2088
2089 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2090 if (svm->avic_is_running)
2091 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2092
2093 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2094 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2095 svm->avic_is_running);
2096 }
2097
avic_vcpu_put(struct kvm_vcpu * vcpu)2098 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2099 {
2100 u64 entry;
2101 struct vcpu_svm *svm = to_svm(vcpu);
2102
2103 if (!kvm_vcpu_apicv_active(vcpu))
2104 return;
2105
2106 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2107 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2108 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2109
2110 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2111 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2112 }
2113
2114 /**
2115 * This function is called during VCPU halt/unhalt.
2116 */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)2117 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2118 {
2119 struct vcpu_svm *svm = to_svm(vcpu);
2120
2121 svm->avic_is_running = is_run;
2122 if (is_run)
2123 avic_vcpu_load(vcpu, vcpu->cpu);
2124 else
2125 avic_vcpu_put(vcpu);
2126 }
2127
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)2128 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2129 {
2130 struct vcpu_svm *svm = to_svm(vcpu);
2131 u32 dummy;
2132 u32 eax = 1;
2133
2134 vcpu->arch.microcode_version = 0x01000065;
2135 svm->spec_ctrl = 0;
2136 svm->virt_spec_ctrl = 0;
2137
2138 if (!init_event) {
2139 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2140 MSR_IA32_APICBASE_ENABLE;
2141 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2142 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2143 }
2144 init_vmcb(svm);
2145
2146 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2147 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2148
2149 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2150 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2151 }
2152
avic_init_vcpu(struct vcpu_svm * svm)2153 static int avic_init_vcpu(struct vcpu_svm *svm)
2154 {
2155 int ret;
2156
2157 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2158 return 0;
2159
2160 ret = avic_init_backing_page(&svm->vcpu);
2161 if (ret)
2162 return ret;
2163
2164 INIT_LIST_HEAD(&svm->ir_list);
2165 spin_lock_init(&svm->ir_list_lock);
2166
2167 return ret;
2168 }
2169
svm_create_vcpu(struct kvm * kvm,unsigned int id)2170 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2171 {
2172 struct vcpu_svm *svm;
2173 struct page *page;
2174 struct page *msrpm_pages;
2175 struct page *hsave_page;
2176 struct page *nested_msrpm_pages;
2177 int err;
2178
2179 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2180 if (!svm) {
2181 err = -ENOMEM;
2182 goto out;
2183 }
2184
2185 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2186 if (err)
2187 goto free_svm;
2188
2189 err = -ENOMEM;
2190 page = alloc_page(GFP_KERNEL);
2191 if (!page)
2192 goto uninit;
2193
2194 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2195 if (!msrpm_pages)
2196 goto free_page1;
2197
2198 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2199 if (!nested_msrpm_pages)
2200 goto free_page2;
2201
2202 hsave_page = alloc_page(GFP_KERNEL);
2203 if (!hsave_page)
2204 goto free_page3;
2205
2206 err = avic_init_vcpu(svm);
2207 if (err)
2208 goto free_page4;
2209
2210 /* We initialize this flag to true to make sure that the is_running
2211 * bit would be set the first time the vcpu is loaded.
2212 */
2213 svm->avic_is_running = true;
2214
2215 svm->nested.hsave = page_address(hsave_page);
2216
2217 svm->msrpm = page_address(msrpm_pages);
2218 svm_vcpu_init_msrpm(svm->msrpm);
2219
2220 svm->nested.msrpm = page_address(nested_msrpm_pages);
2221 svm_vcpu_init_msrpm(svm->nested.msrpm);
2222
2223 svm->vmcb = page_address(page);
2224 clear_page(svm->vmcb);
2225 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2226 svm->asid_generation = 0;
2227 init_vmcb(svm);
2228
2229 svm_init_osvw(&svm->vcpu);
2230
2231 return &svm->vcpu;
2232
2233 free_page4:
2234 __free_page(hsave_page);
2235 free_page3:
2236 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2237 free_page2:
2238 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2239 free_page1:
2240 __free_page(page);
2241 uninit:
2242 kvm_vcpu_uninit(&svm->vcpu);
2243 free_svm:
2244 kmem_cache_free(kvm_vcpu_cache, svm);
2245 out:
2246 return ERR_PTR(err);
2247 }
2248
svm_clear_current_vmcb(struct vmcb * vmcb)2249 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2250 {
2251 int i;
2252
2253 for_each_online_cpu(i)
2254 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2255 }
2256
svm_free_vcpu(struct kvm_vcpu * vcpu)2257 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2258 {
2259 struct vcpu_svm *svm = to_svm(vcpu);
2260
2261 /*
2262 * The vmcb page can be recycled, causing a false negative in
2263 * svm_vcpu_load(). So, ensure that no logical CPU has this
2264 * vmcb page recorded as its current vmcb.
2265 */
2266 svm_clear_current_vmcb(svm->vmcb);
2267
2268 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2269 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2270 __free_page(virt_to_page(svm->nested.hsave));
2271 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2272 kvm_vcpu_uninit(vcpu);
2273 kmem_cache_free(kvm_vcpu_cache, svm);
2274 }
2275
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2276 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2277 {
2278 struct vcpu_svm *svm = to_svm(vcpu);
2279 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2280 int i;
2281
2282 if (unlikely(cpu != vcpu->cpu)) {
2283 svm->asid_generation = 0;
2284 mark_all_dirty(svm->vmcb);
2285 }
2286
2287 #ifdef CONFIG_X86_64
2288 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2289 #endif
2290 savesegment(fs, svm->host.fs);
2291 savesegment(gs, svm->host.gs);
2292 svm->host.ldt = kvm_read_ldt();
2293
2294 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2295 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2296
2297 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2298 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2299 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2300 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2301 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2302 }
2303 }
2304 /* This assumes that the kernel never uses MSR_TSC_AUX */
2305 if (static_cpu_has(X86_FEATURE_RDTSCP))
2306 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2307
2308 if (sd->current_vmcb != svm->vmcb) {
2309 sd->current_vmcb = svm->vmcb;
2310 indirect_branch_prediction_barrier();
2311 }
2312 avic_vcpu_load(vcpu, cpu);
2313 }
2314
svm_vcpu_put(struct kvm_vcpu * vcpu)2315 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2316 {
2317 struct vcpu_svm *svm = to_svm(vcpu);
2318 int i;
2319
2320 avic_vcpu_put(vcpu);
2321
2322 ++vcpu->stat.host_state_reload;
2323 kvm_load_ldt(svm->host.ldt);
2324 #ifdef CONFIG_X86_64
2325 loadsegment(fs, svm->host.fs);
2326 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2327 load_gs_index(svm->host.gs);
2328 #else
2329 #ifdef CONFIG_X86_32_LAZY_GS
2330 loadsegment(gs, svm->host.gs);
2331 #endif
2332 #endif
2333 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2334 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2335 }
2336
svm_vcpu_blocking(struct kvm_vcpu * vcpu)2337 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2338 {
2339 avic_set_running(vcpu, false);
2340 }
2341
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)2342 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2343 {
2344 avic_set_running(vcpu, true);
2345 }
2346
svm_get_rflags(struct kvm_vcpu * vcpu)2347 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2348 {
2349 struct vcpu_svm *svm = to_svm(vcpu);
2350 unsigned long rflags = svm->vmcb->save.rflags;
2351
2352 if (svm->nmi_singlestep) {
2353 /* Hide our flags if they were not set by the guest */
2354 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2355 rflags &= ~X86_EFLAGS_TF;
2356 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2357 rflags &= ~X86_EFLAGS_RF;
2358 }
2359 return rflags;
2360 }
2361
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2362 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2363 {
2364 if (to_svm(vcpu)->nmi_singlestep)
2365 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2366
2367 /*
2368 * Any change of EFLAGS.VM is accompanied by a reload of SS
2369 * (caused by either a task switch or an inter-privilege IRET),
2370 * so we do not need to update the CPL here.
2371 */
2372 to_svm(vcpu)->vmcb->save.rflags = rflags;
2373 }
2374
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2375 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2376 {
2377 switch (reg) {
2378 case VCPU_EXREG_PDPTR:
2379 BUG_ON(!npt_enabled);
2380 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2381 break;
2382 default:
2383 BUG();
2384 }
2385 }
2386
svm_set_vintr(struct vcpu_svm * svm)2387 static void svm_set_vintr(struct vcpu_svm *svm)
2388 {
2389 set_intercept(svm, INTERCEPT_VINTR);
2390 }
2391
svm_clear_vintr(struct vcpu_svm * svm)2392 static void svm_clear_vintr(struct vcpu_svm *svm)
2393 {
2394 clr_intercept(svm, INTERCEPT_VINTR);
2395 }
2396
svm_seg(struct kvm_vcpu * vcpu,int seg)2397 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2398 {
2399 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2400
2401 switch (seg) {
2402 case VCPU_SREG_CS: return &save->cs;
2403 case VCPU_SREG_DS: return &save->ds;
2404 case VCPU_SREG_ES: return &save->es;
2405 case VCPU_SREG_FS: return &save->fs;
2406 case VCPU_SREG_GS: return &save->gs;
2407 case VCPU_SREG_SS: return &save->ss;
2408 case VCPU_SREG_TR: return &save->tr;
2409 case VCPU_SREG_LDTR: return &save->ldtr;
2410 }
2411 BUG();
2412 return NULL;
2413 }
2414
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)2415 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2416 {
2417 struct vmcb_seg *s = svm_seg(vcpu, seg);
2418
2419 return s->base;
2420 }
2421
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2422 static void svm_get_segment(struct kvm_vcpu *vcpu,
2423 struct kvm_segment *var, int seg)
2424 {
2425 struct vmcb_seg *s = svm_seg(vcpu, seg);
2426
2427 var->base = s->base;
2428 var->limit = s->limit;
2429 var->selector = s->selector;
2430 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2431 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2432 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2433 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2434 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2435 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2436 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2437
2438 /*
2439 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2440 * However, the SVM spec states that the G bit is not observed by the
2441 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2442 * So let's synthesize a legal G bit for all segments, this helps
2443 * running KVM nested. It also helps cross-vendor migration, because
2444 * Intel's vmentry has a check on the 'G' bit.
2445 */
2446 var->g = s->limit > 0xfffff;
2447
2448 /*
2449 * AMD's VMCB does not have an explicit unusable field, so emulate it
2450 * for cross vendor migration purposes by "not present"
2451 */
2452 var->unusable = !var->present;
2453
2454 switch (seg) {
2455 case VCPU_SREG_TR:
2456 /*
2457 * Work around a bug where the busy flag in the tr selector
2458 * isn't exposed
2459 */
2460 var->type |= 0x2;
2461 break;
2462 case VCPU_SREG_DS:
2463 case VCPU_SREG_ES:
2464 case VCPU_SREG_FS:
2465 case VCPU_SREG_GS:
2466 /*
2467 * The accessed bit must always be set in the segment
2468 * descriptor cache, although it can be cleared in the
2469 * descriptor, the cached bit always remains at 1. Since
2470 * Intel has a check on this, set it here to support
2471 * cross-vendor migration.
2472 */
2473 if (!var->unusable)
2474 var->type |= 0x1;
2475 break;
2476 case VCPU_SREG_SS:
2477 /*
2478 * On AMD CPUs sometimes the DB bit in the segment
2479 * descriptor is left as 1, although the whole segment has
2480 * been made unusable. Clear it here to pass an Intel VMX
2481 * entry check when cross vendor migrating.
2482 */
2483 if (var->unusable)
2484 var->db = 0;
2485 /* This is symmetric with svm_set_segment() */
2486 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2487 break;
2488 }
2489 }
2490
svm_get_cpl(struct kvm_vcpu * vcpu)2491 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2492 {
2493 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2494
2495 return save->cpl;
2496 }
2497
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2498 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2499 {
2500 struct vcpu_svm *svm = to_svm(vcpu);
2501
2502 dt->size = svm->vmcb->save.idtr.limit;
2503 dt->address = svm->vmcb->save.idtr.base;
2504 }
2505
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2506 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2507 {
2508 struct vcpu_svm *svm = to_svm(vcpu);
2509
2510 svm->vmcb->save.idtr.limit = dt->size;
2511 svm->vmcb->save.idtr.base = dt->address ;
2512 mark_dirty(svm->vmcb, VMCB_DT);
2513 }
2514
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2515 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2516 {
2517 struct vcpu_svm *svm = to_svm(vcpu);
2518
2519 dt->size = svm->vmcb->save.gdtr.limit;
2520 dt->address = svm->vmcb->save.gdtr.base;
2521 }
2522
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2523 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2524 {
2525 struct vcpu_svm *svm = to_svm(vcpu);
2526
2527 svm->vmcb->save.gdtr.limit = dt->size;
2528 svm->vmcb->save.gdtr.base = dt->address ;
2529 mark_dirty(svm->vmcb, VMCB_DT);
2530 }
2531
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2532 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2533 {
2534 }
2535
svm_decache_cr3(struct kvm_vcpu * vcpu)2536 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2537 {
2538 }
2539
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2540 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2541 {
2542 }
2543
update_cr0_intercept(struct vcpu_svm * svm)2544 static void update_cr0_intercept(struct vcpu_svm *svm)
2545 {
2546 ulong gcr0 = svm->vcpu.arch.cr0;
2547 u64 *hcr0 = &svm->vmcb->save.cr0;
2548
2549 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2550 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2551
2552 mark_dirty(svm->vmcb, VMCB_CR);
2553
2554 if (gcr0 == *hcr0) {
2555 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2556 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2557 } else {
2558 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2559 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2560 }
2561 }
2562
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2563 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2564 {
2565 struct vcpu_svm *svm = to_svm(vcpu);
2566
2567 #ifdef CONFIG_X86_64
2568 if (vcpu->arch.efer & EFER_LME) {
2569 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2570 vcpu->arch.efer |= EFER_LMA;
2571 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2572 }
2573
2574 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2575 vcpu->arch.efer &= ~EFER_LMA;
2576 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2577 }
2578 }
2579 #endif
2580 vcpu->arch.cr0 = cr0;
2581
2582 if (!npt_enabled)
2583 cr0 |= X86_CR0_PG | X86_CR0_WP;
2584
2585 /*
2586 * re-enable caching here because the QEMU bios
2587 * does not do it - this results in some delay at
2588 * reboot
2589 */
2590 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2591 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2592 svm->vmcb->save.cr0 = cr0;
2593 mark_dirty(svm->vmcb, VMCB_CR);
2594 update_cr0_intercept(svm);
2595 }
2596
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)2597 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2598 {
2599 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2600 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2601
2602 if (cr4 & X86_CR4_VMXE)
2603 return 1;
2604
2605 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2606 svm_flush_tlb(vcpu, true);
2607
2608 vcpu->arch.cr4 = cr4;
2609 if (!npt_enabled)
2610 cr4 |= X86_CR4_PAE;
2611 cr4 |= host_cr4_mce;
2612 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2613 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2614 return 0;
2615 }
2616
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2617 static void svm_set_segment(struct kvm_vcpu *vcpu,
2618 struct kvm_segment *var, int seg)
2619 {
2620 struct vcpu_svm *svm = to_svm(vcpu);
2621 struct vmcb_seg *s = svm_seg(vcpu, seg);
2622
2623 s->base = var->base;
2624 s->limit = var->limit;
2625 s->selector = var->selector;
2626 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2627 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2628 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2629 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2630 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2631 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2632 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2633 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2634
2635 /*
2636 * This is always accurate, except if SYSRET returned to a segment
2637 * with SS.DPL != 3. Intel does not have this quirk, and always
2638 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2639 * would entail passing the CPL to userspace and back.
2640 */
2641 if (seg == VCPU_SREG_SS)
2642 /* This is symmetric with svm_get_segment() */
2643 svm->vmcb->save.cpl = (var->dpl & 3);
2644
2645 mark_dirty(svm->vmcb, VMCB_SEG);
2646 }
2647
update_bp_intercept(struct kvm_vcpu * vcpu)2648 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2649 {
2650 struct vcpu_svm *svm = to_svm(vcpu);
2651
2652 clr_exception_intercept(svm, BP_VECTOR);
2653
2654 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2655 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2656 set_exception_intercept(svm, BP_VECTOR);
2657 } else
2658 vcpu->guest_debug = 0;
2659 }
2660
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2661 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2662 {
2663 if (sd->next_asid > sd->max_asid) {
2664 ++sd->asid_generation;
2665 sd->next_asid = sd->min_asid;
2666 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2667 }
2668
2669 svm->asid_generation = sd->asid_generation;
2670 svm->vmcb->control.asid = sd->next_asid++;
2671
2672 mark_dirty(svm->vmcb, VMCB_ASID);
2673 }
2674
svm_get_dr6(struct kvm_vcpu * vcpu)2675 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2676 {
2677 return to_svm(vcpu)->vmcb->save.dr6;
2678 }
2679
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2680 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2681 {
2682 struct vcpu_svm *svm = to_svm(vcpu);
2683
2684 svm->vmcb->save.dr6 = value;
2685 mark_dirty(svm->vmcb, VMCB_DR);
2686 }
2687
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2688 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2689 {
2690 struct vcpu_svm *svm = to_svm(vcpu);
2691
2692 get_debugreg(vcpu->arch.db[0], 0);
2693 get_debugreg(vcpu->arch.db[1], 1);
2694 get_debugreg(vcpu->arch.db[2], 2);
2695 get_debugreg(vcpu->arch.db[3], 3);
2696 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2697 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2698
2699 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2700 set_dr_intercepts(svm);
2701 }
2702
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2703 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2704 {
2705 struct vcpu_svm *svm = to_svm(vcpu);
2706
2707 svm->vmcb->save.dr7 = value;
2708 mark_dirty(svm->vmcb, VMCB_DR);
2709 }
2710
pf_interception(struct vcpu_svm * svm)2711 static int pf_interception(struct vcpu_svm *svm)
2712 {
2713 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2714 u64 error_code = svm->vmcb->control.exit_info_1;
2715
2716 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2717 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2718 svm->vmcb->control.insn_bytes : NULL,
2719 svm->vmcb->control.insn_len);
2720 }
2721
npf_interception(struct vcpu_svm * svm)2722 static int npf_interception(struct vcpu_svm *svm)
2723 {
2724 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2725 u64 error_code = svm->vmcb->control.exit_info_1;
2726
2727 trace_kvm_page_fault(fault_address, error_code);
2728 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2729 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2730 svm->vmcb->control.insn_bytes : NULL,
2731 svm->vmcb->control.insn_len);
2732 }
2733
db_interception(struct vcpu_svm * svm)2734 static int db_interception(struct vcpu_svm *svm)
2735 {
2736 struct kvm_run *kvm_run = svm->vcpu.run;
2737 struct kvm_vcpu *vcpu = &svm->vcpu;
2738
2739 if (!(svm->vcpu.guest_debug &
2740 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2741 !svm->nmi_singlestep) {
2742 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2743 return 1;
2744 }
2745
2746 if (svm->nmi_singlestep) {
2747 disable_nmi_singlestep(svm);
2748 /* Make sure we check for pending NMIs upon entry */
2749 kvm_make_request(KVM_REQ_EVENT, vcpu);
2750 }
2751
2752 if (svm->vcpu.guest_debug &
2753 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2754 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2755 kvm_run->debug.arch.pc =
2756 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2757 kvm_run->debug.arch.exception = DB_VECTOR;
2758 return 0;
2759 }
2760
2761 return 1;
2762 }
2763
bp_interception(struct vcpu_svm * svm)2764 static int bp_interception(struct vcpu_svm *svm)
2765 {
2766 struct kvm_run *kvm_run = svm->vcpu.run;
2767
2768 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2769 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2770 kvm_run->debug.arch.exception = BP_VECTOR;
2771 return 0;
2772 }
2773
ud_interception(struct vcpu_svm * svm)2774 static int ud_interception(struct vcpu_svm *svm)
2775 {
2776 return handle_ud(&svm->vcpu);
2777 }
2778
ac_interception(struct vcpu_svm * svm)2779 static int ac_interception(struct vcpu_svm *svm)
2780 {
2781 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2782 return 1;
2783 }
2784
gp_interception(struct vcpu_svm * svm)2785 static int gp_interception(struct vcpu_svm *svm)
2786 {
2787 struct kvm_vcpu *vcpu = &svm->vcpu;
2788 u32 error_code = svm->vmcb->control.exit_info_1;
2789 int er;
2790
2791 WARN_ON_ONCE(!enable_vmware_backdoor);
2792
2793 er = kvm_emulate_instruction(vcpu,
2794 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2795 if (er == EMULATE_USER_EXIT)
2796 return 0;
2797 else if (er != EMULATE_DONE)
2798 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2799 return 1;
2800 }
2801
is_erratum_383(void)2802 static bool is_erratum_383(void)
2803 {
2804 int err, i;
2805 u64 value;
2806
2807 if (!erratum_383_found)
2808 return false;
2809
2810 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2811 if (err)
2812 return false;
2813
2814 /* Bit 62 may or may not be set for this mce */
2815 value &= ~(1ULL << 62);
2816
2817 if (value != 0xb600000000010015ULL)
2818 return false;
2819
2820 /* Clear MCi_STATUS registers */
2821 for (i = 0; i < 6; ++i)
2822 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2823
2824 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2825 if (!err) {
2826 u32 low, high;
2827
2828 value &= ~(1ULL << 2);
2829 low = lower_32_bits(value);
2830 high = upper_32_bits(value);
2831
2832 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2833 }
2834
2835 /* Flush tlb to evict multi-match entries */
2836 __flush_tlb_all();
2837
2838 return true;
2839 }
2840
svm_handle_mce(struct vcpu_svm * svm)2841 static void svm_handle_mce(struct vcpu_svm *svm)
2842 {
2843 if (is_erratum_383()) {
2844 /*
2845 * Erratum 383 triggered. Guest state is corrupt so kill the
2846 * guest.
2847 */
2848 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2849
2850 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2851
2852 return;
2853 }
2854
2855 /*
2856 * On an #MC intercept the MCE handler is not called automatically in
2857 * the host. So do it by hand here.
2858 */
2859 asm volatile (
2860 "int $0x12\n");
2861 /* not sure if we ever come back to this point */
2862
2863 return;
2864 }
2865
mc_interception(struct vcpu_svm * svm)2866 static int mc_interception(struct vcpu_svm *svm)
2867 {
2868 return 1;
2869 }
2870
shutdown_interception(struct vcpu_svm * svm)2871 static int shutdown_interception(struct vcpu_svm *svm)
2872 {
2873 struct kvm_run *kvm_run = svm->vcpu.run;
2874
2875 /*
2876 * VMCB is undefined after a SHUTDOWN intercept
2877 * so reinitialize it.
2878 */
2879 clear_page(svm->vmcb);
2880 init_vmcb(svm);
2881
2882 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2883 return 0;
2884 }
2885
io_interception(struct vcpu_svm * svm)2886 static int io_interception(struct vcpu_svm *svm)
2887 {
2888 struct kvm_vcpu *vcpu = &svm->vcpu;
2889 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2890 int size, in, string;
2891 unsigned port;
2892
2893 ++svm->vcpu.stat.io_exits;
2894 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2895 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2896 if (string)
2897 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
2898
2899 port = io_info >> 16;
2900 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2901 svm->next_rip = svm->vmcb->control.exit_info_2;
2902
2903 return kvm_fast_pio(&svm->vcpu, size, port, in);
2904 }
2905
nmi_interception(struct vcpu_svm * svm)2906 static int nmi_interception(struct vcpu_svm *svm)
2907 {
2908 return 1;
2909 }
2910
intr_interception(struct vcpu_svm * svm)2911 static int intr_interception(struct vcpu_svm *svm)
2912 {
2913 ++svm->vcpu.stat.irq_exits;
2914 return 1;
2915 }
2916
nop_on_interception(struct vcpu_svm * svm)2917 static int nop_on_interception(struct vcpu_svm *svm)
2918 {
2919 return 1;
2920 }
2921
halt_interception(struct vcpu_svm * svm)2922 static int halt_interception(struct vcpu_svm *svm)
2923 {
2924 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2925 return kvm_emulate_halt(&svm->vcpu);
2926 }
2927
vmmcall_interception(struct vcpu_svm * svm)2928 static int vmmcall_interception(struct vcpu_svm *svm)
2929 {
2930 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2931 return kvm_emulate_hypercall(&svm->vcpu);
2932 }
2933
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)2934 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2935 {
2936 struct vcpu_svm *svm = to_svm(vcpu);
2937
2938 return svm->nested.nested_cr3;
2939 }
2940
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)2941 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2942 {
2943 struct vcpu_svm *svm = to_svm(vcpu);
2944 u64 cr3 = svm->nested.nested_cr3;
2945 u64 pdpte;
2946 int ret;
2947
2948 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2949 offset_in_page(cr3) + index * 8, 8);
2950 if (ret)
2951 return 0;
2952 return pdpte;
2953 }
2954
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)2955 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2956 unsigned long root)
2957 {
2958 struct vcpu_svm *svm = to_svm(vcpu);
2959
2960 svm->vmcb->control.nested_cr3 = __sme_set(root);
2961 mark_dirty(svm->vmcb, VMCB_NPT);
2962 }
2963
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)2964 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2965 struct x86_exception *fault)
2966 {
2967 struct vcpu_svm *svm = to_svm(vcpu);
2968
2969 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2970 /*
2971 * TODO: track the cause of the nested page fault, and
2972 * correctly fill in the high bits of exit_info_1.
2973 */
2974 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2975 svm->vmcb->control.exit_code_hi = 0;
2976 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2977 svm->vmcb->control.exit_info_2 = fault->address;
2978 }
2979
2980 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2981 svm->vmcb->control.exit_info_1 |= fault->error_code;
2982
2983 /*
2984 * The present bit is always zero for page structure faults on real
2985 * hardware.
2986 */
2987 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2988 svm->vmcb->control.exit_info_1 &= ~1;
2989
2990 nested_svm_vmexit(svm);
2991 }
2992
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)2993 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2994 {
2995 WARN_ON(mmu_is_nested(vcpu));
2996 kvm_init_shadow_mmu(vcpu);
2997 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2998 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2999 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
3000 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
3001 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
3002 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
3003 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
3004 }
3005
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)3006 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3007 {
3008 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3009 }
3010
nested_svm_check_permissions(struct vcpu_svm * svm)3011 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3012 {
3013 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3014 !is_paging(&svm->vcpu)) {
3015 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3016 return 1;
3017 }
3018
3019 if (svm->vmcb->save.cpl) {
3020 kvm_inject_gp(&svm->vcpu, 0);
3021 return 1;
3022 }
3023
3024 return 0;
3025 }
3026
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)3027 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3028 bool has_error_code, u32 error_code)
3029 {
3030 int vmexit;
3031
3032 if (!is_guest_mode(&svm->vcpu))
3033 return 0;
3034
3035 vmexit = nested_svm_intercept(svm);
3036 if (vmexit != NESTED_EXIT_DONE)
3037 return 0;
3038
3039 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3040 svm->vmcb->control.exit_code_hi = 0;
3041 svm->vmcb->control.exit_info_1 = error_code;
3042
3043 /*
3044 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
3045 * The fix is to add the ancillary datum (CR2 or DR6) to structs
3046 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
3047 * written only when inject_pending_event runs (DR6 would written here
3048 * too). This should be conditional on a new capability---if the
3049 * capability is disabled, kvm_multiple_exception would write the
3050 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
3051 */
3052 if (svm->vcpu.arch.exception.nested_apf)
3053 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3054 else
3055 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3056
3057 svm->nested.exit_required = true;
3058 return vmexit;
3059 }
3060
3061 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)3062 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3063 {
3064 if (!is_guest_mode(&svm->vcpu))
3065 return true;
3066
3067 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3068 return true;
3069
3070 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3071 return false;
3072
3073 /*
3074 * if vmexit was already requested (by intercepted exception
3075 * for instance) do not overwrite it with "external interrupt"
3076 * vmexit.
3077 */
3078 if (svm->nested.exit_required)
3079 return false;
3080
3081 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3082 svm->vmcb->control.exit_info_1 = 0;
3083 svm->vmcb->control.exit_info_2 = 0;
3084
3085 if (svm->nested.intercept & 1ULL) {
3086 /*
3087 * The #vmexit can't be emulated here directly because this
3088 * code path runs with irqs and preemption disabled. A
3089 * #vmexit emulation might sleep. Only signal request for
3090 * the #vmexit here.
3091 */
3092 svm->nested.exit_required = true;
3093 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3094 return false;
3095 }
3096
3097 return true;
3098 }
3099
3100 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)3101 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3102 {
3103 if (!is_guest_mode(&svm->vcpu))
3104 return true;
3105
3106 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3107 return true;
3108
3109 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3110 svm->nested.exit_required = true;
3111
3112 return false;
3113 }
3114
nested_svm_map(struct vcpu_svm * svm,u64 gpa,struct page ** _page)3115 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3116 {
3117 struct page *page;
3118
3119 might_sleep();
3120
3121 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3122 if (is_error_page(page))
3123 goto error;
3124
3125 *_page = page;
3126
3127 return kmap(page);
3128
3129 error:
3130 kvm_inject_gp(&svm->vcpu, 0);
3131
3132 return NULL;
3133 }
3134
nested_svm_unmap(struct page * page)3135 static void nested_svm_unmap(struct page *page)
3136 {
3137 kunmap(page);
3138 kvm_release_page_dirty(page);
3139 }
3140
nested_svm_intercept_ioio(struct vcpu_svm * svm)3141 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3142 {
3143 unsigned port, size, iopm_len;
3144 u16 val, mask;
3145 u8 start_bit;
3146 u64 gpa;
3147
3148 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3149 return NESTED_EXIT_HOST;
3150
3151 port = svm->vmcb->control.exit_info_1 >> 16;
3152 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3153 SVM_IOIO_SIZE_SHIFT;
3154 gpa = svm->nested.vmcb_iopm + (port / 8);
3155 start_bit = port % 8;
3156 iopm_len = (start_bit + size > 8) ? 2 : 1;
3157 mask = (0xf >> (4 - size)) << start_bit;
3158 val = 0;
3159
3160 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3161 return NESTED_EXIT_DONE;
3162
3163 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3164 }
3165
nested_svm_exit_handled_msr(struct vcpu_svm * svm)3166 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3167 {
3168 u32 offset, msr, value;
3169 int write, mask;
3170
3171 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3172 return NESTED_EXIT_HOST;
3173
3174 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3175 offset = svm_msrpm_offset(msr);
3176 write = svm->vmcb->control.exit_info_1 & 1;
3177 mask = 1 << ((2 * (msr & 0xf)) + write);
3178
3179 if (offset == MSR_INVALID)
3180 return NESTED_EXIT_DONE;
3181
3182 /* Offset is in 32 bit units but need in 8 bit units */
3183 offset *= 4;
3184
3185 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3186 return NESTED_EXIT_DONE;
3187
3188 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3189 }
3190
3191 /* DB exceptions for our internal use must not cause vmexit */
nested_svm_intercept_db(struct vcpu_svm * svm)3192 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3193 {
3194 unsigned long dr6;
3195
3196 /* if we're not singlestepping, it's not ours */
3197 if (!svm->nmi_singlestep)
3198 return NESTED_EXIT_DONE;
3199
3200 /* if it's not a singlestep exception, it's not ours */
3201 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3202 return NESTED_EXIT_DONE;
3203 if (!(dr6 & DR6_BS))
3204 return NESTED_EXIT_DONE;
3205
3206 /* if the guest is singlestepping, it should get the vmexit */
3207 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3208 disable_nmi_singlestep(svm);
3209 return NESTED_EXIT_DONE;
3210 }
3211
3212 /* it's ours, the nested hypervisor must not see this one */
3213 return NESTED_EXIT_HOST;
3214 }
3215
nested_svm_exit_special(struct vcpu_svm * svm)3216 static int nested_svm_exit_special(struct vcpu_svm *svm)
3217 {
3218 u32 exit_code = svm->vmcb->control.exit_code;
3219
3220 switch (exit_code) {
3221 case SVM_EXIT_INTR:
3222 case SVM_EXIT_NMI:
3223 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3224 return NESTED_EXIT_HOST;
3225 case SVM_EXIT_NPF:
3226 /* For now we are always handling NPFs when using them */
3227 if (npt_enabled)
3228 return NESTED_EXIT_HOST;
3229 break;
3230 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3231 /* Trap async PF even if not shadowing */
3232 if (!npt_enabled || svm->vcpu.arch.apf.host_apf_reason)
3233 return NESTED_EXIT_HOST;
3234 break;
3235 default:
3236 break;
3237 }
3238
3239 return NESTED_EXIT_CONTINUE;
3240 }
3241
3242 /*
3243 * If this function returns true, this #vmexit was already handled
3244 */
nested_svm_intercept(struct vcpu_svm * svm)3245 static int nested_svm_intercept(struct vcpu_svm *svm)
3246 {
3247 u32 exit_code = svm->vmcb->control.exit_code;
3248 int vmexit = NESTED_EXIT_HOST;
3249
3250 switch (exit_code) {
3251 case SVM_EXIT_MSR:
3252 vmexit = nested_svm_exit_handled_msr(svm);
3253 break;
3254 case SVM_EXIT_IOIO:
3255 vmexit = nested_svm_intercept_ioio(svm);
3256 break;
3257 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3258 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3259 if (svm->nested.intercept_cr & bit)
3260 vmexit = NESTED_EXIT_DONE;
3261 break;
3262 }
3263 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3264 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3265 if (svm->nested.intercept_dr & bit)
3266 vmexit = NESTED_EXIT_DONE;
3267 break;
3268 }
3269 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3270 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3271 if (svm->nested.intercept_exceptions & excp_bits) {
3272 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3273 vmexit = nested_svm_intercept_db(svm);
3274 else
3275 vmexit = NESTED_EXIT_DONE;
3276 }
3277 /* async page fault always cause vmexit */
3278 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3279 svm->vcpu.arch.exception.nested_apf != 0)
3280 vmexit = NESTED_EXIT_DONE;
3281 break;
3282 }
3283 case SVM_EXIT_ERR: {
3284 vmexit = NESTED_EXIT_DONE;
3285 break;
3286 }
3287 default: {
3288 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3289 if (svm->nested.intercept & exit_bits)
3290 vmexit = NESTED_EXIT_DONE;
3291 }
3292 }
3293
3294 return vmexit;
3295 }
3296
nested_svm_exit_handled(struct vcpu_svm * svm)3297 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3298 {
3299 int vmexit;
3300
3301 vmexit = nested_svm_intercept(svm);
3302
3303 if (vmexit == NESTED_EXIT_DONE)
3304 nested_svm_vmexit(svm);
3305
3306 return vmexit;
3307 }
3308
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)3309 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3310 {
3311 struct vmcb_control_area *dst = &dst_vmcb->control;
3312 struct vmcb_control_area *from = &from_vmcb->control;
3313
3314 dst->intercept_cr = from->intercept_cr;
3315 dst->intercept_dr = from->intercept_dr;
3316 dst->intercept_exceptions = from->intercept_exceptions;
3317 dst->intercept = from->intercept;
3318 dst->iopm_base_pa = from->iopm_base_pa;
3319 dst->msrpm_base_pa = from->msrpm_base_pa;
3320 dst->tsc_offset = from->tsc_offset;
3321 /* asid not copied, it is handled manually for svm->vmcb. */
3322 dst->tlb_ctl = from->tlb_ctl;
3323 dst->int_ctl = from->int_ctl;
3324 dst->int_vector = from->int_vector;
3325 dst->int_state = from->int_state;
3326 dst->exit_code = from->exit_code;
3327 dst->exit_code_hi = from->exit_code_hi;
3328 dst->exit_info_1 = from->exit_info_1;
3329 dst->exit_info_2 = from->exit_info_2;
3330 dst->exit_int_info = from->exit_int_info;
3331 dst->exit_int_info_err = from->exit_int_info_err;
3332 dst->nested_ctl = from->nested_ctl;
3333 dst->event_inj = from->event_inj;
3334 dst->event_inj_err = from->event_inj_err;
3335 dst->nested_cr3 = from->nested_cr3;
3336 dst->virt_ext = from->virt_ext;
3337 }
3338
nested_svm_vmexit(struct vcpu_svm * svm)3339 static int nested_svm_vmexit(struct vcpu_svm *svm)
3340 {
3341 struct vmcb *nested_vmcb;
3342 struct vmcb *hsave = svm->nested.hsave;
3343 struct vmcb *vmcb = svm->vmcb;
3344 struct page *page;
3345
3346 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3347 vmcb->control.exit_info_1,
3348 vmcb->control.exit_info_2,
3349 vmcb->control.exit_int_info,
3350 vmcb->control.exit_int_info_err,
3351 KVM_ISA_SVM);
3352
3353 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3354 if (!nested_vmcb)
3355 return 1;
3356
3357 /* Exit Guest-Mode */
3358 leave_guest_mode(&svm->vcpu);
3359 svm->nested.vmcb = 0;
3360
3361 /* Give the current vmcb to the guest */
3362 disable_gif(svm);
3363
3364 nested_vmcb->save.es = vmcb->save.es;
3365 nested_vmcb->save.cs = vmcb->save.cs;
3366 nested_vmcb->save.ss = vmcb->save.ss;
3367 nested_vmcb->save.ds = vmcb->save.ds;
3368 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3369 nested_vmcb->save.idtr = vmcb->save.idtr;
3370 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3371 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3372 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3373 nested_vmcb->save.cr2 = vmcb->save.cr2;
3374 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3375 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3376 nested_vmcb->save.rip = vmcb->save.rip;
3377 nested_vmcb->save.rsp = vmcb->save.rsp;
3378 nested_vmcb->save.rax = vmcb->save.rax;
3379 nested_vmcb->save.dr7 = vmcb->save.dr7;
3380 nested_vmcb->save.dr6 = vmcb->save.dr6;
3381 nested_vmcb->save.cpl = vmcb->save.cpl;
3382
3383 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3384 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3385 nested_vmcb->control.int_state = vmcb->control.int_state;
3386 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3387 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3388 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3389 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3390 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3391 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3392
3393 if (svm->nrips_enabled)
3394 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3395
3396 /*
3397 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3398 * to make sure that we do not lose injected events. So check event_inj
3399 * here and copy it to exit_int_info if it is valid.
3400 * Exit_int_info and event_inj can't be both valid because the case
3401 * below only happens on a VMRUN instruction intercept which has
3402 * no valid exit_int_info set.
3403 */
3404 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3405 struct vmcb_control_area *nc = &nested_vmcb->control;
3406
3407 nc->exit_int_info = vmcb->control.event_inj;
3408 nc->exit_int_info_err = vmcb->control.event_inj_err;
3409 }
3410
3411 nested_vmcb->control.tlb_ctl = 0;
3412 nested_vmcb->control.event_inj = 0;
3413 nested_vmcb->control.event_inj_err = 0;
3414
3415 /* We always set V_INTR_MASKING and remember the old value in hflags */
3416 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3417 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3418
3419 /* Restore the original control entries */
3420 copy_vmcb_control_area(vmcb, hsave);
3421
3422 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3423 kvm_clear_exception_queue(&svm->vcpu);
3424 kvm_clear_interrupt_queue(&svm->vcpu);
3425
3426 svm->nested.nested_cr3 = 0;
3427
3428 /* Restore selected save entries */
3429 svm->vmcb->save.es = hsave->save.es;
3430 svm->vmcb->save.cs = hsave->save.cs;
3431 svm->vmcb->save.ss = hsave->save.ss;
3432 svm->vmcb->save.ds = hsave->save.ds;
3433 svm->vmcb->save.gdtr = hsave->save.gdtr;
3434 svm->vmcb->save.idtr = hsave->save.idtr;
3435 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3436 svm_set_efer(&svm->vcpu, hsave->save.efer);
3437 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3438 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3439 if (npt_enabled) {
3440 svm->vmcb->save.cr3 = hsave->save.cr3;
3441 svm->vcpu.arch.cr3 = hsave->save.cr3;
3442 } else {
3443 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3444 }
3445 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3446 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3447 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3448 svm->vmcb->save.dr7 = 0;
3449 svm->vmcb->save.cpl = 0;
3450 svm->vmcb->control.exit_int_info = 0;
3451
3452 mark_all_dirty(svm->vmcb);
3453
3454 nested_svm_unmap(page);
3455
3456 nested_svm_uninit_mmu_context(&svm->vcpu);
3457 kvm_mmu_reset_context(&svm->vcpu);
3458 kvm_mmu_load(&svm->vcpu);
3459
3460 /*
3461 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3462 * doesn't end up in L1.
3463 */
3464 svm->vcpu.arch.nmi_injected = false;
3465 kvm_clear_exception_queue(&svm->vcpu);
3466 kvm_clear_interrupt_queue(&svm->vcpu);
3467
3468 return 0;
3469 }
3470
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)3471 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3472 {
3473 /*
3474 * This function merges the msr permission bitmaps of kvm and the
3475 * nested vmcb. It is optimized in that it only merges the parts where
3476 * the kvm msr permission bitmap may contain zero bits
3477 */
3478 int i;
3479
3480 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3481 return true;
3482
3483 for (i = 0; i < MSRPM_OFFSETS; i++) {
3484 u32 value, p;
3485 u64 offset;
3486
3487 if (msrpm_offsets[i] == 0xffffffff)
3488 break;
3489
3490 p = msrpm_offsets[i];
3491 offset = svm->nested.vmcb_msrpm + (p * 4);
3492
3493 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3494 return false;
3495
3496 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3497 }
3498
3499 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3500
3501 return true;
3502 }
3503
nested_vmcb_checks(struct vmcb * vmcb)3504 static bool nested_vmcb_checks(struct vmcb *vmcb)
3505 {
3506 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3507 return false;
3508
3509 if (vmcb->control.asid == 0)
3510 return false;
3511
3512 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3513 !npt_enabled)
3514 return false;
3515
3516 return true;
3517 }
3518
enter_svm_guest_mode(struct vcpu_svm * svm,u64 vmcb_gpa,struct vmcb * nested_vmcb,struct page * page)3519 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3520 struct vmcb *nested_vmcb, struct page *page)
3521 {
3522 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3523 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3524 else
3525 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3526
3527 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3528 kvm_mmu_unload(&svm->vcpu);
3529 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3530 nested_svm_init_mmu_context(&svm->vcpu);
3531 }
3532
3533 /* Load the nested guest state */
3534 svm->vmcb->save.es = nested_vmcb->save.es;
3535 svm->vmcb->save.cs = nested_vmcb->save.cs;
3536 svm->vmcb->save.ss = nested_vmcb->save.ss;
3537 svm->vmcb->save.ds = nested_vmcb->save.ds;
3538 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3539 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3540 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3541 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3542 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3543 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3544 if (npt_enabled) {
3545 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3546 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3547 } else
3548 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3549
3550 /* Guest paging mode is active - reset mmu */
3551 kvm_mmu_reset_context(&svm->vcpu);
3552
3553 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3554 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3555 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3556 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3557
3558 /* In case we don't even reach vcpu_run, the fields are not updated */
3559 svm->vmcb->save.rax = nested_vmcb->save.rax;
3560 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3561 svm->vmcb->save.rip = nested_vmcb->save.rip;
3562 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3563 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3564 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3565
3566 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3567 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3568
3569 /* cache intercepts */
3570 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3571 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3572 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3573 svm->nested.intercept = nested_vmcb->control.intercept;
3574
3575 svm_flush_tlb(&svm->vcpu, true);
3576
3577 svm->vmcb->control.int_ctl &=
3578 V_INTR_MASKING_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK;
3579
3580 svm->vmcb->control.int_ctl |= nested_vmcb->control.int_ctl &
3581 (V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK);
3582
3583 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3584 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3585 else
3586 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3587
3588 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3589 /* We only want the cr8 intercept bits of the guest */
3590 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3591 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3592 }
3593
3594 /* We don't want to see VMMCALLs from a nested guest */
3595 clr_intercept(svm, INTERCEPT_VMMCALL);
3596
3597 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3598 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3599
3600 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3601 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3602 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3603 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3604 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3605
3606 nested_svm_unmap(page);
3607
3608 /* Enter Guest-Mode */
3609 enter_guest_mode(&svm->vcpu);
3610
3611 /*
3612 * Merge guest and host intercepts - must be called with vcpu in
3613 * guest-mode to take affect here
3614 */
3615 recalc_intercepts(svm);
3616
3617 svm->nested.vmcb = vmcb_gpa;
3618
3619 enable_gif(svm);
3620
3621 mark_all_dirty(svm->vmcb);
3622 }
3623
nested_svm_vmrun(struct vcpu_svm * svm)3624 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3625 {
3626 struct vmcb *nested_vmcb;
3627 struct vmcb *hsave = svm->nested.hsave;
3628 struct vmcb *vmcb = svm->vmcb;
3629 struct page *page;
3630 u64 vmcb_gpa;
3631
3632 vmcb_gpa = svm->vmcb->save.rax;
3633
3634 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3635 if (!nested_vmcb)
3636 return false;
3637
3638 if (!nested_vmcb_checks(nested_vmcb)) {
3639 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3640 nested_vmcb->control.exit_code_hi = 0;
3641 nested_vmcb->control.exit_info_1 = 0;
3642 nested_vmcb->control.exit_info_2 = 0;
3643
3644 nested_svm_unmap(page);
3645
3646 return false;
3647 }
3648
3649 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3650 nested_vmcb->save.rip,
3651 nested_vmcb->control.int_ctl,
3652 nested_vmcb->control.event_inj,
3653 nested_vmcb->control.nested_ctl);
3654
3655 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3656 nested_vmcb->control.intercept_cr >> 16,
3657 nested_vmcb->control.intercept_exceptions,
3658 nested_vmcb->control.intercept);
3659
3660 /* Clear internal status */
3661 kvm_clear_exception_queue(&svm->vcpu);
3662 kvm_clear_interrupt_queue(&svm->vcpu);
3663
3664 /*
3665 * Save the old vmcb, so we don't need to pick what we save, but can
3666 * restore everything when a VMEXIT occurs
3667 */
3668 hsave->save.es = vmcb->save.es;
3669 hsave->save.cs = vmcb->save.cs;
3670 hsave->save.ss = vmcb->save.ss;
3671 hsave->save.ds = vmcb->save.ds;
3672 hsave->save.gdtr = vmcb->save.gdtr;
3673 hsave->save.idtr = vmcb->save.idtr;
3674 hsave->save.efer = svm->vcpu.arch.efer;
3675 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3676 hsave->save.cr4 = svm->vcpu.arch.cr4;
3677 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3678 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3679 hsave->save.rsp = vmcb->save.rsp;
3680 hsave->save.rax = vmcb->save.rax;
3681 if (npt_enabled)
3682 hsave->save.cr3 = vmcb->save.cr3;
3683 else
3684 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3685
3686 copy_vmcb_control_area(hsave, vmcb);
3687
3688 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3689
3690 return true;
3691 }
3692
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)3693 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3694 {
3695 to_vmcb->save.fs = from_vmcb->save.fs;
3696 to_vmcb->save.gs = from_vmcb->save.gs;
3697 to_vmcb->save.tr = from_vmcb->save.tr;
3698 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3699 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3700 to_vmcb->save.star = from_vmcb->save.star;
3701 to_vmcb->save.lstar = from_vmcb->save.lstar;
3702 to_vmcb->save.cstar = from_vmcb->save.cstar;
3703 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3704 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3705 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3706 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3707 }
3708
vmload_interception(struct vcpu_svm * svm)3709 static int vmload_interception(struct vcpu_svm *svm)
3710 {
3711 struct vmcb *nested_vmcb;
3712 struct page *page;
3713 int ret;
3714
3715 if (nested_svm_check_permissions(svm))
3716 return 1;
3717
3718 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3719 if (!nested_vmcb)
3720 return 1;
3721
3722 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3723 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3724
3725 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3726 nested_svm_unmap(page);
3727
3728 return ret;
3729 }
3730
vmsave_interception(struct vcpu_svm * svm)3731 static int vmsave_interception(struct vcpu_svm *svm)
3732 {
3733 struct vmcb *nested_vmcb;
3734 struct page *page;
3735 int ret;
3736
3737 if (nested_svm_check_permissions(svm))
3738 return 1;
3739
3740 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3741 if (!nested_vmcb)
3742 return 1;
3743
3744 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3745 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3746
3747 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3748 nested_svm_unmap(page);
3749
3750 return ret;
3751 }
3752
vmrun_interception(struct vcpu_svm * svm)3753 static int vmrun_interception(struct vcpu_svm *svm)
3754 {
3755 if (nested_svm_check_permissions(svm))
3756 return 1;
3757
3758 /* Save rip after vmrun instruction */
3759 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3760
3761 if (!nested_svm_vmrun(svm))
3762 return 1;
3763
3764 if (!nested_svm_vmrun_msrpm(svm))
3765 goto failed;
3766
3767 return 1;
3768
3769 failed:
3770
3771 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3772 svm->vmcb->control.exit_code_hi = 0;
3773 svm->vmcb->control.exit_info_1 = 0;
3774 svm->vmcb->control.exit_info_2 = 0;
3775
3776 nested_svm_vmexit(svm);
3777
3778 return 1;
3779 }
3780
stgi_interception(struct vcpu_svm * svm)3781 static int stgi_interception(struct vcpu_svm *svm)
3782 {
3783 int ret;
3784
3785 if (nested_svm_check_permissions(svm))
3786 return 1;
3787
3788 /*
3789 * If VGIF is enabled, the STGI intercept is only added to
3790 * detect the opening of the SMI/NMI window; remove it now.
3791 */
3792 if (vgif_enabled(svm))
3793 clr_intercept(svm, INTERCEPT_STGI);
3794
3795 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3796 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3797 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3798
3799 enable_gif(svm);
3800
3801 return ret;
3802 }
3803
clgi_interception(struct vcpu_svm * svm)3804 static int clgi_interception(struct vcpu_svm *svm)
3805 {
3806 int ret;
3807
3808 if (nested_svm_check_permissions(svm))
3809 return 1;
3810
3811 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3812 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3813
3814 disable_gif(svm);
3815
3816 /* After a CLGI no interrupts should come */
3817 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3818 svm_clear_vintr(svm);
3819 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3820 mark_dirty(svm->vmcb, VMCB_INTR);
3821 }
3822
3823 return ret;
3824 }
3825
invlpga_interception(struct vcpu_svm * svm)3826 static int invlpga_interception(struct vcpu_svm *svm)
3827 {
3828 struct kvm_vcpu *vcpu = &svm->vcpu;
3829
3830 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3831 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3832
3833 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3834 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3835
3836 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3837 return kvm_skip_emulated_instruction(&svm->vcpu);
3838 }
3839
skinit_interception(struct vcpu_svm * svm)3840 static int skinit_interception(struct vcpu_svm *svm)
3841 {
3842 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3843
3844 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3845 return 1;
3846 }
3847
wbinvd_interception(struct vcpu_svm * svm)3848 static int wbinvd_interception(struct vcpu_svm *svm)
3849 {
3850 return kvm_emulate_wbinvd(&svm->vcpu);
3851 }
3852
xsetbv_interception(struct vcpu_svm * svm)3853 static int xsetbv_interception(struct vcpu_svm *svm)
3854 {
3855 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3856 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3857
3858 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3859 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3860 return kvm_skip_emulated_instruction(&svm->vcpu);
3861 }
3862
3863 return 1;
3864 }
3865
task_switch_interception(struct vcpu_svm * svm)3866 static int task_switch_interception(struct vcpu_svm *svm)
3867 {
3868 u16 tss_selector;
3869 int reason;
3870 int int_type = svm->vmcb->control.exit_int_info &
3871 SVM_EXITINTINFO_TYPE_MASK;
3872 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3873 uint32_t type =
3874 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3875 uint32_t idt_v =
3876 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3877 bool has_error_code = false;
3878 u32 error_code = 0;
3879
3880 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3881
3882 if (svm->vmcb->control.exit_info_2 &
3883 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3884 reason = TASK_SWITCH_IRET;
3885 else if (svm->vmcb->control.exit_info_2 &
3886 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3887 reason = TASK_SWITCH_JMP;
3888 else if (idt_v)
3889 reason = TASK_SWITCH_GATE;
3890 else
3891 reason = TASK_SWITCH_CALL;
3892
3893 if (reason == TASK_SWITCH_GATE) {
3894 switch (type) {
3895 case SVM_EXITINTINFO_TYPE_NMI:
3896 svm->vcpu.arch.nmi_injected = false;
3897 break;
3898 case SVM_EXITINTINFO_TYPE_EXEPT:
3899 if (svm->vmcb->control.exit_info_2 &
3900 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3901 has_error_code = true;
3902 error_code =
3903 (u32)svm->vmcb->control.exit_info_2;
3904 }
3905 kvm_clear_exception_queue(&svm->vcpu);
3906 break;
3907 case SVM_EXITINTINFO_TYPE_INTR:
3908 kvm_clear_interrupt_queue(&svm->vcpu);
3909 break;
3910 default:
3911 break;
3912 }
3913 }
3914
3915 if (reason != TASK_SWITCH_GATE ||
3916 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3917 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3918 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3919 skip_emulated_instruction(&svm->vcpu);
3920
3921 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3922 int_vec = -1;
3923
3924 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3925 has_error_code, error_code) == EMULATE_FAIL) {
3926 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3927 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3928 svm->vcpu.run->internal.ndata = 0;
3929 return 0;
3930 }
3931 return 1;
3932 }
3933
cpuid_interception(struct vcpu_svm * svm)3934 static int cpuid_interception(struct vcpu_svm *svm)
3935 {
3936 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3937 return kvm_emulate_cpuid(&svm->vcpu);
3938 }
3939
iret_interception(struct vcpu_svm * svm)3940 static int iret_interception(struct vcpu_svm *svm)
3941 {
3942 ++svm->vcpu.stat.nmi_window_exits;
3943 clr_intercept(svm, INTERCEPT_IRET);
3944 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3945 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3946 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3947 return 1;
3948 }
3949
invd_interception(struct vcpu_svm * svm)3950 static int invd_interception(struct vcpu_svm *svm)
3951 {
3952 /* Treat an INVD instruction as a NOP and just skip it. */
3953 return kvm_skip_emulated_instruction(&svm->vcpu);
3954 }
3955
invlpg_interception(struct vcpu_svm * svm)3956 static int invlpg_interception(struct vcpu_svm *svm)
3957 {
3958 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3959 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3960
3961 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3962 return kvm_skip_emulated_instruction(&svm->vcpu);
3963 }
3964
emulate_on_interception(struct vcpu_svm * svm)3965 static int emulate_on_interception(struct vcpu_svm *svm)
3966 {
3967 return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3968 }
3969
rsm_interception(struct vcpu_svm * svm)3970 static int rsm_interception(struct vcpu_svm *svm)
3971 {
3972 return kvm_emulate_instruction_from_buffer(&svm->vcpu,
3973 rsm_ins_bytes, 2) == EMULATE_DONE;
3974 }
3975
rdpmc_interception(struct vcpu_svm * svm)3976 static int rdpmc_interception(struct vcpu_svm *svm)
3977 {
3978 int err;
3979
3980 if (!static_cpu_has(X86_FEATURE_NRIPS))
3981 return emulate_on_interception(svm);
3982
3983 err = kvm_rdpmc(&svm->vcpu);
3984 return kvm_complete_insn_gp(&svm->vcpu, err);
3985 }
3986
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)3987 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3988 unsigned long val)
3989 {
3990 unsigned long cr0 = svm->vcpu.arch.cr0;
3991 bool ret = false;
3992 u64 intercept;
3993
3994 intercept = svm->nested.intercept;
3995
3996 if (!is_guest_mode(&svm->vcpu) ||
3997 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3998 return false;
3999
4000 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
4001 val &= ~SVM_CR0_SELECTIVE_MASK;
4002
4003 if (cr0 ^ val) {
4004 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4005 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
4006 }
4007
4008 return ret;
4009 }
4010
4011 #define CR_VALID (1ULL << 63)
4012
cr_interception(struct vcpu_svm * svm)4013 static int cr_interception(struct vcpu_svm *svm)
4014 {
4015 int reg, cr;
4016 unsigned long val;
4017 int err;
4018
4019 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4020 return emulate_on_interception(svm);
4021
4022 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4023 return emulate_on_interception(svm);
4024
4025 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4026 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4027 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4028 else
4029 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4030
4031 err = 0;
4032 if (cr >= 16) { /* mov to cr */
4033 cr -= 16;
4034 val = kvm_register_read(&svm->vcpu, reg);
4035 switch (cr) {
4036 case 0:
4037 if (!check_selective_cr0_intercepted(svm, val))
4038 err = kvm_set_cr0(&svm->vcpu, val);
4039 else
4040 return 1;
4041
4042 break;
4043 case 3:
4044 err = kvm_set_cr3(&svm->vcpu, val);
4045 break;
4046 case 4:
4047 err = kvm_set_cr4(&svm->vcpu, val);
4048 break;
4049 case 8:
4050 err = kvm_set_cr8(&svm->vcpu, val);
4051 break;
4052 default:
4053 WARN(1, "unhandled write to CR%d", cr);
4054 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4055 return 1;
4056 }
4057 } else { /* mov from cr */
4058 switch (cr) {
4059 case 0:
4060 val = kvm_read_cr0(&svm->vcpu);
4061 break;
4062 case 2:
4063 val = svm->vcpu.arch.cr2;
4064 break;
4065 case 3:
4066 val = kvm_read_cr3(&svm->vcpu);
4067 break;
4068 case 4:
4069 val = kvm_read_cr4(&svm->vcpu);
4070 break;
4071 case 8:
4072 val = kvm_get_cr8(&svm->vcpu);
4073 break;
4074 default:
4075 WARN(1, "unhandled read from CR%d", cr);
4076 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4077 return 1;
4078 }
4079 kvm_register_write(&svm->vcpu, reg, val);
4080 }
4081 return kvm_complete_insn_gp(&svm->vcpu, err);
4082 }
4083
dr_interception(struct vcpu_svm * svm)4084 static int dr_interception(struct vcpu_svm *svm)
4085 {
4086 int reg, dr;
4087 unsigned long val;
4088
4089 if (svm->vcpu.guest_debug == 0) {
4090 /*
4091 * No more DR vmexits; force a reload of the debug registers
4092 * and reenter on this instruction. The next vmexit will
4093 * retrieve the full state of the debug registers.
4094 */
4095 clr_dr_intercepts(svm);
4096 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4097 return 1;
4098 }
4099
4100 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4101 return emulate_on_interception(svm);
4102
4103 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4104 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4105
4106 if (dr >= 16) { /* mov to DRn */
4107 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4108 return 1;
4109 val = kvm_register_read(&svm->vcpu, reg);
4110 kvm_set_dr(&svm->vcpu, dr - 16, val);
4111 } else {
4112 if (!kvm_require_dr(&svm->vcpu, dr))
4113 return 1;
4114 kvm_get_dr(&svm->vcpu, dr, &val);
4115 kvm_register_write(&svm->vcpu, reg, val);
4116 }
4117
4118 return kvm_skip_emulated_instruction(&svm->vcpu);
4119 }
4120
cr8_write_interception(struct vcpu_svm * svm)4121 static int cr8_write_interception(struct vcpu_svm *svm)
4122 {
4123 struct kvm_run *kvm_run = svm->vcpu.run;
4124 int r;
4125
4126 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4127 /* instruction emulation calls kvm_set_cr8() */
4128 r = cr_interception(svm);
4129 if (lapic_in_kernel(&svm->vcpu))
4130 return r;
4131 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4132 return r;
4133 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4134 return 0;
4135 }
4136
svm_get_msr_feature(struct kvm_msr_entry * msr)4137 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4138 {
4139 msr->data = 0;
4140
4141 switch (msr->index) {
4142 case MSR_F10H_DECFG:
4143 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4144 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4145 break;
4146 default:
4147 return 1;
4148 }
4149
4150 return 0;
4151 }
4152
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4153 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4154 {
4155 struct vcpu_svm *svm = to_svm(vcpu);
4156
4157 switch (msr_info->index) {
4158 case MSR_STAR:
4159 msr_info->data = svm->vmcb->save.star;
4160 break;
4161 #ifdef CONFIG_X86_64
4162 case MSR_LSTAR:
4163 msr_info->data = svm->vmcb->save.lstar;
4164 break;
4165 case MSR_CSTAR:
4166 msr_info->data = svm->vmcb->save.cstar;
4167 break;
4168 case MSR_KERNEL_GS_BASE:
4169 msr_info->data = svm->vmcb->save.kernel_gs_base;
4170 break;
4171 case MSR_SYSCALL_MASK:
4172 msr_info->data = svm->vmcb->save.sfmask;
4173 break;
4174 #endif
4175 case MSR_IA32_SYSENTER_CS:
4176 msr_info->data = svm->vmcb->save.sysenter_cs;
4177 break;
4178 case MSR_IA32_SYSENTER_EIP:
4179 msr_info->data = svm->sysenter_eip;
4180 break;
4181 case MSR_IA32_SYSENTER_ESP:
4182 msr_info->data = svm->sysenter_esp;
4183 break;
4184 case MSR_TSC_AUX:
4185 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4186 return 1;
4187 msr_info->data = svm->tsc_aux;
4188 break;
4189 /*
4190 * Nobody will change the following 5 values in the VMCB so we can
4191 * safely return them on rdmsr. They will always be 0 until LBRV is
4192 * implemented.
4193 */
4194 case MSR_IA32_DEBUGCTLMSR:
4195 msr_info->data = svm->vmcb->save.dbgctl;
4196 break;
4197 case MSR_IA32_LASTBRANCHFROMIP:
4198 msr_info->data = svm->vmcb->save.br_from;
4199 break;
4200 case MSR_IA32_LASTBRANCHTOIP:
4201 msr_info->data = svm->vmcb->save.br_to;
4202 break;
4203 case MSR_IA32_LASTINTFROMIP:
4204 msr_info->data = svm->vmcb->save.last_excp_from;
4205 break;
4206 case MSR_IA32_LASTINTTOIP:
4207 msr_info->data = svm->vmcb->save.last_excp_to;
4208 break;
4209 case MSR_VM_HSAVE_PA:
4210 msr_info->data = svm->nested.hsave_msr;
4211 break;
4212 case MSR_VM_CR:
4213 msr_info->data = svm->nested.vm_cr_msr;
4214 break;
4215 case MSR_IA32_SPEC_CTRL:
4216 if (!msr_info->host_initiated &&
4217 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4218 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4219 return 1;
4220
4221 msr_info->data = svm->spec_ctrl;
4222 break;
4223 case MSR_AMD64_VIRT_SPEC_CTRL:
4224 if (!msr_info->host_initiated &&
4225 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4226 return 1;
4227
4228 msr_info->data = svm->virt_spec_ctrl;
4229 break;
4230 case MSR_F15H_IC_CFG: {
4231
4232 int family, model;
4233
4234 family = guest_cpuid_family(vcpu);
4235 model = guest_cpuid_model(vcpu);
4236
4237 if (family < 0 || model < 0)
4238 return kvm_get_msr_common(vcpu, msr_info);
4239
4240 msr_info->data = 0;
4241
4242 if (family == 0x15 &&
4243 (model >= 0x2 && model < 0x20))
4244 msr_info->data = 0x1E;
4245 }
4246 break;
4247 case MSR_F10H_DECFG:
4248 msr_info->data = svm->msr_decfg;
4249 break;
4250 default:
4251 return kvm_get_msr_common(vcpu, msr_info);
4252 }
4253 return 0;
4254 }
4255
rdmsr_interception(struct vcpu_svm * svm)4256 static int rdmsr_interception(struct vcpu_svm *svm)
4257 {
4258 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4259 struct msr_data msr_info;
4260
4261 msr_info.index = ecx;
4262 msr_info.host_initiated = false;
4263 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4264 trace_kvm_msr_read_ex(ecx);
4265 kvm_inject_gp(&svm->vcpu, 0);
4266 return 1;
4267 } else {
4268 trace_kvm_msr_read(ecx, msr_info.data);
4269
4270 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4271 msr_info.data & 0xffffffff);
4272 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4273 msr_info.data >> 32);
4274 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4275 return kvm_skip_emulated_instruction(&svm->vcpu);
4276 }
4277 }
4278
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)4279 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4280 {
4281 struct vcpu_svm *svm = to_svm(vcpu);
4282 int svm_dis, chg_mask;
4283
4284 if (data & ~SVM_VM_CR_VALID_MASK)
4285 return 1;
4286
4287 chg_mask = SVM_VM_CR_VALID_MASK;
4288
4289 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4290 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4291
4292 svm->nested.vm_cr_msr &= ~chg_mask;
4293 svm->nested.vm_cr_msr |= (data & chg_mask);
4294
4295 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4296
4297 /* check for svm_disable while efer.svme is set */
4298 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4299 return 1;
4300
4301 return 0;
4302 }
4303
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)4304 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4305 {
4306 struct vcpu_svm *svm = to_svm(vcpu);
4307
4308 u32 ecx = msr->index;
4309 u64 data = msr->data;
4310 switch (ecx) {
4311 case MSR_IA32_CR_PAT:
4312 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4313 return 1;
4314 vcpu->arch.pat = data;
4315 svm->vmcb->save.g_pat = data;
4316 mark_dirty(svm->vmcb, VMCB_NPT);
4317 break;
4318 case MSR_IA32_SPEC_CTRL:
4319 if (!msr->host_initiated &&
4320 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4321 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4322 return 1;
4323
4324 /* The STIBP bit doesn't fault even if it's not advertised */
4325 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4326 return 1;
4327
4328 svm->spec_ctrl = data;
4329
4330 if (!data)
4331 break;
4332
4333 /*
4334 * For non-nested:
4335 * When it's written (to non-zero) for the first time, pass
4336 * it through.
4337 *
4338 * For nested:
4339 * The handling of the MSR bitmap for L2 guests is done in
4340 * nested_svm_vmrun_msrpm.
4341 * We update the L1 MSR bit as well since it will end up
4342 * touching the MSR anyway now.
4343 */
4344 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4345 break;
4346 case MSR_IA32_PRED_CMD:
4347 if (!msr->host_initiated &&
4348 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4349 return 1;
4350
4351 if (data & ~PRED_CMD_IBPB)
4352 return 1;
4353
4354 if (!data)
4355 break;
4356
4357 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4358 if (is_guest_mode(vcpu))
4359 break;
4360 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4361 break;
4362 case MSR_AMD64_VIRT_SPEC_CTRL:
4363 if (!msr->host_initiated &&
4364 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4365 return 1;
4366
4367 if (data & ~SPEC_CTRL_SSBD)
4368 return 1;
4369
4370 svm->virt_spec_ctrl = data;
4371 break;
4372 case MSR_STAR:
4373 svm->vmcb->save.star = data;
4374 break;
4375 #ifdef CONFIG_X86_64
4376 case MSR_LSTAR:
4377 svm->vmcb->save.lstar = data;
4378 break;
4379 case MSR_CSTAR:
4380 svm->vmcb->save.cstar = data;
4381 break;
4382 case MSR_KERNEL_GS_BASE:
4383 svm->vmcb->save.kernel_gs_base = data;
4384 break;
4385 case MSR_SYSCALL_MASK:
4386 svm->vmcb->save.sfmask = data;
4387 break;
4388 #endif
4389 case MSR_IA32_SYSENTER_CS:
4390 svm->vmcb->save.sysenter_cs = data;
4391 break;
4392 case MSR_IA32_SYSENTER_EIP:
4393 svm->sysenter_eip = data;
4394 svm->vmcb->save.sysenter_eip = data;
4395 break;
4396 case MSR_IA32_SYSENTER_ESP:
4397 svm->sysenter_esp = data;
4398 svm->vmcb->save.sysenter_esp = data;
4399 break;
4400 case MSR_TSC_AUX:
4401 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4402 return 1;
4403
4404 /*
4405 * This is rare, so we update the MSR here instead of using
4406 * direct_access_msrs. Doing that would require a rdmsr in
4407 * svm_vcpu_put.
4408 */
4409 svm->tsc_aux = data;
4410 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4411 break;
4412 case MSR_IA32_DEBUGCTLMSR:
4413 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4414 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4415 __func__, data);
4416 break;
4417 }
4418 if (data & DEBUGCTL_RESERVED_BITS)
4419 return 1;
4420
4421 svm->vmcb->save.dbgctl = data;
4422 mark_dirty(svm->vmcb, VMCB_LBR);
4423 if (data & (1ULL<<0))
4424 svm_enable_lbrv(svm);
4425 else
4426 svm_disable_lbrv(svm);
4427 break;
4428 case MSR_VM_HSAVE_PA:
4429 svm->nested.hsave_msr = data;
4430 break;
4431 case MSR_VM_CR:
4432 return svm_set_vm_cr(vcpu, data);
4433 case MSR_VM_IGNNE:
4434 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4435 break;
4436 case MSR_F10H_DECFG: {
4437 struct kvm_msr_entry msr_entry;
4438
4439 msr_entry.index = msr->index;
4440 if (svm_get_msr_feature(&msr_entry))
4441 return 1;
4442
4443 /* Check the supported bits */
4444 if (data & ~msr_entry.data)
4445 return 1;
4446
4447 /* Don't allow the guest to change a bit, #GP */
4448 if (!msr->host_initiated && (data ^ msr_entry.data))
4449 return 1;
4450
4451 svm->msr_decfg = data;
4452 break;
4453 }
4454 case MSR_IA32_APICBASE:
4455 if (kvm_vcpu_apicv_active(vcpu))
4456 avic_update_vapic_bar(to_svm(vcpu), data);
4457 /* Follow through */
4458 default:
4459 return kvm_set_msr_common(vcpu, msr);
4460 }
4461 return 0;
4462 }
4463
wrmsr_interception(struct vcpu_svm * svm)4464 static int wrmsr_interception(struct vcpu_svm *svm)
4465 {
4466 struct msr_data msr;
4467 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4468 u64 data = kvm_read_edx_eax(&svm->vcpu);
4469
4470 msr.data = data;
4471 msr.index = ecx;
4472 msr.host_initiated = false;
4473
4474 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4475 if (kvm_set_msr(&svm->vcpu, &msr)) {
4476 trace_kvm_msr_write_ex(ecx, data);
4477 kvm_inject_gp(&svm->vcpu, 0);
4478 return 1;
4479 } else {
4480 trace_kvm_msr_write(ecx, data);
4481 return kvm_skip_emulated_instruction(&svm->vcpu);
4482 }
4483 }
4484
msr_interception(struct vcpu_svm * svm)4485 static int msr_interception(struct vcpu_svm *svm)
4486 {
4487 if (svm->vmcb->control.exit_info_1)
4488 return wrmsr_interception(svm);
4489 else
4490 return rdmsr_interception(svm);
4491 }
4492
interrupt_window_interception(struct vcpu_svm * svm)4493 static int interrupt_window_interception(struct vcpu_svm *svm)
4494 {
4495 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4496 svm_clear_vintr(svm);
4497 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4498 mark_dirty(svm->vmcb, VMCB_INTR);
4499 ++svm->vcpu.stat.irq_window_exits;
4500 return 1;
4501 }
4502
pause_interception(struct vcpu_svm * svm)4503 static int pause_interception(struct vcpu_svm *svm)
4504 {
4505 struct kvm_vcpu *vcpu = &svm->vcpu;
4506 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4507
4508 if (pause_filter_thresh)
4509 grow_ple_window(vcpu);
4510
4511 kvm_vcpu_on_spin(vcpu, in_kernel);
4512 return 1;
4513 }
4514
nop_interception(struct vcpu_svm * svm)4515 static int nop_interception(struct vcpu_svm *svm)
4516 {
4517 return kvm_skip_emulated_instruction(&(svm->vcpu));
4518 }
4519
monitor_interception(struct vcpu_svm * svm)4520 static int monitor_interception(struct vcpu_svm *svm)
4521 {
4522 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4523 return nop_interception(svm);
4524 }
4525
mwait_interception(struct vcpu_svm * svm)4526 static int mwait_interception(struct vcpu_svm *svm)
4527 {
4528 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4529 return nop_interception(svm);
4530 }
4531
4532 enum avic_ipi_failure_cause {
4533 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4534 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4535 AVIC_IPI_FAILURE_INVALID_TARGET,
4536 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4537 };
4538
avic_incomplete_ipi_interception(struct vcpu_svm * svm)4539 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4540 {
4541 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4542 u32 icrl = svm->vmcb->control.exit_info_1;
4543 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4544 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4545 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4546
4547 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4548
4549 switch (id) {
4550 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4551 /*
4552 * AVIC hardware handles the generation of
4553 * IPIs when the specified Message Type is Fixed
4554 * (also known as fixed delivery mode) and
4555 * the Trigger Mode is edge-triggered. The hardware
4556 * also supports self and broadcast delivery modes
4557 * specified via the Destination Shorthand(DSH)
4558 * field of the ICRL. Logical and physical APIC ID
4559 * formats are supported. All other IPI types cause
4560 * a #VMEXIT, which needs to emulated.
4561 */
4562 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4563 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4564 break;
4565 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4566 int i;
4567 struct kvm_vcpu *vcpu;
4568 struct kvm *kvm = svm->vcpu.kvm;
4569 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4570
4571 /*
4572 * At this point, we expect that the AVIC HW has already
4573 * set the appropriate IRR bits on the valid target
4574 * vcpus. So, we just need to kick the appropriate vcpu.
4575 */
4576 kvm_for_each_vcpu(i, vcpu, kvm) {
4577 bool m = kvm_apic_match_dest(vcpu, apic,
4578 icrl & KVM_APIC_SHORT_MASK,
4579 GET_APIC_DEST_FIELD(icrh),
4580 icrl & KVM_APIC_DEST_MASK);
4581
4582 if (m && !avic_vcpu_is_running(vcpu))
4583 kvm_vcpu_wake_up(vcpu);
4584 }
4585 break;
4586 }
4587 case AVIC_IPI_FAILURE_INVALID_TARGET:
4588 break;
4589 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4590 WARN_ONCE(1, "Invalid backing page\n");
4591 break;
4592 default:
4593 pr_err("Unknown IPI interception\n");
4594 }
4595
4596 return 1;
4597 }
4598
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)4599 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4600 {
4601 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4602 int index;
4603 u32 *logical_apic_id_table;
4604 int dlid = GET_APIC_LOGICAL_ID(ldr);
4605
4606 if (!dlid)
4607 return NULL;
4608
4609 if (flat) { /* flat */
4610 index = ffs(dlid) - 1;
4611 if (index > 7)
4612 return NULL;
4613 } else { /* cluster */
4614 int cluster = (dlid & 0xf0) >> 4;
4615 int apic = ffs(dlid & 0x0f) - 1;
4616
4617 if ((apic < 0) || (apic > 7) ||
4618 (cluster >= 0xf))
4619 return NULL;
4620 index = (cluster << 2) + apic;
4621 }
4622
4623 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4624
4625 return &logical_apic_id_table[index];
4626 }
4627
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr,bool valid)4628 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4629 bool valid)
4630 {
4631 bool flat;
4632 u32 *entry, new_entry;
4633
4634 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4635 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4636 if (!entry)
4637 return -EINVAL;
4638
4639 new_entry = READ_ONCE(*entry);
4640 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4641 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4642 if (valid)
4643 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4644 else
4645 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4646 WRITE_ONCE(*entry, new_entry);
4647
4648 return 0;
4649 }
4650
avic_handle_ldr_update(struct kvm_vcpu * vcpu)4651 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4652 {
4653 int ret;
4654 struct vcpu_svm *svm = to_svm(vcpu);
4655 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4656
4657 if (!ldr)
4658 return 1;
4659
4660 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4661 if (ret && svm->ldr_reg) {
4662 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4663 svm->ldr_reg = 0;
4664 } else {
4665 svm->ldr_reg = ldr;
4666 }
4667 return ret;
4668 }
4669
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)4670 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4671 {
4672 u64 *old, *new;
4673 struct vcpu_svm *svm = to_svm(vcpu);
4674 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4675 u32 id = (apic_id_reg >> 24) & 0xff;
4676
4677 if (vcpu->vcpu_id == id)
4678 return 0;
4679
4680 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4681 new = avic_get_physical_id_entry(vcpu, id);
4682 if (!new || !old)
4683 return 1;
4684
4685 /* We need to move physical_id_entry to new offset */
4686 *new = *old;
4687 *old = 0ULL;
4688 to_svm(vcpu)->avic_physical_id_cache = new;
4689
4690 /*
4691 * Also update the guest physical APIC ID in the logical
4692 * APIC ID table entry if already setup the LDR.
4693 */
4694 if (svm->ldr_reg)
4695 avic_handle_ldr_update(vcpu);
4696
4697 return 0;
4698 }
4699
avic_handle_dfr_update(struct kvm_vcpu * vcpu)4700 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4701 {
4702 struct vcpu_svm *svm = to_svm(vcpu);
4703 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4704 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4705 u32 mod = (dfr >> 28) & 0xf;
4706
4707 /*
4708 * We assume that all local APICs are using the same type.
4709 * If this changes, we need to flush the AVIC logical
4710 * APID id table.
4711 */
4712 if (kvm_svm->ldr_mode == mod)
4713 return 0;
4714
4715 clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4716 kvm_svm->ldr_mode = mod;
4717
4718 if (svm->ldr_reg)
4719 avic_handle_ldr_update(vcpu);
4720 return 0;
4721 }
4722
avic_unaccel_trap_write(struct vcpu_svm * svm)4723 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4724 {
4725 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4726 u32 offset = svm->vmcb->control.exit_info_1 &
4727 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4728
4729 switch (offset) {
4730 case APIC_ID:
4731 if (avic_handle_apic_id_update(&svm->vcpu))
4732 return 0;
4733 break;
4734 case APIC_LDR:
4735 if (avic_handle_ldr_update(&svm->vcpu))
4736 return 0;
4737 break;
4738 case APIC_DFR:
4739 avic_handle_dfr_update(&svm->vcpu);
4740 break;
4741 default:
4742 break;
4743 }
4744
4745 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4746
4747 return 1;
4748 }
4749
is_avic_unaccelerated_access_trap(u32 offset)4750 static bool is_avic_unaccelerated_access_trap(u32 offset)
4751 {
4752 bool ret = false;
4753
4754 switch (offset) {
4755 case APIC_ID:
4756 case APIC_EOI:
4757 case APIC_RRR:
4758 case APIC_LDR:
4759 case APIC_DFR:
4760 case APIC_SPIV:
4761 case APIC_ESR:
4762 case APIC_ICR:
4763 case APIC_LVTT:
4764 case APIC_LVTTHMR:
4765 case APIC_LVTPC:
4766 case APIC_LVT0:
4767 case APIC_LVT1:
4768 case APIC_LVTERR:
4769 case APIC_TMICT:
4770 case APIC_TDCR:
4771 ret = true;
4772 break;
4773 default:
4774 break;
4775 }
4776 return ret;
4777 }
4778
avic_unaccelerated_access_interception(struct vcpu_svm * svm)4779 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4780 {
4781 int ret = 0;
4782 u32 offset = svm->vmcb->control.exit_info_1 &
4783 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4784 u32 vector = svm->vmcb->control.exit_info_2 &
4785 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4786 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4787 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4788 bool trap = is_avic_unaccelerated_access_trap(offset);
4789
4790 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4791 trap, write, vector);
4792 if (trap) {
4793 /* Handling Trap */
4794 WARN_ONCE(!write, "svm: Handling trap read.\n");
4795 ret = avic_unaccel_trap_write(svm);
4796 } else {
4797 /* Handling Fault */
4798 ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4799 }
4800
4801 return ret;
4802 }
4803
4804 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4805 [SVM_EXIT_READ_CR0] = cr_interception,
4806 [SVM_EXIT_READ_CR3] = cr_interception,
4807 [SVM_EXIT_READ_CR4] = cr_interception,
4808 [SVM_EXIT_READ_CR8] = cr_interception,
4809 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4810 [SVM_EXIT_WRITE_CR0] = cr_interception,
4811 [SVM_EXIT_WRITE_CR3] = cr_interception,
4812 [SVM_EXIT_WRITE_CR4] = cr_interception,
4813 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4814 [SVM_EXIT_READ_DR0] = dr_interception,
4815 [SVM_EXIT_READ_DR1] = dr_interception,
4816 [SVM_EXIT_READ_DR2] = dr_interception,
4817 [SVM_EXIT_READ_DR3] = dr_interception,
4818 [SVM_EXIT_READ_DR4] = dr_interception,
4819 [SVM_EXIT_READ_DR5] = dr_interception,
4820 [SVM_EXIT_READ_DR6] = dr_interception,
4821 [SVM_EXIT_READ_DR7] = dr_interception,
4822 [SVM_EXIT_WRITE_DR0] = dr_interception,
4823 [SVM_EXIT_WRITE_DR1] = dr_interception,
4824 [SVM_EXIT_WRITE_DR2] = dr_interception,
4825 [SVM_EXIT_WRITE_DR3] = dr_interception,
4826 [SVM_EXIT_WRITE_DR4] = dr_interception,
4827 [SVM_EXIT_WRITE_DR5] = dr_interception,
4828 [SVM_EXIT_WRITE_DR6] = dr_interception,
4829 [SVM_EXIT_WRITE_DR7] = dr_interception,
4830 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4831 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4832 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4833 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4834 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4835 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4836 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4837 [SVM_EXIT_INTR] = intr_interception,
4838 [SVM_EXIT_NMI] = nmi_interception,
4839 [SVM_EXIT_SMI] = nop_on_interception,
4840 [SVM_EXIT_INIT] = nop_on_interception,
4841 [SVM_EXIT_VINTR] = interrupt_window_interception,
4842 [SVM_EXIT_RDPMC] = rdpmc_interception,
4843 [SVM_EXIT_CPUID] = cpuid_interception,
4844 [SVM_EXIT_IRET] = iret_interception,
4845 [SVM_EXIT_INVD] = invd_interception,
4846 [SVM_EXIT_PAUSE] = pause_interception,
4847 [SVM_EXIT_HLT] = halt_interception,
4848 [SVM_EXIT_INVLPG] = invlpg_interception,
4849 [SVM_EXIT_INVLPGA] = invlpga_interception,
4850 [SVM_EXIT_IOIO] = io_interception,
4851 [SVM_EXIT_MSR] = msr_interception,
4852 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4853 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4854 [SVM_EXIT_VMRUN] = vmrun_interception,
4855 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4856 [SVM_EXIT_VMLOAD] = vmload_interception,
4857 [SVM_EXIT_VMSAVE] = vmsave_interception,
4858 [SVM_EXIT_STGI] = stgi_interception,
4859 [SVM_EXIT_CLGI] = clgi_interception,
4860 [SVM_EXIT_SKINIT] = skinit_interception,
4861 [SVM_EXIT_WBINVD] = wbinvd_interception,
4862 [SVM_EXIT_MONITOR] = monitor_interception,
4863 [SVM_EXIT_MWAIT] = mwait_interception,
4864 [SVM_EXIT_XSETBV] = xsetbv_interception,
4865 [SVM_EXIT_NPF] = npf_interception,
4866 [SVM_EXIT_RSM] = rsm_interception,
4867 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4868 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4869 };
4870
dump_vmcb(struct kvm_vcpu * vcpu)4871 static void dump_vmcb(struct kvm_vcpu *vcpu)
4872 {
4873 struct vcpu_svm *svm = to_svm(vcpu);
4874 struct vmcb_control_area *control = &svm->vmcb->control;
4875 struct vmcb_save_area *save = &svm->vmcb->save;
4876
4877 pr_err("VMCB Control Area:\n");
4878 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4879 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4880 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4881 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4882 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4883 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4884 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4885 pr_err("%-20s%d\n", "pause filter threshold:",
4886 control->pause_filter_thresh);
4887 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4888 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4889 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4890 pr_err("%-20s%d\n", "asid:", control->asid);
4891 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4892 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4893 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4894 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4895 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4896 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4897 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4898 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4899 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4900 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4901 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4902 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4903 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4904 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4905 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4906 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4907 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4908 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4909 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4910 pr_err("VMCB State Save Area:\n");
4911 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4912 "es:",
4913 save->es.selector, save->es.attrib,
4914 save->es.limit, save->es.base);
4915 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4916 "cs:",
4917 save->cs.selector, save->cs.attrib,
4918 save->cs.limit, save->cs.base);
4919 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4920 "ss:",
4921 save->ss.selector, save->ss.attrib,
4922 save->ss.limit, save->ss.base);
4923 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4924 "ds:",
4925 save->ds.selector, save->ds.attrib,
4926 save->ds.limit, save->ds.base);
4927 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4928 "fs:",
4929 save->fs.selector, save->fs.attrib,
4930 save->fs.limit, save->fs.base);
4931 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4932 "gs:",
4933 save->gs.selector, save->gs.attrib,
4934 save->gs.limit, save->gs.base);
4935 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4936 "gdtr:",
4937 save->gdtr.selector, save->gdtr.attrib,
4938 save->gdtr.limit, save->gdtr.base);
4939 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4940 "ldtr:",
4941 save->ldtr.selector, save->ldtr.attrib,
4942 save->ldtr.limit, save->ldtr.base);
4943 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4944 "idtr:",
4945 save->idtr.selector, save->idtr.attrib,
4946 save->idtr.limit, save->idtr.base);
4947 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4948 "tr:",
4949 save->tr.selector, save->tr.attrib,
4950 save->tr.limit, save->tr.base);
4951 pr_err("cpl: %d efer: %016llx\n",
4952 save->cpl, save->efer);
4953 pr_err("%-15s %016llx %-13s %016llx\n",
4954 "cr0:", save->cr0, "cr2:", save->cr2);
4955 pr_err("%-15s %016llx %-13s %016llx\n",
4956 "cr3:", save->cr3, "cr4:", save->cr4);
4957 pr_err("%-15s %016llx %-13s %016llx\n",
4958 "dr6:", save->dr6, "dr7:", save->dr7);
4959 pr_err("%-15s %016llx %-13s %016llx\n",
4960 "rip:", save->rip, "rflags:", save->rflags);
4961 pr_err("%-15s %016llx %-13s %016llx\n",
4962 "rsp:", save->rsp, "rax:", save->rax);
4963 pr_err("%-15s %016llx %-13s %016llx\n",
4964 "star:", save->star, "lstar:", save->lstar);
4965 pr_err("%-15s %016llx %-13s %016llx\n",
4966 "cstar:", save->cstar, "sfmask:", save->sfmask);
4967 pr_err("%-15s %016llx %-13s %016llx\n",
4968 "kernel_gs_base:", save->kernel_gs_base,
4969 "sysenter_cs:", save->sysenter_cs);
4970 pr_err("%-15s %016llx %-13s %016llx\n",
4971 "sysenter_esp:", save->sysenter_esp,
4972 "sysenter_eip:", save->sysenter_eip);
4973 pr_err("%-15s %016llx %-13s %016llx\n",
4974 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4975 pr_err("%-15s %016llx %-13s %016llx\n",
4976 "br_from:", save->br_from, "br_to:", save->br_to);
4977 pr_err("%-15s %016llx %-13s %016llx\n",
4978 "excp_from:", save->last_excp_from,
4979 "excp_to:", save->last_excp_to);
4980 }
4981
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)4982 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4983 {
4984 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4985
4986 *info1 = control->exit_info_1;
4987 *info2 = control->exit_info_2;
4988 }
4989
handle_exit(struct kvm_vcpu * vcpu)4990 static int handle_exit(struct kvm_vcpu *vcpu)
4991 {
4992 struct vcpu_svm *svm = to_svm(vcpu);
4993 struct kvm_run *kvm_run = vcpu->run;
4994 u32 exit_code = svm->vmcb->control.exit_code;
4995
4996 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4997
4998 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4999 vcpu->arch.cr0 = svm->vmcb->save.cr0;
5000 if (npt_enabled)
5001 vcpu->arch.cr3 = svm->vmcb->save.cr3;
5002
5003 if (unlikely(svm->nested.exit_required)) {
5004 nested_svm_vmexit(svm);
5005 svm->nested.exit_required = false;
5006
5007 return 1;
5008 }
5009
5010 if (is_guest_mode(vcpu)) {
5011 int vmexit;
5012
5013 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
5014 svm->vmcb->control.exit_info_1,
5015 svm->vmcb->control.exit_info_2,
5016 svm->vmcb->control.exit_int_info,
5017 svm->vmcb->control.exit_int_info_err,
5018 KVM_ISA_SVM);
5019
5020 vmexit = nested_svm_exit_special(svm);
5021
5022 if (vmexit == NESTED_EXIT_CONTINUE)
5023 vmexit = nested_svm_exit_handled(svm);
5024
5025 if (vmexit == NESTED_EXIT_DONE)
5026 return 1;
5027 }
5028
5029 svm_complete_interrupts(svm);
5030
5031 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
5032 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5033 kvm_run->fail_entry.hardware_entry_failure_reason
5034 = svm->vmcb->control.exit_code;
5035 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
5036 dump_vmcb(vcpu);
5037 return 0;
5038 }
5039
5040 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
5041 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
5042 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
5043 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5044 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5045 "exit_code 0x%x\n",
5046 __func__, svm->vmcb->control.exit_int_info,
5047 exit_code);
5048
5049 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5050 || !svm_exit_handlers[exit_code]) {
5051 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
5052 kvm_queue_exception(vcpu, UD_VECTOR);
5053 return 1;
5054 }
5055
5056 return svm_exit_handlers[exit_code](svm);
5057 }
5058
reload_tss(struct kvm_vcpu * vcpu)5059 static void reload_tss(struct kvm_vcpu *vcpu)
5060 {
5061 int cpu = raw_smp_processor_id();
5062
5063 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5064 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5065 load_TR_desc();
5066 }
5067
pre_sev_run(struct vcpu_svm * svm,int cpu)5068 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5069 {
5070 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5071 int asid = sev_get_asid(svm->vcpu.kvm);
5072
5073 /* Assign the asid allocated with this SEV guest */
5074 svm->vmcb->control.asid = asid;
5075
5076 /*
5077 * Flush guest TLB:
5078 *
5079 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5080 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5081 */
5082 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5083 svm->last_cpu == cpu)
5084 return;
5085
5086 svm->last_cpu = cpu;
5087 sd->sev_vmcbs[asid] = svm->vmcb;
5088 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5089 mark_dirty(svm->vmcb, VMCB_ASID);
5090 }
5091
pre_svm_run(struct vcpu_svm * svm)5092 static void pre_svm_run(struct vcpu_svm *svm)
5093 {
5094 int cpu = raw_smp_processor_id();
5095
5096 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5097
5098 if (sev_guest(svm->vcpu.kvm))
5099 return pre_sev_run(svm, cpu);
5100
5101 /* FIXME: handle wraparound of asid_generation */
5102 if (svm->asid_generation != sd->asid_generation)
5103 new_asid(svm, sd);
5104 }
5105
svm_inject_nmi(struct kvm_vcpu * vcpu)5106 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5107 {
5108 struct vcpu_svm *svm = to_svm(vcpu);
5109
5110 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5111 vcpu->arch.hflags |= HF_NMI_MASK;
5112 set_intercept(svm, INTERCEPT_IRET);
5113 ++vcpu->stat.nmi_injections;
5114 }
5115
svm_inject_irq(struct vcpu_svm * svm,int irq)5116 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5117 {
5118 struct vmcb_control_area *control;
5119
5120 /* The following fields are ignored when AVIC is enabled */
5121 control = &svm->vmcb->control;
5122 control->int_vector = irq;
5123 control->int_ctl &= ~V_INTR_PRIO_MASK;
5124 control->int_ctl |= V_IRQ_MASK |
5125 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5126 mark_dirty(svm->vmcb, VMCB_INTR);
5127 }
5128
svm_set_irq(struct kvm_vcpu * vcpu)5129 static void svm_set_irq(struct kvm_vcpu *vcpu)
5130 {
5131 struct vcpu_svm *svm = to_svm(vcpu);
5132
5133 BUG_ON(!(gif_set(svm)));
5134
5135 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5136 ++vcpu->stat.irq_injections;
5137
5138 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5139 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5140 }
5141
svm_nested_virtualize_tpr(struct kvm_vcpu * vcpu)5142 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5143 {
5144 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5145 }
5146
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5147 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5148 {
5149 struct vcpu_svm *svm = to_svm(vcpu);
5150
5151 if (svm_nested_virtualize_tpr(vcpu) ||
5152 kvm_vcpu_apicv_active(vcpu))
5153 return;
5154
5155 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5156
5157 if (irr == -1)
5158 return;
5159
5160 if (tpr >= irr)
5161 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5162 }
5163
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)5164 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5165 {
5166 return;
5167 }
5168
svm_get_enable_apicv(struct kvm_vcpu * vcpu)5169 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5170 {
5171 return avic && irqchip_split(vcpu->kvm);
5172 }
5173
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)5174 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5175 {
5176 }
5177
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)5178 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5179 {
5180 }
5181
5182 /* Note: Currently only used by Hyper-V. */
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5183 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5184 {
5185 struct vcpu_svm *svm = to_svm(vcpu);
5186 struct vmcb *vmcb = svm->vmcb;
5187
5188 if (!kvm_vcpu_apicv_active(&svm->vcpu))
5189 return;
5190
5191 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5192 mark_dirty(vmcb, VMCB_INTR);
5193 }
5194
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)5195 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5196 {
5197 return;
5198 }
5199
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)5200 static int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5201 {
5202 if (!vcpu->arch.apicv_active)
5203 return -1;
5204
5205 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5206 smp_mb__after_atomic();
5207
5208 if (avic_vcpu_is_running(vcpu))
5209 wrmsrl(SVM_AVIC_DOORBELL,
5210 kvm_cpu_get_apicid(vcpu->cpu));
5211 else
5212 kvm_vcpu_wake_up(vcpu);
5213
5214 return 0;
5215 }
5216
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)5217 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5218 {
5219 return false;
5220 }
5221
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5222 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5223 {
5224 unsigned long flags;
5225 struct amd_svm_iommu_ir *cur;
5226
5227 spin_lock_irqsave(&svm->ir_list_lock, flags);
5228 list_for_each_entry(cur, &svm->ir_list, node) {
5229 if (cur->data != pi->ir_data)
5230 continue;
5231 list_del(&cur->node);
5232 kfree(cur);
5233 break;
5234 }
5235 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5236 }
5237
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5238 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5239 {
5240 int ret = 0;
5241 unsigned long flags;
5242 struct amd_svm_iommu_ir *ir;
5243
5244 /**
5245 * In some cases, the existing irte is updaed and re-set,
5246 * so we need to check here if it's already been * added
5247 * to the ir_list.
5248 */
5249 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5250 struct kvm *kvm = svm->vcpu.kvm;
5251 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5252 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5253 struct vcpu_svm *prev_svm;
5254
5255 if (!prev_vcpu) {
5256 ret = -EINVAL;
5257 goto out;
5258 }
5259
5260 prev_svm = to_svm(prev_vcpu);
5261 svm_ir_list_del(prev_svm, pi);
5262 }
5263
5264 /**
5265 * Allocating new amd_iommu_pi_data, which will get
5266 * add to the per-vcpu ir_list.
5267 */
5268 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5269 if (!ir) {
5270 ret = -ENOMEM;
5271 goto out;
5272 }
5273 ir->data = pi->ir_data;
5274
5275 spin_lock_irqsave(&svm->ir_list_lock, flags);
5276 list_add(&ir->node, &svm->ir_list);
5277 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5278 out:
5279 return ret;
5280 }
5281
5282 /**
5283 * Note:
5284 * The HW cannot support posting multicast/broadcast
5285 * interrupts to a vCPU. So, we still use legacy interrupt
5286 * remapping for these kind of interrupts.
5287 *
5288 * For lowest-priority interrupts, we only support
5289 * those with single CPU as the destination, e.g. user
5290 * configures the interrupts via /proc/irq or uses
5291 * irqbalance to make the interrupts single-CPU.
5292 */
5293 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)5294 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5295 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5296 {
5297 struct kvm_lapic_irq irq;
5298 struct kvm_vcpu *vcpu = NULL;
5299
5300 kvm_set_msi_irq(kvm, e, &irq);
5301
5302 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5303 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5304 __func__, irq.vector);
5305 return -1;
5306 }
5307
5308 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5309 irq.vector);
5310 *svm = to_svm(vcpu);
5311 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5312 vcpu_info->vector = irq.vector;
5313
5314 return 0;
5315 }
5316
5317 /*
5318 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5319 *
5320 * @kvm: kvm
5321 * @host_irq: host irq of the interrupt
5322 * @guest_irq: gsi of the interrupt
5323 * @set: set or unset PI
5324 * returns 0 on success, < 0 on failure
5325 */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)5326 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5327 uint32_t guest_irq, bool set)
5328 {
5329 struct kvm_kernel_irq_routing_entry *e;
5330 struct kvm_irq_routing_table *irq_rt;
5331 int idx, ret = -EINVAL;
5332
5333 if (!kvm_arch_has_assigned_device(kvm) ||
5334 !irq_remapping_cap(IRQ_POSTING_CAP))
5335 return 0;
5336
5337 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5338 __func__, host_irq, guest_irq, set);
5339
5340 idx = srcu_read_lock(&kvm->irq_srcu);
5341 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5342 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5343
5344 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5345 struct vcpu_data vcpu_info;
5346 struct vcpu_svm *svm = NULL;
5347
5348 if (e->type != KVM_IRQ_ROUTING_MSI)
5349 continue;
5350
5351 /**
5352 * Here, we setup with legacy mode in the following cases:
5353 * 1. When cannot target interrupt to a specific vcpu.
5354 * 2. Unsetting posted interrupt.
5355 * 3. APIC virtialization is disabled for the vcpu.
5356 */
5357 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5358 kvm_vcpu_apicv_active(&svm->vcpu)) {
5359 struct amd_iommu_pi_data pi;
5360
5361 /* Try to enable guest_mode in IRTE */
5362 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5363 AVIC_HPA_MASK);
5364 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5365 svm->vcpu.vcpu_id);
5366 pi.is_guest_mode = true;
5367 pi.vcpu_data = &vcpu_info;
5368 ret = irq_set_vcpu_affinity(host_irq, &pi);
5369
5370 /**
5371 * Here, we successfully setting up vcpu affinity in
5372 * IOMMU guest mode. Now, we need to store the posted
5373 * interrupt information in a per-vcpu ir_list so that
5374 * we can reference to them directly when we update vcpu
5375 * scheduling information in IOMMU irte.
5376 */
5377 if (!ret && pi.is_guest_mode)
5378 svm_ir_list_add(svm, &pi);
5379 } else {
5380 /* Use legacy mode in IRTE */
5381 struct amd_iommu_pi_data pi;
5382
5383 /**
5384 * Here, pi is used to:
5385 * - Tell IOMMU to use legacy mode for this interrupt.
5386 * - Retrieve ga_tag of prior interrupt remapping data.
5387 */
5388 pi.prev_ga_tag = 0;
5389 pi.is_guest_mode = false;
5390 ret = irq_set_vcpu_affinity(host_irq, &pi);
5391
5392 /**
5393 * Check if the posted interrupt was previously
5394 * setup with the guest_mode by checking if the ga_tag
5395 * was cached. If so, we need to clean up the per-vcpu
5396 * ir_list.
5397 */
5398 if (!ret && pi.prev_ga_tag) {
5399 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5400 struct kvm_vcpu *vcpu;
5401
5402 vcpu = kvm_get_vcpu_by_id(kvm, id);
5403 if (vcpu)
5404 svm_ir_list_del(to_svm(vcpu), &pi);
5405 }
5406 }
5407
5408 if (!ret && svm) {
5409 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5410 e->gsi, vcpu_info.vector,
5411 vcpu_info.pi_desc_addr, set);
5412 }
5413
5414 if (ret < 0) {
5415 pr_err("%s: failed to update PI IRTE\n", __func__);
5416 goto out;
5417 }
5418 }
5419
5420 ret = 0;
5421 out:
5422 srcu_read_unlock(&kvm->irq_srcu, idx);
5423 return ret;
5424 }
5425
svm_nmi_allowed(struct kvm_vcpu * vcpu)5426 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5427 {
5428 struct vcpu_svm *svm = to_svm(vcpu);
5429 struct vmcb *vmcb = svm->vmcb;
5430 int ret;
5431 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5432 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5433 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5434
5435 return ret;
5436 }
5437
svm_get_nmi_mask(struct kvm_vcpu * vcpu)5438 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5439 {
5440 struct vcpu_svm *svm = to_svm(vcpu);
5441
5442 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5443 }
5444
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5445 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5446 {
5447 struct vcpu_svm *svm = to_svm(vcpu);
5448
5449 if (masked) {
5450 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5451 set_intercept(svm, INTERCEPT_IRET);
5452 } else {
5453 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5454 clr_intercept(svm, INTERCEPT_IRET);
5455 }
5456 }
5457
svm_interrupt_allowed(struct kvm_vcpu * vcpu)5458 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5459 {
5460 struct vcpu_svm *svm = to_svm(vcpu);
5461 struct vmcb *vmcb = svm->vmcb;
5462 int ret;
5463
5464 if (!gif_set(svm) ||
5465 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5466 return 0;
5467
5468 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5469
5470 if (is_guest_mode(vcpu))
5471 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5472
5473 return ret;
5474 }
5475
enable_irq_window(struct kvm_vcpu * vcpu)5476 static void enable_irq_window(struct kvm_vcpu *vcpu)
5477 {
5478 struct vcpu_svm *svm = to_svm(vcpu);
5479
5480 if (kvm_vcpu_apicv_active(vcpu))
5481 return;
5482
5483 /*
5484 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5485 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5486 * get that intercept, this function will be called again though and
5487 * we'll get the vintr intercept. However, if the vGIF feature is
5488 * enabled, the STGI interception will not occur. Enable the irq
5489 * window under the assumption that the hardware will set the GIF.
5490 */
5491 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5492 svm_set_vintr(svm);
5493 svm_inject_irq(svm, 0x0);
5494 }
5495 }
5496
enable_nmi_window(struct kvm_vcpu * vcpu)5497 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5498 {
5499 struct vcpu_svm *svm = to_svm(vcpu);
5500
5501 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5502 == HF_NMI_MASK)
5503 return; /* IRET will cause a vm exit */
5504
5505 if (!gif_set(svm)) {
5506 if (vgif_enabled(svm))
5507 set_intercept(svm, INTERCEPT_STGI);
5508 return; /* STGI will cause a vm exit */
5509 }
5510
5511 if (svm->nested.exit_required)
5512 return; /* we're not going to run the guest yet */
5513
5514 /*
5515 * Something prevents NMI from been injected. Single step over possible
5516 * problem (IRET or exception injection or interrupt shadow)
5517 */
5518 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5519 svm->nmi_singlestep = true;
5520 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5521 }
5522
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)5523 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5524 {
5525 return 0;
5526 }
5527
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5528 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5529 {
5530 return 0;
5531 }
5532
svm_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5533 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5534 {
5535 struct vcpu_svm *svm = to_svm(vcpu);
5536
5537 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5538 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5539 else
5540 svm->asid_generation--;
5541 }
5542
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)5543 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5544 {
5545 struct vcpu_svm *svm = to_svm(vcpu);
5546
5547 invlpga(gva, svm->vmcb->control.asid);
5548 }
5549
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)5550 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5551 {
5552 }
5553
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)5554 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5555 {
5556 struct vcpu_svm *svm = to_svm(vcpu);
5557
5558 if (svm_nested_virtualize_tpr(vcpu))
5559 return;
5560
5561 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5562 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5563 kvm_set_cr8(vcpu, cr8);
5564 }
5565 }
5566
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)5567 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5568 {
5569 struct vcpu_svm *svm = to_svm(vcpu);
5570 u64 cr8;
5571
5572 if (svm_nested_virtualize_tpr(vcpu) ||
5573 kvm_vcpu_apicv_active(vcpu))
5574 return;
5575
5576 cr8 = kvm_get_cr8(vcpu);
5577 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5578 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5579 }
5580
svm_complete_interrupts(struct vcpu_svm * svm)5581 static void svm_complete_interrupts(struct vcpu_svm *svm)
5582 {
5583 u8 vector;
5584 int type;
5585 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5586 unsigned int3_injected = svm->int3_injected;
5587
5588 svm->int3_injected = 0;
5589
5590 /*
5591 * If we've made progress since setting HF_IRET_MASK, we've
5592 * executed an IRET and can allow NMI injection.
5593 */
5594 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5595 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5596 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5597 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5598 }
5599
5600 svm->vcpu.arch.nmi_injected = false;
5601 kvm_clear_exception_queue(&svm->vcpu);
5602 kvm_clear_interrupt_queue(&svm->vcpu);
5603
5604 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5605 return;
5606
5607 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5608
5609 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5610 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5611
5612 switch (type) {
5613 case SVM_EXITINTINFO_TYPE_NMI:
5614 svm->vcpu.arch.nmi_injected = true;
5615 break;
5616 case SVM_EXITINTINFO_TYPE_EXEPT:
5617 /*
5618 * In case of software exceptions, do not reinject the vector,
5619 * but re-execute the instruction instead. Rewind RIP first
5620 * if we emulated INT3 before.
5621 */
5622 if (kvm_exception_is_soft(vector)) {
5623 if (vector == BP_VECTOR && int3_injected &&
5624 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5625 kvm_rip_write(&svm->vcpu,
5626 kvm_rip_read(&svm->vcpu) -
5627 int3_injected);
5628 break;
5629 }
5630 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5631 u32 err = svm->vmcb->control.exit_int_info_err;
5632 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5633
5634 } else
5635 kvm_requeue_exception(&svm->vcpu, vector);
5636 break;
5637 case SVM_EXITINTINFO_TYPE_INTR:
5638 kvm_queue_interrupt(&svm->vcpu, vector, false);
5639 break;
5640 default:
5641 break;
5642 }
5643 }
5644
svm_cancel_injection(struct kvm_vcpu * vcpu)5645 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5646 {
5647 struct vcpu_svm *svm = to_svm(vcpu);
5648 struct vmcb_control_area *control = &svm->vmcb->control;
5649
5650 control->exit_int_info = control->event_inj;
5651 control->exit_int_info_err = control->event_inj_err;
5652 control->event_inj = 0;
5653 svm_complete_interrupts(svm);
5654 }
5655
svm_vcpu_run(struct kvm_vcpu * vcpu)5656 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5657 {
5658 struct vcpu_svm *svm = to_svm(vcpu);
5659
5660 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5661 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5662 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5663
5664 /*
5665 * A vmexit emulation is required before the vcpu can be executed
5666 * again.
5667 */
5668 if (unlikely(svm->nested.exit_required))
5669 return;
5670
5671 /*
5672 * Disable singlestep if we're injecting an interrupt/exception.
5673 * We don't want our modified rflags to be pushed on the stack where
5674 * we might not be able to easily reset them if we disabled NMI
5675 * singlestep later.
5676 */
5677 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5678 /*
5679 * Event injection happens before external interrupts cause a
5680 * vmexit and interrupts are disabled here, so smp_send_reschedule
5681 * is enough to force an immediate vmexit.
5682 */
5683 disable_nmi_singlestep(svm);
5684 smp_send_reschedule(vcpu->cpu);
5685 }
5686
5687 pre_svm_run(svm);
5688
5689 sync_lapic_to_cr8(vcpu);
5690
5691 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5692
5693 clgi();
5694 kvm_load_guest_xcr0(vcpu);
5695
5696 /*
5697 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5698 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5699 * is no need to worry about the conditional branch over the wrmsr
5700 * being speculatively taken.
5701 */
5702 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5703
5704 local_irq_enable();
5705
5706 asm volatile (
5707 "push %%" _ASM_BP "; \n\t"
5708 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5709 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5710 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5711 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5712 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5713 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5714 #ifdef CONFIG_X86_64
5715 "mov %c[r8](%[svm]), %%r8 \n\t"
5716 "mov %c[r9](%[svm]), %%r9 \n\t"
5717 "mov %c[r10](%[svm]), %%r10 \n\t"
5718 "mov %c[r11](%[svm]), %%r11 \n\t"
5719 "mov %c[r12](%[svm]), %%r12 \n\t"
5720 "mov %c[r13](%[svm]), %%r13 \n\t"
5721 "mov %c[r14](%[svm]), %%r14 \n\t"
5722 "mov %c[r15](%[svm]), %%r15 \n\t"
5723 #endif
5724
5725 /* Enter guest mode */
5726 "push %%" _ASM_AX " \n\t"
5727 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5728 __ex(SVM_VMLOAD) "\n\t"
5729 __ex(SVM_VMRUN) "\n\t"
5730 __ex(SVM_VMSAVE) "\n\t"
5731 "pop %%" _ASM_AX " \n\t"
5732
5733 /* Save guest registers, load host registers */
5734 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5735 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5736 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5737 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5738 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5739 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5740 #ifdef CONFIG_X86_64
5741 "mov %%r8, %c[r8](%[svm]) \n\t"
5742 "mov %%r9, %c[r9](%[svm]) \n\t"
5743 "mov %%r10, %c[r10](%[svm]) \n\t"
5744 "mov %%r11, %c[r11](%[svm]) \n\t"
5745 "mov %%r12, %c[r12](%[svm]) \n\t"
5746 "mov %%r13, %c[r13](%[svm]) \n\t"
5747 "mov %%r14, %c[r14](%[svm]) \n\t"
5748 "mov %%r15, %c[r15](%[svm]) \n\t"
5749 #endif
5750 /*
5751 * Clear host registers marked as clobbered to prevent
5752 * speculative use.
5753 */
5754 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5755 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5756 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5757 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5758 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5759 #ifdef CONFIG_X86_64
5760 "xor %%r8, %%r8 \n\t"
5761 "xor %%r9, %%r9 \n\t"
5762 "xor %%r10, %%r10 \n\t"
5763 "xor %%r11, %%r11 \n\t"
5764 "xor %%r12, %%r12 \n\t"
5765 "xor %%r13, %%r13 \n\t"
5766 "xor %%r14, %%r14 \n\t"
5767 "xor %%r15, %%r15 \n\t"
5768 #endif
5769 "pop %%" _ASM_BP
5770 :
5771 : [svm]"a"(svm),
5772 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5773 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5774 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5775 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5776 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5777 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5778 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5779 #ifdef CONFIG_X86_64
5780 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5781 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5782 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5783 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5784 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5785 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5786 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5787 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5788 #endif
5789 : "cc", "memory"
5790 #ifdef CONFIG_X86_64
5791 , "rbx", "rcx", "rdx", "rsi", "rdi"
5792 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5793 #else
5794 , "ebx", "ecx", "edx", "esi", "edi"
5795 #endif
5796 );
5797
5798 /* Eliminate branch target predictions from guest mode */
5799 vmexit_fill_RSB();
5800
5801 #ifdef CONFIG_X86_64
5802 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5803 #else
5804 loadsegment(fs, svm->host.fs);
5805 #ifndef CONFIG_X86_32_LAZY_GS
5806 loadsegment(gs, svm->host.gs);
5807 #endif
5808 #endif
5809
5810 /*
5811 * We do not use IBRS in the kernel. If this vCPU has used the
5812 * SPEC_CTRL MSR it may have left it on; save the value and
5813 * turn it off. This is much more efficient than blindly adding
5814 * it to the atomic save/restore list. Especially as the former
5815 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5816 *
5817 * For non-nested case:
5818 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5819 * save it.
5820 *
5821 * For nested case:
5822 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5823 * save it.
5824 */
5825 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5826 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5827
5828 reload_tss(vcpu);
5829
5830 local_irq_disable();
5831
5832 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5833
5834 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5835 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5836 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5837 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5838
5839 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5840 kvm_before_interrupt(&svm->vcpu);
5841
5842 kvm_put_guest_xcr0(vcpu);
5843 stgi();
5844
5845 /* Any pending NMI will happen here */
5846
5847 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5848 kvm_after_interrupt(&svm->vcpu);
5849
5850 sync_cr8_to_lapic(vcpu);
5851
5852 svm->next_rip = 0;
5853
5854 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5855
5856 /* if exit due to PF check for async PF */
5857 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5858 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5859
5860 if (npt_enabled) {
5861 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5862 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5863 }
5864
5865 /*
5866 * We need to handle MC intercepts here before the vcpu has a chance to
5867 * change the physical cpu
5868 */
5869 if (unlikely(svm->vmcb->control.exit_code ==
5870 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5871 svm_handle_mce(svm);
5872
5873 mark_all_clean(svm->vmcb);
5874 }
5875 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5876
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)5877 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5878 {
5879 struct vcpu_svm *svm = to_svm(vcpu);
5880
5881 svm->vmcb->save.cr3 = __sme_set(root);
5882 mark_dirty(svm->vmcb, VMCB_CR);
5883 }
5884
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)5885 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5886 {
5887 struct vcpu_svm *svm = to_svm(vcpu);
5888
5889 svm->vmcb->control.nested_cr3 = __sme_set(root);
5890 mark_dirty(svm->vmcb, VMCB_NPT);
5891
5892 /* Also sync guest cr3 here in case we live migrate */
5893 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5894 mark_dirty(svm->vmcb, VMCB_CR);
5895 }
5896
is_disabled(void)5897 static int is_disabled(void)
5898 {
5899 u64 vm_cr;
5900
5901 rdmsrl(MSR_VM_CR, vm_cr);
5902 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5903 return 1;
5904
5905 return 0;
5906 }
5907
5908 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5909 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5910 {
5911 /*
5912 * Patch in the VMMCALL instruction:
5913 */
5914 hypercall[0] = 0x0f;
5915 hypercall[1] = 0x01;
5916 hypercall[2] = 0xd9;
5917 }
5918
svm_check_processor_compat(void * rtn)5919 static void svm_check_processor_compat(void *rtn)
5920 {
5921 *(int *)rtn = 0;
5922 }
5923
svm_cpu_has_accelerated_tpr(void)5924 static bool svm_cpu_has_accelerated_tpr(void)
5925 {
5926 return false;
5927 }
5928
svm_has_emulated_msr(int index)5929 static bool svm_has_emulated_msr(int index)
5930 {
5931 switch (index) {
5932 case MSR_IA32_MCG_EXT_CTL:
5933 return false;
5934 default:
5935 break;
5936 }
5937
5938 return true;
5939 }
5940
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)5941 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5942 {
5943 return 0;
5944 }
5945
svm_cpuid_update(struct kvm_vcpu * vcpu)5946 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5947 {
5948 struct vcpu_svm *svm = to_svm(vcpu);
5949
5950 /* Update nrips enabled cache */
5951 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5952
5953 if (!kvm_vcpu_apicv_active(vcpu))
5954 return;
5955
5956 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5957 }
5958
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)5959 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5960 {
5961 switch (func) {
5962 case 0x1:
5963 if (avic)
5964 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5965 break;
5966 case 0x80000001:
5967 if (nested)
5968 entry->ecx |= (1 << 2); /* Set SVM bit */
5969 break;
5970 case 0x8000000A:
5971 entry->eax = 1; /* SVM revision 1 */
5972 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5973 ASID emulation to nested SVM */
5974 entry->ecx = 0; /* Reserved */
5975 entry->edx = 0; /* Per default do not support any
5976 additional features */
5977
5978 /* Support next_rip if host supports it */
5979 if (boot_cpu_has(X86_FEATURE_NRIPS))
5980 entry->edx |= SVM_FEATURE_NRIP;
5981
5982 /* Support NPT for the guest if enabled */
5983 if (npt_enabled)
5984 entry->edx |= SVM_FEATURE_NPT;
5985
5986 break;
5987 case 0x8000001F:
5988 /* Support memory encryption cpuid if host supports it */
5989 if (boot_cpu_has(X86_FEATURE_SEV))
5990 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5991 &entry->ecx, &entry->edx);
5992
5993 }
5994 }
5995
svm_get_lpage_level(void)5996 static int svm_get_lpage_level(void)
5997 {
5998 return PT_PDPE_LEVEL;
5999 }
6000
svm_rdtscp_supported(void)6001 static bool svm_rdtscp_supported(void)
6002 {
6003 return boot_cpu_has(X86_FEATURE_RDTSCP);
6004 }
6005
svm_invpcid_supported(void)6006 static bool svm_invpcid_supported(void)
6007 {
6008 return false;
6009 }
6010
svm_mpx_supported(void)6011 static bool svm_mpx_supported(void)
6012 {
6013 return false;
6014 }
6015
svm_xsaves_supported(void)6016 static bool svm_xsaves_supported(void)
6017 {
6018 return false;
6019 }
6020
svm_umip_emulated(void)6021 static bool svm_umip_emulated(void)
6022 {
6023 return false;
6024 }
6025
svm_has_wbinvd_exit(void)6026 static bool svm_has_wbinvd_exit(void)
6027 {
6028 return true;
6029 }
6030
6031 #define PRE_EX(exit) { .exit_code = (exit), \
6032 .stage = X86_ICPT_PRE_EXCEPT, }
6033 #define POST_EX(exit) { .exit_code = (exit), \
6034 .stage = X86_ICPT_POST_EXCEPT, }
6035 #define POST_MEM(exit) { .exit_code = (exit), \
6036 .stage = X86_ICPT_POST_MEMACCESS, }
6037
6038 static const struct __x86_intercept {
6039 u32 exit_code;
6040 enum x86_intercept_stage stage;
6041 } x86_intercept_map[] = {
6042 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
6043 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
6044 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
6045 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
6046 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
6047 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6048 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6049 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6050 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6051 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6052 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6053 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6054 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6055 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6056 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6057 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6058 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6059 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6060 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6061 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6062 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6063 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6064 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6065 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6066 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6067 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6068 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6069 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6070 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6071 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6072 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6073 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6074 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6075 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6076 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6077 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6078 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6079 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6080 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6081 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6082 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6083 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6084 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6085 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6086 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6087 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6088 };
6089
6090 #undef PRE_EX
6091 #undef POST_EX
6092 #undef POST_MEM
6093
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)6094 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6095 struct x86_instruction_info *info,
6096 enum x86_intercept_stage stage)
6097 {
6098 struct vcpu_svm *svm = to_svm(vcpu);
6099 int vmexit, ret = X86EMUL_CONTINUE;
6100 struct __x86_intercept icpt_info;
6101 struct vmcb *vmcb = svm->vmcb;
6102
6103 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6104 goto out;
6105
6106 icpt_info = x86_intercept_map[info->intercept];
6107
6108 if (stage != icpt_info.stage)
6109 goto out;
6110
6111 switch (icpt_info.exit_code) {
6112 case SVM_EXIT_READ_CR0:
6113 if (info->intercept == x86_intercept_cr_read)
6114 icpt_info.exit_code += info->modrm_reg;
6115 break;
6116 case SVM_EXIT_WRITE_CR0: {
6117 unsigned long cr0, val;
6118 u64 intercept;
6119
6120 if (info->intercept == x86_intercept_cr_write)
6121 icpt_info.exit_code += info->modrm_reg;
6122
6123 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6124 info->intercept == x86_intercept_clts)
6125 break;
6126
6127 intercept = svm->nested.intercept;
6128
6129 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6130 break;
6131
6132 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6133 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6134
6135 if (info->intercept == x86_intercept_lmsw) {
6136 cr0 &= 0xfUL;
6137 val &= 0xfUL;
6138 /* lmsw can't clear PE - catch this here */
6139 if (cr0 & X86_CR0_PE)
6140 val |= X86_CR0_PE;
6141 }
6142
6143 if (cr0 ^ val)
6144 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6145
6146 break;
6147 }
6148 case SVM_EXIT_READ_DR0:
6149 case SVM_EXIT_WRITE_DR0:
6150 icpt_info.exit_code += info->modrm_reg;
6151 break;
6152 case SVM_EXIT_MSR:
6153 if (info->intercept == x86_intercept_wrmsr)
6154 vmcb->control.exit_info_1 = 1;
6155 else
6156 vmcb->control.exit_info_1 = 0;
6157 break;
6158 case SVM_EXIT_PAUSE:
6159 /*
6160 * We get this for NOP only, but pause
6161 * is rep not, check this here
6162 */
6163 if (info->rep_prefix != REPE_PREFIX)
6164 goto out;
6165 break;
6166 case SVM_EXIT_IOIO: {
6167 u64 exit_info;
6168 u32 bytes;
6169
6170 if (info->intercept == x86_intercept_in ||
6171 info->intercept == x86_intercept_ins) {
6172 exit_info = ((info->src_val & 0xffff) << 16) |
6173 SVM_IOIO_TYPE_MASK;
6174 bytes = info->dst_bytes;
6175 } else {
6176 exit_info = (info->dst_val & 0xffff) << 16;
6177 bytes = info->src_bytes;
6178 }
6179
6180 if (info->intercept == x86_intercept_outs ||
6181 info->intercept == x86_intercept_ins)
6182 exit_info |= SVM_IOIO_STR_MASK;
6183
6184 if (info->rep_prefix)
6185 exit_info |= SVM_IOIO_REP_MASK;
6186
6187 bytes = min(bytes, 4u);
6188
6189 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6190
6191 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6192
6193 vmcb->control.exit_info_1 = exit_info;
6194 vmcb->control.exit_info_2 = info->next_rip;
6195
6196 break;
6197 }
6198 default:
6199 break;
6200 }
6201
6202 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6203 if (static_cpu_has(X86_FEATURE_NRIPS))
6204 vmcb->control.next_rip = info->next_rip;
6205 vmcb->control.exit_code = icpt_info.exit_code;
6206 vmexit = nested_svm_exit_handled(svm);
6207
6208 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6209 : X86EMUL_CONTINUE;
6210
6211 out:
6212 return ret;
6213 }
6214
svm_handle_external_intr(struct kvm_vcpu * vcpu)6215 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6216 {
6217 local_irq_enable();
6218 /*
6219 * We must have an instruction with interrupts enabled, so
6220 * the timer interrupt isn't delayed by the interrupt shadow.
6221 */
6222 asm("nop");
6223 local_irq_disable();
6224 }
6225
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)6226 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6227 {
6228 if (pause_filter_thresh)
6229 shrink_ple_window(vcpu);
6230 }
6231
avic_post_state_restore(struct kvm_vcpu * vcpu)6232 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6233 {
6234 if (avic_handle_apic_id_update(vcpu) != 0)
6235 return;
6236 if (avic_handle_dfr_update(vcpu) != 0)
6237 return;
6238 avic_handle_ldr_update(vcpu);
6239 }
6240
svm_setup_mce(struct kvm_vcpu * vcpu)6241 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6242 {
6243 /* [63:9] are reserved. */
6244 vcpu->arch.mcg_cap &= 0x1ff;
6245 }
6246
svm_smi_allowed(struct kvm_vcpu * vcpu)6247 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6248 {
6249 struct vcpu_svm *svm = to_svm(vcpu);
6250
6251 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6252 if (!gif_set(svm))
6253 return 0;
6254
6255 if (is_guest_mode(&svm->vcpu) &&
6256 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6257 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6258 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6259 svm->nested.exit_required = true;
6260 return 0;
6261 }
6262
6263 return 1;
6264 }
6265
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)6266 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6267 {
6268 struct vcpu_svm *svm = to_svm(vcpu);
6269 int ret;
6270
6271 if (is_guest_mode(vcpu)) {
6272 /* FED8h - SVM Guest */
6273 put_smstate(u64, smstate, 0x7ed8, 1);
6274 /* FEE0h - SVM Guest VMCB Physical Address */
6275 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6276
6277 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6278 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6279 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6280
6281 ret = nested_svm_vmexit(svm);
6282 if (ret)
6283 return ret;
6284 }
6285 return 0;
6286 }
6287
svm_pre_leave_smm(struct kvm_vcpu * vcpu,u64 smbase)6288 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6289 {
6290 struct vcpu_svm *svm = to_svm(vcpu);
6291 struct vmcb *nested_vmcb;
6292 struct page *page;
6293 struct {
6294 u64 guest;
6295 u64 vmcb;
6296 } svm_state_save;
6297 int ret;
6298
6299 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6300 sizeof(svm_state_save));
6301 if (ret)
6302 return ret;
6303
6304 if (svm_state_save.guest) {
6305 vcpu->arch.hflags &= ~HF_SMM_MASK;
6306 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6307 if (nested_vmcb)
6308 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6309 else
6310 ret = 1;
6311 vcpu->arch.hflags |= HF_SMM_MASK;
6312 }
6313 return ret;
6314 }
6315
enable_smi_window(struct kvm_vcpu * vcpu)6316 static int enable_smi_window(struct kvm_vcpu *vcpu)
6317 {
6318 struct vcpu_svm *svm = to_svm(vcpu);
6319
6320 if (!gif_set(svm)) {
6321 if (vgif_enabled(svm))
6322 set_intercept(svm, INTERCEPT_STGI);
6323 /* STGI will cause a vm exit */
6324 return 1;
6325 }
6326 return 0;
6327 }
6328
sev_asid_new(void)6329 static int sev_asid_new(void)
6330 {
6331 int pos;
6332
6333 /*
6334 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6335 */
6336 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6337 if (pos >= max_sev_asid)
6338 return -EBUSY;
6339
6340 set_bit(pos, sev_asid_bitmap);
6341 return pos + 1;
6342 }
6343
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)6344 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6345 {
6346 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6347 int asid, ret;
6348
6349 ret = -EBUSY;
6350 if (unlikely(sev->active))
6351 return ret;
6352
6353 asid = sev_asid_new();
6354 if (asid < 0)
6355 return ret;
6356
6357 ret = sev_platform_init(&argp->error);
6358 if (ret)
6359 goto e_free;
6360
6361 sev->active = true;
6362 sev->asid = asid;
6363 INIT_LIST_HEAD(&sev->regions_list);
6364
6365 return 0;
6366
6367 e_free:
6368 __sev_asid_free(asid);
6369 return ret;
6370 }
6371
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)6372 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6373 {
6374 struct sev_data_activate *data;
6375 int asid = sev_get_asid(kvm);
6376 int ret;
6377
6378 wbinvd_on_all_cpus();
6379
6380 ret = sev_guest_df_flush(error);
6381 if (ret)
6382 return ret;
6383
6384 data = kzalloc(sizeof(*data), GFP_KERNEL);
6385 if (!data)
6386 return -ENOMEM;
6387
6388 /* activate ASID on the given handle */
6389 data->handle = handle;
6390 data->asid = asid;
6391 ret = sev_guest_activate(data, error);
6392 kfree(data);
6393
6394 return ret;
6395 }
6396
__sev_issue_cmd(int fd,int id,void * data,int * error)6397 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6398 {
6399 struct fd f;
6400 int ret;
6401
6402 f = fdget(fd);
6403 if (!f.file)
6404 return -EBADF;
6405
6406 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6407
6408 fdput(f);
6409 return ret;
6410 }
6411
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)6412 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6413 {
6414 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6415
6416 return __sev_issue_cmd(sev->fd, id, data, error);
6417 }
6418
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)6419 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6420 {
6421 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6422 struct sev_data_launch_start *start;
6423 struct kvm_sev_launch_start params;
6424 void *dh_blob, *session_blob;
6425 int *error = &argp->error;
6426 int ret;
6427
6428 if (!sev_guest(kvm))
6429 return -ENOTTY;
6430
6431 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6432 return -EFAULT;
6433
6434 start = kzalloc(sizeof(*start), GFP_KERNEL);
6435 if (!start)
6436 return -ENOMEM;
6437
6438 dh_blob = NULL;
6439 if (params.dh_uaddr) {
6440 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6441 if (IS_ERR(dh_blob)) {
6442 ret = PTR_ERR(dh_blob);
6443 goto e_free;
6444 }
6445
6446 start->dh_cert_address = __sme_set(__pa(dh_blob));
6447 start->dh_cert_len = params.dh_len;
6448 }
6449
6450 session_blob = NULL;
6451 if (params.session_uaddr) {
6452 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6453 if (IS_ERR(session_blob)) {
6454 ret = PTR_ERR(session_blob);
6455 goto e_free_dh;
6456 }
6457
6458 start->session_address = __sme_set(__pa(session_blob));
6459 start->session_len = params.session_len;
6460 }
6461
6462 start->handle = params.handle;
6463 start->policy = params.policy;
6464
6465 /* create memory encryption context */
6466 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6467 if (ret)
6468 goto e_free_session;
6469
6470 /* Bind ASID to this guest */
6471 ret = sev_bind_asid(kvm, start->handle, error);
6472 if (ret)
6473 goto e_free_session;
6474
6475 /* return handle to userspace */
6476 params.handle = start->handle;
6477 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6478 sev_unbind_asid(kvm, start->handle);
6479 ret = -EFAULT;
6480 goto e_free_session;
6481 }
6482
6483 sev->handle = start->handle;
6484 sev->fd = argp->sev_fd;
6485
6486 e_free_session:
6487 kfree(session_blob);
6488 e_free_dh:
6489 kfree(dh_blob);
6490 e_free:
6491 kfree(start);
6492 return ret;
6493 }
6494
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)6495 static unsigned long get_num_contig_pages(unsigned long idx,
6496 struct page **inpages, unsigned long npages)
6497 {
6498 unsigned long paddr, next_paddr;
6499 unsigned long i = idx + 1, pages = 1;
6500
6501 /* find the number of contiguous pages starting from idx */
6502 paddr = __sme_page_pa(inpages[idx]);
6503 while (i < npages) {
6504 next_paddr = __sme_page_pa(inpages[i++]);
6505 if ((paddr + PAGE_SIZE) == next_paddr) {
6506 pages++;
6507 paddr = next_paddr;
6508 continue;
6509 }
6510 break;
6511 }
6512
6513 return pages;
6514 }
6515
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)6516 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6517 {
6518 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6519 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6520 struct kvm_sev_launch_update_data params;
6521 struct sev_data_launch_update_data *data;
6522 struct page **inpages;
6523 int ret;
6524
6525 if (!sev_guest(kvm))
6526 return -ENOTTY;
6527
6528 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6529 return -EFAULT;
6530
6531 data = kzalloc(sizeof(*data), GFP_KERNEL);
6532 if (!data)
6533 return -ENOMEM;
6534
6535 vaddr = params.uaddr;
6536 size = params.len;
6537 vaddr_end = vaddr + size;
6538
6539 /* Lock the user memory. */
6540 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6541 if (!inpages) {
6542 ret = -ENOMEM;
6543 goto e_free;
6544 }
6545
6546 /*
6547 * The LAUNCH_UPDATE command will perform in-place encryption of the
6548 * memory content (i.e it will write the same memory region with C=1).
6549 * It's possible that the cache may contain the data with C=0, i.e.,
6550 * unencrypted so invalidate it first.
6551 */
6552 sev_clflush_pages(inpages, npages);
6553
6554 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6555 int offset, len;
6556
6557 /*
6558 * If the user buffer is not page-aligned, calculate the offset
6559 * within the page.
6560 */
6561 offset = vaddr & (PAGE_SIZE - 1);
6562
6563 /* Calculate the number of pages that can be encrypted in one go. */
6564 pages = get_num_contig_pages(i, inpages, npages);
6565
6566 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6567
6568 data->handle = sev->handle;
6569 data->len = len;
6570 data->address = __sme_page_pa(inpages[i]) + offset;
6571 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6572 if (ret)
6573 goto e_unpin;
6574
6575 size -= len;
6576 next_vaddr = vaddr + len;
6577 }
6578
6579 e_unpin:
6580 /* content of memory is updated, mark pages dirty */
6581 for (i = 0; i < npages; i++) {
6582 set_page_dirty_lock(inpages[i]);
6583 mark_page_accessed(inpages[i]);
6584 }
6585 /* unlock the user pages */
6586 sev_unpin_memory(kvm, inpages, npages);
6587 e_free:
6588 kfree(data);
6589 return ret;
6590 }
6591
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)6592 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6593 {
6594 void __user *measure = (void __user *)(uintptr_t)argp->data;
6595 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6596 struct sev_data_launch_measure *data;
6597 struct kvm_sev_launch_measure params;
6598 void __user *p = NULL;
6599 void *blob = NULL;
6600 int ret;
6601
6602 if (!sev_guest(kvm))
6603 return -ENOTTY;
6604
6605 if (copy_from_user(¶ms, measure, sizeof(params)))
6606 return -EFAULT;
6607
6608 data = kzalloc(sizeof(*data), GFP_KERNEL);
6609 if (!data)
6610 return -ENOMEM;
6611
6612 /* User wants to query the blob length */
6613 if (!params.len)
6614 goto cmd;
6615
6616 p = (void __user *)(uintptr_t)params.uaddr;
6617 if (p) {
6618 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6619 ret = -EINVAL;
6620 goto e_free;
6621 }
6622
6623 ret = -ENOMEM;
6624 blob = kmalloc(params.len, GFP_KERNEL);
6625 if (!blob)
6626 goto e_free;
6627
6628 data->address = __psp_pa(blob);
6629 data->len = params.len;
6630 }
6631
6632 cmd:
6633 data->handle = sev->handle;
6634 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6635
6636 /*
6637 * If we query the session length, FW responded with expected data.
6638 */
6639 if (!params.len)
6640 goto done;
6641
6642 if (ret)
6643 goto e_free_blob;
6644
6645 if (blob) {
6646 if (copy_to_user(p, blob, params.len))
6647 ret = -EFAULT;
6648 }
6649
6650 done:
6651 params.len = data->len;
6652 if (copy_to_user(measure, ¶ms, sizeof(params)))
6653 ret = -EFAULT;
6654 e_free_blob:
6655 kfree(blob);
6656 e_free:
6657 kfree(data);
6658 return ret;
6659 }
6660
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)6661 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6662 {
6663 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6664 struct sev_data_launch_finish *data;
6665 int ret;
6666
6667 if (!sev_guest(kvm))
6668 return -ENOTTY;
6669
6670 data = kzalloc(sizeof(*data), GFP_KERNEL);
6671 if (!data)
6672 return -ENOMEM;
6673
6674 data->handle = sev->handle;
6675 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6676
6677 kfree(data);
6678 return ret;
6679 }
6680
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)6681 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6682 {
6683 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6684 struct kvm_sev_guest_status params;
6685 struct sev_data_guest_status *data;
6686 int ret;
6687
6688 if (!sev_guest(kvm))
6689 return -ENOTTY;
6690
6691 data = kzalloc(sizeof(*data), GFP_KERNEL);
6692 if (!data)
6693 return -ENOMEM;
6694
6695 data->handle = sev->handle;
6696 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6697 if (ret)
6698 goto e_free;
6699
6700 params.policy = data->policy;
6701 params.state = data->state;
6702 params.handle = data->handle;
6703
6704 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6705 ret = -EFAULT;
6706 e_free:
6707 kfree(data);
6708 return ret;
6709 }
6710
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)6711 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6712 unsigned long dst, int size,
6713 int *error, bool enc)
6714 {
6715 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6716 struct sev_data_dbg *data;
6717 int ret;
6718
6719 data = kzalloc(sizeof(*data), GFP_KERNEL);
6720 if (!data)
6721 return -ENOMEM;
6722
6723 data->handle = sev->handle;
6724 data->dst_addr = dst;
6725 data->src_addr = src;
6726 data->len = size;
6727
6728 ret = sev_issue_cmd(kvm,
6729 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6730 data, error);
6731 kfree(data);
6732 return ret;
6733 }
6734
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)6735 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6736 unsigned long dst_paddr, int sz, int *err)
6737 {
6738 int offset;
6739
6740 /*
6741 * Its safe to read more than we are asked, caller should ensure that
6742 * destination has enough space.
6743 */
6744 src_paddr = round_down(src_paddr, 16);
6745 offset = src_paddr & 15;
6746 sz = round_up(sz + offset, 16);
6747
6748 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6749 }
6750
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user dst_uaddr,unsigned long dst_paddr,int size,int * err)6751 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6752 unsigned long __user dst_uaddr,
6753 unsigned long dst_paddr,
6754 int size, int *err)
6755 {
6756 struct page *tpage = NULL;
6757 int ret, offset;
6758
6759 /* if inputs are not 16-byte then use intermediate buffer */
6760 if (!IS_ALIGNED(dst_paddr, 16) ||
6761 !IS_ALIGNED(paddr, 16) ||
6762 !IS_ALIGNED(size, 16)) {
6763 tpage = (void *)alloc_page(GFP_KERNEL);
6764 if (!tpage)
6765 return -ENOMEM;
6766
6767 dst_paddr = __sme_page_pa(tpage);
6768 }
6769
6770 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6771 if (ret)
6772 goto e_free;
6773
6774 if (tpage) {
6775 offset = paddr & 15;
6776 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6777 page_address(tpage) + offset, size))
6778 ret = -EFAULT;
6779 }
6780
6781 e_free:
6782 if (tpage)
6783 __free_page(tpage);
6784
6785 return ret;
6786 }
6787
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user vaddr,unsigned long dst_paddr,unsigned long __user dst_vaddr,int size,int * error)6788 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6789 unsigned long __user vaddr,
6790 unsigned long dst_paddr,
6791 unsigned long __user dst_vaddr,
6792 int size, int *error)
6793 {
6794 struct page *src_tpage = NULL;
6795 struct page *dst_tpage = NULL;
6796 int ret, len = size;
6797
6798 /* If source buffer is not aligned then use an intermediate buffer */
6799 if (!IS_ALIGNED(vaddr, 16)) {
6800 src_tpage = alloc_page(GFP_KERNEL);
6801 if (!src_tpage)
6802 return -ENOMEM;
6803
6804 if (copy_from_user(page_address(src_tpage),
6805 (void __user *)(uintptr_t)vaddr, size)) {
6806 __free_page(src_tpage);
6807 return -EFAULT;
6808 }
6809
6810 paddr = __sme_page_pa(src_tpage);
6811 }
6812
6813 /*
6814 * If destination buffer or length is not aligned then do read-modify-write:
6815 * - decrypt destination in an intermediate buffer
6816 * - copy the source buffer in an intermediate buffer
6817 * - use the intermediate buffer as source buffer
6818 */
6819 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6820 int dst_offset;
6821
6822 dst_tpage = alloc_page(GFP_KERNEL);
6823 if (!dst_tpage) {
6824 ret = -ENOMEM;
6825 goto e_free;
6826 }
6827
6828 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6829 __sme_page_pa(dst_tpage), size, error);
6830 if (ret)
6831 goto e_free;
6832
6833 /*
6834 * If source is kernel buffer then use memcpy() otherwise
6835 * copy_from_user().
6836 */
6837 dst_offset = dst_paddr & 15;
6838
6839 if (src_tpage)
6840 memcpy(page_address(dst_tpage) + dst_offset,
6841 page_address(src_tpage), size);
6842 else {
6843 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6844 (void __user *)(uintptr_t)vaddr, size)) {
6845 ret = -EFAULT;
6846 goto e_free;
6847 }
6848 }
6849
6850 paddr = __sme_page_pa(dst_tpage);
6851 dst_paddr = round_down(dst_paddr, 16);
6852 len = round_up(size, 16);
6853 }
6854
6855 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6856
6857 e_free:
6858 if (src_tpage)
6859 __free_page(src_tpage);
6860 if (dst_tpage)
6861 __free_page(dst_tpage);
6862 return ret;
6863 }
6864
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)6865 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6866 {
6867 unsigned long vaddr, vaddr_end, next_vaddr;
6868 unsigned long dst_vaddr;
6869 struct page **src_p, **dst_p;
6870 struct kvm_sev_dbg debug;
6871 unsigned long n;
6872 unsigned int size;
6873 int ret;
6874
6875 if (!sev_guest(kvm))
6876 return -ENOTTY;
6877
6878 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6879 return -EFAULT;
6880
6881 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6882 return -EINVAL;
6883 if (!debug.dst_uaddr)
6884 return -EINVAL;
6885
6886 vaddr = debug.src_uaddr;
6887 size = debug.len;
6888 vaddr_end = vaddr + size;
6889 dst_vaddr = debug.dst_uaddr;
6890
6891 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6892 int len, s_off, d_off;
6893
6894 /* lock userspace source and destination page */
6895 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6896 if (!src_p)
6897 return -EFAULT;
6898
6899 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6900 if (!dst_p) {
6901 sev_unpin_memory(kvm, src_p, n);
6902 return -EFAULT;
6903 }
6904
6905 /*
6906 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6907 * memory content (i.e it will write the same memory region with C=1).
6908 * It's possible that the cache may contain the data with C=0, i.e.,
6909 * unencrypted so invalidate it first.
6910 */
6911 sev_clflush_pages(src_p, 1);
6912 sev_clflush_pages(dst_p, 1);
6913
6914 /*
6915 * Since user buffer may not be page aligned, calculate the
6916 * offset within the page.
6917 */
6918 s_off = vaddr & ~PAGE_MASK;
6919 d_off = dst_vaddr & ~PAGE_MASK;
6920 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6921
6922 if (dec)
6923 ret = __sev_dbg_decrypt_user(kvm,
6924 __sme_page_pa(src_p[0]) + s_off,
6925 dst_vaddr,
6926 __sme_page_pa(dst_p[0]) + d_off,
6927 len, &argp->error);
6928 else
6929 ret = __sev_dbg_encrypt_user(kvm,
6930 __sme_page_pa(src_p[0]) + s_off,
6931 vaddr,
6932 __sme_page_pa(dst_p[0]) + d_off,
6933 dst_vaddr,
6934 len, &argp->error);
6935
6936 sev_unpin_memory(kvm, src_p, n);
6937 sev_unpin_memory(kvm, dst_p, n);
6938
6939 if (ret)
6940 goto err;
6941
6942 next_vaddr = vaddr + len;
6943 dst_vaddr = dst_vaddr + len;
6944 size -= len;
6945 }
6946 err:
6947 return ret;
6948 }
6949
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)6950 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6951 {
6952 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6953 struct sev_data_launch_secret *data;
6954 struct kvm_sev_launch_secret params;
6955 struct page **pages;
6956 void *blob, *hdr;
6957 unsigned long n;
6958 int ret, offset;
6959
6960 if (!sev_guest(kvm))
6961 return -ENOTTY;
6962
6963 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6964 return -EFAULT;
6965
6966 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6967 if (!pages)
6968 return -ENOMEM;
6969
6970 /*
6971 * The secret must be copied into contiguous memory region, lets verify
6972 * that userspace memory pages are contiguous before we issue command.
6973 */
6974 if (get_num_contig_pages(0, pages, n) != n) {
6975 ret = -EINVAL;
6976 goto e_unpin_memory;
6977 }
6978
6979 ret = -ENOMEM;
6980 data = kzalloc(sizeof(*data), GFP_KERNEL);
6981 if (!data)
6982 goto e_unpin_memory;
6983
6984 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6985 data->guest_address = __sme_page_pa(pages[0]) + offset;
6986 data->guest_len = params.guest_len;
6987
6988 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6989 if (IS_ERR(blob)) {
6990 ret = PTR_ERR(blob);
6991 goto e_free;
6992 }
6993
6994 data->trans_address = __psp_pa(blob);
6995 data->trans_len = params.trans_len;
6996
6997 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6998 if (IS_ERR(hdr)) {
6999 ret = PTR_ERR(hdr);
7000 goto e_free_blob;
7001 }
7002 data->hdr_address = __psp_pa(hdr);
7003 data->hdr_len = params.hdr_len;
7004
7005 data->handle = sev->handle;
7006 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
7007
7008 kfree(hdr);
7009
7010 e_free_blob:
7011 kfree(blob);
7012 e_free:
7013 kfree(data);
7014 e_unpin_memory:
7015 sev_unpin_memory(kvm, pages, n);
7016 return ret;
7017 }
7018
svm_mem_enc_op(struct kvm * kvm,void __user * argp)7019 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
7020 {
7021 struct kvm_sev_cmd sev_cmd;
7022 int r;
7023
7024 if (!svm_sev_enabled())
7025 return -ENOTTY;
7026
7027 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
7028 return -EFAULT;
7029
7030 mutex_lock(&kvm->lock);
7031
7032 switch (sev_cmd.id) {
7033 case KVM_SEV_INIT:
7034 r = sev_guest_init(kvm, &sev_cmd);
7035 break;
7036 case KVM_SEV_LAUNCH_START:
7037 r = sev_launch_start(kvm, &sev_cmd);
7038 break;
7039 case KVM_SEV_LAUNCH_UPDATE_DATA:
7040 r = sev_launch_update_data(kvm, &sev_cmd);
7041 break;
7042 case KVM_SEV_LAUNCH_MEASURE:
7043 r = sev_launch_measure(kvm, &sev_cmd);
7044 break;
7045 case KVM_SEV_LAUNCH_FINISH:
7046 r = sev_launch_finish(kvm, &sev_cmd);
7047 break;
7048 case KVM_SEV_GUEST_STATUS:
7049 r = sev_guest_status(kvm, &sev_cmd);
7050 break;
7051 case KVM_SEV_DBG_DECRYPT:
7052 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7053 break;
7054 case KVM_SEV_DBG_ENCRYPT:
7055 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7056 break;
7057 case KVM_SEV_LAUNCH_SECRET:
7058 r = sev_launch_secret(kvm, &sev_cmd);
7059 break;
7060 default:
7061 r = -EINVAL;
7062 goto out;
7063 }
7064
7065 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7066 r = -EFAULT;
7067
7068 out:
7069 mutex_unlock(&kvm->lock);
7070 return r;
7071 }
7072
svm_register_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7073 static int svm_register_enc_region(struct kvm *kvm,
7074 struct kvm_enc_region *range)
7075 {
7076 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7077 struct enc_region *region;
7078 int ret = 0;
7079
7080 if (!sev_guest(kvm))
7081 return -ENOTTY;
7082
7083 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7084 return -EINVAL;
7085
7086 region = kzalloc(sizeof(*region), GFP_KERNEL);
7087 if (!region)
7088 return -ENOMEM;
7089
7090 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
7091 if (!region->pages) {
7092 ret = -ENOMEM;
7093 goto e_free;
7094 }
7095
7096 /*
7097 * The guest may change the memory encryption attribute from C=0 -> C=1
7098 * or vice versa for this memory range. Lets make sure caches are
7099 * flushed to ensure that guest data gets written into memory with
7100 * correct C-bit.
7101 */
7102 sev_clflush_pages(region->pages, region->npages);
7103
7104 region->uaddr = range->addr;
7105 region->size = range->size;
7106
7107 mutex_lock(&kvm->lock);
7108 list_add_tail(®ion->list, &sev->regions_list);
7109 mutex_unlock(&kvm->lock);
7110
7111 return ret;
7112
7113 e_free:
7114 kfree(region);
7115 return ret;
7116 }
7117
7118 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7119 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7120 {
7121 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7122 struct list_head *head = &sev->regions_list;
7123 struct enc_region *i;
7124
7125 list_for_each_entry(i, head, list) {
7126 if (i->uaddr == range->addr &&
7127 i->size == range->size)
7128 return i;
7129 }
7130
7131 return NULL;
7132 }
7133
7134
svm_unregister_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7135 static int svm_unregister_enc_region(struct kvm *kvm,
7136 struct kvm_enc_region *range)
7137 {
7138 struct enc_region *region;
7139 int ret;
7140
7141 mutex_lock(&kvm->lock);
7142
7143 if (!sev_guest(kvm)) {
7144 ret = -ENOTTY;
7145 goto failed;
7146 }
7147
7148 region = find_enc_region(kvm, range);
7149 if (!region) {
7150 ret = -EINVAL;
7151 goto failed;
7152 }
7153
7154 __unregister_enc_region_locked(kvm, region);
7155
7156 mutex_unlock(&kvm->lock);
7157 return 0;
7158
7159 failed:
7160 mutex_unlock(&kvm->lock);
7161 return ret;
7162 }
7163
7164 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7165 .cpu_has_kvm_support = has_svm,
7166 .disabled_by_bios = is_disabled,
7167 .hardware_setup = svm_hardware_setup,
7168 .hardware_unsetup = svm_hardware_unsetup,
7169 .check_processor_compatibility = svm_check_processor_compat,
7170 .hardware_enable = svm_hardware_enable,
7171 .hardware_disable = svm_hardware_disable,
7172 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7173 .has_emulated_msr = svm_has_emulated_msr,
7174
7175 .vcpu_create = svm_create_vcpu,
7176 .vcpu_free = svm_free_vcpu,
7177 .vcpu_reset = svm_vcpu_reset,
7178
7179 .vm_alloc = svm_vm_alloc,
7180 .vm_free = svm_vm_free,
7181 .vm_init = avic_vm_init,
7182 .vm_destroy = svm_vm_destroy,
7183
7184 .prepare_guest_switch = svm_prepare_guest_switch,
7185 .vcpu_load = svm_vcpu_load,
7186 .vcpu_put = svm_vcpu_put,
7187 .vcpu_blocking = svm_vcpu_blocking,
7188 .vcpu_unblocking = svm_vcpu_unblocking,
7189
7190 .update_bp_intercept = update_bp_intercept,
7191 .get_msr_feature = svm_get_msr_feature,
7192 .get_msr = svm_get_msr,
7193 .set_msr = svm_set_msr,
7194 .get_segment_base = svm_get_segment_base,
7195 .get_segment = svm_get_segment,
7196 .set_segment = svm_set_segment,
7197 .get_cpl = svm_get_cpl,
7198 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7199 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7200 .decache_cr3 = svm_decache_cr3,
7201 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7202 .set_cr0 = svm_set_cr0,
7203 .set_cr3 = svm_set_cr3,
7204 .set_cr4 = svm_set_cr4,
7205 .set_efer = svm_set_efer,
7206 .get_idt = svm_get_idt,
7207 .set_idt = svm_set_idt,
7208 .get_gdt = svm_get_gdt,
7209 .set_gdt = svm_set_gdt,
7210 .get_dr6 = svm_get_dr6,
7211 .set_dr6 = svm_set_dr6,
7212 .set_dr7 = svm_set_dr7,
7213 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7214 .cache_reg = svm_cache_reg,
7215 .get_rflags = svm_get_rflags,
7216 .set_rflags = svm_set_rflags,
7217
7218 .tlb_flush = svm_flush_tlb,
7219 .tlb_flush_gva = svm_flush_tlb_gva,
7220
7221 .run = svm_vcpu_run,
7222 .handle_exit = handle_exit,
7223 .skip_emulated_instruction = skip_emulated_instruction,
7224 .set_interrupt_shadow = svm_set_interrupt_shadow,
7225 .get_interrupt_shadow = svm_get_interrupt_shadow,
7226 .patch_hypercall = svm_patch_hypercall,
7227 .set_irq = svm_set_irq,
7228 .set_nmi = svm_inject_nmi,
7229 .queue_exception = svm_queue_exception,
7230 .cancel_injection = svm_cancel_injection,
7231 .interrupt_allowed = svm_interrupt_allowed,
7232 .nmi_allowed = svm_nmi_allowed,
7233 .get_nmi_mask = svm_get_nmi_mask,
7234 .set_nmi_mask = svm_set_nmi_mask,
7235 .enable_nmi_window = enable_nmi_window,
7236 .enable_irq_window = enable_irq_window,
7237 .update_cr8_intercept = update_cr8_intercept,
7238 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7239 .get_enable_apicv = svm_get_enable_apicv,
7240 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7241 .load_eoi_exitmap = svm_load_eoi_exitmap,
7242 .hwapic_irr_update = svm_hwapic_irr_update,
7243 .hwapic_isr_update = svm_hwapic_isr_update,
7244 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7245 .apicv_post_state_restore = avic_post_state_restore,
7246
7247 .set_tss_addr = svm_set_tss_addr,
7248 .set_identity_map_addr = svm_set_identity_map_addr,
7249 .get_tdp_level = get_npt_level,
7250 .get_mt_mask = svm_get_mt_mask,
7251
7252 .get_exit_info = svm_get_exit_info,
7253
7254 .get_lpage_level = svm_get_lpage_level,
7255
7256 .cpuid_update = svm_cpuid_update,
7257
7258 .rdtscp_supported = svm_rdtscp_supported,
7259 .invpcid_supported = svm_invpcid_supported,
7260 .mpx_supported = svm_mpx_supported,
7261 .xsaves_supported = svm_xsaves_supported,
7262 .umip_emulated = svm_umip_emulated,
7263
7264 .set_supported_cpuid = svm_set_supported_cpuid,
7265
7266 .has_wbinvd_exit = svm_has_wbinvd_exit,
7267
7268 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7269 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7270
7271 .set_tdp_cr3 = set_tdp_cr3,
7272
7273 .check_intercept = svm_check_intercept,
7274 .handle_external_intr = svm_handle_external_intr,
7275
7276 .request_immediate_exit = __kvm_request_immediate_exit,
7277
7278 .sched_in = svm_sched_in,
7279
7280 .pmu_ops = &amd_pmu_ops,
7281 .deliver_posted_interrupt = svm_deliver_avic_intr,
7282 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7283 .update_pi_irte = svm_update_pi_irte,
7284 .setup_mce = svm_setup_mce,
7285
7286 .smi_allowed = svm_smi_allowed,
7287 .pre_enter_smm = svm_pre_enter_smm,
7288 .pre_leave_smm = svm_pre_leave_smm,
7289 .enable_smi_window = enable_smi_window,
7290
7291 .mem_enc_op = svm_mem_enc_op,
7292 .mem_enc_reg_region = svm_register_enc_region,
7293 .mem_enc_unreg_region = svm_unregister_enc_region,
7294 };
7295
svm_init(void)7296 static int __init svm_init(void)
7297 {
7298 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7299 __alignof__(struct vcpu_svm), THIS_MODULE);
7300 }
7301
svm_exit(void)7302 static void __exit svm_exit(void)
7303 {
7304 kvm_exit();
7305 }
7306
7307 module_init(svm_init)
7308 module_exit(svm_exit)
7309