• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23 
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/smt.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/trace_events.h>
34 #include <linux/slab.h>
35 #include <linux/tboot.h>
36 #include <linux/hrtimer.h>
37 #include <linux/frame.h>
38 #include <linux/nospec.h>
39 #include "kvm_cache_regs.h"
40 #include "x86.h"
41 
42 #include <asm/asm.h>
43 #include <asm/cpu.h>
44 #include <asm/io.h>
45 #include <asm/desc.h>
46 #include <asm/vmx.h>
47 #include <asm/virtext.h>
48 #include <asm/mce.h>
49 #include <asm/fpu/internal.h>
50 #include <asm/perf_event.h>
51 #include <asm/debugreg.h>
52 #include <asm/kexec.h>
53 #include <asm/apic.h>
54 #include <asm/irq_remapping.h>
55 #include <asm/mmu_context.h>
56 #include <asm/spec-ctrl.h>
57 #include <asm/mshyperv.h>
58 
59 #include "trace.h"
60 #include "pmu.h"
61 #include "vmx_evmcs.h"
62 
63 #define __ex(x) __kvm_handle_fault_on_reboot(x)
64 #define __ex_clear(x, reg) \
65 	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
66 
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69 
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 
76 static bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78 
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81 
82 static bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84 
85 static bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87 
88 static bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90 			enable_unrestricted_guest, bool, S_IRUGO);
91 
92 static bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94 
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97 
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100 
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103 
104 static bool __read_mostly enable_shadow_vmcs = 1;
105 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
106 /*
107  * If nested=1, nested virtualization is supported, i.e., guests may use
108  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109  * use VMX instructions.
110  */
111 static bool __read_mostly nested = 0;
112 module_param(nested, bool, S_IRUGO);
113 
114 static u64 __read_mostly host_xss;
115 
116 static bool __read_mostly enable_pml = 1;
117 module_param_named(pml, enable_pml, bool, S_IRUGO);
118 
119 #define MSR_TYPE_R	1
120 #define MSR_TYPE_W	2
121 #define MSR_TYPE_RW	3
122 
123 #define MSR_BITMAP_MODE_X2APIC		1
124 #define MSR_BITMAP_MODE_X2APIC_APICV	2
125 
126 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
127 
128 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
129 static int __read_mostly cpu_preemption_timer_multi;
130 static bool __read_mostly enable_preemption_timer = 1;
131 #ifdef CONFIG_X86_64
132 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
133 #endif
134 
135 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON				\
138 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
139 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140 #define KVM_CR4_GUEST_OWNED_BITS				      \
141 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
142 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
143 
144 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
145 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
146 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
147 
148 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
149 
150 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
151 
152 /*
153  * Hyper-V requires all of these, so mark them as supported even though
154  * they are just treated the same as all-context.
155  */
156 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
157 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
158 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
159 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
160 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
161 
162 /*
163  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
164  * ple_gap:    upper bound on the amount of time between two successive
165  *             executions of PAUSE in a loop. Also indicate if ple enabled.
166  *             According to test, this time is usually smaller than 128 cycles.
167  * ple_window: upper bound on the amount of time a guest is allowed to execute
168  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
169  *             less than 2^12 cycles
170  * Time is measured based on a counter that runs at the same rate as the TSC,
171  * refer SDM volume 3b section 21.6.13 & 22.1.3.
172  */
173 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
174 module_param(ple_gap, uint, 0444);
175 
176 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
177 module_param(ple_window, uint, 0444);
178 
179 /* Default doubles per-vcpu window every exit. */
180 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
181 module_param(ple_window_grow, uint, 0444);
182 
183 /* Default resets per-vcpu window every exit to ple_window. */
184 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
185 module_param(ple_window_shrink, uint, 0444);
186 
187 /* Default is to compute the maximum so we can never overflow. */
188 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
189 module_param(ple_window_max, uint, 0444);
190 
191 extern const ulong vmx_return;
192 
193 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
194 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
195 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
196 
197 /* Storage for pre module init parameter parsing */
198 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
199 
200 static const struct {
201 	const char *option;
202 	bool for_parse;
203 } vmentry_l1d_param[] = {
204 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
205 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
206 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
207 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
208 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
209 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
210 };
211 
212 #define L1D_CACHE_ORDER 4
213 static void *vmx_l1d_flush_pages;
214 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)215 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
216 {
217 	struct page *page;
218 	unsigned int i;
219 
220 	if (!enable_ept) {
221 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
222 		return 0;
223 	}
224 
225 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
226 		u64 msr;
227 
228 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
229 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
230 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
231 			return 0;
232 		}
233 	}
234 
235 	/* If set to auto use the default l1tf mitigation method */
236 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
237 		switch (l1tf_mitigation) {
238 		case L1TF_MITIGATION_OFF:
239 			l1tf = VMENTER_L1D_FLUSH_NEVER;
240 			break;
241 		case L1TF_MITIGATION_FLUSH_NOWARN:
242 		case L1TF_MITIGATION_FLUSH:
243 		case L1TF_MITIGATION_FLUSH_NOSMT:
244 			l1tf = VMENTER_L1D_FLUSH_COND;
245 			break;
246 		case L1TF_MITIGATION_FULL:
247 		case L1TF_MITIGATION_FULL_FORCE:
248 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
249 			break;
250 		}
251 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
252 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
253 	}
254 
255 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
256 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
257 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
258 		if (!page)
259 			return -ENOMEM;
260 		vmx_l1d_flush_pages = page_address(page);
261 
262 		/*
263 		 * Initialize each page with a different pattern in
264 		 * order to protect against KSM in the nested
265 		 * virtualization case.
266 		 */
267 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
268 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
269 			       PAGE_SIZE);
270 		}
271 	}
272 
273 	l1tf_vmx_mitigation = l1tf;
274 
275 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
276 		static_branch_enable(&vmx_l1d_should_flush);
277 	else
278 		static_branch_disable(&vmx_l1d_should_flush);
279 
280 	if (l1tf == VMENTER_L1D_FLUSH_COND)
281 		static_branch_enable(&vmx_l1d_flush_cond);
282 	else
283 		static_branch_disable(&vmx_l1d_flush_cond);
284 	return 0;
285 }
286 
vmentry_l1d_flush_parse(const char * s)287 static int vmentry_l1d_flush_parse(const char *s)
288 {
289 	unsigned int i;
290 
291 	if (s) {
292 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
293 			if (vmentry_l1d_param[i].for_parse &&
294 			    sysfs_streq(s, vmentry_l1d_param[i].option))
295 				return i;
296 		}
297 	}
298 	return -EINVAL;
299 }
300 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)301 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
302 {
303 	int l1tf, ret;
304 
305 	l1tf = vmentry_l1d_flush_parse(s);
306 	if (l1tf < 0)
307 		return l1tf;
308 
309 	if (!boot_cpu_has(X86_BUG_L1TF))
310 		return 0;
311 
312 	/*
313 	 * Has vmx_init() run already? If not then this is the pre init
314 	 * parameter parsing. In that case just store the value and let
315 	 * vmx_init() do the proper setup after enable_ept has been
316 	 * established.
317 	 */
318 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
319 		vmentry_l1d_flush_param = l1tf;
320 		return 0;
321 	}
322 
323 	mutex_lock(&vmx_l1d_flush_mutex);
324 	ret = vmx_setup_l1d_flush(l1tf);
325 	mutex_unlock(&vmx_l1d_flush_mutex);
326 	return ret;
327 }
328 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)329 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
330 {
331 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
332 		return sprintf(s, "???\n");
333 
334 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
335 }
336 
337 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
338 	.set = vmentry_l1d_flush_set,
339 	.get = vmentry_l1d_flush_get,
340 };
341 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
342 
343 enum ept_pointers_status {
344 	EPT_POINTERS_CHECK = 0,
345 	EPT_POINTERS_MATCH = 1,
346 	EPT_POINTERS_MISMATCH = 2
347 };
348 
349 struct kvm_vmx {
350 	struct kvm kvm;
351 
352 	unsigned int tss_addr;
353 	bool ept_identity_pagetable_done;
354 	gpa_t ept_identity_map_addr;
355 
356 	enum ept_pointers_status ept_pointers_match;
357 	spinlock_t ept_pointer_lock;
358 };
359 
360 #define NR_AUTOLOAD_MSRS 8
361 
362 struct vmcs_hdr {
363 	u32 revision_id:31;
364 	u32 shadow_vmcs:1;
365 };
366 
367 struct vmcs {
368 	struct vmcs_hdr hdr;
369 	u32 abort;
370 	char data[0];
371 };
372 
373 /*
374  * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
375  * and whose values change infrequently, but are not constant.  I.e. this is
376  * used as a write-through cache of the corresponding VMCS fields.
377  */
378 struct vmcs_host_state {
379 	unsigned long cr3;	/* May not match real cr3 */
380 	unsigned long cr4;	/* May not match real cr4 */
381 	unsigned long gs_base;
382 	unsigned long fs_base;
383 
384 	u16           fs_sel, gs_sel, ldt_sel;
385 #ifdef CONFIG_X86_64
386 	u16           ds_sel, es_sel;
387 #endif
388 };
389 
390 /*
391  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
392  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
393  * loaded on this CPU (so we can clear them if the CPU goes down).
394  */
395 struct loaded_vmcs {
396 	struct vmcs *vmcs;
397 	struct vmcs *shadow_vmcs;
398 	int cpu;
399 	bool launched;
400 	bool nmi_known_unmasked;
401 	bool hv_timer_armed;
402 	/* Support for vnmi-less CPUs */
403 	int soft_vnmi_blocked;
404 	ktime_t entry_time;
405 	s64 vnmi_blocked_time;
406 	unsigned long *msr_bitmap;
407 	struct list_head loaded_vmcss_on_cpu_link;
408 	struct vmcs_host_state host_state;
409 };
410 
411 struct shared_msr_entry {
412 	unsigned index;
413 	u64 data;
414 	u64 mask;
415 };
416 
417 /*
418  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
419  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
420  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
421  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
422  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
423  * More than one of these structures may exist, if L1 runs multiple L2 guests.
424  * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
425  * underlying hardware which will be used to run L2.
426  * This structure is packed to ensure that its layout is identical across
427  * machines (necessary for live migration).
428  *
429  * IMPORTANT: Changing the layout of existing fields in this structure
430  * will break save/restore compatibility with older kvm releases. When
431  * adding new fields, either use space in the reserved padding* arrays
432  * or add the new fields to the end of the structure.
433  */
434 typedef u64 natural_width;
435 struct __packed vmcs12 {
436 	/* According to the Intel spec, a VMCS region must start with the
437 	 * following two fields. Then follow implementation-specific data.
438 	 */
439 	struct vmcs_hdr hdr;
440 	u32 abort;
441 
442 	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
443 	u32 padding[7]; /* room for future expansion */
444 
445 	u64 io_bitmap_a;
446 	u64 io_bitmap_b;
447 	u64 msr_bitmap;
448 	u64 vm_exit_msr_store_addr;
449 	u64 vm_exit_msr_load_addr;
450 	u64 vm_entry_msr_load_addr;
451 	u64 tsc_offset;
452 	u64 virtual_apic_page_addr;
453 	u64 apic_access_addr;
454 	u64 posted_intr_desc_addr;
455 	u64 ept_pointer;
456 	u64 eoi_exit_bitmap0;
457 	u64 eoi_exit_bitmap1;
458 	u64 eoi_exit_bitmap2;
459 	u64 eoi_exit_bitmap3;
460 	u64 xss_exit_bitmap;
461 	u64 guest_physical_address;
462 	u64 vmcs_link_pointer;
463 	u64 guest_ia32_debugctl;
464 	u64 guest_ia32_pat;
465 	u64 guest_ia32_efer;
466 	u64 guest_ia32_perf_global_ctrl;
467 	u64 guest_pdptr0;
468 	u64 guest_pdptr1;
469 	u64 guest_pdptr2;
470 	u64 guest_pdptr3;
471 	u64 guest_bndcfgs;
472 	u64 host_ia32_pat;
473 	u64 host_ia32_efer;
474 	u64 host_ia32_perf_global_ctrl;
475 	u64 vmread_bitmap;
476 	u64 vmwrite_bitmap;
477 	u64 vm_function_control;
478 	u64 eptp_list_address;
479 	u64 pml_address;
480 	u64 padding64[3]; /* room for future expansion */
481 	/*
482 	 * To allow migration of L1 (complete with its L2 guests) between
483 	 * machines of different natural widths (32 or 64 bit), we cannot have
484 	 * unsigned long fields with no explict size. We use u64 (aliased
485 	 * natural_width) instead. Luckily, x86 is little-endian.
486 	 */
487 	natural_width cr0_guest_host_mask;
488 	natural_width cr4_guest_host_mask;
489 	natural_width cr0_read_shadow;
490 	natural_width cr4_read_shadow;
491 	natural_width cr3_target_value0;
492 	natural_width cr3_target_value1;
493 	natural_width cr3_target_value2;
494 	natural_width cr3_target_value3;
495 	natural_width exit_qualification;
496 	natural_width guest_linear_address;
497 	natural_width guest_cr0;
498 	natural_width guest_cr3;
499 	natural_width guest_cr4;
500 	natural_width guest_es_base;
501 	natural_width guest_cs_base;
502 	natural_width guest_ss_base;
503 	natural_width guest_ds_base;
504 	natural_width guest_fs_base;
505 	natural_width guest_gs_base;
506 	natural_width guest_ldtr_base;
507 	natural_width guest_tr_base;
508 	natural_width guest_gdtr_base;
509 	natural_width guest_idtr_base;
510 	natural_width guest_dr7;
511 	natural_width guest_rsp;
512 	natural_width guest_rip;
513 	natural_width guest_rflags;
514 	natural_width guest_pending_dbg_exceptions;
515 	natural_width guest_sysenter_esp;
516 	natural_width guest_sysenter_eip;
517 	natural_width host_cr0;
518 	natural_width host_cr3;
519 	natural_width host_cr4;
520 	natural_width host_fs_base;
521 	natural_width host_gs_base;
522 	natural_width host_tr_base;
523 	natural_width host_gdtr_base;
524 	natural_width host_idtr_base;
525 	natural_width host_ia32_sysenter_esp;
526 	natural_width host_ia32_sysenter_eip;
527 	natural_width host_rsp;
528 	natural_width host_rip;
529 	natural_width paddingl[8]; /* room for future expansion */
530 	u32 pin_based_vm_exec_control;
531 	u32 cpu_based_vm_exec_control;
532 	u32 exception_bitmap;
533 	u32 page_fault_error_code_mask;
534 	u32 page_fault_error_code_match;
535 	u32 cr3_target_count;
536 	u32 vm_exit_controls;
537 	u32 vm_exit_msr_store_count;
538 	u32 vm_exit_msr_load_count;
539 	u32 vm_entry_controls;
540 	u32 vm_entry_msr_load_count;
541 	u32 vm_entry_intr_info_field;
542 	u32 vm_entry_exception_error_code;
543 	u32 vm_entry_instruction_len;
544 	u32 tpr_threshold;
545 	u32 secondary_vm_exec_control;
546 	u32 vm_instruction_error;
547 	u32 vm_exit_reason;
548 	u32 vm_exit_intr_info;
549 	u32 vm_exit_intr_error_code;
550 	u32 idt_vectoring_info_field;
551 	u32 idt_vectoring_error_code;
552 	u32 vm_exit_instruction_len;
553 	u32 vmx_instruction_info;
554 	u32 guest_es_limit;
555 	u32 guest_cs_limit;
556 	u32 guest_ss_limit;
557 	u32 guest_ds_limit;
558 	u32 guest_fs_limit;
559 	u32 guest_gs_limit;
560 	u32 guest_ldtr_limit;
561 	u32 guest_tr_limit;
562 	u32 guest_gdtr_limit;
563 	u32 guest_idtr_limit;
564 	u32 guest_es_ar_bytes;
565 	u32 guest_cs_ar_bytes;
566 	u32 guest_ss_ar_bytes;
567 	u32 guest_ds_ar_bytes;
568 	u32 guest_fs_ar_bytes;
569 	u32 guest_gs_ar_bytes;
570 	u32 guest_ldtr_ar_bytes;
571 	u32 guest_tr_ar_bytes;
572 	u32 guest_interruptibility_info;
573 	u32 guest_activity_state;
574 	u32 guest_sysenter_cs;
575 	u32 host_ia32_sysenter_cs;
576 	u32 vmx_preemption_timer_value;
577 	u32 padding32[7]; /* room for future expansion */
578 	u16 virtual_processor_id;
579 	u16 posted_intr_nv;
580 	u16 guest_es_selector;
581 	u16 guest_cs_selector;
582 	u16 guest_ss_selector;
583 	u16 guest_ds_selector;
584 	u16 guest_fs_selector;
585 	u16 guest_gs_selector;
586 	u16 guest_ldtr_selector;
587 	u16 guest_tr_selector;
588 	u16 guest_intr_status;
589 	u16 host_es_selector;
590 	u16 host_cs_selector;
591 	u16 host_ss_selector;
592 	u16 host_ds_selector;
593 	u16 host_fs_selector;
594 	u16 host_gs_selector;
595 	u16 host_tr_selector;
596 	u16 guest_pml_index;
597 };
598 
599 /*
600  * For save/restore compatibility, the vmcs12 field offsets must not change.
601  */
602 #define CHECK_OFFSET(field, loc)				\
603 	BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc),	\
604 		"Offset of " #field " in struct vmcs12 has changed.")
605 
vmx_check_vmcs12_offsets(void)606 static inline void vmx_check_vmcs12_offsets(void) {
607 	CHECK_OFFSET(hdr, 0);
608 	CHECK_OFFSET(abort, 4);
609 	CHECK_OFFSET(launch_state, 8);
610 	CHECK_OFFSET(io_bitmap_a, 40);
611 	CHECK_OFFSET(io_bitmap_b, 48);
612 	CHECK_OFFSET(msr_bitmap, 56);
613 	CHECK_OFFSET(vm_exit_msr_store_addr, 64);
614 	CHECK_OFFSET(vm_exit_msr_load_addr, 72);
615 	CHECK_OFFSET(vm_entry_msr_load_addr, 80);
616 	CHECK_OFFSET(tsc_offset, 88);
617 	CHECK_OFFSET(virtual_apic_page_addr, 96);
618 	CHECK_OFFSET(apic_access_addr, 104);
619 	CHECK_OFFSET(posted_intr_desc_addr, 112);
620 	CHECK_OFFSET(ept_pointer, 120);
621 	CHECK_OFFSET(eoi_exit_bitmap0, 128);
622 	CHECK_OFFSET(eoi_exit_bitmap1, 136);
623 	CHECK_OFFSET(eoi_exit_bitmap2, 144);
624 	CHECK_OFFSET(eoi_exit_bitmap3, 152);
625 	CHECK_OFFSET(xss_exit_bitmap, 160);
626 	CHECK_OFFSET(guest_physical_address, 168);
627 	CHECK_OFFSET(vmcs_link_pointer, 176);
628 	CHECK_OFFSET(guest_ia32_debugctl, 184);
629 	CHECK_OFFSET(guest_ia32_pat, 192);
630 	CHECK_OFFSET(guest_ia32_efer, 200);
631 	CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
632 	CHECK_OFFSET(guest_pdptr0, 216);
633 	CHECK_OFFSET(guest_pdptr1, 224);
634 	CHECK_OFFSET(guest_pdptr2, 232);
635 	CHECK_OFFSET(guest_pdptr3, 240);
636 	CHECK_OFFSET(guest_bndcfgs, 248);
637 	CHECK_OFFSET(host_ia32_pat, 256);
638 	CHECK_OFFSET(host_ia32_efer, 264);
639 	CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
640 	CHECK_OFFSET(vmread_bitmap, 280);
641 	CHECK_OFFSET(vmwrite_bitmap, 288);
642 	CHECK_OFFSET(vm_function_control, 296);
643 	CHECK_OFFSET(eptp_list_address, 304);
644 	CHECK_OFFSET(pml_address, 312);
645 	CHECK_OFFSET(cr0_guest_host_mask, 344);
646 	CHECK_OFFSET(cr4_guest_host_mask, 352);
647 	CHECK_OFFSET(cr0_read_shadow, 360);
648 	CHECK_OFFSET(cr4_read_shadow, 368);
649 	CHECK_OFFSET(cr3_target_value0, 376);
650 	CHECK_OFFSET(cr3_target_value1, 384);
651 	CHECK_OFFSET(cr3_target_value2, 392);
652 	CHECK_OFFSET(cr3_target_value3, 400);
653 	CHECK_OFFSET(exit_qualification, 408);
654 	CHECK_OFFSET(guest_linear_address, 416);
655 	CHECK_OFFSET(guest_cr0, 424);
656 	CHECK_OFFSET(guest_cr3, 432);
657 	CHECK_OFFSET(guest_cr4, 440);
658 	CHECK_OFFSET(guest_es_base, 448);
659 	CHECK_OFFSET(guest_cs_base, 456);
660 	CHECK_OFFSET(guest_ss_base, 464);
661 	CHECK_OFFSET(guest_ds_base, 472);
662 	CHECK_OFFSET(guest_fs_base, 480);
663 	CHECK_OFFSET(guest_gs_base, 488);
664 	CHECK_OFFSET(guest_ldtr_base, 496);
665 	CHECK_OFFSET(guest_tr_base, 504);
666 	CHECK_OFFSET(guest_gdtr_base, 512);
667 	CHECK_OFFSET(guest_idtr_base, 520);
668 	CHECK_OFFSET(guest_dr7, 528);
669 	CHECK_OFFSET(guest_rsp, 536);
670 	CHECK_OFFSET(guest_rip, 544);
671 	CHECK_OFFSET(guest_rflags, 552);
672 	CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
673 	CHECK_OFFSET(guest_sysenter_esp, 568);
674 	CHECK_OFFSET(guest_sysenter_eip, 576);
675 	CHECK_OFFSET(host_cr0, 584);
676 	CHECK_OFFSET(host_cr3, 592);
677 	CHECK_OFFSET(host_cr4, 600);
678 	CHECK_OFFSET(host_fs_base, 608);
679 	CHECK_OFFSET(host_gs_base, 616);
680 	CHECK_OFFSET(host_tr_base, 624);
681 	CHECK_OFFSET(host_gdtr_base, 632);
682 	CHECK_OFFSET(host_idtr_base, 640);
683 	CHECK_OFFSET(host_ia32_sysenter_esp, 648);
684 	CHECK_OFFSET(host_ia32_sysenter_eip, 656);
685 	CHECK_OFFSET(host_rsp, 664);
686 	CHECK_OFFSET(host_rip, 672);
687 	CHECK_OFFSET(pin_based_vm_exec_control, 744);
688 	CHECK_OFFSET(cpu_based_vm_exec_control, 748);
689 	CHECK_OFFSET(exception_bitmap, 752);
690 	CHECK_OFFSET(page_fault_error_code_mask, 756);
691 	CHECK_OFFSET(page_fault_error_code_match, 760);
692 	CHECK_OFFSET(cr3_target_count, 764);
693 	CHECK_OFFSET(vm_exit_controls, 768);
694 	CHECK_OFFSET(vm_exit_msr_store_count, 772);
695 	CHECK_OFFSET(vm_exit_msr_load_count, 776);
696 	CHECK_OFFSET(vm_entry_controls, 780);
697 	CHECK_OFFSET(vm_entry_msr_load_count, 784);
698 	CHECK_OFFSET(vm_entry_intr_info_field, 788);
699 	CHECK_OFFSET(vm_entry_exception_error_code, 792);
700 	CHECK_OFFSET(vm_entry_instruction_len, 796);
701 	CHECK_OFFSET(tpr_threshold, 800);
702 	CHECK_OFFSET(secondary_vm_exec_control, 804);
703 	CHECK_OFFSET(vm_instruction_error, 808);
704 	CHECK_OFFSET(vm_exit_reason, 812);
705 	CHECK_OFFSET(vm_exit_intr_info, 816);
706 	CHECK_OFFSET(vm_exit_intr_error_code, 820);
707 	CHECK_OFFSET(idt_vectoring_info_field, 824);
708 	CHECK_OFFSET(idt_vectoring_error_code, 828);
709 	CHECK_OFFSET(vm_exit_instruction_len, 832);
710 	CHECK_OFFSET(vmx_instruction_info, 836);
711 	CHECK_OFFSET(guest_es_limit, 840);
712 	CHECK_OFFSET(guest_cs_limit, 844);
713 	CHECK_OFFSET(guest_ss_limit, 848);
714 	CHECK_OFFSET(guest_ds_limit, 852);
715 	CHECK_OFFSET(guest_fs_limit, 856);
716 	CHECK_OFFSET(guest_gs_limit, 860);
717 	CHECK_OFFSET(guest_ldtr_limit, 864);
718 	CHECK_OFFSET(guest_tr_limit, 868);
719 	CHECK_OFFSET(guest_gdtr_limit, 872);
720 	CHECK_OFFSET(guest_idtr_limit, 876);
721 	CHECK_OFFSET(guest_es_ar_bytes, 880);
722 	CHECK_OFFSET(guest_cs_ar_bytes, 884);
723 	CHECK_OFFSET(guest_ss_ar_bytes, 888);
724 	CHECK_OFFSET(guest_ds_ar_bytes, 892);
725 	CHECK_OFFSET(guest_fs_ar_bytes, 896);
726 	CHECK_OFFSET(guest_gs_ar_bytes, 900);
727 	CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
728 	CHECK_OFFSET(guest_tr_ar_bytes, 908);
729 	CHECK_OFFSET(guest_interruptibility_info, 912);
730 	CHECK_OFFSET(guest_activity_state, 916);
731 	CHECK_OFFSET(guest_sysenter_cs, 920);
732 	CHECK_OFFSET(host_ia32_sysenter_cs, 924);
733 	CHECK_OFFSET(vmx_preemption_timer_value, 928);
734 	CHECK_OFFSET(virtual_processor_id, 960);
735 	CHECK_OFFSET(posted_intr_nv, 962);
736 	CHECK_OFFSET(guest_es_selector, 964);
737 	CHECK_OFFSET(guest_cs_selector, 966);
738 	CHECK_OFFSET(guest_ss_selector, 968);
739 	CHECK_OFFSET(guest_ds_selector, 970);
740 	CHECK_OFFSET(guest_fs_selector, 972);
741 	CHECK_OFFSET(guest_gs_selector, 974);
742 	CHECK_OFFSET(guest_ldtr_selector, 976);
743 	CHECK_OFFSET(guest_tr_selector, 978);
744 	CHECK_OFFSET(guest_intr_status, 980);
745 	CHECK_OFFSET(host_es_selector, 982);
746 	CHECK_OFFSET(host_cs_selector, 984);
747 	CHECK_OFFSET(host_ss_selector, 986);
748 	CHECK_OFFSET(host_ds_selector, 988);
749 	CHECK_OFFSET(host_fs_selector, 990);
750 	CHECK_OFFSET(host_gs_selector, 992);
751 	CHECK_OFFSET(host_tr_selector, 994);
752 	CHECK_OFFSET(guest_pml_index, 996);
753 }
754 
755 /*
756  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
757  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
758  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
759  *
760  * IMPORTANT: Changing this value will break save/restore compatibility with
761  * older kvm releases.
762  */
763 #define VMCS12_REVISION 0x11e57ed0
764 
765 /*
766  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
767  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
768  * current implementation, 4K are reserved to avoid future complications.
769  */
770 #define VMCS12_SIZE 0x1000
771 
772 /*
773  * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
774  * supported VMCS12 field encoding.
775  */
776 #define VMCS12_MAX_FIELD_INDEX 0x17
777 
778 struct nested_vmx_msrs {
779 	/*
780 	 * We only store the "true" versions of the VMX capability MSRs. We
781 	 * generate the "non-true" versions by setting the must-be-1 bits
782 	 * according to the SDM.
783 	 */
784 	u32 procbased_ctls_low;
785 	u32 procbased_ctls_high;
786 	u32 secondary_ctls_low;
787 	u32 secondary_ctls_high;
788 	u32 pinbased_ctls_low;
789 	u32 pinbased_ctls_high;
790 	u32 exit_ctls_low;
791 	u32 exit_ctls_high;
792 	u32 entry_ctls_low;
793 	u32 entry_ctls_high;
794 	u32 misc_low;
795 	u32 misc_high;
796 	u32 ept_caps;
797 	u32 vpid_caps;
798 	u64 basic;
799 	u64 cr0_fixed0;
800 	u64 cr0_fixed1;
801 	u64 cr4_fixed0;
802 	u64 cr4_fixed1;
803 	u64 vmcs_enum;
804 	u64 vmfunc_controls;
805 };
806 
807 /*
808  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
809  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
810  */
811 struct nested_vmx {
812 	/* Has the level1 guest done vmxon? */
813 	bool vmxon;
814 	gpa_t vmxon_ptr;
815 	bool pml_full;
816 
817 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
818 	gpa_t current_vmptr;
819 	/*
820 	 * Cache of the guest's VMCS, existing outside of guest memory.
821 	 * Loaded from guest memory during VMPTRLD. Flushed to guest
822 	 * memory during VMCLEAR and VMPTRLD.
823 	 */
824 	struct vmcs12 *cached_vmcs12;
825 	/*
826 	 * Cache of the guest's shadow VMCS, existing outside of guest
827 	 * memory. Loaded from guest memory during VM entry. Flushed
828 	 * to guest memory during VM exit.
829 	 */
830 	struct vmcs12 *cached_shadow_vmcs12;
831 	/*
832 	 * Indicates if the shadow vmcs must be updated with the
833 	 * data hold by vmcs12
834 	 */
835 	bool sync_shadow_vmcs;
836 	bool dirty_vmcs12;
837 
838 	bool change_vmcs01_virtual_apic_mode;
839 
840 	/* L2 must run next, and mustn't decide to exit to L1. */
841 	bool nested_run_pending;
842 
843 	struct loaded_vmcs vmcs02;
844 
845 	/*
846 	 * Guest pages referred to in the vmcs02 with host-physical
847 	 * pointers, so we must keep them pinned while L2 runs.
848 	 */
849 	struct page *apic_access_page;
850 	struct page *virtual_apic_page;
851 	struct page *pi_desc_page;
852 	struct pi_desc *pi_desc;
853 	bool pi_pending;
854 	u16 posted_intr_nv;
855 
856 	struct hrtimer preemption_timer;
857 	bool preemption_timer_expired;
858 
859 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
860 	u64 vmcs01_debugctl;
861 	u64 vmcs01_guest_bndcfgs;
862 
863 	u16 vpid02;
864 	u16 last_vpid;
865 
866 	struct nested_vmx_msrs msrs;
867 
868 	/* SMM related state */
869 	struct {
870 		/* in VMX operation on SMM entry? */
871 		bool vmxon;
872 		/* in guest mode on SMM entry? */
873 		bool guest_mode;
874 	} smm;
875 };
876 
877 #define POSTED_INTR_ON  0
878 #define POSTED_INTR_SN  1
879 
880 /* Posted-Interrupt Descriptor */
881 struct pi_desc {
882 	u32 pir[8];     /* Posted interrupt requested */
883 	union {
884 		struct {
885 				/* bit 256 - Outstanding Notification */
886 			u16	on	: 1,
887 				/* bit 257 - Suppress Notification */
888 				sn	: 1,
889 				/* bit 271:258 - Reserved */
890 				rsvd_1	: 14;
891 				/* bit 279:272 - Notification Vector */
892 			u8	nv;
893 				/* bit 287:280 - Reserved */
894 			u8	rsvd_2;
895 				/* bit 319:288 - Notification Destination */
896 			u32	ndst;
897 		};
898 		u64 control;
899 	};
900 	u32 rsvd[6];
901 } __aligned(64);
902 
pi_test_and_set_on(struct pi_desc * pi_desc)903 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
904 {
905 	return test_and_set_bit(POSTED_INTR_ON,
906 			(unsigned long *)&pi_desc->control);
907 }
908 
pi_test_and_clear_on(struct pi_desc * pi_desc)909 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
910 {
911 	return test_and_clear_bit(POSTED_INTR_ON,
912 			(unsigned long *)&pi_desc->control);
913 }
914 
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)915 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
916 {
917 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
918 }
919 
pi_clear_sn(struct pi_desc * pi_desc)920 static inline void pi_clear_sn(struct pi_desc *pi_desc)
921 {
922 	return clear_bit(POSTED_INTR_SN,
923 			(unsigned long *)&pi_desc->control);
924 }
925 
pi_set_sn(struct pi_desc * pi_desc)926 static inline void pi_set_sn(struct pi_desc *pi_desc)
927 {
928 	return set_bit(POSTED_INTR_SN,
929 			(unsigned long *)&pi_desc->control);
930 }
931 
pi_clear_on(struct pi_desc * pi_desc)932 static inline void pi_clear_on(struct pi_desc *pi_desc)
933 {
934 	clear_bit(POSTED_INTR_ON,
935   		  (unsigned long *)&pi_desc->control);
936 }
937 
pi_test_on(struct pi_desc * pi_desc)938 static inline int pi_test_on(struct pi_desc *pi_desc)
939 {
940 	return test_bit(POSTED_INTR_ON,
941 			(unsigned long *)&pi_desc->control);
942 }
943 
pi_test_sn(struct pi_desc * pi_desc)944 static inline int pi_test_sn(struct pi_desc *pi_desc)
945 {
946 	return test_bit(POSTED_INTR_SN,
947 			(unsigned long *)&pi_desc->control);
948 }
949 
950 struct vmx_msrs {
951 	unsigned int		nr;
952 	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
953 };
954 
955 struct vcpu_vmx {
956 	struct kvm_vcpu       vcpu;
957 	unsigned long         host_rsp;
958 	u8                    fail;
959 	u8		      msr_bitmap_mode;
960 	u32                   exit_intr_info;
961 	u32                   idt_vectoring_info;
962 	ulong                 rflags;
963 	struct shared_msr_entry *guest_msrs;
964 	int                   nmsrs;
965 	int                   save_nmsrs;
966 	bool                  guest_msrs_dirty;
967 	unsigned long	      host_idt_base;
968 #ifdef CONFIG_X86_64
969 	u64 		      msr_host_kernel_gs_base;
970 	u64 		      msr_guest_kernel_gs_base;
971 #endif
972 
973 	u64 		      spec_ctrl;
974 
975 	u32 vm_entry_controls_shadow;
976 	u32 vm_exit_controls_shadow;
977 	u32 secondary_exec_control;
978 
979 	/*
980 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
981 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
982 	 * guest (L2), it points to a different VMCS.  loaded_cpu_state points
983 	 * to the VMCS whose state is loaded into the CPU registers that only
984 	 * need to be switched when transitioning to/from the kernel; a NULL
985 	 * value indicates that host state is loaded.
986 	 */
987 	struct loaded_vmcs    vmcs01;
988 	struct loaded_vmcs   *loaded_vmcs;
989 	struct loaded_vmcs   *loaded_cpu_state;
990 	bool                  __launched; /* temporary, used in vmx_vcpu_run */
991 	struct msr_autoload {
992 		struct vmx_msrs guest;
993 		struct vmx_msrs host;
994 	} msr_autoload;
995 
996 	struct {
997 		int vm86_active;
998 		ulong save_rflags;
999 		struct kvm_segment segs[8];
1000 	} rmode;
1001 	struct {
1002 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
1003 		struct kvm_save_segment {
1004 			u16 selector;
1005 			unsigned long base;
1006 			u32 limit;
1007 			u32 ar;
1008 		} seg[8];
1009 	} segment_cache;
1010 	int vpid;
1011 	bool emulation_required;
1012 
1013 	u32 exit_reason;
1014 
1015 	/* Posted interrupt descriptor */
1016 	struct pi_desc pi_desc;
1017 
1018 	/* Support for a guest hypervisor (nested VMX) */
1019 	struct nested_vmx nested;
1020 
1021 	/* Dynamic PLE window. */
1022 	int ple_window;
1023 	bool ple_window_dirty;
1024 
1025 	bool req_immediate_exit;
1026 
1027 	/* Support for PML */
1028 #define PML_ENTITY_NUM		512
1029 	struct page *pml_pg;
1030 
1031 	/* apic deadline value in host tsc */
1032 	u64 hv_deadline_tsc;
1033 
1034 	u64 current_tsc_ratio;
1035 
1036 	u32 host_pkru;
1037 
1038 	unsigned long host_debugctlmsr;
1039 
1040 	/*
1041 	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
1042 	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
1043 	 * in msr_ia32_feature_control_valid_bits.
1044 	 */
1045 	u64 msr_ia32_feature_control;
1046 	u64 msr_ia32_feature_control_valid_bits;
1047 	u64 ept_pointer;
1048 };
1049 
1050 enum segment_cache_field {
1051 	SEG_FIELD_SEL = 0,
1052 	SEG_FIELD_BASE = 1,
1053 	SEG_FIELD_LIMIT = 2,
1054 	SEG_FIELD_AR = 3,
1055 
1056 	SEG_FIELD_NR = 4
1057 };
1058 
to_kvm_vmx(struct kvm * kvm)1059 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
1060 {
1061 	return container_of(kvm, struct kvm_vmx, kvm);
1062 }
1063 
to_vmx(struct kvm_vcpu * vcpu)1064 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
1065 {
1066 	return container_of(vcpu, struct vcpu_vmx, vcpu);
1067 }
1068 
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)1069 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
1070 {
1071 	return &(to_vmx(vcpu)->pi_desc);
1072 }
1073 
1074 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
1075 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
1076 #define FIELD(number, name)	[ROL16(number, 6)] = VMCS12_OFFSET(name)
1077 #define FIELD64(number, name)						\
1078 	FIELD(number, name),						\
1079 	[ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
1080 
1081 
1082 static u16 shadow_read_only_fields[] = {
1083 #define SHADOW_FIELD_RO(x) x,
1084 #include "vmx_shadow_fields.h"
1085 };
1086 static int max_shadow_read_only_fields =
1087 	ARRAY_SIZE(shadow_read_only_fields);
1088 
1089 static u16 shadow_read_write_fields[] = {
1090 #define SHADOW_FIELD_RW(x) x,
1091 #include "vmx_shadow_fields.h"
1092 };
1093 static int max_shadow_read_write_fields =
1094 	ARRAY_SIZE(shadow_read_write_fields);
1095 
1096 static const unsigned short vmcs_field_to_offset_table[] = {
1097 	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
1098 	FIELD(POSTED_INTR_NV, posted_intr_nv),
1099 	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
1100 	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
1101 	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
1102 	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
1103 	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
1104 	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
1105 	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
1106 	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
1107 	FIELD(GUEST_INTR_STATUS, guest_intr_status),
1108 	FIELD(GUEST_PML_INDEX, guest_pml_index),
1109 	FIELD(HOST_ES_SELECTOR, host_es_selector),
1110 	FIELD(HOST_CS_SELECTOR, host_cs_selector),
1111 	FIELD(HOST_SS_SELECTOR, host_ss_selector),
1112 	FIELD(HOST_DS_SELECTOR, host_ds_selector),
1113 	FIELD(HOST_FS_SELECTOR, host_fs_selector),
1114 	FIELD(HOST_GS_SELECTOR, host_gs_selector),
1115 	FIELD(HOST_TR_SELECTOR, host_tr_selector),
1116 	FIELD64(IO_BITMAP_A, io_bitmap_a),
1117 	FIELD64(IO_BITMAP_B, io_bitmap_b),
1118 	FIELD64(MSR_BITMAP, msr_bitmap),
1119 	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
1120 	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
1121 	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
1122 	FIELD64(PML_ADDRESS, pml_address),
1123 	FIELD64(TSC_OFFSET, tsc_offset),
1124 	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
1125 	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
1126 	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
1127 	FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
1128 	FIELD64(EPT_POINTER, ept_pointer),
1129 	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
1130 	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
1131 	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
1132 	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
1133 	FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
1134 	FIELD64(VMREAD_BITMAP, vmread_bitmap),
1135 	FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
1136 	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
1137 	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
1138 	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
1139 	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
1140 	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
1141 	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
1142 	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
1143 	FIELD64(GUEST_PDPTR0, guest_pdptr0),
1144 	FIELD64(GUEST_PDPTR1, guest_pdptr1),
1145 	FIELD64(GUEST_PDPTR2, guest_pdptr2),
1146 	FIELD64(GUEST_PDPTR3, guest_pdptr3),
1147 	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
1148 	FIELD64(HOST_IA32_PAT, host_ia32_pat),
1149 	FIELD64(HOST_IA32_EFER, host_ia32_efer),
1150 	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
1151 	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
1152 	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
1153 	FIELD(EXCEPTION_BITMAP, exception_bitmap),
1154 	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
1155 	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
1156 	FIELD(CR3_TARGET_COUNT, cr3_target_count),
1157 	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
1158 	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
1159 	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
1160 	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
1161 	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
1162 	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
1163 	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
1164 	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
1165 	FIELD(TPR_THRESHOLD, tpr_threshold),
1166 	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
1167 	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
1168 	FIELD(VM_EXIT_REASON, vm_exit_reason),
1169 	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
1170 	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
1171 	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
1172 	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
1173 	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
1174 	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
1175 	FIELD(GUEST_ES_LIMIT, guest_es_limit),
1176 	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
1177 	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
1178 	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
1179 	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
1180 	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
1181 	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
1182 	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
1183 	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
1184 	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
1185 	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
1186 	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
1187 	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
1188 	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
1189 	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
1190 	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
1191 	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
1192 	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
1193 	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
1194 	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
1195 	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
1196 	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
1197 	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
1198 	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
1199 	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
1200 	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
1201 	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
1202 	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
1203 	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
1204 	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
1205 	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
1206 	FIELD(EXIT_QUALIFICATION, exit_qualification),
1207 	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
1208 	FIELD(GUEST_CR0, guest_cr0),
1209 	FIELD(GUEST_CR3, guest_cr3),
1210 	FIELD(GUEST_CR4, guest_cr4),
1211 	FIELD(GUEST_ES_BASE, guest_es_base),
1212 	FIELD(GUEST_CS_BASE, guest_cs_base),
1213 	FIELD(GUEST_SS_BASE, guest_ss_base),
1214 	FIELD(GUEST_DS_BASE, guest_ds_base),
1215 	FIELD(GUEST_FS_BASE, guest_fs_base),
1216 	FIELD(GUEST_GS_BASE, guest_gs_base),
1217 	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
1218 	FIELD(GUEST_TR_BASE, guest_tr_base),
1219 	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
1220 	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
1221 	FIELD(GUEST_DR7, guest_dr7),
1222 	FIELD(GUEST_RSP, guest_rsp),
1223 	FIELD(GUEST_RIP, guest_rip),
1224 	FIELD(GUEST_RFLAGS, guest_rflags),
1225 	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
1226 	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
1227 	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
1228 	FIELD(HOST_CR0, host_cr0),
1229 	FIELD(HOST_CR3, host_cr3),
1230 	FIELD(HOST_CR4, host_cr4),
1231 	FIELD(HOST_FS_BASE, host_fs_base),
1232 	FIELD(HOST_GS_BASE, host_gs_base),
1233 	FIELD(HOST_TR_BASE, host_tr_base),
1234 	FIELD(HOST_GDTR_BASE, host_gdtr_base),
1235 	FIELD(HOST_IDTR_BASE, host_idtr_base),
1236 	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
1237 	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
1238 	FIELD(HOST_RSP, host_rsp),
1239 	FIELD(HOST_RIP, host_rip),
1240 };
1241 
vmcs_field_to_offset(unsigned long field)1242 static inline short vmcs_field_to_offset(unsigned long field)
1243 {
1244 	const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
1245 	unsigned short offset;
1246 	unsigned index;
1247 
1248 	if (field >> 15)
1249 		return -ENOENT;
1250 
1251 	index = ROL16(field, 6);
1252 	if (index >= size)
1253 		return -ENOENT;
1254 
1255 	index = array_index_nospec(index, size);
1256 	offset = vmcs_field_to_offset_table[index];
1257 	if (offset == 0)
1258 		return -ENOENT;
1259 	return offset;
1260 }
1261 
get_vmcs12(struct kvm_vcpu * vcpu)1262 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
1263 {
1264 	return to_vmx(vcpu)->nested.cached_vmcs12;
1265 }
1266 
get_shadow_vmcs12(struct kvm_vcpu * vcpu)1267 static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
1268 {
1269 	return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
1270 }
1271 
1272 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
1273 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
1274 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
1275 static bool vmx_xsaves_supported(void);
1276 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1277 			    struct kvm_segment *var, int seg);
1278 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1279 			    struct kvm_segment *var, int seg);
1280 static bool guest_state_valid(struct kvm_vcpu *vcpu);
1281 static u32 vmx_segment_access_rights(struct kvm_segment *var);
1282 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
1283 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
1284 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
1285 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
1286 					    u16 error_code);
1287 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
1288 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
1289 							  u32 msr, int type);
1290 
1291 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
1292 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
1293 /*
1294  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
1295  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
1296  */
1297 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
1298 
1299 /*
1300  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
1301  * can find which vCPU should be waken up.
1302  */
1303 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
1304 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
1305 
1306 enum {
1307 	VMX_VMREAD_BITMAP,
1308 	VMX_VMWRITE_BITMAP,
1309 	VMX_BITMAP_NR
1310 };
1311 
1312 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
1313 
1314 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
1315 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
1316 
1317 static bool cpu_has_load_ia32_efer;
1318 static bool cpu_has_load_perf_global_ctrl;
1319 
1320 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
1321 static DEFINE_SPINLOCK(vmx_vpid_lock);
1322 
1323 static struct vmcs_config {
1324 	int size;
1325 	int order;
1326 	u32 basic_cap;
1327 	u32 revision_id;
1328 	u32 pin_based_exec_ctrl;
1329 	u32 cpu_based_exec_ctrl;
1330 	u32 cpu_based_2nd_exec_ctrl;
1331 	u32 vmexit_ctrl;
1332 	u32 vmentry_ctrl;
1333 	struct nested_vmx_msrs nested;
1334 } vmcs_config;
1335 
1336 static struct vmx_capability {
1337 	u32 ept;
1338 	u32 vpid;
1339 } vmx_capability;
1340 
1341 #define VMX_SEGMENT_FIELD(seg)					\
1342 	[VCPU_SREG_##seg] = {                                   \
1343 		.selector = GUEST_##seg##_SELECTOR,		\
1344 		.base = GUEST_##seg##_BASE,		   	\
1345 		.limit = GUEST_##seg##_LIMIT,		   	\
1346 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
1347 	}
1348 
1349 static const struct kvm_vmx_segment_field {
1350 	unsigned selector;
1351 	unsigned base;
1352 	unsigned limit;
1353 	unsigned ar_bytes;
1354 } kvm_vmx_segment_fields[] = {
1355 	VMX_SEGMENT_FIELD(CS),
1356 	VMX_SEGMENT_FIELD(DS),
1357 	VMX_SEGMENT_FIELD(ES),
1358 	VMX_SEGMENT_FIELD(FS),
1359 	VMX_SEGMENT_FIELD(GS),
1360 	VMX_SEGMENT_FIELD(SS),
1361 	VMX_SEGMENT_FIELD(TR),
1362 	VMX_SEGMENT_FIELD(LDTR),
1363 };
1364 
1365 static u64 host_efer;
1366 
1367 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1368 
1369 /*
1370  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1371  * away by decrementing the array size.
1372  */
1373 static const u32 vmx_msr_index[] = {
1374 #ifdef CONFIG_X86_64
1375 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1376 #endif
1377 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1378 };
1379 
1380 DEFINE_STATIC_KEY_FALSE(enable_evmcs);
1381 
1382 #define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
1383 
1384 #define KVM_EVMCS_VERSION 1
1385 
1386 #if IS_ENABLED(CONFIG_HYPERV)
1387 static bool __read_mostly enlightened_vmcs = true;
1388 module_param(enlightened_vmcs, bool, 0444);
1389 
evmcs_write64(unsigned long field,u64 value)1390 static inline void evmcs_write64(unsigned long field, u64 value)
1391 {
1392 	u16 clean_field;
1393 	int offset = get_evmcs_offset(field, &clean_field);
1394 
1395 	if (offset < 0)
1396 		return;
1397 
1398 	*(u64 *)((char *)current_evmcs + offset) = value;
1399 
1400 	current_evmcs->hv_clean_fields &= ~clean_field;
1401 }
1402 
evmcs_write32(unsigned long field,u32 value)1403 static inline void evmcs_write32(unsigned long field, u32 value)
1404 {
1405 	u16 clean_field;
1406 	int offset = get_evmcs_offset(field, &clean_field);
1407 
1408 	if (offset < 0)
1409 		return;
1410 
1411 	*(u32 *)((char *)current_evmcs + offset) = value;
1412 	current_evmcs->hv_clean_fields &= ~clean_field;
1413 }
1414 
evmcs_write16(unsigned long field,u16 value)1415 static inline void evmcs_write16(unsigned long field, u16 value)
1416 {
1417 	u16 clean_field;
1418 	int offset = get_evmcs_offset(field, &clean_field);
1419 
1420 	if (offset < 0)
1421 		return;
1422 
1423 	*(u16 *)((char *)current_evmcs + offset) = value;
1424 	current_evmcs->hv_clean_fields &= ~clean_field;
1425 }
1426 
evmcs_read64(unsigned long field)1427 static inline u64 evmcs_read64(unsigned long field)
1428 {
1429 	int offset = get_evmcs_offset(field, NULL);
1430 
1431 	if (offset < 0)
1432 		return 0;
1433 
1434 	return *(u64 *)((char *)current_evmcs + offset);
1435 }
1436 
evmcs_read32(unsigned long field)1437 static inline u32 evmcs_read32(unsigned long field)
1438 {
1439 	int offset = get_evmcs_offset(field, NULL);
1440 
1441 	if (offset < 0)
1442 		return 0;
1443 
1444 	return *(u32 *)((char *)current_evmcs + offset);
1445 }
1446 
evmcs_read16(unsigned long field)1447 static inline u16 evmcs_read16(unsigned long field)
1448 {
1449 	int offset = get_evmcs_offset(field, NULL);
1450 
1451 	if (offset < 0)
1452 		return 0;
1453 
1454 	return *(u16 *)((char *)current_evmcs + offset);
1455 }
1456 
evmcs_touch_msr_bitmap(void)1457 static inline void evmcs_touch_msr_bitmap(void)
1458 {
1459 	if (unlikely(!current_evmcs))
1460 		return;
1461 
1462 	if (current_evmcs->hv_enlightenments_control.msr_bitmap)
1463 		current_evmcs->hv_clean_fields &=
1464 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
1465 }
1466 
evmcs_load(u64 phys_addr)1467 static void evmcs_load(u64 phys_addr)
1468 {
1469 	struct hv_vp_assist_page *vp_ap =
1470 		hv_get_vp_assist_page(smp_processor_id());
1471 
1472 	vp_ap->current_nested_vmcs = phys_addr;
1473 	vp_ap->enlighten_vmentry = 1;
1474 }
1475 
evmcs_sanitize_exec_ctrls(struct vmcs_config * vmcs_conf)1476 static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
1477 {
1478 	/*
1479 	 * Enlightened VMCSv1 doesn't support these:
1480 	 *
1481 	 *	POSTED_INTR_NV                  = 0x00000002,
1482 	 *	GUEST_INTR_STATUS               = 0x00000810,
1483 	 *	APIC_ACCESS_ADDR		= 0x00002014,
1484 	 *	POSTED_INTR_DESC_ADDR           = 0x00002016,
1485 	 *	EOI_EXIT_BITMAP0                = 0x0000201c,
1486 	 *	EOI_EXIT_BITMAP1                = 0x0000201e,
1487 	 *	EOI_EXIT_BITMAP2                = 0x00002020,
1488 	 *	EOI_EXIT_BITMAP3                = 0x00002022,
1489 	 */
1490 	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
1491 	vmcs_conf->cpu_based_2nd_exec_ctrl &=
1492 		~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1493 	vmcs_conf->cpu_based_2nd_exec_ctrl &=
1494 		~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1495 	vmcs_conf->cpu_based_2nd_exec_ctrl &=
1496 		~SECONDARY_EXEC_APIC_REGISTER_VIRT;
1497 
1498 	/*
1499 	 *	GUEST_PML_INDEX			= 0x00000812,
1500 	 *	PML_ADDRESS			= 0x0000200e,
1501 	 */
1502 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
1503 
1504 	/*	VM_FUNCTION_CONTROL             = 0x00002018, */
1505 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
1506 
1507 	/*
1508 	 *	EPTP_LIST_ADDRESS               = 0x00002024,
1509 	 *	VMREAD_BITMAP                   = 0x00002026,
1510 	 *	VMWRITE_BITMAP                  = 0x00002028,
1511 	 */
1512 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
1513 
1514 	/*
1515 	 *	TSC_MULTIPLIER                  = 0x00002032,
1516 	 */
1517 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
1518 
1519 	/*
1520 	 *	PLE_GAP                         = 0x00004020,
1521 	 *	PLE_WINDOW                      = 0x00004022,
1522 	 */
1523 	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1524 
1525 	/*
1526 	 *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
1527 	 */
1528 	vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1529 
1530 	/*
1531 	 *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
1532 	 *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
1533 	 */
1534 	vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
1535 	vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
1536 
1537 	/*
1538 	 * Currently unsupported in KVM:
1539 	 *	GUEST_IA32_RTIT_CTL		= 0x00002814,
1540 	 */
1541 }
1542 
1543 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)1544 static void check_ept_pointer_match(struct kvm *kvm)
1545 {
1546 	struct kvm_vcpu *vcpu;
1547 	u64 tmp_eptp = INVALID_PAGE;
1548 	int i;
1549 
1550 	kvm_for_each_vcpu(i, vcpu, kvm) {
1551 		if (!VALID_PAGE(tmp_eptp)) {
1552 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
1553 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
1554 			to_kvm_vmx(kvm)->ept_pointers_match
1555 				= EPT_POINTERS_MISMATCH;
1556 			return;
1557 		}
1558 	}
1559 
1560 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
1561 }
1562 
vmx_hv_remote_flush_tlb(struct kvm * kvm)1563 static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
1564 {
1565 	int ret;
1566 
1567 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
1568 
1569 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
1570 		check_ept_pointer_match(kvm);
1571 
1572 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
1573 		ret = -ENOTSUPP;
1574 		goto out;
1575 	}
1576 
1577 	/*
1578 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
1579 	 * base of EPT PML4 table, strip off EPT configuration information.
1580 	 */
1581 	ret = hyperv_flush_guest_mapping(
1582 			to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
1583 
1584 out:
1585 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
1586 	return ret;
1587 }
1588 #else /* !IS_ENABLED(CONFIG_HYPERV) */
evmcs_write64(unsigned long field,u64 value)1589 static inline void evmcs_write64(unsigned long field, u64 value) {}
evmcs_write32(unsigned long field,u32 value)1590 static inline void evmcs_write32(unsigned long field, u32 value) {}
evmcs_write16(unsigned long field,u16 value)1591 static inline void evmcs_write16(unsigned long field, u16 value) {}
evmcs_read64(unsigned long field)1592 static inline u64 evmcs_read64(unsigned long field) { return 0; }
evmcs_read32(unsigned long field)1593 static inline u32 evmcs_read32(unsigned long field) { return 0; }
evmcs_read16(unsigned long field)1594 static inline u16 evmcs_read16(unsigned long field) { return 0; }
evmcs_load(u64 phys_addr)1595 static inline void evmcs_load(u64 phys_addr) {}
evmcs_sanitize_exec_ctrls(struct vmcs_config * vmcs_conf)1596 static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
evmcs_touch_msr_bitmap(void)1597 static inline void evmcs_touch_msr_bitmap(void) {}
1598 #endif /* IS_ENABLED(CONFIG_HYPERV) */
1599 
is_exception_n(u32 intr_info,u8 vector)1600 static inline bool is_exception_n(u32 intr_info, u8 vector)
1601 {
1602 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1603 			     INTR_INFO_VALID_MASK)) ==
1604 		(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1605 }
1606 
is_debug(u32 intr_info)1607 static inline bool is_debug(u32 intr_info)
1608 {
1609 	return is_exception_n(intr_info, DB_VECTOR);
1610 }
1611 
is_breakpoint(u32 intr_info)1612 static inline bool is_breakpoint(u32 intr_info)
1613 {
1614 	return is_exception_n(intr_info, BP_VECTOR);
1615 }
1616 
is_page_fault(u32 intr_info)1617 static inline bool is_page_fault(u32 intr_info)
1618 {
1619 	return is_exception_n(intr_info, PF_VECTOR);
1620 }
1621 
is_no_device(u32 intr_info)1622 static inline bool is_no_device(u32 intr_info)
1623 {
1624 	return is_exception_n(intr_info, NM_VECTOR);
1625 }
1626 
is_invalid_opcode(u32 intr_info)1627 static inline bool is_invalid_opcode(u32 intr_info)
1628 {
1629 	return is_exception_n(intr_info, UD_VECTOR);
1630 }
1631 
is_gp_fault(u32 intr_info)1632 static inline bool is_gp_fault(u32 intr_info)
1633 {
1634 	return is_exception_n(intr_info, GP_VECTOR);
1635 }
1636 
is_external_interrupt(u32 intr_info)1637 static inline bool is_external_interrupt(u32 intr_info)
1638 {
1639 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1640 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1641 }
1642 
is_machine_check(u32 intr_info)1643 static inline bool is_machine_check(u32 intr_info)
1644 {
1645 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1646 			     INTR_INFO_VALID_MASK)) ==
1647 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1648 }
1649 
1650 /* Undocumented: icebp/int1 */
is_icebp(u32 intr_info)1651 static inline bool is_icebp(u32 intr_info)
1652 {
1653 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1654 		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1655 }
1656 
cpu_has_vmx_msr_bitmap(void)1657 static inline bool cpu_has_vmx_msr_bitmap(void)
1658 {
1659 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1660 }
1661 
cpu_has_vmx_tpr_shadow(void)1662 static inline bool cpu_has_vmx_tpr_shadow(void)
1663 {
1664 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1665 }
1666 
cpu_need_tpr_shadow(struct kvm_vcpu * vcpu)1667 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1668 {
1669 	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1670 }
1671 
cpu_has_secondary_exec_ctrls(void)1672 static inline bool cpu_has_secondary_exec_ctrls(void)
1673 {
1674 	return vmcs_config.cpu_based_exec_ctrl &
1675 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1676 }
1677 
cpu_has_vmx_virtualize_apic_accesses(void)1678 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1679 {
1680 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1681 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1682 }
1683 
cpu_has_vmx_virtualize_x2apic_mode(void)1684 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1685 {
1686 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1687 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1688 }
1689 
cpu_has_vmx_apic_register_virt(void)1690 static inline bool cpu_has_vmx_apic_register_virt(void)
1691 {
1692 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1693 		SECONDARY_EXEC_APIC_REGISTER_VIRT;
1694 }
1695 
cpu_has_vmx_virtual_intr_delivery(void)1696 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1697 {
1698 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1699 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1700 }
1701 
cpu_has_vmx_encls_vmexit(void)1702 static inline bool cpu_has_vmx_encls_vmexit(void)
1703 {
1704 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1705 		SECONDARY_EXEC_ENCLS_EXITING;
1706 }
1707 
1708 /*
1709  * Comment's format: document - errata name - stepping - processor name.
1710  * Refer from
1711  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1712  */
1713 static u32 vmx_preemption_cpu_tfms[] = {
1714 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1715 0x000206E6,
1716 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1717 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1718 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1719 0x00020652,
1720 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1721 0x00020655,
1722 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1723 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1724 /*
1725  * 320767.pdf - AAP86  - B1 -
1726  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1727  */
1728 0x000106E5,
1729 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1730 0x000106A0,
1731 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1732 0x000106A1,
1733 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1734 0x000106A4,
1735  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1736  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1737  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1738 0x000106A5,
1739 };
1740 
cpu_has_broken_vmx_preemption_timer(void)1741 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1742 {
1743 	u32 eax = cpuid_eax(0x00000001), i;
1744 
1745 	/* Clear the reserved bits */
1746 	eax &= ~(0x3U << 14 | 0xfU << 28);
1747 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1748 		if (eax == vmx_preemption_cpu_tfms[i])
1749 			return true;
1750 
1751 	return false;
1752 }
1753 
cpu_has_vmx_preemption_timer(void)1754 static inline bool cpu_has_vmx_preemption_timer(void)
1755 {
1756 	return vmcs_config.pin_based_exec_ctrl &
1757 		PIN_BASED_VMX_PREEMPTION_TIMER;
1758 }
1759 
cpu_has_vmx_posted_intr(void)1760 static inline bool cpu_has_vmx_posted_intr(void)
1761 {
1762 	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1763 		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1764 }
1765 
cpu_has_vmx_apicv(void)1766 static inline bool cpu_has_vmx_apicv(void)
1767 {
1768 	return cpu_has_vmx_apic_register_virt() &&
1769 		cpu_has_vmx_virtual_intr_delivery() &&
1770 		cpu_has_vmx_posted_intr();
1771 }
1772 
cpu_has_vmx_flexpriority(void)1773 static inline bool cpu_has_vmx_flexpriority(void)
1774 {
1775 	return cpu_has_vmx_tpr_shadow() &&
1776 		cpu_has_vmx_virtualize_apic_accesses();
1777 }
1778 
cpu_has_vmx_ept_execute_only(void)1779 static inline bool cpu_has_vmx_ept_execute_only(void)
1780 {
1781 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1782 }
1783 
cpu_has_vmx_ept_2m_page(void)1784 static inline bool cpu_has_vmx_ept_2m_page(void)
1785 {
1786 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1787 }
1788 
cpu_has_vmx_ept_1g_page(void)1789 static inline bool cpu_has_vmx_ept_1g_page(void)
1790 {
1791 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1792 }
1793 
cpu_has_vmx_ept_4levels(void)1794 static inline bool cpu_has_vmx_ept_4levels(void)
1795 {
1796 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1797 }
1798 
cpu_has_vmx_ept_mt_wb(void)1799 static inline bool cpu_has_vmx_ept_mt_wb(void)
1800 {
1801 	return vmx_capability.ept & VMX_EPTP_WB_BIT;
1802 }
1803 
cpu_has_vmx_ept_5levels(void)1804 static inline bool cpu_has_vmx_ept_5levels(void)
1805 {
1806 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1807 }
1808 
cpu_has_vmx_ept_ad_bits(void)1809 static inline bool cpu_has_vmx_ept_ad_bits(void)
1810 {
1811 	return vmx_capability.ept & VMX_EPT_AD_BIT;
1812 }
1813 
cpu_has_vmx_invept_context(void)1814 static inline bool cpu_has_vmx_invept_context(void)
1815 {
1816 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1817 }
1818 
cpu_has_vmx_invept_global(void)1819 static inline bool cpu_has_vmx_invept_global(void)
1820 {
1821 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1822 }
1823 
cpu_has_vmx_invvpid_individual_addr(void)1824 static inline bool cpu_has_vmx_invvpid_individual_addr(void)
1825 {
1826 	return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
1827 }
1828 
cpu_has_vmx_invvpid_single(void)1829 static inline bool cpu_has_vmx_invvpid_single(void)
1830 {
1831 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1832 }
1833 
cpu_has_vmx_invvpid_global(void)1834 static inline bool cpu_has_vmx_invvpid_global(void)
1835 {
1836 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1837 }
1838 
cpu_has_vmx_invvpid(void)1839 static inline bool cpu_has_vmx_invvpid(void)
1840 {
1841 	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1842 }
1843 
cpu_has_vmx_ept(void)1844 static inline bool cpu_has_vmx_ept(void)
1845 {
1846 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1847 		SECONDARY_EXEC_ENABLE_EPT;
1848 }
1849 
cpu_has_vmx_unrestricted_guest(void)1850 static inline bool cpu_has_vmx_unrestricted_guest(void)
1851 {
1852 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1853 		SECONDARY_EXEC_UNRESTRICTED_GUEST;
1854 }
1855 
cpu_has_vmx_ple(void)1856 static inline bool cpu_has_vmx_ple(void)
1857 {
1858 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1859 		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1860 }
1861 
cpu_has_vmx_basic_inout(void)1862 static inline bool cpu_has_vmx_basic_inout(void)
1863 {
1864 	return	(((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1865 }
1866 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)1867 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1868 {
1869 	return flexpriority_enabled && lapic_in_kernel(vcpu);
1870 }
1871 
cpu_has_vmx_vpid(void)1872 static inline bool cpu_has_vmx_vpid(void)
1873 {
1874 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1875 		SECONDARY_EXEC_ENABLE_VPID;
1876 }
1877 
cpu_has_vmx_rdtscp(void)1878 static inline bool cpu_has_vmx_rdtscp(void)
1879 {
1880 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1881 		SECONDARY_EXEC_RDTSCP;
1882 }
1883 
cpu_has_vmx_invpcid(void)1884 static inline bool cpu_has_vmx_invpcid(void)
1885 {
1886 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1887 		SECONDARY_EXEC_ENABLE_INVPCID;
1888 }
1889 
cpu_has_virtual_nmis(void)1890 static inline bool cpu_has_virtual_nmis(void)
1891 {
1892 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1893 }
1894 
cpu_has_vmx_wbinvd_exit(void)1895 static inline bool cpu_has_vmx_wbinvd_exit(void)
1896 {
1897 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1898 		SECONDARY_EXEC_WBINVD_EXITING;
1899 }
1900 
cpu_has_vmx_shadow_vmcs(void)1901 static inline bool cpu_has_vmx_shadow_vmcs(void)
1902 {
1903 	u64 vmx_msr;
1904 	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1905 	/* check if the cpu supports writing r/o exit information fields */
1906 	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1907 		return false;
1908 
1909 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1910 		SECONDARY_EXEC_SHADOW_VMCS;
1911 }
1912 
cpu_has_vmx_pml(void)1913 static inline bool cpu_has_vmx_pml(void)
1914 {
1915 	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1916 }
1917 
cpu_has_vmx_tsc_scaling(void)1918 static inline bool cpu_has_vmx_tsc_scaling(void)
1919 {
1920 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1921 		SECONDARY_EXEC_TSC_SCALING;
1922 }
1923 
cpu_has_vmx_vmfunc(void)1924 static inline bool cpu_has_vmx_vmfunc(void)
1925 {
1926 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1927 		SECONDARY_EXEC_ENABLE_VMFUNC;
1928 }
1929 
vmx_umip_emulated(void)1930 static bool vmx_umip_emulated(void)
1931 {
1932 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1933 		SECONDARY_EXEC_DESC;
1934 }
1935 
report_flexpriority(void)1936 static inline bool report_flexpriority(void)
1937 {
1938 	return flexpriority_enabled;
1939 }
1940 
nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu * vcpu)1941 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1942 {
1943 	return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
1944 }
1945 
1946 /*
1947  * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
1948  * to modify any valid field of the VMCS, or are the VM-exit
1949  * information fields read-only?
1950  */
nested_cpu_has_vmwrite_any_field(struct kvm_vcpu * vcpu)1951 static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
1952 {
1953 	return to_vmx(vcpu)->nested.msrs.misc_low &
1954 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
1955 }
1956 
nested_cpu_has_zero_length_injection(struct kvm_vcpu * vcpu)1957 static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
1958 {
1959 	return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
1960 }
1961 
nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu * vcpu)1962 static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
1963 {
1964 	return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
1965 			CPU_BASED_MONITOR_TRAP_FLAG;
1966 }
1967 
nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu * vcpu)1968 static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
1969 {
1970 	return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
1971 		SECONDARY_EXEC_SHADOW_VMCS;
1972 }
1973 
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1974 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1975 {
1976 	return vmcs12->cpu_based_vm_exec_control & bit;
1977 }
1978 
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1979 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1980 {
1981 	return (vmcs12->cpu_based_vm_exec_control &
1982 			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1983 		(vmcs12->secondary_vm_exec_control & bit);
1984 }
1985 
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1986 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1987 {
1988 	return vmcs12->pin_based_vm_exec_control &
1989 		PIN_BASED_VMX_PREEMPTION_TIMER;
1990 }
1991 
nested_cpu_has_nmi_exiting(struct vmcs12 * vmcs12)1992 static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
1993 {
1994 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
1995 }
1996 
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12)1997 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1998 {
1999 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
2000 }
2001 
nested_cpu_has_ept(struct vmcs12 * vmcs12)2002 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
2003 {
2004 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
2005 }
2006 
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)2007 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
2008 {
2009 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
2010 }
2011 
nested_cpu_has_pml(struct vmcs12 * vmcs12)2012 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
2013 {
2014 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
2015 }
2016 
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)2017 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
2018 {
2019 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
2020 }
2021 
nested_cpu_has_vpid(struct vmcs12 * vmcs12)2022 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
2023 {
2024 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
2025 }
2026 
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)2027 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
2028 {
2029 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
2030 }
2031 
nested_cpu_has_vid(struct vmcs12 * vmcs12)2032 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
2033 {
2034 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2035 }
2036 
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)2037 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
2038 {
2039 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
2040 }
2041 
nested_cpu_has_vmfunc(struct vmcs12 * vmcs12)2042 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
2043 {
2044 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
2045 }
2046 
nested_cpu_has_eptp_switching(struct vmcs12 * vmcs12)2047 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
2048 {
2049 	return nested_cpu_has_vmfunc(vmcs12) &&
2050 		(vmcs12->vm_function_control &
2051 		 VMX_VMFUNC_EPTP_SWITCHING);
2052 }
2053 
nested_cpu_has_shadow_vmcs(struct vmcs12 * vmcs12)2054 static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
2055 {
2056 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
2057 }
2058 
is_nmi(u32 intr_info)2059 static inline bool is_nmi(u32 intr_info)
2060 {
2061 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
2062 		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
2063 }
2064 
2065 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
2066 			      u32 exit_intr_info,
2067 			      unsigned long exit_qualification);
2068 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
2069 			struct vmcs12 *vmcs12,
2070 			u32 reason, unsigned long qualification);
2071 
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)2072 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
2073 {
2074 	int i;
2075 
2076 	for (i = 0; i < vmx->nmsrs; ++i)
2077 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
2078 			return i;
2079 	return -1;
2080 }
2081 
__invvpid(unsigned long ext,u16 vpid,gva_t gva)2082 static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
2083 {
2084     struct {
2085 	u64 vpid : 16;
2086 	u64 rsvd : 48;
2087 	u64 gva;
2088     } operand = { vpid, 0, gva };
2089     bool error;
2090 
2091     asm volatile (__ex(ASM_VMX_INVVPID) CC_SET(na)
2092 		  : CC_OUT(na) (error) : "a"(&operand), "c"(ext)
2093 		  : "memory");
2094     BUG_ON(error);
2095 }
2096 
__invept(unsigned long ext,u64 eptp,gpa_t gpa)2097 static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
2098 {
2099 	struct {
2100 		u64 eptp, gpa;
2101 	} operand = {eptp, gpa};
2102 	bool error;
2103 
2104 	asm volatile (__ex(ASM_VMX_INVEPT) CC_SET(na)
2105 		      : CC_OUT(na) (error) : "a" (&operand), "c" (ext)
2106 		      : "memory");
2107 	BUG_ON(error);
2108 }
2109 
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)2110 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
2111 {
2112 	int i;
2113 
2114 	i = __find_msr_index(vmx, msr);
2115 	if (i >= 0)
2116 		return &vmx->guest_msrs[i];
2117 	return NULL;
2118 }
2119 
vmcs_clear(struct vmcs * vmcs)2120 static void vmcs_clear(struct vmcs *vmcs)
2121 {
2122 	u64 phys_addr = __pa(vmcs);
2123 	bool error;
2124 
2125 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) CC_SET(na)
2126 		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
2127 		      : "memory");
2128 	if (unlikely(error))
2129 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
2130 		       vmcs, phys_addr);
2131 }
2132 
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)2133 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
2134 {
2135 	vmcs_clear(loaded_vmcs->vmcs);
2136 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
2137 		vmcs_clear(loaded_vmcs->shadow_vmcs);
2138 	loaded_vmcs->cpu = -1;
2139 	loaded_vmcs->launched = 0;
2140 }
2141 
vmcs_load(struct vmcs * vmcs)2142 static void vmcs_load(struct vmcs *vmcs)
2143 {
2144 	u64 phys_addr = __pa(vmcs);
2145 	bool error;
2146 
2147 	if (static_branch_unlikely(&enable_evmcs))
2148 		return evmcs_load(phys_addr);
2149 
2150 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) CC_SET(na)
2151 		      : CC_OUT(na) (error) : "a"(&phys_addr), "m"(phys_addr)
2152 		      : "memory");
2153 	if (unlikely(error))
2154 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
2155 		       vmcs, phys_addr);
2156 }
2157 
2158 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)2159 static void crash_vmclear_local_loaded_vmcss(void)
2160 {
2161 	int cpu = raw_smp_processor_id();
2162 	struct loaded_vmcs *v;
2163 
2164 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
2165 			    loaded_vmcss_on_cpu_link)
2166 		vmcs_clear(v->vmcs);
2167 }
2168 #endif /* CONFIG_KEXEC_CORE */
2169 
__loaded_vmcs_clear(void * arg)2170 static void __loaded_vmcs_clear(void *arg)
2171 {
2172 	struct loaded_vmcs *loaded_vmcs = arg;
2173 	int cpu = raw_smp_processor_id();
2174 
2175 	if (loaded_vmcs->cpu != cpu)
2176 		return; /* vcpu migration can race with cpu offline */
2177 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
2178 		per_cpu(current_vmcs, cpu) = NULL;
2179 
2180 	vmcs_clear(loaded_vmcs->vmcs);
2181 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
2182 		vmcs_clear(loaded_vmcs->shadow_vmcs);
2183 
2184 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
2185 
2186 	/*
2187 	 * Ensure all writes to loaded_vmcs, including deleting it from its
2188 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
2189 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
2190 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
2191 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
2192 	 */
2193 	smp_wmb();
2194 
2195 	loaded_vmcs->cpu = -1;
2196 	loaded_vmcs->launched = 0;
2197 }
2198 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)2199 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
2200 {
2201 	int cpu = loaded_vmcs->cpu;
2202 
2203 	if (cpu != -1)
2204 		smp_call_function_single(cpu,
2205 			 __loaded_vmcs_clear, loaded_vmcs, 1);
2206 }
2207 
vpid_sync_vcpu_addr(int vpid,gva_t addr)2208 static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
2209 {
2210 	if (vpid == 0)
2211 		return true;
2212 
2213 	if (cpu_has_vmx_invvpid_individual_addr()) {
2214 		__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
2215 		return true;
2216 	}
2217 
2218 	return false;
2219 }
2220 
vpid_sync_vcpu_single(int vpid)2221 static inline void vpid_sync_vcpu_single(int vpid)
2222 {
2223 	if (vpid == 0)
2224 		return;
2225 
2226 	if (cpu_has_vmx_invvpid_single())
2227 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2228 }
2229 
vpid_sync_vcpu_global(void)2230 static inline void vpid_sync_vcpu_global(void)
2231 {
2232 	if (cpu_has_vmx_invvpid_global())
2233 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
2234 }
2235 
vpid_sync_context(int vpid)2236 static inline void vpid_sync_context(int vpid)
2237 {
2238 	if (cpu_has_vmx_invvpid_single())
2239 		vpid_sync_vcpu_single(vpid);
2240 	else
2241 		vpid_sync_vcpu_global();
2242 }
2243 
ept_sync_global(void)2244 static inline void ept_sync_global(void)
2245 {
2246 	__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
2247 }
2248 
ept_sync_context(u64 eptp)2249 static inline void ept_sync_context(u64 eptp)
2250 {
2251 	if (cpu_has_vmx_invept_context())
2252 		__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
2253 	else
2254 		ept_sync_global();
2255 }
2256 
vmcs_check16(unsigned long field)2257 static __always_inline void vmcs_check16(unsigned long field)
2258 {
2259         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
2260 			 "16-bit accessor invalid for 64-bit field");
2261         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2262 			 "16-bit accessor invalid for 64-bit high field");
2263         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2264 			 "16-bit accessor invalid for 32-bit high field");
2265         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2266 			 "16-bit accessor invalid for natural width field");
2267 }
2268 
vmcs_check32(unsigned long field)2269 static __always_inline void vmcs_check32(unsigned long field)
2270 {
2271         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2272 			 "32-bit accessor invalid for 16-bit field");
2273         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2274 			 "32-bit accessor invalid for natural width field");
2275 }
2276 
vmcs_check64(unsigned long field)2277 static __always_inline void vmcs_check64(unsigned long field)
2278 {
2279         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2280 			 "64-bit accessor invalid for 16-bit field");
2281         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2282 			 "64-bit accessor invalid for 64-bit high field");
2283         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2284 			 "64-bit accessor invalid for 32-bit field");
2285         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2286 			 "64-bit accessor invalid for natural width field");
2287 }
2288 
vmcs_checkl(unsigned long field)2289 static __always_inline void vmcs_checkl(unsigned long field)
2290 {
2291         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2292 			 "Natural width accessor invalid for 16-bit field");
2293         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
2294 			 "Natural width accessor invalid for 64-bit field");
2295         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2296 			 "Natural width accessor invalid for 64-bit high field");
2297         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2298 			 "Natural width accessor invalid for 32-bit field");
2299 }
2300 
__vmcs_readl(unsigned long field)2301 static __always_inline unsigned long __vmcs_readl(unsigned long field)
2302 {
2303 	unsigned long value;
2304 
2305 	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
2306 		      : "=a"(value) : "d"(field) : "cc");
2307 	return value;
2308 }
2309 
vmcs_read16(unsigned long field)2310 static __always_inline u16 vmcs_read16(unsigned long field)
2311 {
2312 	vmcs_check16(field);
2313 	if (static_branch_unlikely(&enable_evmcs))
2314 		return evmcs_read16(field);
2315 	return __vmcs_readl(field);
2316 }
2317 
vmcs_read32(unsigned long field)2318 static __always_inline u32 vmcs_read32(unsigned long field)
2319 {
2320 	vmcs_check32(field);
2321 	if (static_branch_unlikely(&enable_evmcs))
2322 		return evmcs_read32(field);
2323 	return __vmcs_readl(field);
2324 }
2325 
vmcs_read64(unsigned long field)2326 static __always_inline u64 vmcs_read64(unsigned long field)
2327 {
2328 	vmcs_check64(field);
2329 	if (static_branch_unlikely(&enable_evmcs))
2330 		return evmcs_read64(field);
2331 #ifdef CONFIG_X86_64
2332 	return __vmcs_readl(field);
2333 #else
2334 	return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
2335 #endif
2336 }
2337 
vmcs_readl(unsigned long field)2338 static __always_inline unsigned long vmcs_readl(unsigned long field)
2339 {
2340 	vmcs_checkl(field);
2341 	if (static_branch_unlikely(&enable_evmcs))
2342 		return evmcs_read64(field);
2343 	return __vmcs_readl(field);
2344 }
2345 
vmwrite_error(unsigned long field,unsigned long value)2346 static noinline void vmwrite_error(unsigned long field, unsigned long value)
2347 {
2348 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
2349 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
2350 	dump_stack();
2351 }
2352 
__vmcs_writel(unsigned long field,unsigned long value)2353 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
2354 {
2355 	bool error;
2356 
2357 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) CC_SET(na)
2358 		      : CC_OUT(na) (error) : "a"(value), "d"(field));
2359 	if (unlikely(error))
2360 		vmwrite_error(field, value);
2361 }
2362 
vmcs_write16(unsigned long field,u16 value)2363 static __always_inline void vmcs_write16(unsigned long field, u16 value)
2364 {
2365 	vmcs_check16(field);
2366 	if (static_branch_unlikely(&enable_evmcs))
2367 		return evmcs_write16(field, value);
2368 
2369 	__vmcs_writel(field, value);
2370 }
2371 
vmcs_write32(unsigned long field,u32 value)2372 static __always_inline void vmcs_write32(unsigned long field, u32 value)
2373 {
2374 	vmcs_check32(field);
2375 	if (static_branch_unlikely(&enable_evmcs))
2376 		return evmcs_write32(field, value);
2377 
2378 	__vmcs_writel(field, value);
2379 }
2380 
vmcs_write64(unsigned long field,u64 value)2381 static __always_inline void vmcs_write64(unsigned long field, u64 value)
2382 {
2383 	vmcs_check64(field);
2384 	if (static_branch_unlikely(&enable_evmcs))
2385 		return evmcs_write64(field, value);
2386 
2387 	__vmcs_writel(field, value);
2388 #ifndef CONFIG_X86_64
2389 	asm volatile ("");
2390 	__vmcs_writel(field+1, value >> 32);
2391 #endif
2392 }
2393 
vmcs_writel(unsigned long field,unsigned long value)2394 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2395 {
2396 	vmcs_checkl(field);
2397 	if (static_branch_unlikely(&enable_evmcs))
2398 		return evmcs_write64(field, value);
2399 
2400 	__vmcs_writel(field, value);
2401 }
2402 
vmcs_clear_bits(unsigned long field,u32 mask)2403 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2404 {
2405         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
2406 			 "vmcs_clear_bits does not support 64-bit fields");
2407 	if (static_branch_unlikely(&enable_evmcs))
2408 		return evmcs_write32(field, evmcs_read32(field) & ~mask);
2409 
2410 	__vmcs_writel(field, __vmcs_readl(field) & ~mask);
2411 }
2412 
vmcs_set_bits(unsigned long field,u32 mask)2413 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2414 {
2415         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
2416 			 "vmcs_set_bits does not support 64-bit fields");
2417 	if (static_branch_unlikely(&enable_evmcs))
2418 		return evmcs_write32(field, evmcs_read32(field) | mask);
2419 
2420 	__vmcs_writel(field, __vmcs_readl(field) | mask);
2421 }
2422 
vm_entry_controls_reset_shadow(struct vcpu_vmx * vmx)2423 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
2424 {
2425 	vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
2426 }
2427 
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)2428 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
2429 {
2430 	vmcs_write32(VM_ENTRY_CONTROLS, val);
2431 	vmx->vm_entry_controls_shadow = val;
2432 }
2433 
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)2434 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
2435 {
2436 	if (vmx->vm_entry_controls_shadow != val)
2437 		vm_entry_controls_init(vmx, val);
2438 }
2439 
vm_entry_controls_get(struct vcpu_vmx * vmx)2440 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
2441 {
2442 	return vmx->vm_entry_controls_shadow;
2443 }
2444 
2445 
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)2446 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2447 {
2448 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
2449 }
2450 
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)2451 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2452 {
2453 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
2454 }
2455 
vm_exit_controls_reset_shadow(struct vcpu_vmx * vmx)2456 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
2457 {
2458 	vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
2459 }
2460 
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)2461 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
2462 {
2463 	vmcs_write32(VM_EXIT_CONTROLS, val);
2464 	vmx->vm_exit_controls_shadow = val;
2465 }
2466 
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)2467 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
2468 {
2469 	if (vmx->vm_exit_controls_shadow != val)
2470 		vm_exit_controls_init(vmx, val);
2471 }
2472 
vm_exit_controls_get(struct vcpu_vmx * vmx)2473 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
2474 {
2475 	return vmx->vm_exit_controls_shadow;
2476 }
2477 
2478 
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)2479 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2480 {
2481 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
2482 }
2483 
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)2484 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2485 {
2486 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
2487 }
2488 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)2489 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
2490 {
2491 	vmx->segment_cache.bitmask = 0;
2492 }
2493 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)2494 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
2495 				       unsigned field)
2496 {
2497 	bool ret;
2498 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
2499 
2500 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
2501 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
2502 		vmx->segment_cache.bitmask = 0;
2503 	}
2504 	ret = vmx->segment_cache.bitmask & mask;
2505 	vmx->segment_cache.bitmask |= mask;
2506 	return ret;
2507 }
2508 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)2509 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
2510 {
2511 	u16 *p = &vmx->segment_cache.seg[seg].selector;
2512 
2513 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
2514 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
2515 	return *p;
2516 }
2517 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)2518 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
2519 {
2520 	ulong *p = &vmx->segment_cache.seg[seg].base;
2521 
2522 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
2523 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
2524 	return *p;
2525 }
2526 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)2527 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
2528 {
2529 	u32 *p = &vmx->segment_cache.seg[seg].limit;
2530 
2531 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
2532 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
2533 	return *p;
2534 }
2535 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)2536 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
2537 {
2538 	u32 *p = &vmx->segment_cache.seg[seg].ar;
2539 
2540 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
2541 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
2542 	return *p;
2543 }
2544 
update_exception_bitmap(struct kvm_vcpu * vcpu)2545 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
2546 {
2547 	u32 eb;
2548 
2549 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
2550 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
2551 	/*
2552 	 * Guest access to VMware backdoor ports could legitimately
2553 	 * trigger #GP because of TSS I/O permission bitmap.
2554 	 * We intercept those #GP and allow access to them anyway
2555 	 * as VMware does.
2556 	 */
2557 	if (enable_vmware_backdoor)
2558 		eb |= (1u << GP_VECTOR);
2559 	if ((vcpu->guest_debug &
2560 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
2561 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
2562 		eb |= 1u << BP_VECTOR;
2563 	if (to_vmx(vcpu)->rmode.vm86_active)
2564 		eb = ~0;
2565 	if (enable_ept)
2566 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
2567 
2568 	/* When we are running a nested L2 guest and L1 specified for it a
2569 	 * certain exception bitmap, we must trap the same exceptions and pass
2570 	 * them to L1. When running L2, we will only handle the exceptions
2571 	 * specified above if L1 did not want them.
2572 	 */
2573 	if (is_guest_mode(vcpu))
2574 		eb |= get_vmcs12(vcpu)->exception_bitmap;
2575 
2576 	vmcs_write32(EXCEPTION_BITMAP, eb);
2577 }
2578 
2579 /*
2580  * Check if MSR is intercepted for currently loaded MSR bitmap.
2581  */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)2582 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
2583 {
2584 	unsigned long *msr_bitmap;
2585 	int f = sizeof(unsigned long);
2586 
2587 	if (!cpu_has_vmx_msr_bitmap())
2588 		return true;
2589 
2590 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
2591 
2592 	if (msr <= 0x1fff) {
2593 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
2594 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2595 		msr &= 0x1fff;
2596 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2597 	}
2598 
2599 	return true;
2600 }
2601 
2602 /*
2603  * Check if MSR is intercepted for L01 MSR bitmap.
2604  */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)2605 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
2606 {
2607 	unsigned long *msr_bitmap;
2608 	int f = sizeof(unsigned long);
2609 
2610 	if (!cpu_has_vmx_msr_bitmap())
2611 		return true;
2612 
2613 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
2614 
2615 	if (msr <= 0x1fff) {
2616 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
2617 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2618 		msr &= 0x1fff;
2619 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2620 	}
2621 
2622 	return true;
2623 }
2624 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)2625 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2626 		unsigned long entry, unsigned long exit)
2627 {
2628 	vm_entry_controls_clearbit(vmx, entry);
2629 	vm_exit_controls_clearbit(vmx, exit);
2630 }
2631 
find_msr(struct vmx_msrs * m,unsigned int msr)2632 static int find_msr(struct vmx_msrs *m, unsigned int msr)
2633 {
2634 	unsigned int i;
2635 
2636 	for (i = 0; i < m->nr; ++i) {
2637 		if (m->val[i].index == msr)
2638 			return i;
2639 	}
2640 	return -ENOENT;
2641 }
2642 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)2643 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
2644 {
2645 	int i;
2646 	struct msr_autoload *m = &vmx->msr_autoload;
2647 
2648 	switch (msr) {
2649 	case MSR_EFER:
2650 		if (cpu_has_load_ia32_efer) {
2651 			clear_atomic_switch_msr_special(vmx,
2652 					VM_ENTRY_LOAD_IA32_EFER,
2653 					VM_EXIT_LOAD_IA32_EFER);
2654 			return;
2655 		}
2656 		break;
2657 	case MSR_CORE_PERF_GLOBAL_CTRL:
2658 		if (cpu_has_load_perf_global_ctrl) {
2659 			clear_atomic_switch_msr_special(vmx,
2660 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2661 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2662 			return;
2663 		}
2664 		break;
2665 	}
2666 	i = find_msr(&m->guest, msr);
2667 	if (i < 0)
2668 		goto skip_guest;
2669 	--m->guest.nr;
2670 	m->guest.val[i] = m->guest.val[m->guest.nr];
2671 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
2672 
2673 skip_guest:
2674 	i = find_msr(&m->host, msr);
2675 	if (i < 0)
2676 		return;
2677 
2678 	--m->host.nr;
2679 	m->host.val[i] = m->host.val[m->host.nr];
2680 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
2681 }
2682 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)2683 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2684 		unsigned long entry, unsigned long exit,
2685 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
2686 		u64 guest_val, u64 host_val)
2687 {
2688 	vmcs_write64(guest_val_vmcs, guest_val);
2689 	vmcs_write64(host_val_vmcs, host_val);
2690 	vm_entry_controls_setbit(vmx, entry);
2691 	vm_exit_controls_setbit(vmx, exit);
2692 }
2693 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)2694 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
2695 				  u64 guest_val, u64 host_val, bool entry_only)
2696 {
2697 	int i, j = 0;
2698 	struct msr_autoload *m = &vmx->msr_autoload;
2699 
2700 	switch (msr) {
2701 	case MSR_EFER:
2702 		if (cpu_has_load_ia32_efer) {
2703 			add_atomic_switch_msr_special(vmx,
2704 					VM_ENTRY_LOAD_IA32_EFER,
2705 					VM_EXIT_LOAD_IA32_EFER,
2706 					GUEST_IA32_EFER,
2707 					HOST_IA32_EFER,
2708 					guest_val, host_val);
2709 			return;
2710 		}
2711 		break;
2712 	case MSR_CORE_PERF_GLOBAL_CTRL:
2713 		if (cpu_has_load_perf_global_ctrl) {
2714 			add_atomic_switch_msr_special(vmx,
2715 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2716 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2717 					GUEST_IA32_PERF_GLOBAL_CTRL,
2718 					HOST_IA32_PERF_GLOBAL_CTRL,
2719 					guest_val, host_val);
2720 			return;
2721 		}
2722 		break;
2723 	case MSR_IA32_PEBS_ENABLE:
2724 		/* PEBS needs a quiescent period after being disabled (to write
2725 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
2726 		 * provide that period, so a CPU could write host's record into
2727 		 * guest's memory.
2728 		 */
2729 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2730 	}
2731 
2732 	i = find_msr(&m->guest, msr);
2733 	if (!entry_only)
2734 		j = find_msr(&m->host, msr);
2735 
2736 	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
2737 		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
2738 		printk_once(KERN_WARNING "Not enough msr switch entries. "
2739 				"Can't add msr %x\n", msr);
2740 		return;
2741 	}
2742 	if (i < 0) {
2743 		i = m->guest.nr++;
2744 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
2745 	}
2746 	m->guest.val[i].index = msr;
2747 	m->guest.val[i].value = guest_val;
2748 
2749 	if (entry_only)
2750 		return;
2751 
2752 	if (j < 0) {
2753 		j = m->host.nr++;
2754 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
2755 	}
2756 	m->host.val[j].index = msr;
2757 	m->host.val[j].value = host_val;
2758 }
2759 
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)2760 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2761 {
2762 	u64 guest_efer = vmx->vcpu.arch.efer;
2763 	u64 ignore_bits = 0;
2764 
2765 	/* Shadow paging assumes NX to be available.  */
2766 	if (!enable_ept)
2767 		guest_efer |= EFER_NX;
2768 
2769 	/*
2770 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2771 	 */
2772 	ignore_bits |= EFER_SCE;
2773 #ifdef CONFIG_X86_64
2774 	ignore_bits |= EFER_LMA | EFER_LME;
2775 	/* SCE is meaningful only in long mode on Intel */
2776 	if (guest_efer & EFER_LMA)
2777 		ignore_bits &= ~(u64)EFER_SCE;
2778 #endif
2779 
2780 	clear_atomic_switch_msr(vmx, MSR_EFER);
2781 
2782 	/*
2783 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2784 	 * On CPUs that support "load IA32_EFER", always switch EFER
2785 	 * atomically, since it's faster than switching it manually.
2786 	 */
2787 	if (cpu_has_load_ia32_efer ||
2788 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2789 		if (!(guest_efer & EFER_LMA))
2790 			guest_efer &= ~EFER_LME;
2791 		if (guest_efer != host_efer)
2792 			add_atomic_switch_msr(vmx, MSR_EFER,
2793 					      guest_efer, host_efer, false);
2794 		return false;
2795 	} else {
2796 		guest_efer &= ~ignore_bits;
2797 		guest_efer |= host_efer & ignore_bits;
2798 
2799 		vmx->guest_msrs[efer_offset].data = guest_efer;
2800 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2801 
2802 		return true;
2803 	}
2804 }
2805 
2806 #ifdef CONFIG_X86_32
2807 /*
2808  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2809  * VMCS rather than the segment table.  KVM uses this helper to figure
2810  * out the current bases to poke them into the VMCS before entry.
2811  */
segment_base(u16 selector)2812 static unsigned long segment_base(u16 selector)
2813 {
2814 	struct desc_struct *table;
2815 	unsigned long v;
2816 
2817 	if (!(selector & ~SEGMENT_RPL_MASK))
2818 		return 0;
2819 
2820 	table = get_current_gdt_ro();
2821 
2822 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2823 		u16 ldt_selector = kvm_read_ldt();
2824 
2825 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2826 			return 0;
2827 
2828 		table = (struct desc_struct *)segment_base(ldt_selector);
2829 	}
2830 	v = get_desc_base(&table[selector >> 3]);
2831 	return v;
2832 }
2833 #endif
2834 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)2835 static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
2836 {
2837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2838 	struct vmcs_host_state *host_state;
2839 #ifdef CONFIG_X86_64
2840 	int cpu = raw_smp_processor_id();
2841 #endif
2842 	unsigned long fs_base, gs_base;
2843 	u16 fs_sel, gs_sel;
2844 	int i;
2845 
2846 	vmx->req_immediate_exit = false;
2847 
2848 	/*
2849 	 * Note that guest MSRs to be saved/restored can also be changed
2850 	 * when guest state is loaded. This happens when guest transitions
2851 	 * to/from long-mode by setting MSR_EFER.LMA.
2852 	 */
2853 	if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
2854 		vmx->guest_msrs_dirty = false;
2855 		for (i = 0; i < vmx->save_nmsrs; ++i)
2856 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
2857 					   vmx->guest_msrs[i].data,
2858 					   vmx->guest_msrs[i].mask);
2859 
2860 	}
2861 
2862 	if (vmx->loaded_cpu_state)
2863 		return;
2864 
2865 	vmx->loaded_cpu_state = vmx->loaded_vmcs;
2866 	host_state = &vmx->loaded_cpu_state->host_state;
2867 
2868 	/*
2869 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2870 	 * allow segment selectors with cpl > 0 or ti == 1.
2871 	 */
2872 	host_state->ldt_sel = kvm_read_ldt();
2873 
2874 #ifdef CONFIG_X86_64
2875 	savesegment(ds, host_state->ds_sel);
2876 	savesegment(es, host_state->es_sel);
2877 
2878 	gs_base = cpu_kernelmode_gs_base(cpu);
2879 	if (likely(is_64bit_mm(current->mm))) {
2880 		save_fsgs_for_kvm();
2881 		fs_sel = current->thread.fsindex;
2882 		gs_sel = current->thread.gsindex;
2883 		fs_base = current->thread.fsbase;
2884 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
2885 	} else {
2886 		savesegment(fs, fs_sel);
2887 		savesegment(gs, gs_sel);
2888 		fs_base = read_msr(MSR_FS_BASE);
2889 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
2890 	}
2891 
2892 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2893 #else
2894 	savesegment(fs, fs_sel);
2895 	savesegment(gs, gs_sel);
2896 	fs_base = segment_base(fs_sel);
2897 	gs_base = segment_base(gs_sel);
2898 #endif
2899 
2900 	if (unlikely(fs_sel != host_state->fs_sel)) {
2901 		if (!(fs_sel & 7))
2902 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
2903 		else
2904 			vmcs_write16(HOST_FS_SELECTOR, 0);
2905 		host_state->fs_sel = fs_sel;
2906 	}
2907 	if (unlikely(gs_sel != host_state->gs_sel)) {
2908 		if (!(gs_sel & 7))
2909 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
2910 		else
2911 			vmcs_write16(HOST_GS_SELECTOR, 0);
2912 		host_state->gs_sel = gs_sel;
2913 	}
2914 	if (unlikely(fs_base != host_state->fs_base)) {
2915 		vmcs_writel(HOST_FS_BASE, fs_base);
2916 		host_state->fs_base = fs_base;
2917 	}
2918 	if (unlikely(gs_base != host_state->gs_base)) {
2919 		vmcs_writel(HOST_GS_BASE, gs_base);
2920 		host_state->gs_base = gs_base;
2921 	}
2922 }
2923 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)2924 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
2925 {
2926 	struct vmcs_host_state *host_state;
2927 
2928 	if (!vmx->loaded_cpu_state)
2929 		return;
2930 
2931 	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
2932 	host_state = &vmx->loaded_cpu_state->host_state;
2933 
2934 	++vmx->vcpu.stat.host_state_reload;
2935 	vmx->loaded_cpu_state = NULL;
2936 
2937 #ifdef CONFIG_X86_64
2938 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2939 #endif
2940 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
2941 		kvm_load_ldt(host_state->ldt_sel);
2942 #ifdef CONFIG_X86_64
2943 		load_gs_index(host_state->gs_sel);
2944 #else
2945 		loadsegment(gs, host_state->gs_sel);
2946 #endif
2947 	}
2948 	if (host_state->fs_sel & 7)
2949 		loadsegment(fs, host_state->fs_sel);
2950 #ifdef CONFIG_X86_64
2951 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
2952 		loadsegment(ds, host_state->ds_sel);
2953 		loadsegment(es, host_state->es_sel);
2954 	}
2955 #endif
2956 	invalidate_tss_limit();
2957 #ifdef CONFIG_X86_64
2958 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2959 #endif
2960 	load_fixmap_gdt(raw_smp_processor_id());
2961 }
2962 
2963 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)2964 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
2965 {
2966 	preempt_disable();
2967 	if (vmx->loaded_cpu_state)
2968 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2969 	preempt_enable();
2970 	return vmx->msr_guest_kernel_gs_base;
2971 }
2972 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)2973 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
2974 {
2975 	preempt_disable();
2976 	if (vmx->loaded_cpu_state)
2977 		wrmsrl(MSR_KERNEL_GS_BASE, data);
2978 	preempt_enable();
2979 	vmx->msr_guest_kernel_gs_base = data;
2980 }
2981 #endif
2982 
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)2983 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2984 {
2985 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2986 	struct pi_desc old, new;
2987 	unsigned int dest;
2988 
2989 	/*
2990 	 * In case of hot-plug or hot-unplug, we may have to undo
2991 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
2992 	 * always keep PI.NDST up to date for simplicity: it makes the
2993 	 * code easier, and CPU migration is not a fast path.
2994 	 */
2995 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2996 		return;
2997 
2998 	/*
2999 	 * First handle the simple case where no cmpxchg is necessary; just
3000 	 * allow posting non-urgent interrupts.
3001 	 *
3002 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
3003 	 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
3004 	 * expects the VCPU to be on the blocked_vcpu_list that matches
3005 	 * PI.NDST.
3006 	 */
3007 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
3008 	    vcpu->cpu == cpu) {
3009 		pi_clear_sn(pi_desc);
3010 		return;
3011 	}
3012 
3013 	/* The full case.  */
3014 	do {
3015 		old.control = new.control = pi_desc->control;
3016 
3017 		dest = cpu_physical_id(cpu);
3018 
3019 		if (x2apic_enabled())
3020 			new.ndst = dest;
3021 		else
3022 			new.ndst = (dest << 8) & 0xFF00;
3023 
3024 		new.sn = 0;
3025 	} while (cmpxchg64(&pi_desc->control, old.control,
3026 			   new.control) != old.control);
3027 }
3028 
decache_tsc_multiplier(struct vcpu_vmx * vmx)3029 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
3030 {
3031 	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
3032 	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
3033 }
3034 
3035 /*
3036  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
3037  * vcpu mutex is already taken.
3038  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3039 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3040 {
3041 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3042 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
3043 
3044 	if (!already_loaded) {
3045 		loaded_vmcs_clear(vmx->loaded_vmcs);
3046 		local_irq_disable();
3047 
3048 		/*
3049 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
3050 		 * this cpu's percpu list, otherwise it may not yet be deleted
3051 		 * from its previous cpu's percpu list.  Pairs with the
3052 		 * smb_wmb() in __loaded_vmcs_clear().
3053 		 */
3054 		smp_rmb();
3055 
3056 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
3057 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
3058 		local_irq_enable();
3059 	}
3060 
3061 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
3062 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
3063 		vmcs_load(vmx->loaded_vmcs->vmcs);
3064 		indirect_branch_prediction_barrier();
3065 	}
3066 
3067 	if (!already_loaded) {
3068 		void *gdt = get_current_gdt_ro();
3069 		unsigned long sysenter_esp;
3070 
3071 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3072 
3073 		/*
3074 		 * Linux uses per-cpu TSS and GDT, so set these when switching
3075 		 * processors.  See 22.2.4.
3076 		 */
3077 		vmcs_writel(HOST_TR_BASE,
3078 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
3079 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
3080 
3081 		/*
3082 		 * VM exits change the host TR limit to 0x67 after a VM
3083 		 * exit.  This is okay, since 0x67 covers everything except
3084 		 * the IO bitmap and have have code to handle the IO bitmap
3085 		 * being lost after a VM exit.
3086 		 */
3087 		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
3088 
3089 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
3090 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
3091 
3092 		vmx->loaded_vmcs->cpu = cpu;
3093 	}
3094 
3095 	/* Setup TSC multiplier */
3096 	if (kvm_has_tsc_control &&
3097 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
3098 		decache_tsc_multiplier(vmx);
3099 
3100 	vmx_vcpu_pi_load(vcpu, cpu);
3101 	vmx->host_pkru = read_pkru();
3102 	vmx->host_debugctlmsr = get_debugctlmsr();
3103 }
3104 
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)3105 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
3106 {
3107 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
3108 
3109 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
3110 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
3111 		!kvm_vcpu_apicv_active(vcpu))
3112 		return;
3113 
3114 	/* Set SN when the vCPU is preempted */
3115 	if (vcpu->preempted)
3116 		pi_set_sn(pi_desc);
3117 }
3118 
vmx_vcpu_put(struct kvm_vcpu * vcpu)3119 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
3120 {
3121 	vmx_vcpu_pi_put(vcpu);
3122 
3123 	vmx_prepare_switch_to_host(to_vmx(vcpu));
3124 }
3125 
emulation_required(struct kvm_vcpu * vcpu)3126 static bool emulation_required(struct kvm_vcpu *vcpu)
3127 {
3128 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3129 }
3130 
3131 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
3132 
3133 /*
3134  * Return the cr0 value that a nested guest would read. This is a combination
3135  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
3136  * its hypervisor (cr0_read_shadow).
3137  */
nested_read_cr0(struct vmcs12 * fields)3138 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
3139 {
3140 	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
3141 		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
3142 }
nested_read_cr4(struct vmcs12 * fields)3143 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
3144 {
3145 	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
3146 		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
3147 }
3148 
vmx_get_rflags(struct kvm_vcpu * vcpu)3149 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
3150 {
3151 	unsigned long rflags, save_rflags;
3152 
3153 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
3154 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
3155 		rflags = vmcs_readl(GUEST_RFLAGS);
3156 		if (to_vmx(vcpu)->rmode.vm86_active) {
3157 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3158 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
3159 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3160 		}
3161 		to_vmx(vcpu)->rflags = rflags;
3162 	}
3163 	return to_vmx(vcpu)->rflags;
3164 }
3165 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)3166 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
3167 {
3168 	unsigned long old_rflags = vmx_get_rflags(vcpu);
3169 
3170 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
3171 	to_vmx(vcpu)->rflags = rflags;
3172 	if (to_vmx(vcpu)->rmode.vm86_active) {
3173 		to_vmx(vcpu)->rmode.save_rflags = rflags;
3174 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3175 	}
3176 	vmcs_writel(GUEST_RFLAGS, rflags);
3177 
3178 	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
3179 		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
3180 }
3181 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)3182 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
3183 {
3184 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3185 	int ret = 0;
3186 
3187 	if (interruptibility & GUEST_INTR_STATE_STI)
3188 		ret |= KVM_X86_SHADOW_INT_STI;
3189 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
3190 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
3191 
3192 	return ret;
3193 }
3194 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)3195 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
3196 {
3197 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3198 	u32 interruptibility = interruptibility_old;
3199 
3200 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
3201 
3202 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
3203 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
3204 	else if (mask & KVM_X86_SHADOW_INT_STI)
3205 		interruptibility |= GUEST_INTR_STATE_STI;
3206 
3207 	if ((interruptibility != interruptibility_old))
3208 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
3209 }
3210 
skip_emulated_instruction(struct kvm_vcpu * vcpu)3211 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
3212 {
3213 	unsigned long rip;
3214 
3215 	rip = kvm_rip_read(vcpu);
3216 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3217 	kvm_rip_write(vcpu, rip);
3218 
3219 	/* skipping an emulated instruction also counts */
3220 	vmx_set_interrupt_shadow(vcpu, 0);
3221 }
3222 
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3223 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3224 					       unsigned long exit_qual)
3225 {
3226 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3227 	unsigned int nr = vcpu->arch.exception.nr;
3228 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3229 
3230 	if (vcpu->arch.exception.has_error_code) {
3231 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3232 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3233 	}
3234 
3235 	if (kvm_exception_is_soft(nr))
3236 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3237 	else
3238 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3239 
3240 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3241 	    vmx_get_nmi_mask(vcpu))
3242 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3243 
3244 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3245 }
3246 
3247 /*
3248  * KVM wants to inject page-faults which it got to the guest. This function
3249  * checks whether in a nested guest, we need to inject them to L1 or L2.
3250  */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)3251 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
3252 {
3253 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3254 	unsigned int nr = vcpu->arch.exception.nr;
3255 
3256 	if (nr == PF_VECTOR) {
3257 		if (vcpu->arch.exception.nested_apf) {
3258 			*exit_qual = vcpu->arch.apf.nested_apf_token;
3259 			return 1;
3260 		}
3261 		/*
3262 		 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
3263 		 * The fix is to add the ancillary datum (CR2 or DR6) to structs
3264 		 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
3265 		 * can be written only when inject_pending_event runs.  This should be
3266 		 * conditional on a new capability---if the capability is disabled,
3267 		 * kvm_multiple_exception would write the ancillary information to
3268 		 * CR2 or DR6, for backwards ABI-compatibility.
3269 		 */
3270 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
3271 						    vcpu->arch.exception.error_code)) {
3272 			*exit_qual = vcpu->arch.cr2;
3273 			return 1;
3274 		}
3275 	} else {
3276 		if (vmcs12->exception_bitmap & (1u << nr)) {
3277 			if (nr == DB_VECTOR) {
3278 				*exit_qual = vcpu->arch.dr6;
3279 				*exit_qual &= ~(DR6_FIXED_1 | DR6_BT);
3280 				*exit_qual ^= DR6_RTM;
3281 			} else {
3282 				*exit_qual = 0;
3283 			}
3284 			return 1;
3285 		}
3286 	}
3287 
3288 	return 0;
3289 }
3290 
vmx_clear_hlt(struct kvm_vcpu * vcpu)3291 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
3292 {
3293 	/*
3294 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
3295 	 * explicitly skip the instruction because if the HLT state is set,
3296 	 * then the instruction is already executing and RIP has already been
3297 	 * advanced.
3298 	 */
3299 	if (kvm_hlt_in_guest(vcpu->kvm) &&
3300 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
3301 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3302 }
3303 
vmx_queue_exception(struct kvm_vcpu * vcpu)3304 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
3305 {
3306 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3307 	unsigned nr = vcpu->arch.exception.nr;
3308 	bool has_error_code = vcpu->arch.exception.has_error_code;
3309 	u32 error_code = vcpu->arch.exception.error_code;
3310 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3311 
3312 	if (has_error_code) {
3313 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
3314 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3315 	}
3316 
3317 	if (vmx->rmode.vm86_active) {
3318 		int inc_eip = 0;
3319 		if (kvm_exception_is_soft(nr))
3320 			inc_eip = vcpu->arch.event_exit_inst_len;
3321 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
3322 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3323 		return;
3324 	}
3325 
3326 	WARN_ON_ONCE(vmx->emulation_required);
3327 
3328 	if (kvm_exception_is_soft(nr)) {
3329 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3330 			     vmx->vcpu.arch.event_exit_inst_len);
3331 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3332 	} else
3333 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3334 
3335 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
3336 
3337 	vmx_clear_hlt(vcpu);
3338 }
3339 
vmx_rdtscp_supported(void)3340 static bool vmx_rdtscp_supported(void)
3341 {
3342 	return cpu_has_vmx_rdtscp();
3343 }
3344 
vmx_invpcid_supported(void)3345 static bool vmx_invpcid_supported(void)
3346 {
3347 	return cpu_has_vmx_invpcid();
3348 }
3349 
3350 /*
3351  * Swap MSR entry in host/guest MSR entry array.
3352  */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)3353 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
3354 {
3355 	struct shared_msr_entry tmp;
3356 
3357 	tmp = vmx->guest_msrs[to];
3358 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
3359 	vmx->guest_msrs[from] = tmp;
3360 }
3361 
3362 /*
3363  * Set up the vmcs to automatically save and restore system
3364  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
3365  * mode, as fiddling with msrs is very expensive.
3366  */
setup_msrs(struct vcpu_vmx * vmx)3367 static void setup_msrs(struct vcpu_vmx *vmx)
3368 {
3369 	int save_nmsrs, index;
3370 
3371 	save_nmsrs = 0;
3372 #ifdef CONFIG_X86_64
3373 	if (is_long_mode(&vmx->vcpu)) {
3374 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
3375 		if (index >= 0)
3376 			move_msr_up(vmx, index, save_nmsrs++);
3377 		index = __find_msr_index(vmx, MSR_LSTAR);
3378 		if (index >= 0)
3379 			move_msr_up(vmx, index, save_nmsrs++);
3380 		index = __find_msr_index(vmx, MSR_CSTAR);
3381 		if (index >= 0)
3382 			move_msr_up(vmx, index, save_nmsrs++);
3383 		/*
3384 		 * MSR_STAR is only needed on long mode guests, and only
3385 		 * if efer.sce is enabled.
3386 		 */
3387 		index = __find_msr_index(vmx, MSR_STAR);
3388 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
3389 			move_msr_up(vmx, index, save_nmsrs++);
3390 	}
3391 #endif
3392 	index = __find_msr_index(vmx, MSR_EFER);
3393 	if (index >= 0 && update_transition_efer(vmx, index))
3394 		move_msr_up(vmx, index, save_nmsrs++);
3395 	index = __find_msr_index(vmx, MSR_TSC_AUX);
3396 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
3397 		move_msr_up(vmx, index, save_nmsrs++);
3398 
3399 	vmx->save_nmsrs = save_nmsrs;
3400 	vmx->guest_msrs_dirty = true;
3401 
3402 	if (cpu_has_vmx_msr_bitmap())
3403 		vmx_update_msr_bitmap(&vmx->vcpu);
3404 }
3405 
vmx_read_l1_tsc_offset(struct kvm_vcpu * vcpu)3406 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
3407 {
3408 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3409 
3410 	if (is_guest_mode(vcpu) &&
3411 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
3412 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
3413 
3414 	return vcpu->arch.tsc_offset;
3415 }
3416 
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)3417 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
3418 {
3419 	u64 active_offset = offset;
3420 	if (is_guest_mode(vcpu)) {
3421 		/*
3422 		 * We're here if L1 chose not to trap WRMSR to TSC. According
3423 		 * to the spec, this should set L1's TSC; The offset that L1
3424 		 * set for L2 remains unchanged, and still needs to be added
3425 		 * to the newly set TSC to get L2's TSC.
3426 		 */
3427 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3428 		if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING))
3429 			active_offset += vmcs12->tsc_offset;
3430 	} else {
3431 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
3432 					   vmcs_read64(TSC_OFFSET), offset);
3433 	}
3434 
3435 	vmcs_write64(TSC_OFFSET, active_offset);
3436 	return active_offset;
3437 }
3438 
3439 /*
3440  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
3441  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
3442  * all guests if the "nested" module option is off, and can also be disabled
3443  * for a single guest by disabling its VMX cpuid bit.
3444  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)3445 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
3446 {
3447 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
3448 }
3449 
3450 /*
3451  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
3452  * returned for the various VMX controls MSRs when nested VMX is enabled.
3453  * The same values should also be used to verify that vmcs12 control fields are
3454  * valid during nested entry from L1 to L2.
3455  * Each of these control msrs has a low and high 32-bit half: A low bit is on
3456  * if the corresponding bit in the (32-bit) control field *must* be on, and a
3457  * bit in the high half is on if the corresponding bit in the control field
3458  * may be on. See also vmx_control_verify().
3459  */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,bool apicv)3460 static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
3461 {
3462 	if (!nested) {
3463 		memset(msrs, 0, sizeof(*msrs));
3464 		return;
3465 	}
3466 
3467 	/*
3468 	 * Note that as a general rule, the high half of the MSRs (bits in
3469 	 * the control fields which may be 1) should be initialized by the
3470 	 * intersection of the underlying hardware's MSR (i.e., features which
3471 	 * can be supported) and the list of features we want to expose -
3472 	 * because they are known to be properly supported in our code.
3473 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
3474 	 * be set to 0, meaning that L1 may turn off any of these bits. The
3475 	 * reason is that if one of these bits is necessary, it will appear
3476 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
3477 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
3478 	 * nested_vmx_exit_reflected() will not pass related exits to L1.
3479 	 * These rules have exceptions below.
3480 	 */
3481 
3482 	/* pin-based controls */
3483 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
3484 		msrs->pinbased_ctls_low,
3485 		msrs->pinbased_ctls_high);
3486 	msrs->pinbased_ctls_low |=
3487 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3488 	msrs->pinbased_ctls_high &=
3489 		PIN_BASED_EXT_INTR_MASK |
3490 		PIN_BASED_NMI_EXITING |
3491 		PIN_BASED_VIRTUAL_NMIS |
3492 		(apicv ? PIN_BASED_POSTED_INTR : 0);
3493 	msrs->pinbased_ctls_high |=
3494 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
3495 		PIN_BASED_VMX_PREEMPTION_TIMER;
3496 
3497 	/* exit controls */
3498 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
3499 		msrs->exit_ctls_low,
3500 		msrs->exit_ctls_high);
3501 	msrs->exit_ctls_low =
3502 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3503 
3504 	msrs->exit_ctls_high &=
3505 #ifdef CONFIG_X86_64
3506 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
3507 #endif
3508 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
3509 	msrs->exit_ctls_high |=
3510 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
3511 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
3512 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
3513 
3514 	/* We support free control of debug control saving. */
3515 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
3516 
3517 	/* entry controls */
3518 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
3519 		msrs->entry_ctls_low,
3520 		msrs->entry_ctls_high);
3521 	msrs->entry_ctls_low =
3522 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3523 	msrs->entry_ctls_high &=
3524 #ifdef CONFIG_X86_64
3525 		VM_ENTRY_IA32E_MODE |
3526 #endif
3527 		VM_ENTRY_LOAD_IA32_PAT;
3528 	msrs->entry_ctls_high |=
3529 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
3530 
3531 	/* We support free control of debug control loading. */
3532 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
3533 
3534 	/* cpu-based controls */
3535 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
3536 		msrs->procbased_ctls_low,
3537 		msrs->procbased_ctls_high);
3538 	msrs->procbased_ctls_low =
3539 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3540 	msrs->procbased_ctls_high &=
3541 		CPU_BASED_VIRTUAL_INTR_PENDING |
3542 		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
3543 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
3544 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
3545 		CPU_BASED_CR3_STORE_EXITING |
3546 #ifdef CONFIG_X86_64
3547 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
3548 #endif
3549 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
3550 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
3551 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
3552 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
3553 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3554 	/*
3555 	 * We can allow some features even when not supported by the
3556 	 * hardware. For example, L1 can specify an MSR bitmap - and we
3557 	 * can use it to avoid exits to L1 - even when L0 runs L2
3558 	 * without MSR bitmaps.
3559 	 */
3560 	msrs->procbased_ctls_high |=
3561 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
3562 		CPU_BASED_USE_MSR_BITMAPS;
3563 
3564 	/* We support free control of CR3 access interception. */
3565 	msrs->procbased_ctls_low &=
3566 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
3567 
3568 	/*
3569 	 * secondary cpu-based controls.  Do not include those that
3570 	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
3571 	 */
3572 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
3573 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
3574 		      msrs->secondary_ctls_low,
3575 		      msrs->secondary_ctls_high);
3576 
3577 	msrs->secondary_ctls_low = 0;
3578 	msrs->secondary_ctls_high &=
3579 		SECONDARY_EXEC_DESC |
3580 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3581 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
3582 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3583 		SECONDARY_EXEC_WBINVD_EXITING;
3584 
3585 	/*
3586 	 * We can emulate "VMCS shadowing," even if the hardware
3587 	 * doesn't support it.
3588 	 */
3589 	msrs->secondary_ctls_high |=
3590 		SECONDARY_EXEC_SHADOW_VMCS;
3591 
3592 	if (enable_ept) {
3593 		/* nested EPT: emulate EPT also to L1 */
3594 		msrs->secondary_ctls_high |=
3595 			SECONDARY_EXEC_ENABLE_EPT;
3596 		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
3597 			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
3598 		if (cpu_has_vmx_ept_execute_only())
3599 			msrs->ept_caps |=
3600 				VMX_EPT_EXECUTE_ONLY_BIT;
3601 		msrs->ept_caps &= vmx_capability.ept;
3602 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
3603 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
3604 			VMX_EPT_1GB_PAGE_BIT;
3605 		if (enable_ept_ad_bits) {
3606 			msrs->secondary_ctls_high |=
3607 				SECONDARY_EXEC_ENABLE_PML;
3608 			msrs->ept_caps |= VMX_EPT_AD_BIT;
3609 		}
3610 	}
3611 
3612 	if (cpu_has_vmx_vmfunc()) {
3613 		msrs->secondary_ctls_high |=
3614 			SECONDARY_EXEC_ENABLE_VMFUNC;
3615 		/*
3616 		 * Advertise EPTP switching unconditionally
3617 		 * since we emulate it
3618 		 */
3619 		if (enable_ept)
3620 			msrs->vmfunc_controls =
3621 				VMX_VMFUNC_EPTP_SWITCHING;
3622 	}
3623 
3624 	/*
3625 	 * Old versions of KVM use the single-context version without
3626 	 * checking for support, so declare that it is supported even
3627 	 * though it is treated as global context.  The alternative is
3628 	 * not failing the single-context invvpid, and it is worse.
3629 	 */
3630 	if (enable_vpid) {
3631 		msrs->secondary_ctls_high |=
3632 			SECONDARY_EXEC_ENABLE_VPID;
3633 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
3634 			VMX_VPID_EXTENT_SUPPORTED_MASK;
3635 	}
3636 
3637 	if (enable_unrestricted_guest)
3638 		msrs->secondary_ctls_high |=
3639 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
3640 
3641 	if (flexpriority_enabled)
3642 		msrs->secondary_ctls_high |=
3643 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3644 
3645 	/* miscellaneous data */
3646 	rdmsr(MSR_IA32_VMX_MISC,
3647 		msrs->misc_low,
3648 		msrs->misc_high);
3649 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
3650 	msrs->misc_low |=
3651 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
3652 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
3653 		VMX_MISC_ACTIVITY_HLT;
3654 	msrs->misc_high = 0;
3655 
3656 	/*
3657 	 * This MSR reports some information about VMX support. We
3658 	 * should return information about the VMX we emulate for the
3659 	 * guest, and the VMCS structure we give it - not about the
3660 	 * VMX support of the underlying hardware.
3661 	 */
3662 	msrs->basic =
3663 		VMCS12_REVISION |
3664 		VMX_BASIC_TRUE_CTLS |
3665 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
3666 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
3667 
3668 	if (cpu_has_vmx_basic_inout())
3669 		msrs->basic |= VMX_BASIC_INOUT;
3670 
3671 	/*
3672 	 * These MSRs specify bits which the guest must keep fixed on
3673 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
3674 	 * We picked the standard core2 setting.
3675 	 */
3676 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
3677 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
3678 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
3679 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
3680 
3681 	/* These MSRs specify bits which the guest must keep fixed off. */
3682 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
3683 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
3684 
3685 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
3686 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
3687 }
3688 
3689 /*
3690  * if fixed0[i] == 1: val[i] must be 1
3691  * if fixed1[i] == 0: val[i] must be 0
3692  */
fixed_bits_valid(u64 val,u64 fixed0,u64 fixed1)3693 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
3694 {
3695 	return ((val & fixed1) | fixed0) == val;
3696 }
3697 
vmx_control_verify(u32 control,u32 low,u32 high)3698 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
3699 {
3700 	return fixed_bits_valid(control, low, high);
3701 }
3702 
vmx_control_msr(u32 low,u32 high)3703 static inline u64 vmx_control_msr(u32 low, u32 high)
3704 {
3705 	return low | ((u64)high << 32);
3706 }
3707 
is_bitwise_subset(u64 superset,u64 subset,u64 mask)3708 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
3709 {
3710 	superset &= mask;
3711 	subset &= mask;
3712 
3713 	return (superset | subset) == superset;
3714 }
3715 
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)3716 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
3717 {
3718 	const u64 feature_and_reserved =
3719 		/* feature (except bit 48; see below) */
3720 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
3721 		/* reserved */
3722 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
3723 	u64 vmx_basic = vmx->nested.msrs.basic;
3724 
3725 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
3726 		return -EINVAL;
3727 
3728 	/*
3729 	 * KVM does not emulate a version of VMX that constrains physical
3730 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
3731 	 */
3732 	if (data & BIT_ULL(48))
3733 		return -EINVAL;
3734 
3735 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
3736 	    vmx_basic_vmcs_revision_id(data))
3737 		return -EINVAL;
3738 
3739 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
3740 		return -EINVAL;
3741 
3742 	vmx->nested.msrs.basic = data;
3743 	return 0;
3744 }
3745 
3746 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)3747 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3748 {
3749 	u64 supported;
3750 	u32 *lowp, *highp;
3751 
3752 	switch (msr_index) {
3753 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3754 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
3755 		highp = &vmx->nested.msrs.pinbased_ctls_high;
3756 		break;
3757 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3758 		lowp = &vmx->nested.msrs.procbased_ctls_low;
3759 		highp = &vmx->nested.msrs.procbased_ctls_high;
3760 		break;
3761 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3762 		lowp = &vmx->nested.msrs.exit_ctls_low;
3763 		highp = &vmx->nested.msrs.exit_ctls_high;
3764 		break;
3765 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3766 		lowp = &vmx->nested.msrs.entry_ctls_low;
3767 		highp = &vmx->nested.msrs.entry_ctls_high;
3768 		break;
3769 	case MSR_IA32_VMX_PROCBASED_CTLS2:
3770 		lowp = &vmx->nested.msrs.secondary_ctls_low;
3771 		highp = &vmx->nested.msrs.secondary_ctls_high;
3772 		break;
3773 	default:
3774 		BUG();
3775 	}
3776 
3777 	supported = vmx_control_msr(*lowp, *highp);
3778 
3779 	/* Check must-be-1 bits are still 1. */
3780 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3781 		return -EINVAL;
3782 
3783 	/* Check must-be-0 bits are still 0. */
3784 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3785 		return -EINVAL;
3786 
3787 	*lowp = data;
3788 	*highp = data >> 32;
3789 	return 0;
3790 }
3791 
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)3792 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3793 {
3794 	const u64 feature_and_reserved_bits =
3795 		/* feature */
3796 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3797 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3798 		/* reserved */
3799 		GENMASK_ULL(13, 9) | BIT_ULL(31);
3800 	u64 vmx_misc;
3801 
3802 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
3803 				   vmx->nested.msrs.misc_high);
3804 
3805 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3806 		return -EINVAL;
3807 
3808 	if ((vmx->nested.msrs.pinbased_ctls_high &
3809 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
3810 	    vmx_misc_preemption_timer_rate(data) !=
3811 	    vmx_misc_preemption_timer_rate(vmx_misc))
3812 		return -EINVAL;
3813 
3814 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3815 		return -EINVAL;
3816 
3817 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3818 		return -EINVAL;
3819 
3820 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3821 		return -EINVAL;
3822 
3823 	vmx->nested.msrs.misc_low = data;
3824 	vmx->nested.msrs.misc_high = data >> 32;
3825 
3826 	/*
3827 	 * If L1 has read-only VM-exit information fields, use the
3828 	 * less permissive vmx_vmwrite_bitmap to specify write
3829 	 * permissions for the shadow VMCS.
3830 	 */
3831 	if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
3832 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
3833 
3834 	return 0;
3835 }
3836 
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)3837 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3838 {
3839 	u64 vmx_ept_vpid_cap;
3840 
3841 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
3842 					   vmx->nested.msrs.vpid_caps);
3843 
3844 	/* Every bit is either reserved or a feature bit. */
3845 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3846 		return -EINVAL;
3847 
3848 	vmx->nested.msrs.ept_caps = data;
3849 	vmx->nested.msrs.vpid_caps = data >> 32;
3850 	return 0;
3851 }
3852 
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)3853 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3854 {
3855 	u64 *msr;
3856 
3857 	switch (msr_index) {
3858 	case MSR_IA32_VMX_CR0_FIXED0:
3859 		msr = &vmx->nested.msrs.cr0_fixed0;
3860 		break;
3861 	case MSR_IA32_VMX_CR4_FIXED0:
3862 		msr = &vmx->nested.msrs.cr4_fixed0;
3863 		break;
3864 	default:
3865 		BUG();
3866 	}
3867 
3868 	/*
3869 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3870 	 * must be 1 in the restored value.
3871 	 */
3872 	if (!is_bitwise_subset(data, *msr, -1ULL))
3873 		return -EINVAL;
3874 
3875 	*msr = data;
3876 	return 0;
3877 }
3878 
3879 /*
3880  * Called when userspace is restoring VMX MSRs.
3881  *
3882  * Returns 0 on success, non-0 otherwise.
3883  */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)3884 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3885 {
3886 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3887 
3888 	/*
3889 	 * Don't allow changes to the VMX capability MSRs while the vCPU
3890 	 * is in VMX operation.
3891 	 */
3892 	if (vmx->nested.vmxon)
3893 		return -EBUSY;
3894 
3895 	switch (msr_index) {
3896 	case MSR_IA32_VMX_BASIC:
3897 		return vmx_restore_vmx_basic(vmx, data);
3898 	case MSR_IA32_VMX_PINBASED_CTLS:
3899 	case MSR_IA32_VMX_PROCBASED_CTLS:
3900 	case MSR_IA32_VMX_EXIT_CTLS:
3901 	case MSR_IA32_VMX_ENTRY_CTLS:
3902 		/*
3903 		 * The "non-true" VMX capability MSRs are generated from the
3904 		 * "true" MSRs, so we do not support restoring them directly.
3905 		 *
3906 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3907 		 * should restore the "true" MSRs with the must-be-1 bits
3908 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3909 		 * DEFAULT SETTINGS".
3910 		 */
3911 		return -EINVAL;
3912 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3913 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3914 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3915 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3916 	case MSR_IA32_VMX_PROCBASED_CTLS2:
3917 		return vmx_restore_control_msr(vmx, msr_index, data);
3918 	case MSR_IA32_VMX_MISC:
3919 		return vmx_restore_vmx_misc(vmx, data);
3920 	case MSR_IA32_VMX_CR0_FIXED0:
3921 	case MSR_IA32_VMX_CR4_FIXED0:
3922 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
3923 	case MSR_IA32_VMX_CR0_FIXED1:
3924 	case MSR_IA32_VMX_CR4_FIXED1:
3925 		/*
3926 		 * These MSRs are generated based on the vCPU's CPUID, so we
3927 		 * do not support restoring them directly.
3928 		 */
3929 		return -EINVAL;
3930 	case MSR_IA32_VMX_EPT_VPID_CAP:
3931 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3932 	case MSR_IA32_VMX_VMCS_ENUM:
3933 		vmx->nested.msrs.vmcs_enum = data;
3934 		return 0;
3935 	default:
3936 		/*
3937 		 * The rest of the VMX capability MSRs do not support restore.
3938 		 */
3939 		return -EINVAL;
3940 	}
3941 }
3942 
3943 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)3944 static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
3945 {
3946 	switch (msr_index) {
3947 	case MSR_IA32_VMX_BASIC:
3948 		*pdata = msrs->basic;
3949 		break;
3950 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3951 	case MSR_IA32_VMX_PINBASED_CTLS:
3952 		*pdata = vmx_control_msr(
3953 			msrs->pinbased_ctls_low,
3954 			msrs->pinbased_ctls_high);
3955 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3956 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3957 		break;
3958 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3959 	case MSR_IA32_VMX_PROCBASED_CTLS:
3960 		*pdata = vmx_control_msr(
3961 			msrs->procbased_ctls_low,
3962 			msrs->procbased_ctls_high);
3963 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3964 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3965 		break;
3966 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3967 	case MSR_IA32_VMX_EXIT_CTLS:
3968 		*pdata = vmx_control_msr(
3969 			msrs->exit_ctls_low,
3970 			msrs->exit_ctls_high);
3971 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3972 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3973 		break;
3974 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3975 	case MSR_IA32_VMX_ENTRY_CTLS:
3976 		*pdata = vmx_control_msr(
3977 			msrs->entry_ctls_low,
3978 			msrs->entry_ctls_high);
3979 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3980 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3981 		break;
3982 	case MSR_IA32_VMX_MISC:
3983 		*pdata = vmx_control_msr(
3984 			msrs->misc_low,
3985 			msrs->misc_high);
3986 		break;
3987 	case MSR_IA32_VMX_CR0_FIXED0:
3988 		*pdata = msrs->cr0_fixed0;
3989 		break;
3990 	case MSR_IA32_VMX_CR0_FIXED1:
3991 		*pdata = msrs->cr0_fixed1;
3992 		break;
3993 	case MSR_IA32_VMX_CR4_FIXED0:
3994 		*pdata = msrs->cr4_fixed0;
3995 		break;
3996 	case MSR_IA32_VMX_CR4_FIXED1:
3997 		*pdata = msrs->cr4_fixed1;
3998 		break;
3999 	case MSR_IA32_VMX_VMCS_ENUM:
4000 		*pdata = msrs->vmcs_enum;
4001 		break;
4002 	case MSR_IA32_VMX_PROCBASED_CTLS2:
4003 		*pdata = vmx_control_msr(
4004 			msrs->secondary_ctls_low,
4005 			msrs->secondary_ctls_high);
4006 		break;
4007 	case MSR_IA32_VMX_EPT_VPID_CAP:
4008 		*pdata = msrs->ept_caps |
4009 			((u64)msrs->vpid_caps << 32);
4010 		break;
4011 	case MSR_IA32_VMX_VMFUNC:
4012 		*pdata = msrs->vmfunc_controls;
4013 		break;
4014 	default:
4015 		return 1;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)4021 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
4022 						 uint64_t val)
4023 {
4024 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
4025 
4026 	return !(val & ~valid_bits);
4027 }
4028 
vmx_get_msr_feature(struct kvm_msr_entry * msr)4029 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
4030 {
4031 	switch (msr->index) {
4032 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4033 		if (!nested)
4034 			return 1;
4035 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
4036 	default:
4037 		return 1;
4038 	}
4039 
4040 	return 0;
4041 }
4042 
4043 /*
4044  * Reads an msr value (of 'msr_index') into 'pdata'.
4045  * Returns 0 on success, non-0 otherwise.
4046  * Assumes vcpu_load() was already called.
4047  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4048 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4049 {
4050 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4051 	struct shared_msr_entry *msr;
4052 
4053 	switch (msr_info->index) {
4054 #ifdef CONFIG_X86_64
4055 	case MSR_FS_BASE:
4056 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
4057 		break;
4058 	case MSR_GS_BASE:
4059 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
4060 		break;
4061 	case MSR_KERNEL_GS_BASE:
4062 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
4063 		break;
4064 #endif
4065 	case MSR_EFER:
4066 		return kvm_get_msr_common(vcpu, msr_info);
4067 	case MSR_IA32_SPEC_CTRL:
4068 		if (!msr_info->host_initiated &&
4069 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4070 			return 1;
4071 
4072 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
4073 		break;
4074 	case MSR_IA32_SYSENTER_CS:
4075 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
4076 		break;
4077 	case MSR_IA32_SYSENTER_EIP:
4078 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
4079 		break;
4080 	case MSR_IA32_SYSENTER_ESP:
4081 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
4082 		break;
4083 	case MSR_IA32_BNDCFGS:
4084 		if (!kvm_mpx_supported() ||
4085 		    (!msr_info->host_initiated &&
4086 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
4087 			return 1;
4088 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
4089 		break;
4090 	case MSR_IA32_MCG_EXT_CTL:
4091 		if (!msr_info->host_initiated &&
4092 		    !(vmx->msr_ia32_feature_control &
4093 		      FEATURE_CONTROL_LMCE))
4094 			return 1;
4095 		msr_info->data = vcpu->arch.mcg_ext_ctl;
4096 		break;
4097 	case MSR_IA32_FEATURE_CONTROL:
4098 		msr_info->data = vmx->msr_ia32_feature_control;
4099 		break;
4100 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4101 		if (!nested_vmx_allowed(vcpu))
4102 			return 1;
4103 		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
4104 				       &msr_info->data);
4105 	case MSR_IA32_XSS:
4106 		if (!vmx_xsaves_supported() ||
4107 		    (!msr_info->host_initiated &&
4108 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4109 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
4110 			return 1;
4111 		msr_info->data = vcpu->arch.ia32_xss;
4112 		break;
4113 	case MSR_TSC_AUX:
4114 		if (!msr_info->host_initiated &&
4115 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4116 			return 1;
4117 		/* Otherwise falls through */
4118 	default:
4119 		msr = find_msr_entry(vmx, msr_info->index);
4120 		if (msr) {
4121 			msr_info->data = msr->data;
4122 			break;
4123 		}
4124 		return kvm_get_msr_common(vcpu, msr_info);
4125 	}
4126 
4127 	return 0;
4128 }
4129 
4130 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
4131 
4132 /*
4133  * Writes msr value into into the appropriate "register".
4134  * Returns 0 on success, non-0 otherwise.
4135  * Assumes vcpu_load() was already called.
4136  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4137 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4138 {
4139 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4140 	struct shared_msr_entry *msr;
4141 	int ret = 0;
4142 	u32 msr_index = msr_info->index;
4143 	u64 data = msr_info->data;
4144 
4145 	switch (msr_index) {
4146 	case MSR_EFER:
4147 		ret = kvm_set_msr_common(vcpu, msr_info);
4148 		break;
4149 #ifdef CONFIG_X86_64
4150 	case MSR_FS_BASE:
4151 		vmx_segment_cache_clear(vmx);
4152 		vmcs_writel(GUEST_FS_BASE, data);
4153 		break;
4154 	case MSR_GS_BASE:
4155 		vmx_segment_cache_clear(vmx);
4156 		vmcs_writel(GUEST_GS_BASE, data);
4157 		break;
4158 	case MSR_KERNEL_GS_BASE:
4159 		vmx_write_guest_kernel_gs_base(vmx, data);
4160 		break;
4161 #endif
4162 	case MSR_IA32_SYSENTER_CS:
4163 		vmcs_write32(GUEST_SYSENTER_CS, data);
4164 		break;
4165 	case MSR_IA32_SYSENTER_EIP:
4166 		vmcs_writel(GUEST_SYSENTER_EIP, data);
4167 		break;
4168 	case MSR_IA32_SYSENTER_ESP:
4169 		vmcs_writel(GUEST_SYSENTER_ESP, data);
4170 		break;
4171 	case MSR_IA32_BNDCFGS:
4172 		if (!kvm_mpx_supported() ||
4173 		    (!msr_info->host_initiated &&
4174 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
4175 			return 1;
4176 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4177 		    (data & MSR_IA32_BNDCFGS_RSVD))
4178 			return 1;
4179 		vmcs_write64(GUEST_BNDCFGS, data);
4180 		break;
4181 	case MSR_IA32_SPEC_CTRL:
4182 		if (!msr_info->host_initiated &&
4183 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4184 			return 1;
4185 
4186 		/* The STIBP bit doesn't fault even if it's not advertised */
4187 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4188 			return 1;
4189 
4190 		vmx->spec_ctrl = data;
4191 
4192 		if (!data)
4193 			break;
4194 
4195 		/*
4196 		 * For non-nested:
4197 		 * When it's written (to non-zero) for the first time, pass
4198 		 * it through.
4199 		 *
4200 		 * For nested:
4201 		 * The handling of the MSR bitmap for L2 guests is done in
4202 		 * nested_vmx_merge_msr_bitmap. We should not touch the
4203 		 * vmcs02.msr_bitmap here since it gets completely overwritten
4204 		 * in the merging. We update the vmcs01 here for L1 as well
4205 		 * since it will end up touching the MSR anyway now.
4206 		 */
4207 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
4208 					      MSR_IA32_SPEC_CTRL,
4209 					      MSR_TYPE_RW);
4210 		break;
4211 	case MSR_IA32_PRED_CMD:
4212 		if (!msr_info->host_initiated &&
4213 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4214 			return 1;
4215 
4216 		if (data & ~PRED_CMD_IBPB)
4217 			return 1;
4218 
4219 		if (!data)
4220 			break;
4221 
4222 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4223 
4224 		/*
4225 		 * For non-nested:
4226 		 * When it's written (to non-zero) for the first time, pass
4227 		 * it through.
4228 		 *
4229 		 * For nested:
4230 		 * The handling of the MSR bitmap for L2 guests is done in
4231 		 * nested_vmx_merge_msr_bitmap. We should not touch the
4232 		 * vmcs02.msr_bitmap here since it gets completely overwritten
4233 		 * in the merging.
4234 		 */
4235 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
4236 					      MSR_TYPE_W);
4237 		break;
4238 	case MSR_IA32_CR_PAT:
4239 		if (!kvm_pat_valid(data))
4240 			return 1;
4241 
4242 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4243 			vmcs_write64(GUEST_IA32_PAT, data);
4244 			vcpu->arch.pat = data;
4245 			break;
4246 		}
4247 		ret = kvm_set_msr_common(vcpu, msr_info);
4248 		break;
4249 	case MSR_IA32_TSC_ADJUST:
4250 		ret = kvm_set_msr_common(vcpu, msr_info);
4251 		break;
4252 	case MSR_IA32_MCG_EXT_CTL:
4253 		if ((!msr_info->host_initiated &&
4254 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
4255 		       FEATURE_CONTROL_LMCE)) ||
4256 		    (data & ~MCG_EXT_CTL_LMCE_EN))
4257 			return 1;
4258 		vcpu->arch.mcg_ext_ctl = data;
4259 		break;
4260 	case MSR_IA32_FEATURE_CONTROL:
4261 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
4262 		    (to_vmx(vcpu)->msr_ia32_feature_control &
4263 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
4264 			return 1;
4265 		vmx->msr_ia32_feature_control = data;
4266 		if (msr_info->host_initiated && data == 0)
4267 			vmx_leave_nested(vcpu);
4268 		break;
4269 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4270 		if (!msr_info->host_initiated)
4271 			return 1; /* they are read-only */
4272 		if (!nested_vmx_allowed(vcpu))
4273 			return 1;
4274 		return vmx_set_vmx_msr(vcpu, msr_index, data);
4275 	case MSR_IA32_XSS:
4276 		if (!vmx_xsaves_supported() ||
4277 		    (!msr_info->host_initiated &&
4278 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4279 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
4280 			return 1;
4281 		/*
4282 		 * The only supported bit as of Skylake is bit 8, but
4283 		 * it is not supported on KVM.
4284 		 */
4285 		if (data != 0)
4286 			return 1;
4287 		vcpu->arch.ia32_xss = data;
4288 		if (vcpu->arch.ia32_xss != host_xss)
4289 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
4290 				vcpu->arch.ia32_xss, host_xss, false);
4291 		else
4292 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
4293 		break;
4294 	case MSR_TSC_AUX:
4295 		if (!msr_info->host_initiated &&
4296 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4297 			return 1;
4298 		/* Check reserved bit, higher 32 bits should be zero */
4299 		if ((data >> 32) != 0)
4300 			return 1;
4301 		/* Otherwise falls through */
4302 	default:
4303 		msr = find_msr_entry(vmx, msr_index);
4304 		if (msr) {
4305 			u64 old_msr_data = msr->data;
4306 			msr->data = data;
4307 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
4308 				preempt_disable();
4309 				ret = kvm_set_shared_msr(msr->index, msr->data,
4310 							 msr->mask);
4311 				preempt_enable();
4312 				if (ret)
4313 					msr->data = old_msr_data;
4314 			}
4315 			break;
4316 		}
4317 		ret = kvm_set_msr_common(vcpu, msr_info);
4318 	}
4319 
4320 	return ret;
4321 }
4322 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)4323 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
4324 {
4325 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
4326 	switch (reg) {
4327 	case VCPU_REGS_RSP:
4328 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
4329 		break;
4330 	case VCPU_REGS_RIP:
4331 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
4332 		break;
4333 	case VCPU_EXREG_PDPTR:
4334 		if (enable_ept)
4335 			ept_save_pdptrs(vcpu);
4336 		break;
4337 	default:
4338 		break;
4339 	}
4340 }
4341 
cpu_has_kvm_support(void)4342 static __init int cpu_has_kvm_support(void)
4343 {
4344 	return cpu_has_vmx();
4345 }
4346 
vmx_disabled_by_bios(void)4347 static __init int vmx_disabled_by_bios(void)
4348 {
4349 	u64 msr;
4350 
4351 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
4352 	if (msr & FEATURE_CONTROL_LOCKED) {
4353 		/* launched w/ TXT and VMX disabled */
4354 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
4355 			&& tboot_enabled())
4356 			return 1;
4357 		/* launched w/o TXT and VMX only enabled w/ TXT */
4358 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
4359 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
4360 			&& !tboot_enabled()) {
4361 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
4362 				"activate TXT before enabling KVM\n");
4363 			return 1;
4364 		}
4365 		/* launched w/o TXT and VMX disabled */
4366 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
4367 			&& !tboot_enabled())
4368 			return 1;
4369 	}
4370 
4371 	return 0;
4372 }
4373 
kvm_cpu_vmxon(u64 addr)4374 static void kvm_cpu_vmxon(u64 addr)
4375 {
4376 	cr4_set_bits(X86_CR4_VMXE);
4377 	intel_pt_handle_vmx(1);
4378 
4379 	asm volatile (ASM_VMX_VMXON_RAX
4380 			: : "a"(&addr), "m"(addr)
4381 			: "memory", "cc");
4382 }
4383 
hardware_enable(void)4384 static int hardware_enable(void)
4385 {
4386 	int cpu = raw_smp_processor_id();
4387 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
4388 	u64 old, test_bits;
4389 
4390 	if (cr4_read_shadow() & X86_CR4_VMXE)
4391 		return -EBUSY;
4392 
4393 	/*
4394 	 * This can happen if we hot-added a CPU but failed to allocate
4395 	 * VP assist page for it.
4396 	 */
4397 	if (static_branch_unlikely(&enable_evmcs) &&
4398 	    !hv_get_vp_assist_page(cpu))
4399 		return -EFAULT;
4400 
4401 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
4402 
4403 	test_bits = FEATURE_CONTROL_LOCKED;
4404 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4405 	if (tboot_enabled())
4406 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
4407 
4408 	if ((old & test_bits) != test_bits) {
4409 		/* enable and lock */
4410 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
4411 	}
4412 	kvm_cpu_vmxon(phys_addr);
4413 	if (enable_ept)
4414 		ept_sync_global();
4415 
4416 	return 0;
4417 }
4418 
vmclear_local_loaded_vmcss(void)4419 static void vmclear_local_loaded_vmcss(void)
4420 {
4421 	int cpu = raw_smp_processor_id();
4422 	struct loaded_vmcs *v, *n;
4423 
4424 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
4425 				 loaded_vmcss_on_cpu_link)
4426 		__loaded_vmcs_clear(v);
4427 }
4428 
4429 
4430 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
4431  * tricks.
4432  */
kvm_cpu_vmxoff(void)4433 static void kvm_cpu_vmxoff(void)
4434 {
4435 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
4436 
4437 	intel_pt_handle_vmx(0);
4438 	cr4_clear_bits(X86_CR4_VMXE);
4439 }
4440 
hardware_disable(void)4441 static void hardware_disable(void)
4442 {
4443 	vmclear_local_loaded_vmcss();
4444 	kvm_cpu_vmxoff();
4445 }
4446 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)4447 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
4448 				      u32 msr, u32 *result)
4449 {
4450 	u32 vmx_msr_low, vmx_msr_high;
4451 	u32 ctl = ctl_min | ctl_opt;
4452 
4453 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
4454 
4455 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
4456 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
4457 
4458 	/* Ensure minimum (required) set of control bits are supported. */
4459 	if (ctl_min & ~ctl)
4460 		return -EIO;
4461 
4462 	*result = ctl;
4463 	return 0;
4464 }
4465 
allow_1_setting(u32 msr,u32 ctl)4466 static __init bool allow_1_setting(u32 msr, u32 ctl)
4467 {
4468 	u32 vmx_msr_low, vmx_msr_high;
4469 
4470 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
4471 	return vmx_msr_high & ctl;
4472 }
4473 
setup_vmcs_config(struct vmcs_config * vmcs_conf)4474 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
4475 {
4476 	u32 vmx_msr_low, vmx_msr_high;
4477 	u32 min, opt, min2, opt2;
4478 	u32 _pin_based_exec_control = 0;
4479 	u32 _cpu_based_exec_control = 0;
4480 	u32 _cpu_based_2nd_exec_control = 0;
4481 	u32 _vmexit_control = 0;
4482 	u32 _vmentry_control = 0;
4483 
4484 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
4485 	min = CPU_BASED_HLT_EXITING |
4486 #ifdef CONFIG_X86_64
4487 	      CPU_BASED_CR8_LOAD_EXITING |
4488 	      CPU_BASED_CR8_STORE_EXITING |
4489 #endif
4490 	      CPU_BASED_CR3_LOAD_EXITING |
4491 	      CPU_BASED_CR3_STORE_EXITING |
4492 	      CPU_BASED_UNCOND_IO_EXITING |
4493 	      CPU_BASED_MOV_DR_EXITING |
4494 	      CPU_BASED_USE_TSC_OFFSETING |
4495 	      CPU_BASED_MWAIT_EXITING |
4496 	      CPU_BASED_MONITOR_EXITING |
4497 	      CPU_BASED_INVLPG_EXITING |
4498 	      CPU_BASED_RDPMC_EXITING;
4499 
4500 	opt = CPU_BASED_TPR_SHADOW |
4501 	      CPU_BASED_USE_MSR_BITMAPS |
4502 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
4503 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
4504 				&_cpu_based_exec_control) < 0)
4505 		return -EIO;
4506 #ifdef CONFIG_X86_64
4507 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4508 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
4509 					   ~CPU_BASED_CR8_STORE_EXITING;
4510 #endif
4511 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
4512 		min2 = 0;
4513 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
4514 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4515 			SECONDARY_EXEC_WBINVD_EXITING |
4516 			SECONDARY_EXEC_ENABLE_VPID |
4517 			SECONDARY_EXEC_ENABLE_EPT |
4518 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
4519 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
4520 			SECONDARY_EXEC_DESC |
4521 			SECONDARY_EXEC_RDTSCP |
4522 			SECONDARY_EXEC_ENABLE_INVPCID |
4523 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
4524 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
4525 			SECONDARY_EXEC_SHADOW_VMCS |
4526 			SECONDARY_EXEC_XSAVES |
4527 			SECONDARY_EXEC_RDSEED_EXITING |
4528 			SECONDARY_EXEC_RDRAND_EXITING |
4529 			SECONDARY_EXEC_ENABLE_PML |
4530 			SECONDARY_EXEC_TSC_SCALING |
4531 			SECONDARY_EXEC_ENABLE_VMFUNC |
4532 			SECONDARY_EXEC_ENCLS_EXITING;
4533 		if (adjust_vmx_controls(min2, opt2,
4534 					MSR_IA32_VMX_PROCBASED_CTLS2,
4535 					&_cpu_based_2nd_exec_control) < 0)
4536 			return -EIO;
4537 	}
4538 #ifndef CONFIG_X86_64
4539 	if (!(_cpu_based_2nd_exec_control &
4540 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
4541 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
4542 #endif
4543 
4544 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4545 		_cpu_based_2nd_exec_control &= ~(
4546 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
4547 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4548 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4549 
4550 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
4551 		&vmx_capability.ept, &vmx_capability.vpid);
4552 
4553 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
4554 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
4555 		   enabled */
4556 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4557 					     CPU_BASED_CR3_STORE_EXITING |
4558 					     CPU_BASED_INVLPG_EXITING);
4559 	} else if (vmx_capability.ept) {
4560 		vmx_capability.ept = 0;
4561 		pr_warn_once("EPT CAP should not exist if not support "
4562 				"1-setting enable EPT VM-execution control\n");
4563 	}
4564 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
4565 		vmx_capability.vpid) {
4566 		vmx_capability.vpid = 0;
4567 		pr_warn_once("VPID CAP should not exist if not support "
4568 				"1-setting enable VPID VM-execution control\n");
4569 	}
4570 
4571 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
4572 #ifdef CONFIG_X86_64
4573 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
4574 #endif
4575 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
4576 		VM_EXIT_CLEAR_BNDCFGS;
4577 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
4578 				&_vmexit_control) < 0)
4579 		return -EIO;
4580 
4581 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
4582 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
4583 		 PIN_BASED_VMX_PREEMPTION_TIMER;
4584 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
4585 				&_pin_based_exec_control) < 0)
4586 		return -EIO;
4587 
4588 	if (cpu_has_broken_vmx_preemption_timer())
4589 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4590 	if (!(_cpu_based_2nd_exec_control &
4591 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
4592 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
4593 
4594 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
4595 	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
4596 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
4597 				&_vmentry_control) < 0)
4598 		return -EIO;
4599 
4600 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
4601 
4602 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
4603 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
4604 		return -EIO;
4605 
4606 #ifdef CONFIG_X86_64
4607 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
4608 	if (vmx_msr_high & (1u<<16))
4609 		return -EIO;
4610 #endif
4611 
4612 	/* Require Write-Back (WB) memory type for VMCS accesses. */
4613 	if (((vmx_msr_high >> 18) & 15) != 6)
4614 		return -EIO;
4615 
4616 	vmcs_conf->size = vmx_msr_high & 0x1fff;
4617 	vmcs_conf->order = get_order(vmcs_conf->size);
4618 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
4619 
4620 	vmcs_conf->revision_id = vmx_msr_low;
4621 
4622 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
4623 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
4624 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
4625 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
4626 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
4627 
4628 	if (static_branch_unlikely(&enable_evmcs))
4629 		evmcs_sanitize_exec_ctrls(vmcs_conf);
4630 
4631 	cpu_has_load_ia32_efer =
4632 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4633 				VM_ENTRY_LOAD_IA32_EFER)
4634 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4635 				   VM_EXIT_LOAD_IA32_EFER);
4636 
4637 	cpu_has_load_perf_global_ctrl =
4638 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4639 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
4640 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4641 				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
4642 
4643 	/*
4644 	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
4645 	 * but due to errata below it can't be used. Workaround is to use
4646 	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
4647 	 *
4648 	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
4649 	 *
4650 	 * AAK155             (model 26)
4651 	 * AAP115             (model 30)
4652 	 * AAT100             (model 37)
4653 	 * BC86,AAY89,BD102   (model 44)
4654 	 * BA97               (model 46)
4655 	 *
4656 	 */
4657 	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
4658 		switch (boot_cpu_data.x86_model) {
4659 		case 26:
4660 		case 30:
4661 		case 37:
4662 		case 44:
4663 		case 46:
4664 			cpu_has_load_perf_global_ctrl = false;
4665 			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
4666 					"does not work properly. Using workaround\n");
4667 			break;
4668 		default:
4669 			break;
4670 		}
4671 	}
4672 
4673 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4674 		rdmsrl(MSR_IA32_XSS, host_xss);
4675 
4676 	return 0;
4677 }
4678 
alloc_vmcs_cpu(bool shadow,int cpu)4679 static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
4680 {
4681 	int node = cpu_to_node(cpu);
4682 	struct page *pages;
4683 	struct vmcs *vmcs;
4684 
4685 	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
4686 	if (!pages)
4687 		return NULL;
4688 	vmcs = page_address(pages);
4689 	memset(vmcs, 0, vmcs_config.size);
4690 
4691 	/* KVM supports Enlightened VMCS v1 only */
4692 	if (static_branch_unlikely(&enable_evmcs))
4693 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
4694 	else
4695 		vmcs->hdr.revision_id = vmcs_config.revision_id;
4696 
4697 	if (shadow)
4698 		vmcs->hdr.shadow_vmcs = 1;
4699 	return vmcs;
4700 }
4701 
free_vmcs(struct vmcs * vmcs)4702 static void free_vmcs(struct vmcs *vmcs)
4703 {
4704 	free_pages((unsigned long)vmcs, vmcs_config.order);
4705 }
4706 
4707 /*
4708  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
4709  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)4710 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4711 {
4712 	if (!loaded_vmcs->vmcs)
4713 		return;
4714 	loaded_vmcs_clear(loaded_vmcs);
4715 	free_vmcs(loaded_vmcs->vmcs);
4716 	loaded_vmcs->vmcs = NULL;
4717 	if (loaded_vmcs->msr_bitmap)
4718 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
4719 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
4720 }
4721 
alloc_vmcs(bool shadow)4722 static struct vmcs *alloc_vmcs(bool shadow)
4723 {
4724 	return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
4725 }
4726 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)4727 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4728 {
4729 	loaded_vmcs->vmcs = alloc_vmcs(false);
4730 	if (!loaded_vmcs->vmcs)
4731 		return -ENOMEM;
4732 
4733 	loaded_vmcs->shadow_vmcs = NULL;
4734 	loaded_vmcs_init(loaded_vmcs);
4735 
4736 	if (cpu_has_vmx_msr_bitmap()) {
4737 		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
4738 		if (!loaded_vmcs->msr_bitmap)
4739 			goto out_vmcs;
4740 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
4741 
4742 		if (IS_ENABLED(CONFIG_HYPERV) &&
4743 		    static_branch_unlikely(&enable_evmcs) &&
4744 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
4745 			struct hv_enlightened_vmcs *evmcs =
4746 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
4747 
4748 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
4749 		}
4750 	}
4751 
4752 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
4753 
4754 	return 0;
4755 
4756 out_vmcs:
4757 	free_loaded_vmcs(loaded_vmcs);
4758 	return -ENOMEM;
4759 }
4760 
free_kvm_area(void)4761 static void free_kvm_area(void)
4762 {
4763 	int cpu;
4764 
4765 	for_each_possible_cpu(cpu) {
4766 		free_vmcs(per_cpu(vmxarea, cpu));
4767 		per_cpu(vmxarea, cpu) = NULL;
4768 	}
4769 }
4770 
4771 enum vmcs_field_width {
4772 	VMCS_FIELD_WIDTH_U16 = 0,
4773 	VMCS_FIELD_WIDTH_U64 = 1,
4774 	VMCS_FIELD_WIDTH_U32 = 2,
4775 	VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
4776 };
4777 
vmcs_field_width(unsigned long field)4778 static inline int vmcs_field_width(unsigned long field)
4779 {
4780 	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
4781 		return VMCS_FIELD_WIDTH_U32;
4782 	return (field >> 13) & 0x3 ;
4783 }
4784 
vmcs_field_readonly(unsigned long field)4785 static inline int vmcs_field_readonly(unsigned long field)
4786 {
4787 	return (((field >> 10) & 0x3) == 1);
4788 }
4789 
init_vmcs_shadow_fields(void)4790 static void init_vmcs_shadow_fields(void)
4791 {
4792 	int i, j;
4793 
4794 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
4795 		u16 field = shadow_read_only_fields[i];
4796 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
4797 		    (i + 1 == max_shadow_read_only_fields ||
4798 		     shadow_read_only_fields[i + 1] != field + 1))
4799 			pr_err("Missing field from shadow_read_only_field %x\n",
4800 			       field + 1);
4801 
4802 		clear_bit(field, vmx_vmread_bitmap);
4803 #ifdef CONFIG_X86_64
4804 		if (field & 1)
4805 			continue;
4806 #endif
4807 		if (j < i)
4808 			shadow_read_only_fields[j] = field;
4809 		j++;
4810 	}
4811 	max_shadow_read_only_fields = j;
4812 
4813 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
4814 		u16 field = shadow_read_write_fields[i];
4815 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
4816 		    (i + 1 == max_shadow_read_write_fields ||
4817 		     shadow_read_write_fields[i + 1] != field + 1))
4818 			pr_err("Missing field from shadow_read_write_field %x\n",
4819 			       field + 1);
4820 
4821 		/*
4822 		 * PML and the preemption timer can be emulated, but the
4823 		 * processor cannot vmwrite to fields that don't exist
4824 		 * on bare metal.
4825 		 */
4826 		switch (field) {
4827 		case GUEST_PML_INDEX:
4828 			if (!cpu_has_vmx_pml())
4829 				continue;
4830 			break;
4831 		case VMX_PREEMPTION_TIMER_VALUE:
4832 			if (!cpu_has_vmx_preemption_timer())
4833 				continue;
4834 			break;
4835 		case GUEST_INTR_STATUS:
4836 			if (!cpu_has_vmx_apicv())
4837 				continue;
4838 			break;
4839 		default:
4840 			break;
4841 		}
4842 
4843 		clear_bit(field, vmx_vmwrite_bitmap);
4844 		clear_bit(field, vmx_vmread_bitmap);
4845 #ifdef CONFIG_X86_64
4846 		if (field & 1)
4847 			continue;
4848 #endif
4849 		if (j < i)
4850 			shadow_read_write_fields[j] = field;
4851 		j++;
4852 	}
4853 	max_shadow_read_write_fields = j;
4854 }
4855 
alloc_kvm_area(void)4856 static __init int alloc_kvm_area(void)
4857 {
4858 	int cpu;
4859 
4860 	for_each_possible_cpu(cpu) {
4861 		struct vmcs *vmcs;
4862 
4863 		vmcs = alloc_vmcs_cpu(false, cpu);
4864 		if (!vmcs) {
4865 			free_kvm_area();
4866 			return -ENOMEM;
4867 		}
4868 
4869 		/*
4870 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
4871 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
4872 		 * revision_id reported by MSR_IA32_VMX_BASIC.
4873 		 *
4874 		 * However, even though not explictly documented by
4875 		 * TLFS, VMXArea passed as VMXON argument should
4876 		 * still be marked with revision_id reported by
4877 		 * physical CPU.
4878 		 */
4879 		if (static_branch_unlikely(&enable_evmcs))
4880 			vmcs->hdr.revision_id = vmcs_config.revision_id;
4881 
4882 		per_cpu(vmxarea, cpu) = vmcs;
4883 	}
4884 	return 0;
4885 }
4886 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)4887 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
4888 		struct kvm_segment *save)
4889 {
4890 	if (!emulate_invalid_guest_state) {
4891 		/*
4892 		 * CS and SS RPL should be equal during guest entry according
4893 		 * to VMX spec, but in reality it is not always so. Since vcpu
4894 		 * is in the middle of the transition from real mode to
4895 		 * protected mode it is safe to assume that RPL 0 is a good
4896 		 * default value.
4897 		 */
4898 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4899 			save->selector &= ~SEGMENT_RPL_MASK;
4900 		save->dpl = save->selector & SEGMENT_RPL_MASK;
4901 		save->s = 1;
4902 	}
4903 	vmx_set_segment(vcpu, save, seg);
4904 }
4905 
enter_pmode(struct kvm_vcpu * vcpu)4906 static void enter_pmode(struct kvm_vcpu *vcpu)
4907 {
4908 	unsigned long flags;
4909 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4910 
4911 	/*
4912 	 * Update real mode segment cache. It may be not up-to-date if sement
4913 	 * register was written while vcpu was in a guest mode.
4914 	 */
4915 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4916 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4917 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4918 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4919 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4920 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4921 
4922 	vmx->rmode.vm86_active = 0;
4923 
4924 	vmx_segment_cache_clear(vmx);
4925 
4926 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4927 
4928 	flags = vmcs_readl(GUEST_RFLAGS);
4929 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4930 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
4931 	vmcs_writel(GUEST_RFLAGS, flags);
4932 
4933 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4934 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
4935 
4936 	update_exception_bitmap(vcpu);
4937 
4938 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4939 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4940 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4941 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4942 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4943 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4944 }
4945 
fix_rmode_seg(int seg,struct kvm_segment * save)4946 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4947 {
4948 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4949 	struct kvm_segment var = *save;
4950 
4951 	var.dpl = 0x3;
4952 	if (seg == VCPU_SREG_CS)
4953 		var.type = 0x3;
4954 
4955 	if (!emulate_invalid_guest_state) {
4956 		var.selector = var.base >> 4;
4957 		var.base = var.base & 0xffff0;
4958 		var.limit = 0xffff;
4959 		var.g = 0;
4960 		var.db = 0;
4961 		var.present = 1;
4962 		var.s = 1;
4963 		var.l = 0;
4964 		var.unusable = 0;
4965 		var.type = 0x3;
4966 		var.avl = 0;
4967 		if (save->base & 0xf)
4968 			printk_once(KERN_WARNING "kvm: segment base is not "
4969 					"paragraph aligned when entering "
4970 					"protected mode (seg=%d)", seg);
4971 	}
4972 
4973 	vmcs_write16(sf->selector, var.selector);
4974 	vmcs_writel(sf->base, var.base);
4975 	vmcs_write32(sf->limit, var.limit);
4976 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4977 }
4978 
enter_rmode(struct kvm_vcpu * vcpu)4979 static void enter_rmode(struct kvm_vcpu *vcpu)
4980 {
4981 	unsigned long flags;
4982 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4983 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
4984 
4985 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4986 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4987 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4988 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4989 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4990 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4991 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4992 
4993 	vmx->rmode.vm86_active = 1;
4994 
4995 	/*
4996 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4997 	 * vcpu. Warn the user that an update is overdue.
4998 	 */
4999 	if (!kvm_vmx->tss_addr)
5000 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
5001 			     "called before entering vcpu\n");
5002 
5003 	vmx_segment_cache_clear(vmx);
5004 
5005 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
5006 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
5007 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5008 
5009 	flags = vmcs_readl(GUEST_RFLAGS);
5010 	vmx->rmode.save_rflags = flags;
5011 
5012 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
5013 
5014 	vmcs_writel(GUEST_RFLAGS, flags);
5015 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
5016 	update_exception_bitmap(vcpu);
5017 
5018 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
5019 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
5020 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
5021 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
5022 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
5023 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
5024 
5025 	kvm_mmu_reset_context(vcpu);
5026 }
5027 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)5028 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
5029 {
5030 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5031 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
5032 
5033 	if (!msr)
5034 		return;
5035 
5036 	vcpu->arch.efer = efer;
5037 	if (efer & EFER_LMA) {
5038 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
5039 		msr->data = efer;
5040 	} else {
5041 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
5042 
5043 		msr->data = efer & ~EFER_LME;
5044 	}
5045 	setup_msrs(vmx);
5046 }
5047 
5048 #ifdef CONFIG_X86_64
5049 
enter_lmode(struct kvm_vcpu * vcpu)5050 static void enter_lmode(struct kvm_vcpu *vcpu)
5051 {
5052 	u32 guest_tr_ar;
5053 
5054 	vmx_segment_cache_clear(to_vmx(vcpu));
5055 
5056 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
5057 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
5058 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
5059 				     __func__);
5060 		vmcs_write32(GUEST_TR_AR_BYTES,
5061 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
5062 			     | VMX_AR_TYPE_BUSY_64_TSS);
5063 	}
5064 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
5065 }
5066 
exit_lmode(struct kvm_vcpu * vcpu)5067 static void exit_lmode(struct kvm_vcpu *vcpu)
5068 {
5069 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
5070 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
5071 }
5072 
5073 #endif
5074 
__vmx_flush_tlb(struct kvm_vcpu * vcpu,int vpid,bool invalidate_gpa)5075 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
5076 				bool invalidate_gpa)
5077 {
5078 	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
5079 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
5080 			return;
5081 		ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
5082 	} else {
5083 		vpid_sync_context(vpid);
5084 	}
5085 }
5086 
vmx_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5087 static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5088 {
5089 	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
5090 }
5091 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)5092 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
5093 {
5094 	int vpid = to_vmx(vcpu)->vpid;
5095 
5096 	if (!vpid_sync_vcpu_addr(vpid, addr))
5097 		vpid_sync_context(vpid);
5098 
5099 	/*
5100 	 * If VPIDs are not supported or enabled, then the above is a no-op.
5101 	 * But we don't really need a TLB flush in that case anyway, because
5102 	 * each VM entry/exit includes an implicit flush when VPID is 0.
5103 	 */
5104 }
5105 
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)5106 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
5107 {
5108 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
5109 
5110 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
5111 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
5112 }
5113 
vmx_decache_cr3(struct kvm_vcpu * vcpu)5114 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
5115 {
5116 	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
5117 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
5118 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5119 }
5120 
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)5121 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
5122 {
5123 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
5124 
5125 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
5126 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
5127 }
5128 
ept_load_pdptrs(struct kvm_vcpu * vcpu)5129 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
5130 {
5131 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5132 
5133 	if (!test_bit(VCPU_EXREG_PDPTR,
5134 		      (unsigned long *)&vcpu->arch.regs_dirty))
5135 		return;
5136 
5137 	if (is_pae_paging(vcpu)) {
5138 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
5139 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
5140 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
5141 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
5142 	}
5143 }
5144 
ept_save_pdptrs(struct kvm_vcpu * vcpu)5145 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
5146 {
5147 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5148 
5149 	if (is_pae_paging(vcpu)) {
5150 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
5151 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
5152 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
5153 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
5154 	}
5155 
5156 	__set_bit(VCPU_EXREG_PDPTR,
5157 		  (unsigned long *)&vcpu->arch.regs_avail);
5158 	__set_bit(VCPU_EXREG_PDPTR,
5159 		  (unsigned long *)&vcpu->arch.regs_dirty);
5160 }
5161 
nested_guest_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5162 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5163 {
5164 	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
5165 	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
5166 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5167 
5168 	if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
5169 		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5170 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5171 		fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
5172 
5173 	return fixed_bits_valid(val, fixed0, fixed1);
5174 }
5175 
nested_host_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5176 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5177 {
5178 	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
5179 	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
5180 
5181 	return fixed_bits_valid(val, fixed0, fixed1);
5182 }
5183 
nested_cr4_valid(struct kvm_vcpu * vcpu,unsigned long val)5184 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
5185 {
5186 	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
5187 	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
5188 
5189 	return fixed_bits_valid(val, fixed0, fixed1);
5190 }
5191 
5192 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
5193 #define nested_guest_cr4_valid	nested_cr4_valid
5194 #define nested_host_cr4_valid	nested_cr4_valid
5195 
5196 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
5197 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)5198 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
5199 					unsigned long cr0,
5200 					struct kvm_vcpu *vcpu)
5201 {
5202 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
5203 		vmx_decache_cr3(vcpu);
5204 	if (!(cr0 & X86_CR0_PG)) {
5205 		/* From paging/starting to nonpaging */
5206 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
5207 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
5208 			     (CPU_BASED_CR3_LOAD_EXITING |
5209 			      CPU_BASED_CR3_STORE_EXITING));
5210 		vcpu->arch.cr0 = cr0;
5211 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
5212 	} else if (!is_paging(vcpu)) {
5213 		/* From nonpaging to paging */
5214 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
5215 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
5216 			     ~(CPU_BASED_CR3_LOAD_EXITING |
5217 			       CPU_BASED_CR3_STORE_EXITING));
5218 		vcpu->arch.cr0 = cr0;
5219 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
5220 	}
5221 
5222 	if (!(cr0 & X86_CR0_WP))
5223 		*hw_cr0 &= ~X86_CR0_WP;
5224 }
5225 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)5226 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
5227 {
5228 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5229 	unsigned long hw_cr0;
5230 
5231 	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
5232 	if (enable_unrestricted_guest)
5233 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
5234 	else {
5235 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
5236 
5237 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
5238 			enter_pmode(vcpu);
5239 
5240 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
5241 			enter_rmode(vcpu);
5242 	}
5243 
5244 #ifdef CONFIG_X86_64
5245 	if (vcpu->arch.efer & EFER_LME) {
5246 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
5247 			enter_lmode(vcpu);
5248 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
5249 			exit_lmode(vcpu);
5250 	}
5251 #endif
5252 
5253 	if (enable_ept && !enable_unrestricted_guest)
5254 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
5255 
5256 	vmcs_writel(CR0_READ_SHADOW, cr0);
5257 	vmcs_writel(GUEST_CR0, hw_cr0);
5258 	vcpu->arch.cr0 = cr0;
5259 
5260 	/* depends on vcpu->arch.cr0 to be set to a new value */
5261 	vmx->emulation_required = emulation_required(vcpu);
5262 }
5263 
get_ept_level(struct kvm_vcpu * vcpu)5264 static int get_ept_level(struct kvm_vcpu *vcpu)
5265 {
5266 	/* Nested EPT currently only supports 4-level walks. */
5267 	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
5268 		return 4;
5269 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
5270 		return 5;
5271 	return 4;
5272 }
5273 
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa)5274 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
5275 {
5276 	u64 eptp = VMX_EPTP_MT_WB;
5277 
5278 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
5279 
5280 	if (enable_ept_ad_bits &&
5281 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
5282 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
5283 	eptp |= (root_hpa & PAGE_MASK);
5284 
5285 	return eptp;
5286 }
5287 
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)5288 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
5289 {
5290 	struct kvm *kvm = vcpu->kvm;
5291 	unsigned long guest_cr3;
5292 	u64 eptp;
5293 
5294 	guest_cr3 = cr3;
5295 	if (enable_ept) {
5296 		eptp = construct_eptp(vcpu, cr3);
5297 		vmcs_write64(EPT_POINTER, eptp);
5298 
5299 		if (kvm_x86_ops->tlb_remote_flush) {
5300 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
5301 			to_vmx(vcpu)->ept_pointer = eptp;
5302 			to_kvm_vmx(kvm)->ept_pointers_match
5303 				= EPT_POINTERS_CHECK;
5304 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
5305 		}
5306 
5307 		if (enable_unrestricted_guest || is_paging(vcpu) ||
5308 		    is_guest_mode(vcpu))
5309 			guest_cr3 = kvm_read_cr3(vcpu);
5310 		else
5311 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
5312 		ept_load_pdptrs(vcpu);
5313 	}
5314 
5315 	vmcs_writel(GUEST_CR3, guest_cr3);
5316 }
5317 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)5318 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
5319 {
5320 	/*
5321 	 * Pass through host's Machine Check Enable value to hw_cr4, which
5322 	 * is in force while we are in guest mode.  Do not let guests control
5323 	 * this bit, even if host CR4.MCE == 0.
5324 	 */
5325 	unsigned long hw_cr4;
5326 
5327 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
5328 	if (enable_unrestricted_guest)
5329 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
5330 	else if (to_vmx(vcpu)->rmode.vm86_active)
5331 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
5332 	else
5333 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
5334 
5335 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
5336 		if (cr4 & X86_CR4_UMIP) {
5337 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5338 				SECONDARY_EXEC_DESC);
5339 			hw_cr4 &= ~X86_CR4_UMIP;
5340 		} else if (!is_guest_mode(vcpu) ||
5341 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
5342 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5343 					SECONDARY_EXEC_DESC);
5344 	}
5345 
5346 	if (cr4 & X86_CR4_VMXE) {
5347 		/*
5348 		 * To use VMXON (and later other VMX instructions), a guest
5349 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
5350 		 * So basically the check on whether to allow nested VMX
5351 		 * is here.  We operate under the default treatment of SMM,
5352 		 * so VMX cannot be enabled under SMM.
5353 		 */
5354 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
5355 			return 1;
5356 	}
5357 
5358 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5359 		return 1;
5360 
5361 	vcpu->arch.cr4 = cr4;
5362 
5363 	if (!enable_unrestricted_guest) {
5364 		if (enable_ept) {
5365 			if (!is_paging(vcpu)) {
5366 				hw_cr4 &= ~X86_CR4_PAE;
5367 				hw_cr4 |= X86_CR4_PSE;
5368 			} else if (!(cr4 & X86_CR4_PAE)) {
5369 				hw_cr4 &= ~X86_CR4_PAE;
5370 			}
5371 		}
5372 
5373 		/*
5374 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
5375 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
5376 		 * to be manually disabled when guest switches to non-paging
5377 		 * mode.
5378 		 *
5379 		 * If !enable_unrestricted_guest, the CPU is always running
5380 		 * with CR0.PG=1 and CR4 needs to be modified.
5381 		 * If enable_unrestricted_guest, the CPU automatically
5382 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
5383 		 */
5384 		if (!is_paging(vcpu))
5385 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
5386 	}
5387 
5388 	vmcs_writel(CR4_READ_SHADOW, cr4);
5389 	vmcs_writel(GUEST_CR4, hw_cr4);
5390 	return 0;
5391 }
5392 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5393 static void vmx_get_segment(struct kvm_vcpu *vcpu,
5394 			    struct kvm_segment *var, int seg)
5395 {
5396 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5397 	u32 ar;
5398 
5399 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
5400 		*var = vmx->rmode.segs[seg];
5401 		if (seg == VCPU_SREG_TR
5402 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
5403 			return;
5404 		var->base = vmx_read_guest_seg_base(vmx, seg);
5405 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
5406 		return;
5407 	}
5408 	var->base = vmx_read_guest_seg_base(vmx, seg);
5409 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
5410 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
5411 	ar = vmx_read_guest_seg_ar(vmx, seg);
5412 	var->unusable = (ar >> 16) & 1;
5413 	var->type = ar & 15;
5414 	var->s = (ar >> 4) & 1;
5415 	var->dpl = (ar >> 5) & 3;
5416 	/*
5417 	 * Some userspaces do not preserve unusable property. Since usable
5418 	 * segment has to be present according to VMX spec we can use present
5419 	 * property to amend userspace bug by making unusable segment always
5420 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
5421 	 * segment as unusable.
5422 	 */
5423 	var->present = !var->unusable;
5424 	var->avl = (ar >> 12) & 1;
5425 	var->l = (ar >> 13) & 1;
5426 	var->db = (ar >> 14) & 1;
5427 	var->g = (ar >> 15) & 1;
5428 }
5429 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)5430 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
5431 {
5432 	struct kvm_segment s;
5433 
5434 	if (to_vmx(vcpu)->rmode.vm86_active) {
5435 		vmx_get_segment(vcpu, &s, seg);
5436 		return s.base;
5437 	}
5438 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
5439 }
5440 
vmx_get_cpl(struct kvm_vcpu * vcpu)5441 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
5442 {
5443 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5444 
5445 	if (unlikely(vmx->rmode.vm86_active))
5446 		return 0;
5447 	else {
5448 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
5449 		return VMX_AR_DPL(ar);
5450 	}
5451 }
5452 
vmx_segment_access_rights(struct kvm_segment * var)5453 static u32 vmx_segment_access_rights(struct kvm_segment *var)
5454 {
5455 	u32 ar;
5456 
5457 	if (var->unusable || !var->present)
5458 		ar = 1 << 16;
5459 	else {
5460 		ar = var->type & 15;
5461 		ar |= (var->s & 1) << 4;
5462 		ar |= (var->dpl & 3) << 5;
5463 		ar |= (var->present & 1) << 7;
5464 		ar |= (var->avl & 1) << 12;
5465 		ar |= (var->l & 1) << 13;
5466 		ar |= (var->db & 1) << 14;
5467 		ar |= (var->g & 1) << 15;
5468 	}
5469 
5470 	return ar;
5471 }
5472 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5473 static void vmx_set_segment(struct kvm_vcpu *vcpu,
5474 			    struct kvm_segment *var, int seg)
5475 {
5476 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5477 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
5478 
5479 	vmx_segment_cache_clear(vmx);
5480 
5481 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
5482 		vmx->rmode.segs[seg] = *var;
5483 		if (seg == VCPU_SREG_TR)
5484 			vmcs_write16(sf->selector, var->selector);
5485 		else if (var->s)
5486 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
5487 		goto out;
5488 	}
5489 
5490 	vmcs_writel(sf->base, var->base);
5491 	vmcs_write32(sf->limit, var->limit);
5492 	vmcs_write16(sf->selector, var->selector);
5493 
5494 	/*
5495 	 *   Fix the "Accessed" bit in AR field of segment registers for older
5496 	 * qemu binaries.
5497 	 *   IA32 arch specifies that at the time of processor reset the
5498 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
5499 	 * is setting it to 0 in the userland code. This causes invalid guest
5500 	 * state vmexit when "unrestricted guest" mode is turned on.
5501 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
5502 	 * tree. Newer qemu binaries with that qemu fix would not need this
5503 	 * kvm hack.
5504 	 */
5505 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
5506 		var->type |= 0x1; /* Accessed */
5507 
5508 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
5509 
5510 out:
5511 	vmx->emulation_required = emulation_required(vcpu);
5512 }
5513 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)5514 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5515 {
5516 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
5517 
5518 	*db = (ar >> 14) & 1;
5519 	*l = (ar >> 13) & 1;
5520 }
5521 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5522 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5523 {
5524 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
5525 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
5526 }
5527 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5528 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5529 {
5530 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
5531 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
5532 }
5533 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5534 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5535 {
5536 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
5537 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
5538 }
5539 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)5540 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5541 {
5542 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
5543 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
5544 }
5545 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)5546 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
5547 {
5548 	struct kvm_segment var;
5549 	u32 ar;
5550 
5551 	vmx_get_segment(vcpu, &var, seg);
5552 	var.dpl = 0x3;
5553 	if (seg == VCPU_SREG_CS)
5554 		var.type = 0x3;
5555 	ar = vmx_segment_access_rights(&var);
5556 
5557 	if (var.base != (var.selector << 4))
5558 		return false;
5559 	if (var.limit != 0xffff)
5560 		return false;
5561 	if (ar != 0xf3)
5562 		return false;
5563 
5564 	return true;
5565 }
5566 
code_segment_valid(struct kvm_vcpu * vcpu)5567 static bool code_segment_valid(struct kvm_vcpu *vcpu)
5568 {
5569 	struct kvm_segment cs;
5570 	unsigned int cs_rpl;
5571 
5572 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5573 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
5574 
5575 	if (cs.unusable)
5576 		return false;
5577 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
5578 		return false;
5579 	if (!cs.s)
5580 		return false;
5581 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
5582 		if (cs.dpl > cs_rpl)
5583 			return false;
5584 	} else {
5585 		if (cs.dpl != cs_rpl)
5586 			return false;
5587 	}
5588 	if (!cs.present)
5589 		return false;
5590 
5591 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
5592 	return true;
5593 }
5594 
stack_segment_valid(struct kvm_vcpu * vcpu)5595 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
5596 {
5597 	struct kvm_segment ss;
5598 	unsigned int ss_rpl;
5599 
5600 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5601 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
5602 
5603 	if (ss.unusable)
5604 		return true;
5605 	if (ss.type != 3 && ss.type != 7)
5606 		return false;
5607 	if (!ss.s)
5608 		return false;
5609 	if (ss.dpl != ss_rpl) /* DPL != RPL */
5610 		return false;
5611 	if (!ss.present)
5612 		return false;
5613 
5614 	return true;
5615 }
5616 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)5617 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
5618 {
5619 	struct kvm_segment var;
5620 	unsigned int rpl;
5621 
5622 	vmx_get_segment(vcpu, &var, seg);
5623 	rpl = var.selector & SEGMENT_RPL_MASK;
5624 
5625 	if (var.unusable)
5626 		return true;
5627 	if (!var.s)
5628 		return false;
5629 	if (!var.present)
5630 		return false;
5631 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
5632 		if (var.dpl < rpl) /* DPL < RPL */
5633 			return false;
5634 	}
5635 
5636 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
5637 	 * rights flags
5638 	 */
5639 	return true;
5640 }
5641 
tr_valid(struct kvm_vcpu * vcpu)5642 static bool tr_valid(struct kvm_vcpu *vcpu)
5643 {
5644 	struct kvm_segment tr;
5645 
5646 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
5647 
5648 	if (tr.unusable)
5649 		return false;
5650 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
5651 		return false;
5652 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
5653 		return false;
5654 	if (!tr.present)
5655 		return false;
5656 
5657 	return true;
5658 }
5659 
ldtr_valid(struct kvm_vcpu * vcpu)5660 static bool ldtr_valid(struct kvm_vcpu *vcpu)
5661 {
5662 	struct kvm_segment ldtr;
5663 
5664 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
5665 
5666 	if (ldtr.unusable)
5667 		return true;
5668 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
5669 		return false;
5670 	if (ldtr.type != 2)
5671 		return false;
5672 	if (!ldtr.present)
5673 		return false;
5674 
5675 	return true;
5676 }
5677 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)5678 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
5679 {
5680 	struct kvm_segment cs, ss;
5681 
5682 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5683 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5684 
5685 	return ((cs.selector & SEGMENT_RPL_MASK) ==
5686 		 (ss.selector & SEGMENT_RPL_MASK));
5687 }
5688 
5689 static bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu,
5690 					unsigned int port, int size);
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5691 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5692 				       struct vmcs12 *vmcs12)
5693 {
5694 	unsigned long exit_qualification;
5695 	unsigned short port;
5696 	int size;
5697 
5698 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5699 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5700 
5701 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5702 
5703 	port = exit_qualification >> 16;
5704 	size = (exit_qualification & 7) + 1;
5705 
5706 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5707 }
5708 
5709 /*
5710  * Check if guest state is valid. Returns true if valid, false if
5711  * not.
5712  * We assume that registers are always usable
5713  */
guest_state_valid(struct kvm_vcpu * vcpu)5714 static bool guest_state_valid(struct kvm_vcpu *vcpu)
5715 {
5716 	if (enable_unrestricted_guest)
5717 		return true;
5718 
5719 	/* real mode guest state checks */
5720 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5721 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
5722 			return false;
5723 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
5724 			return false;
5725 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
5726 			return false;
5727 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
5728 			return false;
5729 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
5730 			return false;
5731 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
5732 			return false;
5733 	} else {
5734 	/* protected mode guest state checks */
5735 		if (!cs_ss_rpl_check(vcpu))
5736 			return false;
5737 		if (!code_segment_valid(vcpu))
5738 			return false;
5739 		if (!stack_segment_valid(vcpu))
5740 			return false;
5741 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
5742 			return false;
5743 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
5744 			return false;
5745 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
5746 			return false;
5747 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
5748 			return false;
5749 		if (!tr_valid(vcpu))
5750 			return false;
5751 		if (!ldtr_valid(vcpu))
5752 			return false;
5753 	}
5754 	/* TODO:
5755 	 * - Add checks on RIP
5756 	 * - Add checks on RFLAGS
5757 	 */
5758 
5759 	return true;
5760 }
5761 
page_address_valid(struct kvm_vcpu * vcpu,gpa_t gpa)5762 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
5763 {
5764 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
5765 }
5766 
init_rmode_tss(struct kvm * kvm)5767 static int init_rmode_tss(struct kvm *kvm)
5768 {
5769 	gfn_t fn;
5770 	u16 data = 0;
5771 	int idx, r;
5772 
5773 	idx = srcu_read_lock(&kvm->srcu);
5774 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
5775 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5776 	if (r < 0)
5777 		goto out;
5778 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
5779 	r = kvm_write_guest_page(kvm, fn++, &data,
5780 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
5781 	if (r < 0)
5782 		goto out;
5783 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
5784 	if (r < 0)
5785 		goto out;
5786 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5787 	if (r < 0)
5788 		goto out;
5789 	data = ~0;
5790 	r = kvm_write_guest_page(kvm, fn, &data,
5791 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
5792 				 sizeof(u8));
5793 out:
5794 	srcu_read_unlock(&kvm->srcu, idx);
5795 	return r;
5796 }
5797 
init_rmode_identity_map(struct kvm * kvm)5798 static int init_rmode_identity_map(struct kvm *kvm)
5799 {
5800 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
5801 	int i, idx, r = 0;
5802 	kvm_pfn_t identity_map_pfn;
5803 	u32 tmp;
5804 
5805 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
5806 	mutex_lock(&kvm->slots_lock);
5807 
5808 	if (likely(kvm_vmx->ept_identity_pagetable_done))
5809 		goto out2;
5810 
5811 	if (!kvm_vmx->ept_identity_map_addr)
5812 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
5813 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
5814 
5815 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
5816 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
5817 	if (r < 0)
5818 		goto out2;
5819 
5820 	idx = srcu_read_lock(&kvm->srcu);
5821 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
5822 	if (r < 0)
5823 		goto out;
5824 	/* Set up identity-mapping pagetable for EPT in real mode */
5825 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
5826 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
5827 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
5828 		r = kvm_write_guest_page(kvm, identity_map_pfn,
5829 				&tmp, i * sizeof(tmp), sizeof(tmp));
5830 		if (r < 0)
5831 			goto out;
5832 	}
5833 	kvm_vmx->ept_identity_pagetable_done = true;
5834 
5835 out:
5836 	srcu_read_unlock(&kvm->srcu, idx);
5837 
5838 out2:
5839 	mutex_unlock(&kvm->slots_lock);
5840 	return r;
5841 }
5842 
seg_setup(int seg)5843 static void seg_setup(int seg)
5844 {
5845 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
5846 	unsigned int ar;
5847 
5848 	vmcs_write16(sf->selector, 0);
5849 	vmcs_writel(sf->base, 0);
5850 	vmcs_write32(sf->limit, 0xffff);
5851 	ar = 0x93;
5852 	if (seg == VCPU_SREG_CS)
5853 		ar |= 0x08; /* code segment */
5854 
5855 	vmcs_write32(sf->ar_bytes, ar);
5856 }
5857 
alloc_apic_access_page(struct kvm * kvm)5858 static int alloc_apic_access_page(struct kvm *kvm)
5859 {
5860 	struct page *page;
5861 	int r = 0;
5862 
5863 	mutex_lock(&kvm->slots_lock);
5864 	if (kvm->arch.apic_access_page_done)
5865 		goto out;
5866 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
5867 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
5868 	if (r)
5869 		goto out;
5870 
5871 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
5872 	if (is_error_page(page)) {
5873 		r = -EFAULT;
5874 		goto out;
5875 	}
5876 
5877 	/*
5878 	 * Do not pin the page in memory, so that memory hot-unplug
5879 	 * is able to migrate it.
5880 	 */
5881 	put_page(page);
5882 	kvm->arch.apic_access_page_done = true;
5883 out:
5884 	mutex_unlock(&kvm->slots_lock);
5885 	return r;
5886 }
5887 
allocate_vpid(void)5888 static int allocate_vpid(void)
5889 {
5890 	int vpid;
5891 
5892 	if (!enable_vpid)
5893 		return 0;
5894 	spin_lock(&vmx_vpid_lock);
5895 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
5896 	if (vpid < VMX_NR_VPIDS)
5897 		__set_bit(vpid, vmx_vpid_bitmap);
5898 	else
5899 		vpid = 0;
5900 	spin_unlock(&vmx_vpid_lock);
5901 	return vpid;
5902 }
5903 
free_vpid(int vpid)5904 static void free_vpid(int vpid)
5905 {
5906 	if (!enable_vpid || vpid == 0)
5907 		return;
5908 	spin_lock(&vmx_vpid_lock);
5909 	__clear_bit(vpid, vmx_vpid_bitmap);
5910 	spin_unlock(&vmx_vpid_lock);
5911 }
5912 
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)5913 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5914 							  u32 msr, int type)
5915 {
5916 	int f = sizeof(unsigned long);
5917 
5918 	if (!cpu_has_vmx_msr_bitmap())
5919 		return;
5920 
5921 	if (static_branch_unlikely(&enable_evmcs))
5922 		evmcs_touch_msr_bitmap();
5923 
5924 	/*
5925 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5926 	 * have the write-low and read-high bitmap offsets the wrong way round.
5927 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5928 	 */
5929 	if (msr <= 0x1fff) {
5930 		if (type & MSR_TYPE_R)
5931 			/* read-low */
5932 			__clear_bit(msr, msr_bitmap + 0x000 / f);
5933 
5934 		if (type & MSR_TYPE_W)
5935 			/* write-low */
5936 			__clear_bit(msr, msr_bitmap + 0x800 / f);
5937 
5938 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5939 		msr &= 0x1fff;
5940 		if (type & MSR_TYPE_R)
5941 			/* read-high */
5942 			__clear_bit(msr, msr_bitmap + 0x400 / f);
5943 
5944 		if (type & MSR_TYPE_W)
5945 			/* write-high */
5946 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
5947 
5948 	}
5949 }
5950 
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)5951 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5952 							 u32 msr, int type)
5953 {
5954 	int f = sizeof(unsigned long);
5955 
5956 	if (!cpu_has_vmx_msr_bitmap())
5957 		return;
5958 
5959 	if (static_branch_unlikely(&enable_evmcs))
5960 		evmcs_touch_msr_bitmap();
5961 
5962 	/*
5963 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5964 	 * have the write-low and read-high bitmap offsets the wrong way round.
5965 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5966 	 */
5967 	if (msr <= 0x1fff) {
5968 		if (type & MSR_TYPE_R)
5969 			/* read-low */
5970 			__set_bit(msr, msr_bitmap + 0x000 / f);
5971 
5972 		if (type & MSR_TYPE_W)
5973 			/* write-low */
5974 			__set_bit(msr, msr_bitmap + 0x800 / f);
5975 
5976 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5977 		msr &= 0x1fff;
5978 		if (type & MSR_TYPE_R)
5979 			/* read-high */
5980 			__set_bit(msr, msr_bitmap + 0x400 / f);
5981 
5982 		if (type & MSR_TYPE_W)
5983 			/* write-high */
5984 			__set_bit(msr, msr_bitmap + 0xc00 / f);
5985 
5986 	}
5987 }
5988 
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)5989 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
5990 			     			      u32 msr, int type, bool value)
5991 {
5992 	if (value)
5993 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
5994 	else
5995 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
5996 }
5997 
5998 /*
5999  * If a msr is allowed by L0, we should check whether it is allowed by L1.
6000  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
6001  */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)6002 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
6003 					       unsigned long *msr_bitmap_nested,
6004 					       u32 msr, int type)
6005 {
6006 	int f = sizeof(unsigned long);
6007 
6008 	/*
6009 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
6010 	 * have the write-low and read-high bitmap offsets the wrong way round.
6011 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
6012 	 */
6013 	if (msr <= 0x1fff) {
6014 		if (type & MSR_TYPE_R &&
6015 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
6016 			/* read-low */
6017 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
6018 
6019 		if (type & MSR_TYPE_W &&
6020 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
6021 			/* write-low */
6022 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
6023 
6024 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
6025 		msr &= 0x1fff;
6026 		if (type & MSR_TYPE_R &&
6027 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
6028 			/* read-high */
6029 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
6030 
6031 		if (type & MSR_TYPE_W &&
6032 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
6033 			/* write-high */
6034 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
6035 
6036 	}
6037 }
6038 
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)6039 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
6040 {
6041 	u8 mode = 0;
6042 
6043 	if (cpu_has_secondary_exec_ctrls() &&
6044 	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
6045 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
6046 		mode |= MSR_BITMAP_MODE_X2APIC;
6047 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
6048 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
6049 	}
6050 
6051 	return mode;
6052 }
6053 
6054 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
6055 
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)6056 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
6057 					 u8 mode)
6058 {
6059 	int msr;
6060 
6061 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
6062 		unsigned word = msr / BITS_PER_LONG;
6063 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
6064 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
6065 	}
6066 
6067 	if (mode & MSR_BITMAP_MODE_X2APIC) {
6068 		/*
6069 		 * TPR reads and writes can be virtualized even if virtual interrupt
6070 		 * delivery is not in use.
6071 		 */
6072 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
6073 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
6074 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
6075 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
6076 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
6077 		}
6078 	}
6079 }
6080 
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)6081 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
6082 {
6083 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6084 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
6085 	u8 mode = vmx_msr_bitmap_mode(vcpu);
6086 	u8 changed = mode ^ vmx->msr_bitmap_mode;
6087 
6088 	if (!changed)
6089 		return;
6090 
6091 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
6092 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
6093 
6094 	vmx->msr_bitmap_mode = mode;
6095 }
6096 
vmx_get_enable_apicv(struct kvm_vcpu * vcpu)6097 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
6098 {
6099 	return enable_apicv;
6100 }
6101 
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)6102 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
6103 {
6104 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6105 	gfn_t gfn;
6106 
6107 	/*
6108 	 * Don't need to mark the APIC access page dirty; it is never
6109 	 * written to by the CPU during APIC virtualization.
6110 	 */
6111 
6112 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
6113 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
6114 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
6115 	}
6116 
6117 	if (nested_cpu_has_posted_intr(vmcs12)) {
6118 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
6119 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
6120 	}
6121 }
6122 
6123 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)6124 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
6125 {
6126 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6127 	int max_irr;
6128 	void *vapic_page;
6129 	u16 status;
6130 
6131 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
6132 		return;
6133 
6134 	vmx->nested.pi_pending = false;
6135 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
6136 		return;
6137 
6138 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
6139 	if (max_irr != 256) {
6140 		vapic_page = kmap(vmx->nested.virtual_apic_page);
6141 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
6142 			vapic_page, &max_irr);
6143 		kunmap(vmx->nested.virtual_apic_page);
6144 
6145 		status = vmcs_read16(GUEST_INTR_STATUS);
6146 		if ((u8)max_irr > ((u8)status & 0xff)) {
6147 			status &= ~0xff;
6148 			status |= (u8)max_irr;
6149 			vmcs_write16(GUEST_INTR_STATUS, status);
6150 		}
6151 	}
6152 
6153 	nested_mark_vmcs12_pages_dirty(vcpu);
6154 }
6155 
vmx_get_rvi(void)6156 static u8 vmx_get_rvi(void)
6157 {
6158 	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
6159 }
6160 
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)6161 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
6162 {
6163 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6164 	void *vapic_page;
6165 	u32 vppr;
6166 	int rvi;
6167 
6168 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
6169 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
6170 		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
6171 		return false;
6172 
6173 	rvi = vmx_get_rvi();
6174 
6175 	vapic_page = kmap(vmx->nested.virtual_apic_page);
6176 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
6177 	kunmap(vmx->nested.virtual_apic_page);
6178 
6179 	return ((rvi & 0xf0) > (vppr & 0xf0));
6180 }
6181 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)6182 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
6183 						     bool nested)
6184 {
6185 #ifdef CONFIG_SMP
6186 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
6187 
6188 	if (vcpu->mode == IN_GUEST_MODE) {
6189 		/*
6190 		 * The vector of interrupt to be delivered to vcpu had
6191 		 * been set in PIR before this function.
6192 		 *
6193 		 * Following cases will be reached in this block, and
6194 		 * we always send a notification event in all cases as
6195 		 * explained below.
6196 		 *
6197 		 * Case 1: vcpu keeps in non-root mode. Sending a
6198 		 * notification event posts the interrupt to vcpu.
6199 		 *
6200 		 * Case 2: vcpu exits to root mode and is still
6201 		 * runnable. PIR will be synced to vIRR before the
6202 		 * next vcpu entry. Sending a notification event in
6203 		 * this case has no effect, as vcpu is not in root
6204 		 * mode.
6205 		 *
6206 		 * Case 3: vcpu exits to root mode and is blocked.
6207 		 * vcpu_block() has already synced PIR to vIRR and
6208 		 * never blocks vcpu if vIRR is not cleared. Therefore,
6209 		 * a blocked vcpu here does not wait for any requested
6210 		 * interrupts in PIR, and sending a notification event
6211 		 * which has no effect is safe here.
6212 		 */
6213 
6214 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
6215 		return true;
6216 	}
6217 #endif
6218 	return false;
6219 }
6220 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)6221 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
6222 						int vector)
6223 {
6224 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6225 
6226 	if (is_guest_mode(vcpu) &&
6227 	    vector == vmx->nested.posted_intr_nv) {
6228 		/*
6229 		 * If a posted intr is not recognized by hardware,
6230 		 * we will accomplish it in the next vmentry.
6231 		 */
6232 		vmx->nested.pi_pending = true;
6233 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6234 		/* the PIR and ON have been set by L1. */
6235 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
6236 			kvm_vcpu_kick(vcpu);
6237 		return 0;
6238 	}
6239 	return -1;
6240 }
6241 /*
6242  * Send interrupt to vcpu via posted interrupt way.
6243  * 1. If target vcpu is running(non-root mode), send posted interrupt
6244  * notification to vcpu and hardware will sync PIR to vIRR atomically.
6245  * 2. If target vcpu isn't running(root mode), kick it to pick up the
6246  * interrupt from PIR in next vmentry.
6247  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)6248 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
6249 {
6250 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6251 	int r;
6252 
6253 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
6254 	if (!r)
6255 		return 0;
6256 
6257 	if (!vcpu->arch.apicv_active)
6258 		return -1;
6259 
6260 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
6261 		return 0;
6262 
6263 	/* If a previous notification has sent the IPI, nothing to do.  */
6264 	if (pi_test_and_set_on(&vmx->pi_desc))
6265 		return 0;
6266 
6267 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
6268 		kvm_vcpu_kick(vcpu);
6269 
6270 	return 0;
6271 }
6272 
6273 /*
6274  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
6275  * will not change in the lifetime of the guest.
6276  * Note that host-state that does change is set elsewhere. E.g., host-state
6277  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
6278  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)6279 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
6280 {
6281 	u32 low32, high32;
6282 	unsigned long tmpl;
6283 	struct desc_ptr dt;
6284 	unsigned long cr0, cr3, cr4;
6285 
6286 	cr0 = read_cr0();
6287 	WARN_ON(cr0 & X86_CR0_TS);
6288 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
6289 
6290 	/*
6291 	 * Save the most likely value for this task's CR3 in the VMCS.
6292 	 * We can't use __get_current_cr3_fast() because we're not atomic.
6293 	 */
6294 	cr3 = __read_cr3();
6295 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
6296 	vmx->loaded_vmcs->host_state.cr3 = cr3;
6297 
6298 	/* Save the most likely value for this task's CR4 in the VMCS. */
6299 	cr4 = cr4_read_shadow();
6300 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
6301 	vmx->loaded_vmcs->host_state.cr4 = cr4;
6302 
6303 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
6304 #ifdef CONFIG_X86_64
6305 	/*
6306 	 * Load null selectors, so we can avoid reloading them in
6307 	 * vmx_prepare_switch_to_host(), in case userspace uses
6308 	 * the null selectors too (the expected case).
6309 	 */
6310 	vmcs_write16(HOST_DS_SELECTOR, 0);
6311 	vmcs_write16(HOST_ES_SELECTOR, 0);
6312 #else
6313 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
6314 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
6315 #endif
6316 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
6317 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
6318 
6319 	store_idt(&dt);
6320 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
6321 	vmx->host_idt_base = dt.address;
6322 
6323 	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
6324 
6325 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
6326 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
6327 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
6328 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
6329 
6330 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
6331 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
6332 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
6333 	}
6334 }
6335 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)6336 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
6337 {
6338 	BUILD_BUG_ON(KVM_CR4_GUEST_OWNED_BITS & ~KVM_POSSIBLE_CR4_GUEST_BITS);
6339 
6340 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
6341 	if (enable_ept)
6342 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
6343 	if (is_guest_mode(&vmx->vcpu))
6344 		vmx->vcpu.arch.cr4_guest_owned_bits &=
6345 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
6346 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
6347 }
6348 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)6349 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
6350 {
6351 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
6352 
6353 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
6354 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
6355 
6356 	if (!enable_vnmi)
6357 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
6358 
6359 	/* Enable the preemption timer dynamically */
6360 	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
6361 	return pin_based_exec_ctrl;
6362 }
6363 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)6364 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
6365 {
6366 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6367 
6368 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6369 	if (cpu_has_secondary_exec_ctrls()) {
6370 		if (kvm_vcpu_apicv_active(vcpu))
6371 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
6372 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
6373 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
6374 		else
6375 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6376 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
6377 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
6378 	}
6379 
6380 	if (cpu_has_vmx_msr_bitmap())
6381 		vmx_update_msr_bitmap(vcpu);
6382 }
6383 
vmx_exec_control(struct vcpu_vmx * vmx)6384 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
6385 {
6386 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
6387 
6388 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
6389 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
6390 
6391 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
6392 		exec_control &= ~CPU_BASED_TPR_SHADOW;
6393 #ifdef CONFIG_X86_64
6394 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
6395 				CPU_BASED_CR8_LOAD_EXITING;
6396 #endif
6397 	}
6398 	if (!enable_ept)
6399 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
6400 				CPU_BASED_CR3_LOAD_EXITING  |
6401 				CPU_BASED_INVLPG_EXITING;
6402 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
6403 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
6404 				CPU_BASED_MONITOR_EXITING);
6405 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
6406 		exec_control &= ~CPU_BASED_HLT_EXITING;
6407 	return exec_control;
6408 }
6409 
vmx_rdrand_supported(void)6410 static bool vmx_rdrand_supported(void)
6411 {
6412 	return vmcs_config.cpu_based_2nd_exec_ctrl &
6413 		SECONDARY_EXEC_RDRAND_EXITING;
6414 }
6415 
vmx_rdseed_supported(void)6416 static bool vmx_rdseed_supported(void)
6417 {
6418 	return vmcs_config.cpu_based_2nd_exec_ctrl &
6419 		SECONDARY_EXEC_RDSEED_EXITING;
6420 }
6421 
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)6422 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
6423 {
6424 	struct kvm_vcpu *vcpu = &vmx->vcpu;
6425 
6426 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
6427 
6428 	if (!cpu_need_virtualize_apic_accesses(vcpu))
6429 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6430 	if (vmx->vpid == 0)
6431 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
6432 	if (!enable_ept) {
6433 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
6434 		enable_unrestricted_guest = 0;
6435 	}
6436 	if (!enable_unrestricted_guest)
6437 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
6438 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
6439 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
6440 	if (!kvm_vcpu_apicv_active(vcpu))
6441 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
6442 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
6443 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6444 
6445 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
6446 	 * in vmx_set_cr4.  */
6447 	exec_control &= ~SECONDARY_EXEC_DESC;
6448 
6449 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
6450 	   (handle_vmptrld).
6451 	   We can NOT enable shadow_vmcs here because we don't have yet
6452 	   a current VMCS12
6453 	*/
6454 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6455 
6456 	if (!enable_pml)
6457 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
6458 
6459 	if (vmx_xsaves_supported()) {
6460 		/* Exposing XSAVES only when XSAVE is exposed */
6461 		bool xsaves_enabled =
6462 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
6463 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
6464 
6465 		if (!xsaves_enabled)
6466 			exec_control &= ~SECONDARY_EXEC_XSAVES;
6467 
6468 		if (nested) {
6469 			if (xsaves_enabled)
6470 				vmx->nested.msrs.secondary_ctls_high |=
6471 					SECONDARY_EXEC_XSAVES;
6472 			else
6473 				vmx->nested.msrs.secondary_ctls_high &=
6474 					~SECONDARY_EXEC_XSAVES;
6475 		}
6476 	}
6477 
6478 	if (vmx_rdtscp_supported()) {
6479 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
6480 		if (!rdtscp_enabled)
6481 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
6482 
6483 		if (nested) {
6484 			if (rdtscp_enabled)
6485 				vmx->nested.msrs.secondary_ctls_high |=
6486 					SECONDARY_EXEC_RDTSCP;
6487 			else
6488 				vmx->nested.msrs.secondary_ctls_high &=
6489 					~SECONDARY_EXEC_RDTSCP;
6490 		}
6491 	}
6492 
6493 	if (vmx_invpcid_supported()) {
6494 		/* Exposing INVPCID only when PCID is exposed */
6495 		bool invpcid_enabled =
6496 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
6497 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
6498 
6499 		if (!invpcid_enabled) {
6500 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6501 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
6502 		}
6503 
6504 		if (nested) {
6505 			if (invpcid_enabled)
6506 				vmx->nested.msrs.secondary_ctls_high |=
6507 					SECONDARY_EXEC_ENABLE_INVPCID;
6508 			else
6509 				vmx->nested.msrs.secondary_ctls_high &=
6510 					~SECONDARY_EXEC_ENABLE_INVPCID;
6511 		}
6512 	}
6513 
6514 	if (vmx_rdrand_supported()) {
6515 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
6516 		if (rdrand_enabled)
6517 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
6518 
6519 		if (nested) {
6520 			if (rdrand_enabled)
6521 				vmx->nested.msrs.secondary_ctls_high |=
6522 					SECONDARY_EXEC_RDRAND_EXITING;
6523 			else
6524 				vmx->nested.msrs.secondary_ctls_high &=
6525 					~SECONDARY_EXEC_RDRAND_EXITING;
6526 		}
6527 	}
6528 
6529 	if (vmx_rdseed_supported()) {
6530 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
6531 		if (rdseed_enabled)
6532 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
6533 
6534 		if (nested) {
6535 			if (rdseed_enabled)
6536 				vmx->nested.msrs.secondary_ctls_high |=
6537 					SECONDARY_EXEC_RDSEED_EXITING;
6538 			else
6539 				vmx->nested.msrs.secondary_ctls_high &=
6540 					~SECONDARY_EXEC_RDSEED_EXITING;
6541 		}
6542 	}
6543 
6544 	vmx->secondary_exec_control = exec_control;
6545 }
6546 
ept_set_mmio_spte_mask(void)6547 static void ept_set_mmio_spte_mask(void)
6548 {
6549 	/*
6550 	 * EPT Misconfigurations can be generated if the value of bits 2:0
6551 	 * of an EPT paging-structure entry is 110b (write/execute).
6552 	 */
6553 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
6554 				   VMX_EPT_MISCONFIG_WX_VALUE);
6555 }
6556 
6557 #define VMX_XSS_EXIT_BITMAP 0
6558 /*
6559  * Sets up the vmcs for emulated real mode.
6560  */
vmx_vcpu_setup(struct vcpu_vmx * vmx)6561 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6562 {
6563 	int i;
6564 
6565 	if (enable_shadow_vmcs) {
6566 		/*
6567 		 * At vCPU creation, "VMWRITE to any supported field
6568 		 * in the VMCS" is supported, so use the more
6569 		 * permissive vmx_vmread_bitmap to specify both read
6570 		 * and write permissions for the shadow VMCS.
6571 		 */
6572 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6573 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
6574 	}
6575 	if (cpu_has_vmx_msr_bitmap())
6576 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
6577 
6578 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
6579 
6580 	/* Control */
6581 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6582 	vmx->hv_deadline_tsc = -1;
6583 
6584 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6585 
6586 	if (cpu_has_secondary_exec_ctrls()) {
6587 		vmx_compute_secondary_exec_control(vmx);
6588 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6589 			     vmx->secondary_exec_control);
6590 	}
6591 
6592 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
6593 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
6594 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
6595 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
6596 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
6597 
6598 		vmcs_write16(GUEST_INTR_STATUS, 0);
6599 
6600 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
6601 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
6602 	}
6603 
6604 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
6605 		vmcs_write32(PLE_GAP, ple_gap);
6606 		vmx->ple_window = ple_window;
6607 		vmx->ple_window_dirty = true;
6608 	}
6609 
6610 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
6611 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6612 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
6613 
6614 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
6615 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
6616 	vmx_set_constant_host_state(vmx);
6617 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
6618 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
6619 
6620 	if (cpu_has_vmx_vmfunc())
6621 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
6622 
6623 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
6624 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
6625 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
6626 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
6627 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
6628 
6629 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6630 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6631 
6632 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6633 		u32 index = vmx_msr_index[i];
6634 		u32 data_low, data_high;
6635 		int j = vmx->nmsrs;
6636 
6637 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6638 			continue;
6639 		if (wrmsr_safe(index, data_low, data_high) < 0)
6640 			continue;
6641 		vmx->guest_msrs[j].index = i;
6642 		vmx->guest_msrs[j].data = 0;
6643 		vmx->guest_msrs[j].mask = -1ull;
6644 		++vmx->nmsrs;
6645 	}
6646 
6647 	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6648 
6649 	/* 22.2.1, 20.8.1 */
6650 	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
6651 
6652 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
6653 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
6654 
6655 	set_cr4_guest_host_mask(vmx);
6656 
6657 	if (vmx_xsaves_supported())
6658 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
6659 
6660 	if (enable_pml) {
6661 		ASSERT(vmx->pml_pg);
6662 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
6663 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6664 	}
6665 
6666 	if (cpu_has_vmx_encls_vmexit())
6667 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
6668 }
6669 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)6670 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
6671 {
6672 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6673 	struct msr_data apic_base_msr;
6674 	u64 cr0;
6675 
6676 	vmx->rmode.vm86_active = 0;
6677 	vmx->spec_ctrl = 0;
6678 
6679 	vcpu->arch.microcode_version = 0x100000000ULL;
6680 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
6681 	kvm_set_cr8(vcpu, 0);
6682 
6683 	if (!init_event) {
6684 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
6685 				     MSR_IA32_APICBASE_ENABLE;
6686 		if (kvm_vcpu_is_reset_bsp(vcpu))
6687 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
6688 		apic_base_msr.host_initiated = true;
6689 		kvm_set_apic_base(vcpu, &apic_base_msr);
6690 	}
6691 
6692 	vmx_segment_cache_clear(vmx);
6693 
6694 	seg_setup(VCPU_SREG_CS);
6695 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
6696 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
6697 
6698 	seg_setup(VCPU_SREG_DS);
6699 	seg_setup(VCPU_SREG_ES);
6700 	seg_setup(VCPU_SREG_FS);
6701 	seg_setup(VCPU_SREG_GS);
6702 	seg_setup(VCPU_SREG_SS);
6703 
6704 	vmcs_write16(GUEST_TR_SELECTOR, 0);
6705 	vmcs_writel(GUEST_TR_BASE, 0);
6706 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
6707 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
6708 
6709 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
6710 	vmcs_writel(GUEST_LDTR_BASE, 0);
6711 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
6712 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
6713 
6714 	if (!init_event) {
6715 		vmcs_write32(GUEST_SYSENTER_CS, 0);
6716 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
6717 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
6718 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
6719 	}
6720 
6721 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6722 	kvm_rip_write(vcpu, 0xfff0);
6723 
6724 	vmcs_writel(GUEST_GDTR_BASE, 0);
6725 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
6726 
6727 	vmcs_writel(GUEST_IDTR_BASE, 0);
6728 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
6729 
6730 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
6731 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
6732 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
6733 	if (kvm_mpx_supported())
6734 		vmcs_write64(GUEST_BNDCFGS, 0);
6735 
6736 	setup_msrs(vmx);
6737 
6738 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
6739 
6740 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
6741 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
6742 		if (cpu_need_tpr_shadow(vcpu))
6743 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
6744 				     __pa(vcpu->arch.apic->regs));
6745 		vmcs_write32(TPR_THRESHOLD, 0);
6746 	}
6747 
6748 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6749 
6750 	if (vmx->vpid != 0)
6751 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6752 
6753 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
6754 	vmx->vcpu.arch.cr0 = cr0;
6755 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
6756 	vmx_set_cr4(vcpu, 0);
6757 	vmx_set_efer(vcpu, 0);
6758 
6759 	update_exception_bitmap(vcpu);
6760 
6761 	vpid_sync_context(vmx->vpid);
6762 	if (init_event)
6763 		vmx_clear_hlt(vcpu);
6764 }
6765 
6766 /*
6767  * In nested virtualization, check if L1 asked to exit on external interrupts.
6768  * For most existing hypervisors, this will always return true.
6769  */
nested_exit_on_intr(struct kvm_vcpu * vcpu)6770 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
6771 {
6772 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
6773 		PIN_BASED_EXT_INTR_MASK;
6774 }
6775 
6776 /*
6777  * In nested virtualization, check if L1 has set
6778  * VM_EXIT_ACK_INTR_ON_EXIT
6779  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)6780 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
6781 {
6782 	return get_vmcs12(vcpu)->vm_exit_controls &
6783 		VM_EXIT_ACK_INTR_ON_EXIT;
6784 }
6785 
nested_exit_on_nmi(struct kvm_vcpu * vcpu)6786 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
6787 {
6788 	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
6789 }
6790 
enable_irq_window(struct kvm_vcpu * vcpu)6791 static void enable_irq_window(struct kvm_vcpu *vcpu)
6792 {
6793 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6794 		      CPU_BASED_VIRTUAL_INTR_PENDING);
6795 }
6796 
enable_nmi_window(struct kvm_vcpu * vcpu)6797 static void enable_nmi_window(struct kvm_vcpu *vcpu)
6798 {
6799 	if (!enable_vnmi ||
6800 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
6801 		enable_irq_window(vcpu);
6802 		return;
6803 	}
6804 
6805 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6806 		      CPU_BASED_VIRTUAL_NMI_PENDING);
6807 }
6808 
vmx_inject_irq(struct kvm_vcpu * vcpu)6809 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
6810 {
6811 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6812 	uint32_t intr;
6813 	int irq = vcpu->arch.interrupt.nr;
6814 
6815 	trace_kvm_inj_virq(irq);
6816 
6817 	++vcpu->stat.irq_injections;
6818 	if (vmx->rmode.vm86_active) {
6819 		int inc_eip = 0;
6820 		if (vcpu->arch.interrupt.soft)
6821 			inc_eip = vcpu->arch.event_exit_inst_len;
6822 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
6823 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6824 		return;
6825 	}
6826 	intr = irq | INTR_INFO_VALID_MASK;
6827 	if (vcpu->arch.interrupt.soft) {
6828 		intr |= INTR_TYPE_SOFT_INTR;
6829 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6830 			     vmx->vcpu.arch.event_exit_inst_len);
6831 	} else
6832 		intr |= INTR_TYPE_EXT_INTR;
6833 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
6834 
6835 	vmx_clear_hlt(vcpu);
6836 }
6837 
vmx_inject_nmi(struct kvm_vcpu * vcpu)6838 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
6839 {
6840 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6841 
6842 	if (!enable_vnmi) {
6843 		/*
6844 		 * Tracking the NMI-blocked state in software is built upon
6845 		 * finding the next open IRQ window. This, in turn, depends on
6846 		 * well-behaving guests: They have to keep IRQs disabled at
6847 		 * least as long as the NMI handler runs. Otherwise we may
6848 		 * cause NMI nesting, maybe breaking the guest. But as this is
6849 		 * highly unlikely, we can live with the residual risk.
6850 		 */
6851 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
6852 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
6853 	}
6854 
6855 	++vcpu->stat.nmi_injections;
6856 	vmx->loaded_vmcs->nmi_known_unmasked = false;
6857 
6858 	if (vmx->rmode.vm86_active) {
6859 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
6860 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6861 		return;
6862 	}
6863 
6864 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6865 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
6866 
6867 	vmx_clear_hlt(vcpu);
6868 }
6869 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)6870 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
6871 {
6872 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6873 	bool masked;
6874 
6875 	if (!enable_vnmi)
6876 		return vmx->loaded_vmcs->soft_vnmi_blocked;
6877 	if (vmx->loaded_vmcs->nmi_known_unmasked)
6878 		return false;
6879 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
6880 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6881 	return masked;
6882 }
6883 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)6884 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
6885 {
6886 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6887 
6888 	if (!enable_vnmi) {
6889 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
6890 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
6891 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
6892 		}
6893 	} else {
6894 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6895 		if (masked)
6896 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6897 				      GUEST_INTR_STATE_NMI);
6898 		else
6899 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
6900 					GUEST_INTR_STATE_NMI);
6901 	}
6902 }
6903 
vmx_nmi_allowed(struct kvm_vcpu * vcpu)6904 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
6905 {
6906 	if (to_vmx(vcpu)->nested.nested_run_pending)
6907 		return 0;
6908 
6909 	if (!enable_vnmi &&
6910 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
6911 		return 0;
6912 
6913 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6914 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
6915 		   | GUEST_INTR_STATE_NMI));
6916 }
6917 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)6918 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6919 {
6920 	if (to_vmx(vcpu)->nested.nested_run_pending)
6921 		return false;
6922 
6923 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
6924 		return true;
6925 
6926 	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
6927 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6928 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
6929 }
6930 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)6931 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6932 {
6933 	int ret;
6934 
6935 	if (enable_unrestricted_guest)
6936 		return 0;
6937 
6938 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6939 				    PAGE_SIZE * 3);
6940 	if (ret)
6941 		return ret;
6942 	to_kvm_vmx(kvm)->tss_addr = addr;
6943 	return init_rmode_tss(kvm);
6944 }
6945 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6946 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
6947 {
6948 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
6949 	return 0;
6950 }
6951 
rmode_exception(struct kvm_vcpu * vcpu,int vec)6952 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6953 {
6954 	switch (vec) {
6955 	case BP_VECTOR:
6956 		/*
6957 		 * Update instruction length as we may reinject the exception
6958 		 * from user space while in guest debugging mode.
6959 		 */
6960 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6961 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6962 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6963 			return false;
6964 		/* fall through */
6965 	case DB_VECTOR:
6966 		if (vcpu->guest_debug &
6967 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6968 			return false;
6969 		/* fall through */
6970 	case DE_VECTOR:
6971 	case OF_VECTOR:
6972 	case BR_VECTOR:
6973 	case UD_VECTOR:
6974 	case DF_VECTOR:
6975 	case SS_VECTOR:
6976 	case GP_VECTOR:
6977 	case MF_VECTOR:
6978 		return true;
6979 	break;
6980 	}
6981 	return false;
6982 }
6983 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)6984 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6985 				  int vec, u32 err_code)
6986 {
6987 	/*
6988 	 * Instruction with address size override prefix opcode 0x67
6989 	 * Cause the #SS fault with 0 error code in VM86 mode.
6990 	 */
6991 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6992 		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6993 			if (vcpu->arch.halt_request) {
6994 				vcpu->arch.halt_request = 0;
6995 				return kvm_vcpu_halt(vcpu);
6996 			}
6997 			return 1;
6998 		}
6999 		return 0;
7000 	}
7001 
7002 	/*
7003 	 * Forward all other exceptions that are valid in real mode.
7004 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
7005 	 *        the required debugging infrastructure rework.
7006 	 */
7007 	kvm_queue_exception(vcpu, vec);
7008 	return 1;
7009 }
7010 
7011 /*
7012  * Trigger machine check on the host. We assume all the MSRs are already set up
7013  * by the CPU and that we still run on the same CPU as the MCE occurred on.
7014  * We pass a fake environment to the machine check handler because we want
7015  * the guest to be always treated like user space, no matter what context
7016  * it used internally.
7017  */
kvm_machine_check(void)7018 static void kvm_machine_check(void)
7019 {
7020 #if defined(CONFIG_X86_MCE)
7021 	struct pt_regs regs = {
7022 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
7023 		.flags = X86_EFLAGS_IF,
7024 	};
7025 
7026 	do_machine_check(&regs, 0);
7027 #endif
7028 }
7029 
handle_machine_check(struct kvm_vcpu * vcpu)7030 static int handle_machine_check(struct kvm_vcpu *vcpu)
7031 {
7032 	/* already handled by vcpu_run */
7033 	return 1;
7034 }
7035 
handle_exception(struct kvm_vcpu * vcpu)7036 static int handle_exception(struct kvm_vcpu *vcpu)
7037 {
7038 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7039 	struct kvm_run *kvm_run = vcpu->run;
7040 	u32 intr_info, ex_no, error_code;
7041 	unsigned long cr2, rip, dr6;
7042 	u32 vect_info;
7043 	enum emulation_result er;
7044 
7045 	vect_info = vmx->idt_vectoring_info;
7046 	intr_info = vmx->exit_intr_info;
7047 
7048 	if (is_machine_check(intr_info))
7049 		return handle_machine_check(vcpu);
7050 
7051 	if (is_nmi(intr_info))
7052 		return 1;  /* already handled by vmx_vcpu_run() */
7053 
7054 	if (is_invalid_opcode(intr_info))
7055 		return handle_ud(vcpu);
7056 
7057 	error_code = 0;
7058 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
7059 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7060 
7061 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
7062 		WARN_ON_ONCE(!enable_vmware_backdoor);
7063 		er = kvm_emulate_instruction(vcpu,
7064 			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
7065 		if (er == EMULATE_USER_EXIT)
7066 			return 0;
7067 		else if (er != EMULATE_DONE)
7068 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
7069 		return 1;
7070 	}
7071 
7072 	/*
7073 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
7074 	 * MMIO, it is better to report an internal error.
7075 	 * See the comments in vmx_handle_exit.
7076 	 */
7077 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
7078 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
7079 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7080 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
7081 		vcpu->run->internal.ndata = 3;
7082 		vcpu->run->internal.data[0] = vect_info;
7083 		vcpu->run->internal.data[1] = intr_info;
7084 		vcpu->run->internal.data[2] = error_code;
7085 		return 0;
7086 	}
7087 
7088 	if (is_page_fault(intr_info)) {
7089 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
7090 		/* EPT won't cause page fault directly */
7091 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
7092 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
7093 	}
7094 
7095 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
7096 
7097 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
7098 		return handle_rmode_exception(vcpu, ex_no, error_code);
7099 
7100 	switch (ex_no) {
7101 	case AC_VECTOR:
7102 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
7103 		return 1;
7104 	case DB_VECTOR:
7105 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
7106 		if (!(vcpu->guest_debug &
7107 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
7108 			vcpu->arch.dr6 &= ~15;
7109 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
7110 			if (is_icebp(intr_info))
7111 				skip_emulated_instruction(vcpu);
7112 
7113 			kvm_queue_exception(vcpu, DB_VECTOR);
7114 			return 1;
7115 		}
7116 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
7117 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
7118 		/* fall through */
7119 	case BP_VECTOR:
7120 		/*
7121 		 * Update instruction length as we may reinject #BP from
7122 		 * user space while in guest debugging mode. Reading it for
7123 		 * #DB as well causes no harm, it is not used in that case.
7124 		 */
7125 		vmx->vcpu.arch.event_exit_inst_len =
7126 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7127 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7128 		rip = kvm_rip_read(vcpu);
7129 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
7130 		kvm_run->debug.arch.exception = ex_no;
7131 		break;
7132 	default:
7133 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
7134 		kvm_run->ex.exception = ex_no;
7135 		kvm_run->ex.error_code = error_code;
7136 		break;
7137 	}
7138 	return 0;
7139 }
7140 
handle_external_interrupt(struct kvm_vcpu * vcpu)7141 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
7142 {
7143 	++vcpu->stat.irq_exits;
7144 	return 1;
7145 }
7146 
handle_triple_fault(struct kvm_vcpu * vcpu)7147 static int handle_triple_fault(struct kvm_vcpu *vcpu)
7148 {
7149 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7150 	vcpu->mmio_needed = 0;
7151 	return 0;
7152 }
7153 
handle_io(struct kvm_vcpu * vcpu)7154 static int handle_io(struct kvm_vcpu *vcpu)
7155 {
7156 	unsigned long exit_qualification;
7157 	int size, in, string;
7158 	unsigned port;
7159 
7160 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7161 	string = (exit_qualification & 16) != 0;
7162 
7163 	++vcpu->stat.io_exits;
7164 
7165 	if (string)
7166 		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7167 
7168 	port = exit_qualification >> 16;
7169 	size = (exit_qualification & 7) + 1;
7170 	in = (exit_qualification & 8) != 0;
7171 
7172 	return kvm_fast_pio(vcpu, size, port, in);
7173 }
7174 
7175 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)7176 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
7177 {
7178 	/*
7179 	 * Patch in the VMCALL instruction:
7180 	 */
7181 	hypercall[0] = 0x0f;
7182 	hypercall[1] = 0x01;
7183 	hypercall[2] = 0xc1;
7184 }
7185 
7186 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)7187 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
7188 {
7189 	if (is_guest_mode(vcpu)) {
7190 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7191 		unsigned long orig_val = val;
7192 
7193 		/*
7194 		 * We get here when L2 changed cr0 in a way that did not change
7195 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
7196 		 * but did change L0 shadowed bits. So we first calculate the
7197 		 * effective cr0 value that L1 would like to write into the
7198 		 * hardware. It consists of the L2-owned bits from the new
7199 		 * value combined with the L1-owned bits from L1's guest_cr0.
7200 		 */
7201 		val = (val & ~vmcs12->cr0_guest_host_mask) |
7202 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
7203 
7204 		if (!nested_guest_cr0_valid(vcpu, val))
7205 			return 1;
7206 
7207 		if (kvm_set_cr0(vcpu, val))
7208 			return 1;
7209 		vmcs_writel(CR0_READ_SHADOW, orig_val);
7210 		return 0;
7211 	} else {
7212 		if (to_vmx(vcpu)->nested.vmxon &&
7213 		    !nested_host_cr0_valid(vcpu, val))
7214 			return 1;
7215 
7216 		return kvm_set_cr0(vcpu, val);
7217 	}
7218 }
7219 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)7220 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
7221 {
7222 	if (is_guest_mode(vcpu)) {
7223 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7224 		unsigned long orig_val = val;
7225 
7226 		/* analogously to handle_set_cr0 */
7227 		val = (val & ~vmcs12->cr4_guest_host_mask) |
7228 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
7229 		if (kvm_set_cr4(vcpu, val))
7230 			return 1;
7231 		vmcs_writel(CR4_READ_SHADOW, orig_val);
7232 		return 0;
7233 	} else
7234 		return kvm_set_cr4(vcpu, val);
7235 }
7236 
handle_desc(struct kvm_vcpu * vcpu)7237 static int handle_desc(struct kvm_vcpu *vcpu)
7238 {
7239 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
7240 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7241 }
7242 
handle_cr(struct kvm_vcpu * vcpu)7243 static int handle_cr(struct kvm_vcpu *vcpu)
7244 {
7245 	unsigned long exit_qualification, val;
7246 	int cr;
7247 	int reg;
7248 	int err;
7249 	int ret;
7250 
7251 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7252 	cr = exit_qualification & 15;
7253 	reg = (exit_qualification >> 8) & 15;
7254 	switch ((exit_qualification >> 4) & 3) {
7255 	case 0: /* mov to cr */
7256 		val = kvm_register_readl(vcpu, reg);
7257 		trace_kvm_cr_write(cr, val);
7258 		switch (cr) {
7259 		case 0:
7260 			err = handle_set_cr0(vcpu, val);
7261 			return kvm_complete_insn_gp(vcpu, err);
7262 		case 3:
7263 			WARN_ON_ONCE(enable_unrestricted_guest);
7264 			err = kvm_set_cr3(vcpu, val);
7265 			return kvm_complete_insn_gp(vcpu, err);
7266 		case 4:
7267 			err = handle_set_cr4(vcpu, val);
7268 			return kvm_complete_insn_gp(vcpu, err);
7269 		case 8: {
7270 				u8 cr8_prev = kvm_get_cr8(vcpu);
7271 				u8 cr8 = (u8)val;
7272 				err = kvm_set_cr8(vcpu, cr8);
7273 				ret = kvm_complete_insn_gp(vcpu, err);
7274 				if (lapic_in_kernel(vcpu))
7275 					return ret;
7276 				if (cr8_prev <= cr8)
7277 					return ret;
7278 				/*
7279 				 * TODO: we might be squashing a
7280 				 * KVM_GUESTDBG_SINGLESTEP-triggered
7281 				 * KVM_EXIT_DEBUG here.
7282 				 */
7283 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
7284 				return 0;
7285 			}
7286 		}
7287 		break;
7288 	case 2: /* clts */
7289 		WARN_ONCE(1, "Guest should always own CR0.TS");
7290 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
7291 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
7292 		return kvm_skip_emulated_instruction(vcpu);
7293 	case 1: /*mov from cr*/
7294 		switch (cr) {
7295 		case 3:
7296 			WARN_ON_ONCE(enable_unrestricted_guest);
7297 			val = kvm_read_cr3(vcpu);
7298 			kvm_register_write(vcpu, reg, val);
7299 			trace_kvm_cr_read(cr, val);
7300 			return kvm_skip_emulated_instruction(vcpu);
7301 		case 8:
7302 			val = kvm_get_cr8(vcpu);
7303 			kvm_register_write(vcpu, reg, val);
7304 			trace_kvm_cr_read(cr, val);
7305 			return kvm_skip_emulated_instruction(vcpu);
7306 		}
7307 		break;
7308 	case 3: /* lmsw */
7309 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7310 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
7311 		kvm_lmsw(vcpu, val);
7312 
7313 		return kvm_skip_emulated_instruction(vcpu);
7314 	default:
7315 		break;
7316 	}
7317 	vcpu->run->exit_reason = 0;
7318 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
7319 	       (int)(exit_qualification >> 4) & 3, cr);
7320 	return 0;
7321 }
7322 
handle_dr(struct kvm_vcpu * vcpu)7323 static int handle_dr(struct kvm_vcpu *vcpu)
7324 {
7325 	unsigned long exit_qualification;
7326 	int dr, dr7, reg;
7327 
7328 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7329 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
7330 
7331 	/* First, if DR does not exist, trigger UD */
7332 	if (!kvm_require_dr(vcpu, dr))
7333 		return 1;
7334 
7335 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
7336 	if (!kvm_require_cpl(vcpu, 0))
7337 		return 1;
7338 	dr7 = vmcs_readl(GUEST_DR7);
7339 	if (dr7 & DR7_GD) {
7340 		/*
7341 		 * As the vm-exit takes precedence over the debug trap, we
7342 		 * need to emulate the latter, either for the host or the
7343 		 * guest debugging itself.
7344 		 */
7345 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7346 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
7347 			vcpu->run->debug.arch.dr7 = dr7;
7348 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7349 			vcpu->run->debug.arch.exception = DB_VECTOR;
7350 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
7351 			return 0;
7352 		} else {
7353 			vcpu->arch.dr6 &= ~15;
7354 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
7355 			kvm_queue_exception(vcpu, DB_VECTOR);
7356 			return 1;
7357 		}
7358 	}
7359 
7360 	if (vcpu->guest_debug == 0) {
7361 		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7362 				CPU_BASED_MOV_DR_EXITING);
7363 
7364 		/*
7365 		 * No more DR vmexits; force a reload of the debug registers
7366 		 * and reenter on this instruction.  The next vmexit will
7367 		 * retrieve the full state of the debug registers.
7368 		 */
7369 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
7370 		return 1;
7371 	}
7372 
7373 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
7374 	if (exit_qualification & TYPE_MOV_FROM_DR) {
7375 		unsigned long val;
7376 
7377 		if (kvm_get_dr(vcpu, dr, &val))
7378 			return 1;
7379 		kvm_register_write(vcpu, reg, val);
7380 	} else
7381 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
7382 			return 1;
7383 
7384 	return kvm_skip_emulated_instruction(vcpu);
7385 }
7386 
vmx_get_dr6(struct kvm_vcpu * vcpu)7387 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
7388 {
7389 	return vcpu->arch.dr6;
7390 }
7391 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)7392 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
7393 {
7394 }
7395 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)7396 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
7397 {
7398 	get_debugreg(vcpu->arch.db[0], 0);
7399 	get_debugreg(vcpu->arch.db[1], 1);
7400 	get_debugreg(vcpu->arch.db[2], 2);
7401 	get_debugreg(vcpu->arch.db[3], 3);
7402 	get_debugreg(vcpu->arch.dr6, 6);
7403 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
7404 
7405 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
7406 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
7407 }
7408 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)7409 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
7410 {
7411 	vmcs_writel(GUEST_DR7, val);
7412 }
7413 
handle_cpuid(struct kvm_vcpu * vcpu)7414 static int handle_cpuid(struct kvm_vcpu *vcpu)
7415 {
7416 	return kvm_emulate_cpuid(vcpu);
7417 }
7418 
handle_rdmsr(struct kvm_vcpu * vcpu)7419 static int handle_rdmsr(struct kvm_vcpu *vcpu)
7420 {
7421 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
7422 	struct msr_data msr_info;
7423 
7424 	msr_info.index = ecx;
7425 	msr_info.host_initiated = false;
7426 	if (vmx_get_msr(vcpu, &msr_info)) {
7427 		trace_kvm_msr_read_ex(ecx);
7428 		kvm_inject_gp(vcpu, 0);
7429 		return 1;
7430 	}
7431 
7432 	trace_kvm_msr_read(ecx, msr_info.data);
7433 
7434 	/* FIXME: handling of bits 32:63 of rax, rdx */
7435 	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
7436 	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
7437 	return kvm_skip_emulated_instruction(vcpu);
7438 }
7439 
handle_wrmsr(struct kvm_vcpu * vcpu)7440 static int handle_wrmsr(struct kvm_vcpu *vcpu)
7441 {
7442 	struct msr_data msr;
7443 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
7444 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
7445 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
7446 
7447 	msr.data = data;
7448 	msr.index = ecx;
7449 	msr.host_initiated = false;
7450 	if (kvm_set_msr(vcpu, &msr) != 0) {
7451 		trace_kvm_msr_write_ex(ecx, data);
7452 		kvm_inject_gp(vcpu, 0);
7453 		return 1;
7454 	}
7455 
7456 	trace_kvm_msr_write(ecx, data);
7457 	return kvm_skip_emulated_instruction(vcpu);
7458 }
7459 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)7460 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
7461 {
7462 	kvm_apic_update_ppr(vcpu);
7463 	return 1;
7464 }
7465 
handle_interrupt_window(struct kvm_vcpu * vcpu)7466 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
7467 {
7468 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7469 			CPU_BASED_VIRTUAL_INTR_PENDING);
7470 
7471 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7472 
7473 	++vcpu->stat.irq_window_exits;
7474 	return 1;
7475 }
7476 
handle_halt(struct kvm_vcpu * vcpu)7477 static int handle_halt(struct kvm_vcpu *vcpu)
7478 {
7479 	return kvm_emulate_halt(vcpu);
7480 }
7481 
handle_vmcall(struct kvm_vcpu * vcpu)7482 static int handle_vmcall(struct kvm_vcpu *vcpu)
7483 {
7484 	return kvm_emulate_hypercall(vcpu);
7485 }
7486 
handle_invd(struct kvm_vcpu * vcpu)7487 static int handle_invd(struct kvm_vcpu *vcpu)
7488 {
7489 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7490 }
7491 
handle_invlpg(struct kvm_vcpu * vcpu)7492 static int handle_invlpg(struct kvm_vcpu *vcpu)
7493 {
7494 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7495 
7496 	kvm_mmu_invlpg(vcpu, exit_qualification);
7497 	return kvm_skip_emulated_instruction(vcpu);
7498 }
7499 
handle_rdpmc(struct kvm_vcpu * vcpu)7500 static int handle_rdpmc(struct kvm_vcpu *vcpu)
7501 {
7502 	int err;
7503 
7504 	err = kvm_rdpmc(vcpu);
7505 	return kvm_complete_insn_gp(vcpu, err);
7506 }
7507 
handle_wbinvd(struct kvm_vcpu * vcpu)7508 static int handle_wbinvd(struct kvm_vcpu *vcpu)
7509 {
7510 	return kvm_emulate_wbinvd(vcpu);
7511 }
7512 
handle_xsetbv(struct kvm_vcpu * vcpu)7513 static int handle_xsetbv(struct kvm_vcpu *vcpu)
7514 {
7515 	u64 new_bv = kvm_read_edx_eax(vcpu);
7516 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
7517 
7518 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
7519 		return kvm_skip_emulated_instruction(vcpu);
7520 	return 1;
7521 }
7522 
handle_xsaves(struct kvm_vcpu * vcpu)7523 static int handle_xsaves(struct kvm_vcpu *vcpu)
7524 {
7525 	kvm_skip_emulated_instruction(vcpu);
7526 	WARN(1, "this should never happen\n");
7527 	return 1;
7528 }
7529 
handle_xrstors(struct kvm_vcpu * vcpu)7530 static int handle_xrstors(struct kvm_vcpu *vcpu)
7531 {
7532 	kvm_skip_emulated_instruction(vcpu);
7533 	WARN(1, "this should never happen\n");
7534 	return 1;
7535 }
7536 
handle_apic_access(struct kvm_vcpu * vcpu)7537 static int handle_apic_access(struct kvm_vcpu *vcpu)
7538 {
7539 	if (likely(fasteoi)) {
7540 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7541 		int access_type, offset;
7542 
7543 		access_type = exit_qualification & APIC_ACCESS_TYPE;
7544 		offset = exit_qualification & APIC_ACCESS_OFFSET;
7545 		/*
7546 		 * Sane guest uses MOV to write EOI, with written value
7547 		 * not cared. So make a short-circuit here by avoiding
7548 		 * heavy instruction emulation.
7549 		 */
7550 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
7551 		    (offset == APIC_EOI)) {
7552 			kvm_lapic_set_eoi(vcpu);
7553 			return kvm_skip_emulated_instruction(vcpu);
7554 		}
7555 	}
7556 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
7557 }
7558 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)7559 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
7560 {
7561 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7562 	int vector = exit_qualification & 0xff;
7563 
7564 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
7565 	kvm_apic_set_eoi_accelerated(vcpu, vector);
7566 	return 1;
7567 }
7568 
handle_apic_write(struct kvm_vcpu * vcpu)7569 static int handle_apic_write(struct kvm_vcpu *vcpu)
7570 {
7571 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7572 	u32 offset = exit_qualification & 0xfff;
7573 
7574 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
7575 	kvm_apic_write_nodecode(vcpu, offset);
7576 	return 1;
7577 }
7578 
handle_task_switch(struct kvm_vcpu * vcpu)7579 static int handle_task_switch(struct kvm_vcpu *vcpu)
7580 {
7581 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7582 	unsigned long exit_qualification;
7583 	bool has_error_code = false;
7584 	u32 error_code = 0;
7585 	u16 tss_selector;
7586 	int reason, type, idt_v, idt_index;
7587 
7588 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7589 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
7590 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
7591 
7592 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7593 
7594 	reason = (u32)exit_qualification >> 30;
7595 	if (reason == TASK_SWITCH_GATE && idt_v) {
7596 		switch (type) {
7597 		case INTR_TYPE_NMI_INTR:
7598 			vcpu->arch.nmi_injected = false;
7599 			vmx_set_nmi_mask(vcpu, true);
7600 			break;
7601 		case INTR_TYPE_EXT_INTR:
7602 		case INTR_TYPE_SOFT_INTR:
7603 			kvm_clear_interrupt_queue(vcpu);
7604 			break;
7605 		case INTR_TYPE_HARD_EXCEPTION:
7606 			if (vmx->idt_vectoring_info &
7607 			    VECTORING_INFO_DELIVER_CODE_MASK) {
7608 				has_error_code = true;
7609 				error_code =
7610 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
7611 			}
7612 			/* fall through */
7613 		case INTR_TYPE_SOFT_EXCEPTION:
7614 			kvm_clear_exception_queue(vcpu);
7615 			break;
7616 		default:
7617 			break;
7618 		}
7619 	}
7620 	tss_selector = exit_qualification;
7621 
7622 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
7623 		       type != INTR_TYPE_EXT_INTR &&
7624 		       type != INTR_TYPE_NMI_INTR))
7625 		skip_emulated_instruction(vcpu);
7626 
7627 	if (kvm_task_switch(vcpu, tss_selector,
7628 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
7629 			    has_error_code, error_code) == EMULATE_FAIL) {
7630 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7631 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7632 		vcpu->run->internal.ndata = 0;
7633 		return 0;
7634 	}
7635 
7636 	/*
7637 	 * TODO: What about debug traps on tss switch?
7638 	 *       Are we supposed to inject them and update dr6?
7639 	 */
7640 
7641 	return 1;
7642 }
7643 
handle_ept_violation(struct kvm_vcpu * vcpu)7644 static int handle_ept_violation(struct kvm_vcpu *vcpu)
7645 {
7646 	unsigned long exit_qualification;
7647 	gpa_t gpa;
7648 	u64 error_code;
7649 
7650 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7651 
7652 	/*
7653 	 * EPT violation happened while executing iret from NMI,
7654 	 * "blocked by NMI" bit has to be set before next VM entry.
7655 	 * There are errata that may cause this bit to not be set:
7656 	 * AAK134, BY25.
7657 	 */
7658 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7659 			enable_vnmi &&
7660 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
7661 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
7662 
7663 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
7664 	trace_kvm_page_fault(gpa, exit_qualification);
7665 
7666 	/* Is it a read fault? */
7667 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
7668 		     ? PFERR_USER_MASK : 0;
7669 	/* Is it a write fault? */
7670 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
7671 		      ? PFERR_WRITE_MASK : 0;
7672 	/* Is it a fetch fault? */
7673 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
7674 		      ? PFERR_FETCH_MASK : 0;
7675 	/* ept page table entry is present? */
7676 	error_code |= (exit_qualification &
7677 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
7678 			EPT_VIOLATION_EXECUTABLE))
7679 		      ? PFERR_PRESENT_MASK : 0;
7680 
7681 	error_code |= (exit_qualification & 0x100) != 0 ?
7682 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
7683 
7684 	vcpu->arch.exit_qualification = exit_qualification;
7685 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
7686 }
7687 
handle_ept_misconfig(struct kvm_vcpu * vcpu)7688 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
7689 {
7690 	gpa_t gpa;
7691 
7692 	/*
7693 	 * A nested guest cannot optimize MMIO vmexits, because we have an
7694 	 * nGPA here instead of the required GPA.
7695 	 */
7696 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
7697 	if (!is_guest_mode(vcpu) &&
7698 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
7699 		trace_kvm_fast_mmio(gpa);
7700 		/*
7701 		 * Doing kvm_skip_emulated_instruction() depends on undefined
7702 		 * behavior: Intel's manual doesn't mandate
7703 		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
7704 		 * occurs and while on real hardware it was observed to be set,
7705 		 * other hypervisors (namely Hyper-V) don't set it, we end up
7706 		 * advancing IP with some random value. Disable fast mmio when
7707 		 * running nested and keep it for real hardware in hope that
7708 		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
7709 		 */
7710 		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
7711 			return kvm_skip_emulated_instruction(vcpu);
7712 		else
7713 			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
7714 								EMULATE_DONE;
7715 	}
7716 
7717 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
7718 }
7719 
handle_nmi_window(struct kvm_vcpu * vcpu)7720 static int handle_nmi_window(struct kvm_vcpu *vcpu)
7721 {
7722 	WARN_ON_ONCE(!enable_vnmi);
7723 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7724 			CPU_BASED_VIRTUAL_NMI_PENDING);
7725 	++vcpu->stat.nmi_window_exits;
7726 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7727 
7728 	return 1;
7729 }
7730 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)7731 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
7732 {
7733 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7734 	enum emulation_result err = EMULATE_DONE;
7735 	int ret = 1;
7736 	u32 cpu_exec_ctrl;
7737 	bool intr_window_requested;
7738 	unsigned count = 130;
7739 
7740 	/*
7741 	 * We should never reach the point where we are emulating L2
7742 	 * due to invalid guest state as that means we incorrectly
7743 	 * allowed a nested VMEntry with an invalid vmcs12.
7744 	 */
7745 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
7746 
7747 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7748 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
7749 
7750 	while (vmx->emulation_required && count-- != 0) {
7751 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
7752 			return handle_interrupt_window(&vmx->vcpu);
7753 
7754 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
7755 			return 1;
7756 
7757 		err = kvm_emulate_instruction(vcpu, 0);
7758 
7759 		if (err == EMULATE_USER_EXIT) {
7760 			++vcpu->stat.mmio_exits;
7761 			ret = 0;
7762 			goto out;
7763 		}
7764 
7765 		if (err != EMULATE_DONE)
7766 			goto emulation_error;
7767 
7768 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
7769 		    vcpu->arch.exception.pending)
7770 			goto emulation_error;
7771 
7772 		if (vcpu->arch.halt_request) {
7773 			vcpu->arch.halt_request = 0;
7774 			ret = kvm_vcpu_halt(vcpu);
7775 			goto out;
7776 		}
7777 
7778 		if (signal_pending(current))
7779 			goto out;
7780 		if (need_resched())
7781 			schedule();
7782 	}
7783 
7784 out:
7785 	return ret;
7786 
7787 emulation_error:
7788 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7789 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7790 	vcpu->run->internal.ndata = 0;
7791 	return 0;
7792 }
7793 
grow_ple_window(struct kvm_vcpu * vcpu)7794 static void grow_ple_window(struct kvm_vcpu *vcpu)
7795 {
7796 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7797 	int old = vmx->ple_window;
7798 
7799 	vmx->ple_window = __grow_ple_window(old, ple_window,
7800 					    ple_window_grow,
7801 					    ple_window_max);
7802 
7803 	if (vmx->ple_window != old)
7804 		vmx->ple_window_dirty = true;
7805 
7806 	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
7807 }
7808 
shrink_ple_window(struct kvm_vcpu * vcpu)7809 static void shrink_ple_window(struct kvm_vcpu *vcpu)
7810 {
7811 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7812 	int old = vmx->ple_window;
7813 
7814 	vmx->ple_window = __shrink_ple_window(old, ple_window,
7815 					      ple_window_shrink,
7816 					      ple_window);
7817 
7818 	if (vmx->ple_window != old)
7819 		vmx->ple_window_dirty = true;
7820 
7821 	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
7822 }
7823 
7824 /*
7825  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
7826  */
wakeup_handler(void)7827 static void wakeup_handler(void)
7828 {
7829 	struct kvm_vcpu *vcpu;
7830 	int cpu = smp_processor_id();
7831 
7832 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7833 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
7834 			blocked_vcpu_list) {
7835 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7836 
7837 		if (pi_test_on(pi_desc) == 1)
7838 			kvm_vcpu_kick(vcpu);
7839 	}
7840 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7841 }
7842 
vmx_enable_tdp(void)7843 static void vmx_enable_tdp(void)
7844 {
7845 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
7846 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
7847 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
7848 		0ull, VMX_EPT_EXECUTABLE_MASK,
7849 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
7850 		VMX_EPT_RWX_MASK, 0ull);
7851 
7852 	ept_set_mmio_spte_mask();
7853 	kvm_enable_tdp();
7854 }
7855 
hardware_setup(void)7856 static __init int hardware_setup(void)
7857 {
7858 	unsigned long host_bndcfgs;
7859 	int r = -ENOMEM, i;
7860 
7861 	rdmsrl_safe(MSR_EFER, &host_efer);
7862 
7863 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7864 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7865 
7866 	for (i = 0; i < VMX_BITMAP_NR; i++) {
7867 		vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
7868 		if (!vmx_bitmap[i])
7869 			goto out;
7870 	}
7871 
7872 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
7873 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
7874 
7875 	if (setup_vmcs_config(&vmcs_config) < 0) {
7876 		r = -EIO;
7877 		goto out;
7878 	}
7879 
7880 	if (boot_cpu_has(X86_FEATURE_NX))
7881 		kvm_enable_efer_bits(EFER_NX);
7882 
7883 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7884 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7885 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7886 	}
7887 
7888 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7889 		!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7890 		enable_vpid = 0;
7891 
7892 	if (!cpu_has_vmx_ept() ||
7893 	    !cpu_has_vmx_ept_4levels() ||
7894 	    !cpu_has_vmx_ept_mt_wb() ||
7895 	    !cpu_has_vmx_invept_global())
7896 		enable_ept = 0;
7897 
7898 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7899 		enable_ept_ad_bits = 0;
7900 
7901 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7902 		enable_unrestricted_guest = 0;
7903 
7904 	if (!cpu_has_vmx_flexpriority())
7905 		flexpriority_enabled = 0;
7906 
7907 	if (!cpu_has_virtual_nmis())
7908 		enable_vnmi = 0;
7909 
7910 	/*
7911 	 * set_apic_access_page_addr() is used to reload apic access
7912 	 * page upon invalidation.  No need to do anything if not
7913 	 * using the APIC_ACCESS_ADDR VMCS field.
7914 	 */
7915 	if (!flexpriority_enabled)
7916 		kvm_x86_ops->set_apic_access_page_addr = NULL;
7917 
7918 	if (!cpu_has_vmx_tpr_shadow())
7919 		kvm_x86_ops->update_cr8_intercept = NULL;
7920 
7921 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
7922 		kvm_disable_largepages();
7923 
7924 #if IS_ENABLED(CONFIG_HYPERV)
7925 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7926 	    && enable_ept)
7927 		kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb;
7928 #endif
7929 
7930 	if (!cpu_has_vmx_ple()) {
7931 		ple_gap = 0;
7932 		ple_window = 0;
7933 		ple_window_grow = 0;
7934 		ple_window_max = 0;
7935 		ple_window_shrink = 0;
7936 	}
7937 
7938 	if (!cpu_has_vmx_apicv()) {
7939 		enable_apicv = 0;
7940 		kvm_x86_ops->sync_pir_to_irr = NULL;
7941 	}
7942 
7943 	if (cpu_has_vmx_tsc_scaling()) {
7944 		kvm_has_tsc_control = true;
7945 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7946 		kvm_tsc_scaling_ratio_frac_bits = 48;
7947 	}
7948 
7949 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7950 
7951 	if (enable_ept)
7952 		vmx_enable_tdp();
7953 	else
7954 		kvm_disable_tdp();
7955 
7956 	if (!nested) {
7957 		kvm_x86_ops->get_nested_state = NULL;
7958 		kvm_x86_ops->set_nested_state = NULL;
7959 	}
7960 
7961 	/*
7962 	 * Only enable PML when hardware supports PML feature, and both EPT
7963 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7964 	 */
7965 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7966 		enable_pml = 0;
7967 
7968 	if (!enable_pml) {
7969 		kvm_x86_ops->slot_enable_log_dirty = NULL;
7970 		kvm_x86_ops->slot_disable_log_dirty = NULL;
7971 		kvm_x86_ops->flush_log_dirty = NULL;
7972 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7973 	}
7974 
7975 	if (!cpu_has_vmx_preemption_timer())
7976 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7977 
7978 	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7979 		u64 vmx_msr;
7980 
7981 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7982 		cpu_preemption_timer_multi =
7983 			 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7984 	} else {
7985 		kvm_x86_ops->set_hv_timer = NULL;
7986 		kvm_x86_ops->cancel_hv_timer = NULL;
7987 	}
7988 
7989 	if (!cpu_has_vmx_shadow_vmcs())
7990 		enable_shadow_vmcs = 0;
7991 	if (enable_shadow_vmcs)
7992 		init_vmcs_shadow_fields();
7993 
7994 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7995 	nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
7996 
7997 	kvm_mce_cap_supported |= MCG_LMCE_P;
7998 
7999 	r = alloc_kvm_area();
8000 	if (r)
8001 		goto out;
8002 	return 0;
8003 
8004 out:
8005 	for (i = 0; i < VMX_BITMAP_NR; i++)
8006 		free_page((unsigned long)vmx_bitmap[i]);
8007 
8008 	return r;
8009 }
8010 
hardware_unsetup(void)8011 static __exit void hardware_unsetup(void)
8012 {
8013 	int i;
8014 
8015 	for (i = 0; i < VMX_BITMAP_NR; i++)
8016 		free_page((unsigned long)vmx_bitmap[i]);
8017 
8018 	free_kvm_area();
8019 }
8020 
8021 /*
8022  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
8023  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
8024  */
handle_pause(struct kvm_vcpu * vcpu)8025 static int handle_pause(struct kvm_vcpu *vcpu)
8026 {
8027 	if (!kvm_pause_in_guest(vcpu->kvm))
8028 		grow_ple_window(vcpu);
8029 
8030 	/*
8031 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
8032 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
8033 	 * never set PAUSE_EXITING and just set PLE if supported,
8034 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
8035 	 */
8036 	kvm_vcpu_on_spin(vcpu, true);
8037 	return kvm_skip_emulated_instruction(vcpu);
8038 }
8039 
handle_nop(struct kvm_vcpu * vcpu)8040 static int handle_nop(struct kvm_vcpu *vcpu)
8041 {
8042 	return kvm_skip_emulated_instruction(vcpu);
8043 }
8044 
handle_mwait(struct kvm_vcpu * vcpu)8045 static int handle_mwait(struct kvm_vcpu *vcpu)
8046 {
8047 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
8048 	return handle_nop(vcpu);
8049 }
8050 
handle_invalid_op(struct kvm_vcpu * vcpu)8051 static int handle_invalid_op(struct kvm_vcpu *vcpu)
8052 {
8053 	kvm_queue_exception(vcpu, UD_VECTOR);
8054 	return 1;
8055 }
8056 
handle_monitor_trap(struct kvm_vcpu * vcpu)8057 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
8058 {
8059 	return 1;
8060 }
8061 
handle_monitor(struct kvm_vcpu * vcpu)8062 static int handle_monitor(struct kvm_vcpu *vcpu)
8063 {
8064 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
8065 	return handle_nop(vcpu);
8066 }
8067 
8068 /*
8069  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
8070  * set the success or error code of an emulated VMX instruction, as specified
8071  * by Vol 2B, VMX Instruction Reference, "Conventions".
8072  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)8073 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
8074 {
8075 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
8076 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
8077 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
8078 }
8079 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)8080 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
8081 {
8082 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
8083 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
8084 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
8085 			| X86_EFLAGS_CF);
8086 }
8087 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)8088 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
8089 					u32 vm_instruction_error)
8090 {
8091 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
8092 		/*
8093 		 * failValid writes the error number to the current VMCS, which
8094 		 * can't be done there isn't a current VMCS.
8095 		 */
8096 		nested_vmx_failInvalid(vcpu);
8097 		return;
8098 	}
8099 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
8100 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
8101 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
8102 			| X86_EFLAGS_ZF);
8103 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
8104 	/*
8105 	 * We don't need to force a shadow sync because
8106 	 * VM_INSTRUCTION_ERROR is not shadowed
8107 	 */
8108 }
8109 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)8110 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
8111 {
8112 	/* TODO: not to reset guest simply here. */
8113 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8114 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
8115 }
8116 
vmx_preemption_timer_fn(struct hrtimer * timer)8117 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
8118 {
8119 	struct vcpu_vmx *vmx =
8120 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
8121 
8122 	vmx->nested.preemption_timer_expired = true;
8123 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
8124 	kvm_vcpu_kick(&vmx->vcpu);
8125 
8126 	return HRTIMER_NORESTART;
8127 }
8128 
8129 /*
8130  * Decode the memory-address operand of a vmx instruction, as recorded on an
8131  * exit caused by such an instruction (run by a guest hypervisor).
8132  * On success, returns 0. When the operand is invalid, returns 1 and throws
8133  * #UD or #GP.
8134  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,gva_t * ret)8135 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
8136 				 unsigned long exit_qualification,
8137 				 u32 vmx_instruction_info, bool wr, gva_t *ret)
8138 {
8139 	gva_t off;
8140 	bool exn;
8141 	struct kvm_segment s;
8142 
8143 	/*
8144 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
8145 	 * Execution", on an exit, vmx_instruction_info holds most of the
8146 	 * addressing components of the operand. Only the displacement part
8147 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
8148 	 * For how an actual address is calculated from all these components,
8149 	 * refer to Vol. 1, "Operand Addressing".
8150 	 */
8151 	int  scaling = vmx_instruction_info & 3;
8152 	int  addr_size = (vmx_instruction_info >> 7) & 7;
8153 	bool is_reg = vmx_instruction_info & (1u << 10);
8154 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
8155 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
8156 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
8157 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
8158 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
8159 
8160 	if (is_reg) {
8161 		kvm_queue_exception(vcpu, UD_VECTOR);
8162 		return 1;
8163 	}
8164 
8165 	/* Addr = segment_base + offset */
8166 	/* offset = base + [index * scale] + displacement */
8167 	off = exit_qualification; /* holds the displacement */
8168 	if (addr_size == 1)
8169 		off = (gva_t)sign_extend64(off, 31);
8170 	else if (addr_size == 0)
8171 		off = (gva_t)sign_extend64(off, 15);
8172 	if (base_is_valid)
8173 		off += kvm_register_read(vcpu, base_reg);
8174 	if (index_is_valid)
8175 		off += kvm_register_read(vcpu, index_reg)<<scaling;
8176 	vmx_get_segment(vcpu, &s, seg_reg);
8177 
8178 	/*
8179 	 * The effective address, i.e. @off, of a memory operand is truncated
8180 	 * based on the address size of the instruction.  Note that this is
8181 	 * the *effective address*, i.e. the address prior to accounting for
8182 	 * the segment's base.
8183 	 */
8184 	if (addr_size == 1) /* 32 bit */
8185 		off &= 0xffffffff;
8186 	else if (addr_size == 0) /* 16 bit */
8187 		off &= 0xffff;
8188 
8189 	/* Checks for #GP/#SS exceptions. */
8190 	exn = false;
8191 	if (is_long_mode(vcpu)) {
8192 		/*
8193 		 * The virtual/linear address is never truncated in 64-bit
8194 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
8195 		 * address when using FS/GS with a non-zero base.
8196 		 */
8197 		*ret = s.base + off;
8198 
8199 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
8200 		 * non-canonical form. This is the only check on the memory
8201 		 * destination for long mode!
8202 		 */
8203 		exn = is_noncanonical_address(*ret, vcpu);
8204 	} else if (is_protmode(vcpu)) {
8205 		/*
8206 		 * When not in long mode, the virtual/linear address is
8207 		 * unconditionally truncated to 32 bits regardless of the
8208 		 * address size.
8209 		 */
8210 		*ret = (s.base + off) & 0xffffffff;
8211 
8212 		/* Protected mode: apply checks for segment validity in the
8213 		 * following order:
8214 		 * - segment type check (#GP(0) may be thrown)
8215 		 * - usability check (#GP(0)/#SS(0))
8216 		 * - limit check (#GP(0)/#SS(0))
8217 		 */
8218 		if (wr)
8219 			/* #GP(0) if the destination operand is located in a
8220 			 * read-only data segment or any code segment.
8221 			 */
8222 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
8223 		else
8224 			/* #GP(0) if the source operand is located in an
8225 			 * execute-only code segment
8226 			 */
8227 			exn = ((s.type & 0xa) == 8);
8228 		if (exn) {
8229 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8230 			return 1;
8231 		}
8232 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
8233 		 */
8234 		exn = (s.unusable != 0);
8235 
8236 		/*
8237 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
8238 		 * outside the segment limit.  All CPUs that support VMX ignore
8239 		 * limit checks for flat segments, i.e. segments with base==0,
8240 		 * limit==0xffffffff and of type expand-up data or code.
8241 		 */
8242 		if (!(s.base == 0 && s.limit == 0xffffffff &&
8243 		     ((s.type & 8) || !(s.type & 4))))
8244 			exn = exn || (off + sizeof(u64) > s.limit);
8245 	}
8246 	if (exn) {
8247 		kvm_queue_exception_e(vcpu,
8248 				      seg_reg == VCPU_SREG_SS ?
8249 						SS_VECTOR : GP_VECTOR,
8250 				      0);
8251 		return 1;
8252 	}
8253 
8254 	return 0;
8255 }
8256 
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer)8257 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
8258 {
8259 	gva_t gva;
8260 	struct x86_exception e;
8261 
8262 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8263 			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
8264 		return 1;
8265 
8266 	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
8267 		kvm_inject_page_fault(vcpu, &e);
8268 		return 1;
8269 	}
8270 
8271 	return 0;
8272 }
8273 
8274 /*
8275  * Allocate a shadow VMCS and associate it with the currently loaded
8276  * VMCS, unless such a shadow VMCS already exists. The newly allocated
8277  * VMCS is also VMCLEARed, so that it is ready for use.
8278  */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)8279 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
8280 {
8281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8282 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
8283 
8284 	/*
8285 	 * We should allocate a shadow vmcs for vmcs01 only when L1
8286 	 * executes VMXON and free it when L1 executes VMXOFF.
8287 	 * As it is invalid to execute VMXON twice, we shouldn't reach
8288 	 * here when vmcs01 already have an allocated shadow vmcs.
8289 	 */
8290 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
8291 
8292 	if (!loaded_vmcs->shadow_vmcs) {
8293 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
8294 		if (loaded_vmcs->shadow_vmcs)
8295 			vmcs_clear(loaded_vmcs->shadow_vmcs);
8296 	}
8297 	return loaded_vmcs->shadow_vmcs;
8298 }
8299 
enter_vmx_operation(struct kvm_vcpu * vcpu)8300 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
8301 {
8302 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8303 	int r;
8304 
8305 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
8306 	if (r < 0)
8307 		goto out_vmcs02;
8308 
8309 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
8310 	if (!vmx->nested.cached_vmcs12)
8311 		goto out_cached_vmcs12;
8312 
8313 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
8314 	if (!vmx->nested.cached_shadow_vmcs12)
8315 		goto out_cached_shadow_vmcs12;
8316 
8317 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
8318 		goto out_shadow_vmcs;
8319 
8320 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
8321 		     HRTIMER_MODE_REL_PINNED);
8322 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
8323 
8324 	vmx->nested.vpid02 = allocate_vpid();
8325 
8326 	vmx->nested.vmxon = true;
8327 	return 0;
8328 
8329 out_shadow_vmcs:
8330 	kfree(vmx->nested.cached_shadow_vmcs12);
8331 
8332 out_cached_shadow_vmcs12:
8333 	kfree(vmx->nested.cached_vmcs12);
8334 
8335 out_cached_vmcs12:
8336 	free_loaded_vmcs(&vmx->nested.vmcs02);
8337 
8338 out_vmcs02:
8339 	return -ENOMEM;
8340 }
8341 
8342 /*
8343  * Emulate the VMXON instruction.
8344  * Currently, we just remember that VMX is active, and do not save or even
8345  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
8346  * do not currently need to store anything in that guest-allocated memory
8347  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
8348  * argument is different from the VMXON pointer (which the spec says they do).
8349  */
handle_vmon(struct kvm_vcpu * vcpu)8350 static int handle_vmon(struct kvm_vcpu *vcpu)
8351 {
8352 	int ret;
8353 	gpa_t vmptr;
8354 	struct page *page;
8355 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8356 	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
8357 		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8358 
8359 	/*
8360 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
8361 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
8362 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
8363 	 * Otherwise, we should fail with #UD.  But most faulting conditions
8364 	 * have already been checked by hardware, prior to the VM-exit for
8365 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
8366 	 * that bit set to 1 in non-root mode.
8367 	 */
8368 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
8369 		kvm_queue_exception(vcpu, UD_VECTOR);
8370 		return 1;
8371 	}
8372 
8373 	/* CPL=0 must be checked manually. */
8374 	if (vmx_get_cpl(vcpu)) {
8375 		kvm_inject_gp(vcpu, 0);
8376 		return 1;
8377 	}
8378 
8379 	if (vmx->nested.vmxon) {
8380 		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
8381 		return kvm_skip_emulated_instruction(vcpu);
8382 	}
8383 
8384 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
8385 			!= VMXON_NEEDED_FEATURES) {
8386 		kvm_inject_gp(vcpu, 0);
8387 		return 1;
8388 	}
8389 
8390 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
8391 		return 1;
8392 
8393 	/*
8394 	 * SDM 3: 24.11.5
8395 	 * The first 4 bytes of VMXON region contain the supported
8396 	 * VMCS revision identifier
8397 	 *
8398 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
8399 	 * which replaces physical address width with 32
8400 	 */
8401 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8402 		nested_vmx_failInvalid(vcpu);
8403 		return kvm_skip_emulated_instruction(vcpu);
8404 	}
8405 
8406 	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8407 	if (is_error_page(page)) {
8408 		nested_vmx_failInvalid(vcpu);
8409 		return kvm_skip_emulated_instruction(vcpu);
8410 	}
8411 	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
8412 		kunmap(page);
8413 		kvm_release_page_clean(page);
8414 		nested_vmx_failInvalid(vcpu);
8415 		return kvm_skip_emulated_instruction(vcpu);
8416 	}
8417 	kunmap(page);
8418 	kvm_release_page_clean(page);
8419 
8420 	vmx->nested.vmxon_ptr = vmptr;
8421 	ret = enter_vmx_operation(vcpu);
8422 	if (ret)
8423 		return ret;
8424 
8425 	nested_vmx_succeed(vcpu);
8426 	return kvm_skip_emulated_instruction(vcpu);
8427 }
8428 
8429 /*
8430  * Intel's VMX Instruction Reference specifies a common set of prerequisites
8431  * for running VMX instructions (except VMXON, whose prerequisites are
8432  * slightly different). It also specifies what exception to inject otherwise.
8433  * Note that many of these exceptions have priority over VM exits, so they
8434  * don't have to be checked again here.
8435  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)8436 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
8437 {
8438 	if (!to_vmx(vcpu)->nested.vmxon) {
8439 		kvm_queue_exception(vcpu, UD_VECTOR);
8440 		return 0;
8441 	}
8442 
8443 	if (vmx_get_cpl(vcpu)) {
8444 		kvm_inject_gp(vcpu, 0);
8445 		return 0;
8446 	}
8447 
8448 	return 1;
8449 }
8450 
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)8451 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
8452 {
8453 	vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
8454 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
8455 	vmx->nested.sync_shadow_vmcs = false;
8456 }
8457 
nested_release_vmcs12(struct vcpu_vmx * vmx)8458 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
8459 {
8460 	if (vmx->nested.current_vmptr == -1ull)
8461 		return;
8462 
8463 	if (enable_shadow_vmcs) {
8464 		/* copy to memory all shadowed fields in case
8465 		   they were modified */
8466 		copy_shadow_to_vmcs12(vmx);
8467 		vmx_disable_shadow_vmcs(vmx);
8468 	}
8469 	vmx->nested.posted_intr_nv = -1;
8470 
8471 	/* Flush VMCS12 to guest memory */
8472 	kvm_vcpu_write_guest_page(&vmx->vcpu,
8473 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
8474 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
8475 
8476 	vmx->nested.current_vmptr = -1ull;
8477 }
8478 
8479 /*
8480  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
8481  * just stops using VMX.
8482  */
free_nested(struct vcpu_vmx * vmx)8483 static void free_nested(struct vcpu_vmx *vmx)
8484 {
8485 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
8486 		return;
8487 
8488 	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, &vmx->vcpu);
8489 
8490 	hrtimer_cancel(&vmx->nested.preemption_timer);
8491 	vmx->nested.vmxon = false;
8492 	vmx->nested.smm.vmxon = false;
8493 	free_vpid(vmx->nested.vpid02);
8494 	vmx->nested.posted_intr_nv = -1;
8495 	vmx->nested.current_vmptr = -1ull;
8496 	if (enable_shadow_vmcs) {
8497 		vmx_disable_shadow_vmcs(vmx);
8498 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
8499 		free_vmcs(vmx->vmcs01.shadow_vmcs);
8500 		vmx->vmcs01.shadow_vmcs = NULL;
8501 	}
8502 	kfree(vmx->nested.cached_vmcs12);
8503 	kfree(vmx->nested.cached_shadow_vmcs12);
8504 	/* Unpin physical memory we referred to in the vmcs02 */
8505 	if (vmx->nested.apic_access_page) {
8506 		kvm_release_page_dirty(vmx->nested.apic_access_page);
8507 		vmx->nested.apic_access_page = NULL;
8508 	}
8509 	if (vmx->nested.virtual_apic_page) {
8510 		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
8511 		vmx->nested.virtual_apic_page = NULL;
8512 	}
8513 	if (vmx->nested.pi_desc_page) {
8514 		kunmap(vmx->nested.pi_desc_page);
8515 		kvm_release_page_dirty(vmx->nested.pi_desc_page);
8516 		vmx->nested.pi_desc_page = NULL;
8517 		vmx->nested.pi_desc = NULL;
8518 	}
8519 
8520 	free_loaded_vmcs(&vmx->nested.vmcs02);
8521 }
8522 
8523 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)8524 static int handle_vmoff(struct kvm_vcpu *vcpu)
8525 {
8526 	if (!nested_vmx_check_permission(vcpu))
8527 		return 1;
8528 	free_nested(to_vmx(vcpu));
8529 	nested_vmx_succeed(vcpu);
8530 	return kvm_skip_emulated_instruction(vcpu);
8531 }
8532 
8533 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)8534 static int handle_vmclear(struct kvm_vcpu *vcpu)
8535 {
8536 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8537 	u32 zero = 0;
8538 	gpa_t vmptr;
8539 
8540 	if (!nested_vmx_check_permission(vcpu))
8541 		return 1;
8542 
8543 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
8544 		return 1;
8545 
8546 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8547 		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
8548 		return kvm_skip_emulated_instruction(vcpu);
8549 	}
8550 
8551 	if (vmptr == vmx->nested.vmxon_ptr) {
8552 		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
8553 		return kvm_skip_emulated_instruction(vcpu);
8554 	}
8555 
8556 	if (vmptr == vmx->nested.current_vmptr)
8557 		nested_release_vmcs12(vmx);
8558 
8559 	kvm_vcpu_write_guest(vcpu,
8560 			vmptr + offsetof(struct vmcs12, launch_state),
8561 			&zero, sizeof(zero));
8562 
8563 	nested_vmx_succeed(vcpu);
8564 	return kvm_skip_emulated_instruction(vcpu);
8565 }
8566 
8567 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
8568 
8569 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)8570 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
8571 {
8572 	return nested_vmx_run(vcpu, true);
8573 }
8574 
8575 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)8576 static int handle_vmresume(struct kvm_vcpu *vcpu)
8577 {
8578 
8579 	return nested_vmx_run(vcpu, false);
8580 }
8581 
8582 /*
8583  * Read a vmcs12 field. Since these can have varying lengths and we return
8584  * one type, we chose the biggest type (u64) and zero-extend the return value
8585  * to that size. Note that the caller, handle_vmread, might need to use only
8586  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
8587  * 64-bit fields are to be returned).
8588  */
vmcs12_read_any(struct vmcs12 * vmcs12,unsigned long field,u64 * ret)8589 static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
8590 				  unsigned long field, u64 *ret)
8591 {
8592 	short offset = vmcs_field_to_offset(field);
8593 	char *p;
8594 
8595 	if (offset < 0)
8596 		return offset;
8597 
8598 	p = (char *)vmcs12 + offset;
8599 
8600 	switch (vmcs_field_width(field)) {
8601 	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
8602 		*ret = *((natural_width *)p);
8603 		return 0;
8604 	case VMCS_FIELD_WIDTH_U16:
8605 		*ret = *((u16 *)p);
8606 		return 0;
8607 	case VMCS_FIELD_WIDTH_U32:
8608 		*ret = *((u32 *)p);
8609 		return 0;
8610 	case VMCS_FIELD_WIDTH_U64:
8611 		*ret = *((u64 *)p);
8612 		return 0;
8613 	default:
8614 		WARN_ON(1);
8615 		return -ENOENT;
8616 	}
8617 }
8618 
8619 
vmcs12_write_any(struct vmcs12 * vmcs12,unsigned long field,u64 field_value)8620 static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
8621 				   unsigned long field, u64 field_value){
8622 	short offset = vmcs_field_to_offset(field);
8623 	char *p = (char *)vmcs12 + offset;
8624 	if (offset < 0)
8625 		return offset;
8626 
8627 	switch (vmcs_field_width(field)) {
8628 	case VMCS_FIELD_WIDTH_U16:
8629 		*(u16 *)p = field_value;
8630 		return 0;
8631 	case VMCS_FIELD_WIDTH_U32:
8632 		*(u32 *)p = field_value;
8633 		return 0;
8634 	case VMCS_FIELD_WIDTH_U64:
8635 		*(u64 *)p = field_value;
8636 		return 0;
8637 	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
8638 		*(natural_width *)p = field_value;
8639 		return 0;
8640 	default:
8641 		WARN_ON(1);
8642 		return -ENOENT;
8643 	}
8644 
8645 }
8646 
8647 /*
8648  * Copy the writable VMCS shadow fields back to the VMCS12, in case
8649  * they have been modified by the L1 guest. Note that the "read-only"
8650  * VM-exit information fields are actually writable if the vCPU is
8651  * configured to support "VMWRITE to any supported field in the VMCS."
8652  */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)8653 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
8654 {
8655 	const u16 *fields[] = {
8656 		shadow_read_write_fields,
8657 		shadow_read_only_fields
8658 	};
8659 	const int max_fields[] = {
8660 		max_shadow_read_write_fields,
8661 		max_shadow_read_only_fields
8662 	};
8663 	int i, q;
8664 	unsigned long field;
8665 	u64 field_value;
8666 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
8667 
8668 	if (WARN_ON(!shadow_vmcs))
8669 		return;
8670 
8671 	preempt_disable();
8672 
8673 	vmcs_load(shadow_vmcs);
8674 
8675 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
8676 		for (i = 0; i < max_fields[q]; i++) {
8677 			field = fields[q][i];
8678 			field_value = __vmcs_readl(field);
8679 			vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
8680 		}
8681 		/*
8682 		 * Skip the VM-exit information fields if they are read-only.
8683 		 */
8684 		if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
8685 			break;
8686 	}
8687 
8688 	vmcs_clear(shadow_vmcs);
8689 	vmcs_load(vmx->loaded_vmcs->vmcs);
8690 
8691 	preempt_enable();
8692 }
8693 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)8694 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
8695 {
8696 	const u16 *fields[] = {
8697 		shadow_read_write_fields,
8698 		shadow_read_only_fields
8699 	};
8700 	const int max_fields[] = {
8701 		max_shadow_read_write_fields,
8702 		max_shadow_read_only_fields
8703 	};
8704 	int i, q;
8705 	unsigned long field;
8706 	u64 field_value = 0;
8707 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
8708 
8709 	if (WARN_ON(!shadow_vmcs))
8710 		return;
8711 
8712 	vmcs_load(shadow_vmcs);
8713 
8714 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
8715 		for (i = 0; i < max_fields[q]; i++) {
8716 			field = fields[q][i];
8717 			vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
8718 			__vmcs_writel(field, field_value);
8719 		}
8720 	}
8721 
8722 	vmcs_clear(shadow_vmcs);
8723 	vmcs_load(vmx->loaded_vmcs->vmcs);
8724 }
8725 
8726 /*
8727  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
8728  * used before) all generate the same failure when it is missing.
8729  */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)8730 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
8731 {
8732 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8733 	if (vmx->nested.current_vmptr == -1ull) {
8734 		nested_vmx_failInvalid(vcpu);
8735 		return 0;
8736 	}
8737 	return 1;
8738 }
8739 
handle_vmread(struct kvm_vcpu * vcpu)8740 static int handle_vmread(struct kvm_vcpu *vcpu)
8741 {
8742 	unsigned long field;
8743 	u64 field_value;
8744 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8745 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8746 	gva_t gva = 0;
8747 	struct vmcs12 *vmcs12;
8748 	struct x86_exception e;
8749 
8750 	if (!nested_vmx_check_permission(vcpu))
8751 		return 1;
8752 
8753 	if (!nested_vmx_check_vmcs12(vcpu))
8754 		return kvm_skip_emulated_instruction(vcpu);
8755 
8756 	if (!is_guest_mode(vcpu))
8757 		vmcs12 = get_vmcs12(vcpu);
8758 	else {
8759 		/*
8760 		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
8761 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
8762 		 */
8763 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
8764 			nested_vmx_failInvalid(vcpu);
8765 			return kvm_skip_emulated_instruction(vcpu);
8766 		}
8767 		vmcs12 = get_shadow_vmcs12(vcpu);
8768 	}
8769 
8770 	/* Decode instruction info and find the field to read */
8771 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8772 	/* Read the field, zero-extended to a u64 field_value */
8773 	if (vmcs12_read_any(vmcs12, field, &field_value) < 0) {
8774 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8775 		return kvm_skip_emulated_instruction(vcpu);
8776 	}
8777 	/*
8778 	 * Now copy part of this value to register or memory, as requested.
8779 	 * Note that the number of bits actually copied is 32 or 64 depending
8780 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
8781 	 */
8782 	if (vmx_instruction_info & (1u << 10)) {
8783 		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
8784 			field_value);
8785 	} else {
8786 		if (get_vmx_mem_address(vcpu, exit_qualification,
8787 				vmx_instruction_info, true, &gva))
8788 			return 1;
8789 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
8790 		if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
8791 						(is_long_mode(vcpu) ? 8 : 4),
8792 						&e)) {
8793 			kvm_inject_page_fault(vcpu, &e);
8794 			return 1;
8795 		}
8796 	}
8797 
8798 	nested_vmx_succeed(vcpu);
8799 	return kvm_skip_emulated_instruction(vcpu);
8800 }
8801 
8802 
handle_vmwrite(struct kvm_vcpu * vcpu)8803 static int handle_vmwrite(struct kvm_vcpu *vcpu)
8804 {
8805 	unsigned long field;
8806 	gva_t gva;
8807 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8808 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8809 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8810 
8811 	/* The value to write might be 32 or 64 bits, depending on L1's long
8812 	 * mode, and eventually we need to write that into a field of several
8813 	 * possible lengths. The code below first zero-extends the value to 64
8814 	 * bit (field_value), and then copies only the appropriate number of
8815 	 * bits into the vmcs12 field.
8816 	 */
8817 	u64 field_value = 0;
8818 	struct x86_exception e;
8819 	struct vmcs12 *vmcs12;
8820 
8821 	if (!nested_vmx_check_permission(vcpu))
8822 		return 1;
8823 
8824 	if (!nested_vmx_check_vmcs12(vcpu))
8825 		return kvm_skip_emulated_instruction(vcpu);
8826 
8827 	if (vmx_instruction_info & (1u << 10))
8828 		field_value = kvm_register_readl(vcpu,
8829 			(((vmx_instruction_info) >> 3) & 0xf));
8830 	else {
8831 		if (get_vmx_mem_address(vcpu, exit_qualification,
8832 				vmx_instruction_info, false, &gva))
8833 			return 1;
8834 		if (kvm_read_guest_virt(vcpu, gva, &field_value,
8835 					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
8836 			kvm_inject_page_fault(vcpu, &e);
8837 			return 1;
8838 		}
8839 	}
8840 
8841 
8842 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8843 	/*
8844 	 * If the vCPU supports "VMWRITE to any supported field in the
8845 	 * VMCS," then the "read-only" fields are actually read/write.
8846 	 */
8847 	if (vmcs_field_readonly(field) &&
8848 	    !nested_cpu_has_vmwrite_any_field(vcpu)) {
8849 		nested_vmx_failValid(vcpu,
8850 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
8851 		return kvm_skip_emulated_instruction(vcpu);
8852 	}
8853 
8854 	if (!is_guest_mode(vcpu))
8855 		vmcs12 = get_vmcs12(vcpu);
8856 	else {
8857 		/*
8858 		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
8859 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
8860 		 */
8861 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) {
8862 			nested_vmx_failInvalid(vcpu);
8863 			return kvm_skip_emulated_instruction(vcpu);
8864 		}
8865 		vmcs12 = get_shadow_vmcs12(vcpu);
8866 
8867 	}
8868 
8869 	if (vmcs12_write_any(vmcs12, field, field_value) < 0) {
8870 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8871 		return kvm_skip_emulated_instruction(vcpu);
8872 	}
8873 
8874 	/*
8875 	 * Do not track vmcs12 dirty-state if in guest-mode
8876 	 * as we actually dirty shadow vmcs12 instead of vmcs12.
8877 	 */
8878 	if (!is_guest_mode(vcpu)) {
8879 		switch (field) {
8880 #define SHADOW_FIELD_RW(x) case x:
8881 #include "vmx_shadow_fields.h"
8882 			/*
8883 			 * The fields that can be updated by L1 without a vmexit are
8884 			 * always updated in the vmcs02, the others go down the slow
8885 			 * path of prepare_vmcs02.
8886 			 */
8887 			break;
8888 		default:
8889 			vmx->nested.dirty_vmcs12 = true;
8890 			break;
8891 		}
8892 	}
8893 
8894 	nested_vmx_succeed(vcpu);
8895 	return kvm_skip_emulated_instruction(vcpu);
8896 }
8897 
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)8898 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
8899 {
8900 	vmx->nested.current_vmptr = vmptr;
8901 	if (enable_shadow_vmcs) {
8902 		vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
8903 			      SECONDARY_EXEC_SHADOW_VMCS);
8904 		vmcs_write64(VMCS_LINK_POINTER,
8905 			     __pa(vmx->vmcs01.shadow_vmcs));
8906 		vmx->nested.sync_shadow_vmcs = true;
8907 	}
8908 	vmx->nested.dirty_vmcs12 = true;
8909 }
8910 
8911 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)8912 static int handle_vmptrld(struct kvm_vcpu *vcpu)
8913 {
8914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8915 	gpa_t vmptr;
8916 
8917 	if (!nested_vmx_check_permission(vcpu))
8918 		return 1;
8919 
8920 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
8921 		return 1;
8922 
8923 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8924 		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
8925 		return kvm_skip_emulated_instruction(vcpu);
8926 	}
8927 
8928 	if (vmptr == vmx->nested.vmxon_ptr) {
8929 		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
8930 		return kvm_skip_emulated_instruction(vcpu);
8931 	}
8932 
8933 	if (vmx->nested.current_vmptr != vmptr) {
8934 		struct vmcs12 *new_vmcs12;
8935 		struct page *page;
8936 		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8937 		if (is_error_page(page)) {
8938 			nested_vmx_failInvalid(vcpu);
8939 			return kvm_skip_emulated_instruction(vcpu);
8940 		}
8941 		new_vmcs12 = kmap(page);
8942 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
8943 		    (new_vmcs12->hdr.shadow_vmcs &&
8944 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
8945 			kunmap(page);
8946 			kvm_release_page_clean(page);
8947 			nested_vmx_failValid(vcpu,
8948 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
8949 			return kvm_skip_emulated_instruction(vcpu);
8950 		}
8951 
8952 		nested_release_vmcs12(vmx);
8953 		/*
8954 		 * Load VMCS12 from guest memory since it is not already
8955 		 * cached.
8956 		 */
8957 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
8958 		kunmap(page);
8959 		kvm_release_page_clean(page);
8960 
8961 		set_current_vmptr(vmx, vmptr);
8962 	}
8963 
8964 	nested_vmx_succeed(vcpu);
8965 	return kvm_skip_emulated_instruction(vcpu);
8966 }
8967 
8968 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)8969 static int handle_vmptrst(struct kvm_vcpu *vcpu)
8970 {
8971 	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
8972 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8973 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
8974 	struct x86_exception e;
8975 	gva_t gva;
8976 
8977 	if (!nested_vmx_check_permission(vcpu))
8978 		return 1;
8979 
8980 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
8981 		return 1;
8982 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
8983 	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
8984 					sizeof(gpa_t), &e)) {
8985 		kvm_inject_page_fault(vcpu, &e);
8986 		return 1;
8987 	}
8988 	nested_vmx_succeed(vcpu);
8989 	return kvm_skip_emulated_instruction(vcpu);
8990 }
8991 
8992 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)8993 static int handle_invept(struct kvm_vcpu *vcpu)
8994 {
8995 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8996 	u32 vmx_instruction_info, types;
8997 	unsigned long type;
8998 	gva_t gva;
8999 	struct x86_exception e;
9000 	struct {
9001 		u64 eptp, gpa;
9002 	} operand;
9003 
9004 	if (!(vmx->nested.msrs.secondary_ctls_high &
9005 	      SECONDARY_EXEC_ENABLE_EPT) ||
9006 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
9007 		kvm_queue_exception(vcpu, UD_VECTOR);
9008 		return 1;
9009 	}
9010 
9011 	if (!nested_vmx_check_permission(vcpu))
9012 		return 1;
9013 
9014 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9015 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
9016 
9017 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
9018 
9019 	if (type >= 32 || !(types & (1 << type))) {
9020 		nested_vmx_failValid(vcpu,
9021 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9022 		return kvm_skip_emulated_instruction(vcpu);
9023 	}
9024 
9025 	/* According to the Intel VMX instruction reference, the memory
9026 	 * operand is read even if it isn't needed (e.g., for type==global)
9027 	 */
9028 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
9029 			vmx_instruction_info, false, &gva))
9030 		return 1;
9031 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
9032 		kvm_inject_page_fault(vcpu, &e);
9033 		return 1;
9034 	}
9035 
9036 	switch (type) {
9037 	case VMX_EPT_EXTENT_GLOBAL:
9038 	/*
9039 	 * TODO: track mappings and invalidate
9040 	 * single context requests appropriately
9041 	 */
9042 	case VMX_EPT_EXTENT_CONTEXT:
9043 		kvm_mmu_sync_roots(vcpu);
9044 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9045 		nested_vmx_succeed(vcpu);
9046 		break;
9047 	default:
9048 		BUG_ON(1);
9049 		break;
9050 	}
9051 
9052 	return kvm_skip_emulated_instruction(vcpu);
9053 }
9054 
handle_invvpid(struct kvm_vcpu * vcpu)9055 static int handle_invvpid(struct kvm_vcpu *vcpu)
9056 {
9057 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9058 	u32 vmx_instruction_info;
9059 	unsigned long type, types;
9060 	gva_t gva;
9061 	struct x86_exception e;
9062 	struct {
9063 		u64 vpid;
9064 		u64 gla;
9065 	} operand;
9066 
9067 	if (!(vmx->nested.msrs.secondary_ctls_high &
9068 	      SECONDARY_EXEC_ENABLE_VPID) ||
9069 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
9070 		kvm_queue_exception(vcpu, UD_VECTOR);
9071 		return 1;
9072 	}
9073 
9074 	if (!nested_vmx_check_permission(vcpu))
9075 		return 1;
9076 
9077 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9078 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
9079 
9080 	types = (vmx->nested.msrs.vpid_caps &
9081 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
9082 
9083 	if (type >= 32 || !(types & (1 << type))) {
9084 		nested_vmx_failValid(vcpu,
9085 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9086 		return kvm_skip_emulated_instruction(vcpu);
9087 	}
9088 
9089 	/* according to the intel vmx instruction reference, the memory
9090 	 * operand is read even if it isn't needed (e.g., for type==global)
9091 	 */
9092 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
9093 			vmx_instruction_info, false, &gva))
9094 		return 1;
9095 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
9096 		kvm_inject_page_fault(vcpu, &e);
9097 		return 1;
9098 	}
9099 	if (operand.vpid >> 16) {
9100 		nested_vmx_failValid(vcpu,
9101 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9102 		return kvm_skip_emulated_instruction(vcpu);
9103 	}
9104 
9105 	switch (type) {
9106 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
9107 		if (!operand.vpid ||
9108 		    is_noncanonical_address(operand.gla, vcpu)) {
9109 			nested_vmx_failValid(vcpu,
9110 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9111 			return kvm_skip_emulated_instruction(vcpu);
9112 		}
9113 		if (cpu_has_vmx_invvpid_individual_addr() &&
9114 		    vmx->nested.vpid02) {
9115 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
9116 				vmx->nested.vpid02, operand.gla);
9117 		} else
9118 			__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
9119 		break;
9120 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
9121 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
9122 		if (!operand.vpid) {
9123 			nested_vmx_failValid(vcpu,
9124 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
9125 			return kvm_skip_emulated_instruction(vcpu);
9126 		}
9127 		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
9128 		break;
9129 	case VMX_VPID_EXTENT_ALL_CONTEXT:
9130 		__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
9131 		break;
9132 	default:
9133 		WARN_ON_ONCE(1);
9134 		return kvm_skip_emulated_instruction(vcpu);
9135 	}
9136 
9137 	nested_vmx_succeed(vcpu);
9138 
9139 	return kvm_skip_emulated_instruction(vcpu);
9140 }
9141 
handle_invpcid(struct kvm_vcpu * vcpu)9142 static int handle_invpcid(struct kvm_vcpu *vcpu)
9143 {
9144 	u32 vmx_instruction_info;
9145 	unsigned long type;
9146 	bool pcid_enabled;
9147 	gva_t gva;
9148 	struct x86_exception e;
9149 	unsigned i;
9150 	unsigned long roots_to_free = 0;
9151 	struct {
9152 		u64 pcid;
9153 		u64 gla;
9154 	} operand;
9155 
9156 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
9157 		kvm_queue_exception(vcpu, UD_VECTOR);
9158 		return 1;
9159 	}
9160 
9161 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9162 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
9163 
9164 	if (type > 3) {
9165 		kvm_inject_gp(vcpu, 0);
9166 		return 1;
9167 	}
9168 
9169 	/* According to the Intel instruction reference, the memory operand
9170 	 * is read even if it isn't needed (e.g., for type==all)
9171 	 */
9172 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
9173 				vmx_instruction_info, false, &gva))
9174 		return 1;
9175 
9176 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
9177 		kvm_inject_page_fault(vcpu, &e);
9178 		return 1;
9179 	}
9180 
9181 	if (operand.pcid >> 12 != 0) {
9182 		kvm_inject_gp(vcpu, 0);
9183 		return 1;
9184 	}
9185 
9186 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
9187 
9188 	switch (type) {
9189 	case INVPCID_TYPE_INDIV_ADDR:
9190 		if ((!pcid_enabled && (operand.pcid != 0)) ||
9191 		    is_noncanonical_address(operand.gla, vcpu)) {
9192 			kvm_inject_gp(vcpu, 0);
9193 			return 1;
9194 		}
9195 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
9196 		return kvm_skip_emulated_instruction(vcpu);
9197 
9198 	case INVPCID_TYPE_SINGLE_CTXT:
9199 		if (!pcid_enabled && (operand.pcid != 0)) {
9200 			kvm_inject_gp(vcpu, 0);
9201 			return 1;
9202 		}
9203 
9204 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
9205 			kvm_mmu_sync_roots(vcpu);
9206 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9207 		}
9208 
9209 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
9210 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu.prev_roots[i].cr3)
9211 			    == operand.pcid)
9212 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
9213 
9214 		kvm_mmu_free_roots(vcpu, roots_to_free);
9215 		/*
9216 		 * If neither the current cr3 nor any of the prev_roots use the
9217 		 * given PCID, then nothing needs to be done here because a
9218 		 * resync will happen anyway before switching to any other CR3.
9219 		 */
9220 
9221 		return kvm_skip_emulated_instruction(vcpu);
9222 
9223 	case INVPCID_TYPE_ALL_NON_GLOBAL:
9224 		/*
9225 		 * Currently, KVM doesn't mark global entries in the shadow
9226 		 * page tables, so a non-global flush just degenerates to a
9227 		 * global flush. If needed, we could optimize this later by
9228 		 * keeping track of global entries in shadow page tables.
9229 		 */
9230 
9231 		/* fall-through */
9232 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
9233 		kvm_mmu_unload(vcpu);
9234 		return kvm_skip_emulated_instruction(vcpu);
9235 
9236 	default:
9237 		BUG(); /* We have already checked above that type <= 3 */
9238 	}
9239 }
9240 
handle_pml_full(struct kvm_vcpu * vcpu)9241 static int handle_pml_full(struct kvm_vcpu *vcpu)
9242 {
9243 	unsigned long exit_qualification;
9244 
9245 	trace_kvm_pml_full(vcpu->vcpu_id);
9246 
9247 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
9248 
9249 	/*
9250 	 * PML buffer FULL happened while executing iret from NMI,
9251 	 * "blocked by NMI" bit has to be set before next VM entry.
9252 	 */
9253 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
9254 			enable_vnmi &&
9255 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
9256 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9257 				GUEST_INTR_STATE_NMI);
9258 
9259 	/*
9260 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
9261 	 * here.., and there's no userspace involvement needed for PML.
9262 	 */
9263 	return 1;
9264 }
9265 
handle_preemption_timer(struct kvm_vcpu * vcpu)9266 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
9267 {
9268 	if (!to_vmx(vcpu)->req_immediate_exit)
9269 		kvm_lapic_expired_hv_timer(vcpu);
9270 	return 1;
9271 }
9272 
valid_ept_address(struct kvm_vcpu * vcpu,u64 address)9273 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
9274 {
9275 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9276 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
9277 
9278 	/* Check for memory type validity */
9279 	switch (address & VMX_EPTP_MT_MASK) {
9280 	case VMX_EPTP_MT_UC:
9281 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
9282 			return false;
9283 		break;
9284 	case VMX_EPTP_MT_WB:
9285 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
9286 			return false;
9287 		break;
9288 	default:
9289 		return false;
9290 	}
9291 
9292 	/* only 4 levels page-walk length are valid */
9293 	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
9294 		return false;
9295 
9296 	/* Reserved bits should not be set */
9297 	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
9298 		return false;
9299 
9300 	/* AD, if set, should be supported */
9301 	if (address & VMX_EPTP_AD_ENABLE_BIT) {
9302 		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
9303 			return false;
9304 	}
9305 
9306 	return true;
9307 }
9308 
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9309 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
9310 				     struct vmcs12 *vmcs12)
9311 {
9312 	u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
9313 	u64 address;
9314 	bool accessed_dirty;
9315 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
9316 
9317 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
9318 	    !nested_cpu_has_ept(vmcs12))
9319 		return 1;
9320 
9321 	if (index >= VMFUNC_EPTP_ENTRIES)
9322 		return 1;
9323 
9324 
9325 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
9326 				     &address, index * 8, 8))
9327 		return 1;
9328 
9329 	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
9330 
9331 	/*
9332 	 * If the (L2) guest does a vmfunc to the currently
9333 	 * active ept pointer, we don't have to do anything else
9334 	 */
9335 	if (vmcs12->ept_pointer != address) {
9336 		if (!valid_ept_address(vcpu, address))
9337 			return 1;
9338 
9339 		kvm_mmu_unload(vcpu);
9340 		mmu->ept_ad = accessed_dirty;
9341 		mmu->base_role.ad_disabled = !accessed_dirty;
9342 		vmcs12->ept_pointer = address;
9343 		/*
9344 		 * TODO: Check what's the correct approach in case
9345 		 * mmu reload fails. Currently, we just let the next
9346 		 * reload potentially fail
9347 		 */
9348 		kvm_mmu_reload(vcpu);
9349 	}
9350 
9351 	return 0;
9352 }
9353 
handle_vmfunc(struct kvm_vcpu * vcpu)9354 static int handle_vmfunc(struct kvm_vcpu *vcpu)
9355 {
9356 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9357 	struct vmcs12 *vmcs12;
9358 	u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
9359 
9360 	/*
9361 	 * VMFUNC is only supported for nested guests, but we always enable the
9362 	 * secondary control for simplicity; for non-nested mode, fake that we
9363 	 * didn't by injecting #UD.
9364 	 */
9365 	if (!is_guest_mode(vcpu)) {
9366 		kvm_queue_exception(vcpu, UD_VECTOR);
9367 		return 1;
9368 	}
9369 
9370 	vmcs12 = get_vmcs12(vcpu);
9371 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
9372 		goto fail;
9373 
9374 	switch (function) {
9375 	case 0:
9376 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
9377 			goto fail;
9378 		break;
9379 	default:
9380 		goto fail;
9381 	}
9382 	return kvm_skip_emulated_instruction(vcpu);
9383 
9384 fail:
9385 	nested_vmx_vmexit(vcpu, vmx->exit_reason,
9386 			  vmcs_read32(VM_EXIT_INTR_INFO),
9387 			  vmcs_readl(EXIT_QUALIFICATION));
9388 	return 1;
9389 }
9390 
handle_encls(struct kvm_vcpu * vcpu)9391 static int handle_encls(struct kvm_vcpu *vcpu)
9392 {
9393 	/*
9394 	 * SGX virtualization is not yet supported.  There is no software
9395 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
9396 	 * to prevent the guest from executing ENCLS.
9397 	 */
9398 	kvm_queue_exception(vcpu, UD_VECTOR);
9399 	return 1;
9400 }
9401 
9402 /*
9403  * The exit handlers return 1 if the exit was handled fully and guest execution
9404  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
9405  * to be done to userspace and return 0.
9406  */
9407 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
9408 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
9409 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
9410 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
9411 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
9412 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
9413 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
9414 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
9415 	[EXIT_REASON_CPUID]                   = handle_cpuid,
9416 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
9417 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
9418 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
9419 	[EXIT_REASON_HLT]                     = handle_halt,
9420 	[EXIT_REASON_INVD]		      = handle_invd,
9421 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
9422 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
9423 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
9424 	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
9425 	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
9426 	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
9427 	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
9428 	[EXIT_REASON_VMREAD]                  = handle_vmread,
9429 	[EXIT_REASON_VMRESUME]                = handle_vmresume,
9430 	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
9431 	[EXIT_REASON_VMOFF]                   = handle_vmoff,
9432 	[EXIT_REASON_VMON]                    = handle_vmon,
9433 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
9434 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
9435 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
9436 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
9437 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
9438 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
9439 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
9440 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
9441 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
9442 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
9443 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
9444 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
9445 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
9446 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
9447 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
9448 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
9449 	[EXIT_REASON_INVEPT]                  = handle_invept,
9450 	[EXIT_REASON_INVVPID]                 = handle_invvpid,
9451 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
9452 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
9453 	[EXIT_REASON_XSAVES]                  = handle_xsaves,
9454 	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
9455 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
9456 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
9457 	[EXIT_REASON_VMFUNC]                  = handle_vmfunc,
9458 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
9459 	[EXIT_REASON_ENCLS]		      = handle_encls,
9460 };
9461 
9462 static const int kvm_vmx_max_exit_handlers =
9463 	ARRAY_SIZE(kvm_vmx_exit_handlers);
9464 
9465 /*
9466  * Return true if an IO instruction with the specified port and size should cause
9467  * a VM-exit into L1.
9468  */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)9469 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
9470 				 int size)
9471 {
9472 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9473 	gpa_t bitmap, last_bitmap;
9474 	u8 b;
9475 
9476 	last_bitmap = (gpa_t)-1;
9477 	b = -1;
9478 
9479 	while (size > 0) {
9480 		if (port < 0x8000)
9481 			bitmap = vmcs12->io_bitmap_a;
9482 		else if (port < 0x10000)
9483 			bitmap = vmcs12->io_bitmap_b;
9484 		else
9485 			return true;
9486 		bitmap += (port & 0x7fff) / 8;
9487 
9488 		if (last_bitmap != bitmap)
9489 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
9490 				return true;
9491 		if (b & (1 << (port & 7)))
9492 			return true;
9493 
9494 		port++;
9495 		size--;
9496 		last_bitmap = bitmap;
9497 	}
9498 
9499 	return false;
9500 }
9501 
9502 /*
9503  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
9504  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
9505  * disinterest in the current event (read or write a specific MSR) by using an
9506  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
9507  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)9508 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
9509 	struct vmcs12 *vmcs12, u32 exit_reason)
9510 {
9511 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
9512 	gpa_t bitmap;
9513 
9514 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9515 		return true;
9516 
9517 	/*
9518 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
9519 	 * for the four combinations of read/write and low/high MSR numbers.
9520 	 * First we need to figure out which of the four to use:
9521 	 */
9522 	bitmap = vmcs12->msr_bitmap;
9523 	if (exit_reason == EXIT_REASON_MSR_WRITE)
9524 		bitmap += 2048;
9525 	if (msr_index >= 0xc0000000) {
9526 		msr_index -= 0xc0000000;
9527 		bitmap += 1024;
9528 	}
9529 
9530 	/* Then read the msr_index'th bit from this bitmap: */
9531 	if (msr_index < 1024*8) {
9532 		unsigned char b;
9533 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
9534 			return true;
9535 		return 1 & (b >> (msr_index & 7));
9536 	} else
9537 		return true; /* let L1 handle the wrong parameter */
9538 }
9539 
9540 /*
9541  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
9542  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
9543  * intercept (via guest_host_mask etc.) the current event.
9544  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9545 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
9546 	struct vmcs12 *vmcs12)
9547 {
9548 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
9549 	int cr = exit_qualification & 15;
9550 	int reg;
9551 	unsigned long val;
9552 
9553 	switch ((exit_qualification >> 4) & 3) {
9554 	case 0: /* mov to cr */
9555 		reg = (exit_qualification >> 8) & 15;
9556 		val = kvm_register_readl(vcpu, reg);
9557 		switch (cr) {
9558 		case 0:
9559 			if (vmcs12->cr0_guest_host_mask &
9560 			    (val ^ vmcs12->cr0_read_shadow))
9561 				return true;
9562 			break;
9563 		case 3:
9564 			if ((vmcs12->cr3_target_count >= 1 &&
9565 					vmcs12->cr3_target_value0 == val) ||
9566 				(vmcs12->cr3_target_count >= 2 &&
9567 					vmcs12->cr3_target_value1 == val) ||
9568 				(vmcs12->cr3_target_count >= 3 &&
9569 					vmcs12->cr3_target_value2 == val) ||
9570 				(vmcs12->cr3_target_count >= 4 &&
9571 					vmcs12->cr3_target_value3 == val))
9572 				return false;
9573 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
9574 				return true;
9575 			break;
9576 		case 4:
9577 			if (vmcs12->cr4_guest_host_mask &
9578 			    (vmcs12->cr4_read_shadow ^ val))
9579 				return true;
9580 			break;
9581 		case 8:
9582 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
9583 				return true;
9584 			break;
9585 		}
9586 		break;
9587 	case 2: /* clts */
9588 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
9589 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
9590 			return true;
9591 		break;
9592 	case 1: /* mov from cr */
9593 		switch (cr) {
9594 		case 3:
9595 			if (vmcs12->cpu_based_vm_exec_control &
9596 			    CPU_BASED_CR3_STORE_EXITING)
9597 				return true;
9598 			break;
9599 		case 8:
9600 			if (vmcs12->cpu_based_vm_exec_control &
9601 			    CPU_BASED_CR8_STORE_EXITING)
9602 				return true;
9603 			break;
9604 		}
9605 		break;
9606 	case 3: /* lmsw */
9607 		/*
9608 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
9609 		 * cr0. Other attempted changes are ignored, with no exit.
9610 		 */
9611 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
9612 		if (vmcs12->cr0_guest_host_mask & 0xe &
9613 		    (val ^ vmcs12->cr0_read_shadow))
9614 			return true;
9615 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
9616 		    !(vmcs12->cr0_read_shadow & 0x1) &&
9617 		    (val & 0x1))
9618 			return true;
9619 		break;
9620 	}
9621 	return false;
9622 }
9623 
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)9624 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
9625 	struct vmcs12 *vmcs12, gpa_t bitmap)
9626 {
9627 	u32 vmx_instruction_info;
9628 	unsigned long field;
9629 	u8 b;
9630 
9631 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
9632 		return true;
9633 
9634 	/* Decode instruction info and find the field to access */
9635 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9636 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
9637 
9638 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
9639 	if (field >> 15)
9640 		return true;
9641 
9642 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
9643 		return true;
9644 
9645 	return 1 & (b >> (field & 7));
9646 }
9647 
9648 /*
9649  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
9650  * should handle it ourselves in L0 (and then continue L2). Only call this
9651  * when in is_guest_mode (L2).
9652  */
nested_vmx_exit_reflected(struct kvm_vcpu * vcpu,u32 exit_reason)9653 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
9654 {
9655 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9656 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9657 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9658 
9659 	if (vmx->nested.nested_run_pending)
9660 		return false;
9661 
9662 	if (unlikely(vmx->fail)) {
9663 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
9664 				    vmcs_read32(VM_INSTRUCTION_ERROR));
9665 		return true;
9666 	}
9667 
9668 	/*
9669 	 * The host physical addresses of some pages of guest memory
9670 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
9671 	 * Page). The CPU may write to these pages via their host
9672 	 * physical address while L2 is running, bypassing any
9673 	 * address-translation-based dirty tracking (e.g. EPT write
9674 	 * protection).
9675 	 *
9676 	 * Mark them dirty on every exit from L2 to prevent them from
9677 	 * getting out of sync with dirty tracking.
9678 	 */
9679 	nested_mark_vmcs12_pages_dirty(vcpu);
9680 
9681 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
9682 				vmcs_readl(EXIT_QUALIFICATION),
9683 				vmx->idt_vectoring_info,
9684 				intr_info,
9685 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
9686 				KVM_ISA_VMX);
9687 
9688 	switch ((u16)exit_reason) {
9689 	case EXIT_REASON_EXCEPTION_NMI:
9690 		if (is_nmi(intr_info))
9691 			return false;
9692 		else if (is_page_fault(intr_info))
9693 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
9694 		else if (is_no_device(intr_info) &&
9695 			 !(vmcs12->guest_cr0 & X86_CR0_TS))
9696 			return false;
9697 		else if (is_debug(intr_info) &&
9698 			 vcpu->guest_debug &
9699 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
9700 			return false;
9701 		else if (is_breakpoint(intr_info) &&
9702 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
9703 			return false;
9704 		return vmcs12->exception_bitmap &
9705 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
9706 	case EXIT_REASON_EXTERNAL_INTERRUPT:
9707 		return false;
9708 	case EXIT_REASON_TRIPLE_FAULT:
9709 		return true;
9710 	case EXIT_REASON_PENDING_INTERRUPT:
9711 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
9712 	case EXIT_REASON_NMI_WINDOW:
9713 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
9714 	case EXIT_REASON_TASK_SWITCH:
9715 		return true;
9716 	case EXIT_REASON_CPUID:
9717 		return true;
9718 	case EXIT_REASON_HLT:
9719 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
9720 	case EXIT_REASON_INVD:
9721 		return true;
9722 	case EXIT_REASON_INVLPG:
9723 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
9724 	case EXIT_REASON_RDPMC:
9725 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
9726 	case EXIT_REASON_RDRAND:
9727 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
9728 	case EXIT_REASON_RDSEED:
9729 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
9730 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
9731 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
9732 	case EXIT_REASON_VMREAD:
9733 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
9734 			vmcs12->vmread_bitmap);
9735 	case EXIT_REASON_VMWRITE:
9736 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
9737 			vmcs12->vmwrite_bitmap);
9738 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
9739 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
9740 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
9741 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
9742 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
9743 		/*
9744 		 * VMX instructions trap unconditionally. This allows L1 to
9745 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
9746 		 */
9747 		return true;
9748 	case EXIT_REASON_CR_ACCESS:
9749 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
9750 	case EXIT_REASON_DR_ACCESS:
9751 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
9752 	case EXIT_REASON_IO_INSTRUCTION:
9753 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
9754 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
9755 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
9756 	case EXIT_REASON_MSR_READ:
9757 	case EXIT_REASON_MSR_WRITE:
9758 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
9759 	case EXIT_REASON_INVALID_STATE:
9760 		return true;
9761 	case EXIT_REASON_MWAIT_INSTRUCTION:
9762 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
9763 	case EXIT_REASON_MONITOR_TRAP_FLAG:
9764 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
9765 	case EXIT_REASON_MONITOR_INSTRUCTION:
9766 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
9767 	case EXIT_REASON_PAUSE_INSTRUCTION:
9768 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
9769 			nested_cpu_has2(vmcs12,
9770 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
9771 	case EXIT_REASON_MCE_DURING_VMENTRY:
9772 		return false;
9773 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
9774 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
9775 	case EXIT_REASON_APIC_ACCESS:
9776 	case EXIT_REASON_APIC_WRITE:
9777 	case EXIT_REASON_EOI_INDUCED:
9778 		/*
9779 		 * The controls for "virtualize APIC accesses," "APIC-
9780 		 * register virtualization," and "virtual-interrupt
9781 		 * delivery" only come from vmcs12.
9782 		 */
9783 		return true;
9784 	case EXIT_REASON_EPT_VIOLATION:
9785 		/*
9786 		 * L0 always deals with the EPT violation. If nested EPT is
9787 		 * used, and the nested mmu code discovers that the address is
9788 		 * missing in the guest EPT table (EPT12), the EPT violation
9789 		 * will be injected with nested_ept_inject_page_fault()
9790 		 */
9791 		return false;
9792 	case EXIT_REASON_EPT_MISCONFIG:
9793 		/*
9794 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
9795 		 * table (shadow on EPT) or a merged EPT table that L0 built
9796 		 * (EPT on EPT). So any problems with the structure of the
9797 		 * table is L0's fault.
9798 		 */
9799 		return false;
9800 	case EXIT_REASON_INVPCID:
9801 		return
9802 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
9803 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
9804 	case EXIT_REASON_WBINVD:
9805 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
9806 	case EXIT_REASON_XSETBV:
9807 		return true;
9808 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
9809 		/*
9810 		 * This should never happen, since it is not possible to
9811 		 * set XSS to a non-zero value---neither in L1 nor in L2.
9812 		 * If if it were, XSS would have to be checked against
9813 		 * the XSS exit bitmap in vmcs12.
9814 		 */
9815 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
9816 	case EXIT_REASON_PREEMPTION_TIMER:
9817 		return false;
9818 	case EXIT_REASON_PML_FULL:
9819 		/* We emulate PML support to L1. */
9820 		return false;
9821 	case EXIT_REASON_VMFUNC:
9822 		/* VM functions are emulated through L2->L0 vmexits. */
9823 		return false;
9824 	case EXIT_REASON_ENCLS:
9825 		/* SGX is never exposed to L1 */
9826 		return false;
9827 	default:
9828 		return true;
9829 	}
9830 }
9831 
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason)9832 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
9833 {
9834 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9835 
9836 	/*
9837 	 * At this point, the exit interruption info in exit_intr_info
9838 	 * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
9839 	 * we need to query the in-kernel LAPIC.
9840 	 */
9841 	WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
9842 	if ((exit_intr_info &
9843 	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9844 	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
9845 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9846 		vmcs12->vm_exit_intr_error_code =
9847 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9848 	}
9849 
9850 	nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
9851 			  vmcs_readl(EXIT_QUALIFICATION));
9852 	return 1;
9853 }
9854 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)9855 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
9856 {
9857 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
9858 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
9859 }
9860 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)9861 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
9862 {
9863 	if (vmx->pml_pg) {
9864 		__free_page(vmx->pml_pg);
9865 		vmx->pml_pg = NULL;
9866 	}
9867 }
9868 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)9869 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
9870 {
9871 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9872 	u64 *pml_buf;
9873 	u16 pml_idx;
9874 
9875 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
9876 
9877 	/* Do nothing if PML buffer is empty */
9878 	if (pml_idx == (PML_ENTITY_NUM - 1))
9879 		return;
9880 
9881 	/* PML index always points to next available PML buffer entity */
9882 	if (pml_idx >= PML_ENTITY_NUM)
9883 		pml_idx = 0;
9884 	else
9885 		pml_idx++;
9886 
9887 	pml_buf = page_address(vmx->pml_pg);
9888 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
9889 		u64 gpa;
9890 
9891 		gpa = pml_buf[pml_idx];
9892 		WARN_ON(gpa & (PAGE_SIZE - 1));
9893 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
9894 	}
9895 
9896 	/* reset PML index */
9897 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
9898 }
9899 
9900 /*
9901  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
9902  * Called before reporting dirty_bitmap to userspace.
9903  */
kvm_flush_pml_buffers(struct kvm * kvm)9904 static void kvm_flush_pml_buffers(struct kvm *kvm)
9905 {
9906 	int i;
9907 	struct kvm_vcpu *vcpu;
9908 	/*
9909 	 * We only need to kick vcpu out of guest mode here, as PML buffer
9910 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
9911 	 * vcpus running in guest are possible to have unflushed GPAs in PML
9912 	 * buffer.
9913 	 */
9914 	kvm_for_each_vcpu(i, vcpu, kvm)
9915 		kvm_vcpu_kick(vcpu);
9916 }
9917 
vmx_dump_sel(char * name,uint32_t sel)9918 static void vmx_dump_sel(char *name, uint32_t sel)
9919 {
9920 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
9921 	       name, vmcs_read16(sel),
9922 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
9923 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
9924 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
9925 }
9926 
vmx_dump_dtsel(char * name,uint32_t limit)9927 static void vmx_dump_dtsel(char *name, uint32_t limit)
9928 {
9929 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
9930 	       name, vmcs_read32(limit),
9931 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
9932 }
9933 
dump_vmcs(void)9934 static void dump_vmcs(void)
9935 {
9936 	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
9937 	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
9938 	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
9939 	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
9940 	u32 secondary_exec_control = 0;
9941 	unsigned long cr4 = vmcs_readl(GUEST_CR4);
9942 	u64 efer = vmcs_read64(GUEST_IA32_EFER);
9943 	int i, n;
9944 
9945 	if (cpu_has_secondary_exec_ctrls())
9946 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9947 
9948 	pr_err("*** Guest State ***\n");
9949 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9950 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
9951 	       vmcs_readl(CR0_GUEST_HOST_MASK));
9952 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9953 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
9954 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
9955 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
9956 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
9957 	{
9958 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
9959 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
9960 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
9961 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
9962 	}
9963 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
9964 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
9965 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
9966 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
9967 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9968 	       vmcs_readl(GUEST_SYSENTER_ESP),
9969 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
9970 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
9971 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
9972 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
9973 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
9974 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
9975 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
9976 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
9977 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
9978 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
9979 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
9980 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
9981 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
9982 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
9983 		       efer, vmcs_read64(GUEST_IA32_PAT));
9984 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
9985 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
9986 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
9987 	if (cpu_has_load_perf_global_ctrl &&
9988 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
9989 		pr_err("PerfGlobCtl = 0x%016llx\n",
9990 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
9991 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
9992 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
9993 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
9994 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
9995 	       vmcs_read32(GUEST_ACTIVITY_STATE));
9996 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
9997 		pr_err("InterruptStatus = %04x\n",
9998 		       vmcs_read16(GUEST_INTR_STATUS));
9999 
10000 	pr_err("*** Host State ***\n");
10001 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
10002 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
10003 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
10004 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
10005 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
10006 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
10007 	       vmcs_read16(HOST_TR_SELECTOR));
10008 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
10009 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
10010 	       vmcs_readl(HOST_TR_BASE));
10011 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
10012 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
10013 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
10014 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
10015 	       vmcs_readl(HOST_CR4));
10016 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
10017 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
10018 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
10019 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
10020 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
10021 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
10022 		       vmcs_read64(HOST_IA32_EFER),
10023 		       vmcs_read64(HOST_IA32_PAT));
10024 	if (cpu_has_load_perf_global_ctrl &&
10025 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10026 		pr_err("PerfGlobCtl = 0x%016llx\n",
10027 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
10028 
10029 	pr_err("*** Control State ***\n");
10030 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
10031 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
10032 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
10033 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
10034 	       vmcs_read32(EXCEPTION_BITMAP),
10035 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
10036 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
10037 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
10038 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
10039 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
10040 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
10041 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
10042 	       vmcs_read32(VM_EXIT_INTR_INFO),
10043 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
10044 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
10045 	pr_err("        reason=%08x qualification=%016lx\n",
10046 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
10047 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
10048 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
10049 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
10050 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
10051 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
10052 		pr_err("TSC Multiplier = 0x%016llx\n",
10053 		       vmcs_read64(TSC_MULTIPLIER));
10054 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
10055 		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
10056 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
10057 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
10058 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
10059 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
10060 	n = vmcs_read32(CR3_TARGET_COUNT);
10061 	for (i = 0; i + 1 < n; i += 4)
10062 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
10063 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
10064 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
10065 	if (i < n)
10066 		pr_err("CR3 target%u=%016lx\n",
10067 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
10068 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
10069 		pr_err("PLE Gap=%08x Window=%08x\n",
10070 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
10071 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
10072 		pr_err("Virtual processor ID = 0x%04x\n",
10073 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
10074 }
10075 
10076 /*
10077  * The guest has exited.  See if we can fix it or if we need userspace
10078  * assistance.
10079  */
vmx_handle_exit(struct kvm_vcpu * vcpu)10080 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
10081 {
10082 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10083 	u32 exit_reason = vmx->exit_reason;
10084 	u32 vectoring_info = vmx->idt_vectoring_info;
10085 
10086 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
10087 
10088 	/*
10089 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
10090 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
10091 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
10092 	 * mode as if vcpus is in root mode, the PML buffer must has been
10093 	 * flushed already.
10094 	 */
10095 	if (enable_pml)
10096 		vmx_flush_pml_buffer(vcpu);
10097 
10098 	/* If guest state is invalid, start emulating */
10099 	if (vmx->emulation_required)
10100 		return handle_invalid_guest_state(vcpu);
10101 
10102 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
10103 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
10104 
10105 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
10106 		dump_vmcs();
10107 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
10108 		vcpu->run->fail_entry.hardware_entry_failure_reason
10109 			= exit_reason;
10110 		return 0;
10111 	}
10112 
10113 	if (unlikely(vmx->fail)) {
10114 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
10115 		vcpu->run->fail_entry.hardware_entry_failure_reason
10116 			= vmcs_read32(VM_INSTRUCTION_ERROR);
10117 		return 0;
10118 	}
10119 
10120 	/*
10121 	 * Note:
10122 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
10123 	 * delivery event since it indicates guest is accessing MMIO.
10124 	 * The vm-exit can be triggered again after return to guest that
10125 	 * will cause infinite loop.
10126 	 */
10127 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
10128 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
10129 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
10130 			exit_reason != EXIT_REASON_PML_FULL &&
10131 			exit_reason != EXIT_REASON_APIC_ACCESS &&
10132 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
10133 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10134 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
10135 		vcpu->run->internal.ndata = 3;
10136 		vcpu->run->internal.data[0] = vectoring_info;
10137 		vcpu->run->internal.data[1] = exit_reason;
10138 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
10139 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
10140 			vcpu->run->internal.ndata++;
10141 			vcpu->run->internal.data[3] =
10142 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
10143 		}
10144 		return 0;
10145 	}
10146 
10147 	if (unlikely(!enable_vnmi &&
10148 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
10149 		if (vmx_interrupt_allowed(vcpu)) {
10150 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
10151 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
10152 			   vcpu->arch.nmi_pending) {
10153 			/*
10154 			 * This CPU don't support us in finding the end of an
10155 			 * NMI-blocked window if the guest runs with IRQs
10156 			 * disabled. So we pull the trigger after 1 s of
10157 			 * futile waiting, but inform the user about this.
10158 			 */
10159 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
10160 			       "state on VCPU %d after 1 s timeout\n",
10161 			       __func__, vcpu->vcpu_id);
10162 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
10163 		}
10164 	}
10165 
10166 	if (exit_reason < kvm_vmx_max_exit_handlers
10167 	    && kvm_vmx_exit_handlers[exit_reason])
10168 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
10169 	else {
10170 		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
10171 				exit_reason);
10172 		kvm_queue_exception(vcpu, UD_VECTOR);
10173 		return 1;
10174 	}
10175 }
10176 
10177 /*
10178  * Software based L1D cache flush which is used when microcode providing
10179  * the cache control MSR is not loaded.
10180  *
10181  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
10182  * flush it is required to read in 64 KiB because the replacement algorithm
10183  * is not exactly LRU. This could be sized at runtime via topology
10184  * information but as all relevant affected CPUs have 32KiB L1D cache size
10185  * there is no point in doing so.
10186  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)10187 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
10188 {
10189 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
10190 
10191 	/*
10192 	 * This code is only executed when the the flush mode is 'cond' or
10193 	 * 'always'
10194 	 */
10195 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
10196 		bool flush_l1d;
10197 
10198 		/*
10199 		 * Clear the per-vcpu flush bit, it gets set again
10200 		 * either from vcpu_run() or from one of the unsafe
10201 		 * VMEXIT handlers.
10202 		 */
10203 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
10204 		vcpu->arch.l1tf_flush_l1d = false;
10205 
10206 		/*
10207 		 * Clear the per-cpu flush bit, it gets set again from
10208 		 * the interrupt handlers.
10209 		 */
10210 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
10211 		kvm_clear_cpu_l1tf_flush_l1d();
10212 
10213 		if (!flush_l1d)
10214 			return;
10215 	}
10216 
10217 	vcpu->stat.l1d_flush++;
10218 
10219 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
10220 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
10221 		return;
10222 	}
10223 
10224 	asm volatile(
10225 		/* First ensure the pages are in the TLB */
10226 		"xorl	%%eax, %%eax\n"
10227 		".Lpopulate_tlb:\n\t"
10228 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
10229 		"addl	$4096, %%eax\n\t"
10230 		"cmpl	%%eax, %[size]\n\t"
10231 		"jne	.Lpopulate_tlb\n\t"
10232 		"xorl	%%eax, %%eax\n\t"
10233 		"cpuid\n\t"
10234 		/* Now fill the cache */
10235 		"xorl	%%eax, %%eax\n"
10236 		".Lfill_cache:\n"
10237 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
10238 		"addl	$64, %%eax\n\t"
10239 		"cmpl	%%eax, %[size]\n\t"
10240 		"jne	.Lfill_cache\n\t"
10241 		"lfence\n"
10242 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
10243 		    [size] "r" (size)
10244 		: "eax", "ebx", "ecx", "edx");
10245 }
10246 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)10247 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
10248 {
10249 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10250 
10251 	if (is_guest_mode(vcpu) &&
10252 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10253 		return;
10254 
10255 	if (irr == -1 || tpr < irr) {
10256 		vmcs_write32(TPR_THRESHOLD, 0);
10257 		return;
10258 	}
10259 
10260 	vmcs_write32(TPR_THRESHOLD, irr);
10261 }
10262 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)10263 static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
10264 {
10265 	u32 sec_exec_control;
10266 
10267 	if (!lapic_in_kernel(vcpu))
10268 		return;
10269 
10270 	if (!flexpriority_enabled &&
10271 	    !cpu_has_vmx_virtualize_x2apic_mode())
10272 		return;
10273 
10274 	/* Postpone execution until vmcs01 is the current VMCS. */
10275 	if (is_guest_mode(vcpu)) {
10276 		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
10277 		return;
10278 	}
10279 
10280 	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
10281 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10282 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
10283 
10284 	switch (kvm_get_apic_mode(vcpu)) {
10285 	case LAPIC_MODE_INVALID:
10286 		WARN_ONCE(true, "Invalid local APIC state");
10287 	case LAPIC_MODE_DISABLED:
10288 		break;
10289 	case LAPIC_MODE_XAPIC:
10290 		if (flexpriority_enabled) {
10291 			sec_exec_control |=
10292 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
10293 			vmx_flush_tlb(vcpu, true);
10294 		}
10295 		break;
10296 	case LAPIC_MODE_X2APIC:
10297 		if (cpu_has_vmx_virtualize_x2apic_mode())
10298 			sec_exec_control |=
10299 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
10300 		break;
10301 	}
10302 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
10303 
10304 	vmx_update_msr_bitmap(vcpu);
10305 }
10306 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)10307 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
10308 {
10309 	if (!is_guest_mode(vcpu)) {
10310 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
10311 		vmx_flush_tlb(vcpu, true);
10312 	}
10313 }
10314 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)10315 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
10316 {
10317 	u16 status;
10318 	u8 old;
10319 
10320 	if (max_isr == -1)
10321 		max_isr = 0;
10322 
10323 	status = vmcs_read16(GUEST_INTR_STATUS);
10324 	old = status >> 8;
10325 	if (max_isr != old) {
10326 		status &= 0xff;
10327 		status |= max_isr << 8;
10328 		vmcs_write16(GUEST_INTR_STATUS, status);
10329 	}
10330 }
10331 
vmx_set_rvi(int vector)10332 static void vmx_set_rvi(int vector)
10333 {
10334 	u16 status;
10335 	u8 old;
10336 
10337 	if (vector == -1)
10338 		vector = 0;
10339 
10340 	status = vmcs_read16(GUEST_INTR_STATUS);
10341 	old = (u8)status & 0xff;
10342 	if ((u8)vector != old) {
10343 		status &= ~0xff;
10344 		status |= (u8)vector;
10345 		vmcs_write16(GUEST_INTR_STATUS, status);
10346 	}
10347 }
10348 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)10349 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
10350 {
10351 	/*
10352 	 * When running L2, updating RVI is only relevant when
10353 	 * vmcs12 virtual-interrupt-delivery enabled.
10354 	 * However, it can be enabled only when L1 also
10355 	 * intercepts external-interrupts and in that case
10356 	 * we should not update vmcs02 RVI but instead intercept
10357 	 * interrupt. Therefore, do nothing when running L2.
10358 	 */
10359 	if (!is_guest_mode(vcpu))
10360 		vmx_set_rvi(max_irr);
10361 }
10362 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)10363 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
10364 {
10365 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10366 	int max_irr;
10367 	bool max_irr_updated;
10368 
10369 	WARN_ON(!vcpu->arch.apicv_active);
10370 	if (pi_test_on(&vmx->pi_desc)) {
10371 		pi_clear_on(&vmx->pi_desc);
10372 		/*
10373 		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
10374 		 * But on x86 this is just a compiler barrier anyway.
10375 		 */
10376 		smp_mb__after_atomic();
10377 		max_irr_updated =
10378 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
10379 
10380 		/*
10381 		 * If we are running L2 and L1 has a new pending interrupt
10382 		 * which can be injected, we should re-evaluate
10383 		 * what should be done with this new L1 interrupt.
10384 		 * If L1 intercepts external-interrupts, we should
10385 		 * exit from L2 to L1. Otherwise, interrupt should be
10386 		 * delivered directly to L2.
10387 		 */
10388 		if (is_guest_mode(vcpu) && max_irr_updated) {
10389 			if (nested_exit_on_intr(vcpu))
10390 				kvm_vcpu_exiting_guest_mode(vcpu);
10391 			else
10392 				kvm_make_request(KVM_REQ_EVENT, vcpu);
10393 		}
10394 	} else {
10395 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10396 	}
10397 	vmx_hwapic_irr_update(vcpu, max_irr);
10398 	return max_irr;
10399 }
10400 
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)10401 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
10402 {
10403 	u8 rvi = vmx_get_rvi();
10404 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
10405 
10406 	return ((rvi & 0xf0) > (vppr & 0xf0));
10407 }
10408 
vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)10409 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
10410 {
10411 	return pi_test_on(vcpu_to_pi_desc(vcpu));
10412 }
10413 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)10414 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
10415 {
10416 	if (!kvm_vcpu_apicv_active(vcpu))
10417 		return;
10418 
10419 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
10420 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
10421 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
10422 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
10423 }
10424 
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)10425 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
10426 {
10427 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10428 
10429 	pi_clear_on(&vmx->pi_desc);
10430 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
10431 }
10432 
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)10433 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
10434 {
10435 	if (vmx->exit_reason != EXIT_REASON_EXCEPTION_NMI)
10436 		return;
10437 
10438 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
10439 
10440 	/* if exit due to PF check for async PF */
10441 	if (is_page_fault(vmx->exit_intr_info))
10442 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
10443 
10444 	/* Handle machine checks before interrupts are enabled */
10445 	if (is_machine_check(vmx->exit_intr_info))
10446 		kvm_machine_check();
10447 
10448 	/* We need to handle NMIs before interrupts are enabled */
10449 	if (is_nmi(vmx->exit_intr_info)) {
10450 		kvm_before_interrupt(&vmx->vcpu);
10451 		asm("int $2");
10452 		kvm_after_interrupt(&vmx->vcpu);
10453 	}
10454 }
10455 
vmx_handle_external_intr(struct kvm_vcpu * vcpu)10456 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
10457 {
10458 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
10459 
10460 	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
10461 			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
10462 		unsigned int vector;
10463 		unsigned long entry;
10464 		gate_desc *desc;
10465 		struct vcpu_vmx *vmx = to_vmx(vcpu);
10466 #ifdef CONFIG_X86_64
10467 		unsigned long tmp;
10468 #endif
10469 
10470 		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
10471 		desc = (gate_desc *)vmx->host_idt_base + vector;
10472 		entry = gate_offset(desc);
10473 		asm volatile(
10474 #ifdef CONFIG_X86_64
10475 			"mov %%" _ASM_SP ", %[sp]\n\t"
10476 			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
10477 			"push $%c[ss]\n\t"
10478 			"push %[sp]\n\t"
10479 #endif
10480 			"pushf\n\t"
10481 			__ASM_SIZE(push) " $%c[cs]\n\t"
10482 			CALL_NOSPEC
10483 			:
10484 #ifdef CONFIG_X86_64
10485 			[sp]"=&r"(tmp),
10486 #endif
10487 			ASM_CALL_CONSTRAINT
10488 			:
10489 			THUNK_TARGET(entry),
10490 			[ss]"i"(__KERNEL_DS),
10491 			[cs]"i"(__KERNEL_CS)
10492 			);
10493 	}
10494 }
10495 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
10496 
vmx_has_emulated_msr(int index)10497 static bool vmx_has_emulated_msr(int index)
10498 {
10499 	switch (index) {
10500 	case MSR_IA32_SMBASE:
10501 		/*
10502 		 * We cannot do SMM unless we can run the guest in big
10503 		 * real mode.
10504 		 */
10505 		return enable_unrestricted_guest || emulate_invalid_guest_state;
10506 	case MSR_AMD64_VIRT_SPEC_CTRL:
10507 		/* This is AMD only.  */
10508 		return false;
10509 	default:
10510 		return true;
10511 	}
10512 }
10513 
vmx_mpx_supported(void)10514 static bool vmx_mpx_supported(void)
10515 {
10516 	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
10517 		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
10518 }
10519 
vmx_xsaves_supported(void)10520 static bool vmx_xsaves_supported(void)
10521 {
10522 	return vmcs_config.cpu_based_2nd_exec_ctrl &
10523 		SECONDARY_EXEC_XSAVES;
10524 }
10525 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)10526 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
10527 {
10528 	u32 exit_intr_info;
10529 	bool unblock_nmi;
10530 	u8 vector;
10531 	bool idtv_info_valid;
10532 
10533 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
10534 
10535 	if (enable_vnmi) {
10536 		if (vmx->loaded_vmcs->nmi_known_unmasked)
10537 			return;
10538 		/*
10539 		 * Can't use vmx->exit_intr_info since we're not sure what
10540 		 * the exit reason is.
10541 		 */
10542 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
10543 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
10544 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
10545 		/*
10546 		 * SDM 3: 27.7.1.2 (September 2008)
10547 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
10548 		 * a guest IRET fault.
10549 		 * SDM 3: 23.2.2 (September 2008)
10550 		 * Bit 12 is undefined in any of the following cases:
10551 		 *  If the VM exit sets the valid bit in the IDT-vectoring
10552 		 *   information field.
10553 		 *  If the VM exit is due to a double fault.
10554 		 */
10555 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
10556 		    vector != DF_VECTOR && !idtv_info_valid)
10557 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
10558 				      GUEST_INTR_STATE_NMI);
10559 		else
10560 			vmx->loaded_vmcs->nmi_known_unmasked =
10561 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
10562 				  & GUEST_INTR_STATE_NMI);
10563 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
10564 		vmx->loaded_vmcs->vnmi_blocked_time +=
10565 			ktime_to_ns(ktime_sub(ktime_get(),
10566 					      vmx->loaded_vmcs->entry_time));
10567 }
10568 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)10569 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
10570 				      u32 idt_vectoring_info,
10571 				      int instr_len_field,
10572 				      int error_code_field)
10573 {
10574 	u8 vector;
10575 	int type;
10576 	bool idtv_info_valid;
10577 
10578 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
10579 
10580 	vcpu->arch.nmi_injected = false;
10581 	kvm_clear_exception_queue(vcpu);
10582 	kvm_clear_interrupt_queue(vcpu);
10583 
10584 	if (!idtv_info_valid)
10585 		return;
10586 
10587 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10588 
10589 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
10590 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
10591 
10592 	switch (type) {
10593 	case INTR_TYPE_NMI_INTR:
10594 		vcpu->arch.nmi_injected = true;
10595 		/*
10596 		 * SDM 3: 27.7.1.2 (September 2008)
10597 		 * Clear bit "block by NMI" before VM entry if a NMI
10598 		 * delivery faulted.
10599 		 */
10600 		vmx_set_nmi_mask(vcpu, false);
10601 		break;
10602 	case INTR_TYPE_SOFT_EXCEPTION:
10603 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
10604 		/* fall through */
10605 	case INTR_TYPE_HARD_EXCEPTION:
10606 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
10607 			u32 err = vmcs_read32(error_code_field);
10608 			kvm_requeue_exception_e(vcpu, vector, err);
10609 		} else
10610 			kvm_requeue_exception(vcpu, vector);
10611 		break;
10612 	case INTR_TYPE_SOFT_INTR:
10613 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
10614 		/* fall through */
10615 	case INTR_TYPE_EXT_INTR:
10616 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
10617 		break;
10618 	default:
10619 		break;
10620 	}
10621 }
10622 
vmx_complete_interrupts(struct vcpu_vmx * vmx)10623 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
10624 {
10625 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
10626 				  VM_EXIT_INSTRUCTION_LEN,
10627 				  IDT_VECTORING_ERROR_CODE);
10628 }
10629 
vmx_cancel_injection(struct kvm_vcpu * vcpu)10630 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
10631 {
10632 	__vmx_complete_interrupts(vcpu,
10633 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
10634 				  VM_ENTRY_INSTRUCTION_LEN,
10635 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
10636 
10637 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10638 }
10639 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)10640 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
10641 {
10642 	int i, nr_msrs;
10643 	struct perf_guest_switch_msr *msrs;
10644 
10645 	msrs = perf_guest_get_msrs(&nr_msrs);
10646 
10647 	if (!msrs)
10648 		return;
10649 
10650 	for (i = 0; i < nr_msrs; i++)
10651 		if (msrs[i].host == msrs[i].guest)
10652 			clear_atomic_switch_msr(vmx, msrs[i].msr);
10653 		else
10654 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
10655 					msrs[i].host, false);
10656 }
10657 
vmx_arm_hv_timer(struct vcpu_vmx * vmx,u32 val)10658 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
10659 {
10660 	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
10661 	if (!vmx->loaded_vmcs->hv_timer_armed)
10662 		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10663 			      PIN_BASED_VMX_PREEMPTION_TIMER);
10664 	vmx->loaded_vmcs->hv_timer_armed = true;
10665 }
10666 
vmx_update_hv_timer(struct kvm_vcpu * vcpu)10667 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
10668 {
10669 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10670 	u64 tscl;
10671 	u32 delta_tsc;
10672 
10673 	if (vmx->req_immediate_exit) {
10674 		vmx_arm_hv_timer(vmx, 0);
10675 		return;
10676 	}
10677 
10678 	if (vmx->hv_deadline_tsc != -1) {
10679 		tscl = rdtsc();
10680 		if (vmx->hv_deadline_tsc > tscl)
10681 			/* set_hv_timer ensures the delta fits in 32-bits */
10682 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
10683 				cpu_preemption_timer_multi);
10684 		else
10685 			delta_tsc = 0;
10686 
10687 		vmx_arm_hv_timer(vmx, delta_tsc);
10688 		return;
10689 	}
10690 
10691 	if (vmx->loaded_vmcs->hv_timer_armed)
10692 		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10693 				PIN_BASED_VMX_PREEMPTION_TIMER);
10694 	vmx->loaded_vmcs->hv_timer_armed = false;
10695 }
10696 
vmx_vcpu_run(struct kvm_vcpu * vcpu)10697 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
10698 {
10699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10700 	unsigned long cr3, cr4, evmcs_rsp;
10701 
10702 	/* Record the guest's net vcpu time for enforced NMI injections. */
10703 	if (unlikely(!enable_vnmi &&
10704 		     vmx->loaded_vmcs->soft_vnmi_blocked))
10705 		vmx->loaded_vmcs->entry_time = ktime_get();
10706 
10707 	/* Don't enter VMX if guest state is invalid, let the exit handler
10708 	   start emulation until we arrive back to a valid state */
10709 	if (vmx->emulation_required)
10710 		return;
10711 
10712 	if (vmx->ple_window_dirty) {
10713 		vmx->ple_window_dirty = false;
10714 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
10715 	}
10716 
10717 	if (vmx->nested.sync_shadow_vmcs) {
10718 		copy_vmcs12_to_shadow(vmx);
10719 		vmx->nested.sync_shadow_vmcs = false;
10720 	}
10721 
10722 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
10723 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
10724 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
10725 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
10726 
10727 	cr3 = __get_current_cr3_fast();
10728 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
10729 		vmcs_writel(HOST_CR3, cr3);
10730 		vmx->loaded_vmcs->host_state.cr3 = cr3;
10731 	}
10732 
10733 	cr4 = cr4_read_shadow();
10734 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
10735 		vmcs_writel(HOST_CR4, cr4);
10736 		vmx->loaded_vmcs->host_state.cr4 = cr4;
10737 	}
10738 
10739 	/* When single-stepping over STI and MOV SS, we must clear the
10740 	 * corresponding interruptibility bits in the guest state. Otherwise
10741 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
10742 	 * exceptions being set, but that's not correct for the guest debugging
10743 	 * case. */
10744 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10745 		vmx_set_interrupt_shadow(vcpu, 0);
10746 
10747 	kvm_load_guest_xcr0(vcpu);
10748 
10749 	if (static_cpu_has(X86_FEATURE_PKU) &&
10750 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
10751 	    vcpu->arch.pkru != vmx->host_pkru)
10752 		__write_pkru(vcpu->arch.pkru);
10753 
10754 	atomic_switch_perf_msrs(vmx);
10755 
10756 	vmx_update_hv_timer(vcpu);
10757 
10758 	/*
10759 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
10760 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
10761 	 * is no need to worry about the conditional branch over the wrmsr
10762 	 * being speculatively taken.
10763 	 */
10764 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
10765 
10766 	vmx->__launched = vmx->loaded_vmcs->launched;
10767 
10768 	evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
10769 		(unsigned long)&current_evmcs->host_rsp : 0;
10770 
10771 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
10772 	if (static_branch_unlikely(&vmx_l1d_should_flush))
10773 		vmx_l1d_flush(vcpu);
10774 	else if (static_branch_unlikely(&mds_user_clear))
10775 		mds_clear_cpu_buffers();
10776 
10777 	asm volatile (
10778 		/* Store host registers */
10779 		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
10780 		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
10781 		"push %%" _ASM_CX " \n\t"
10782 		"cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
10783 		"je 1f \n\t"
10784 		"mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
10785 		/* Avoid VMWRITE when Enlightened VMCS is in use */
10786 		"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
10787 		"jz 2f \n\t"
10788 		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
10789 		"jmp 1f \n\t"
10790 		"2: \n\t"
10791 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
10792 		"1: \n\t"
10793 		/* Reload cr2 if changed */
10794 		"mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
10795 		"mov %%cr2, %%" _ASM_DX " \n\t"
10796 		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
10797 		"je 3f \n\t"
10798 		"mov %%" _ASM_AX", %%cr2 \n\t"
10799 		"3: \n\t"
10800 		/* Check if vmlaunch of vmresume is needed */
10801 		"cmpb $0, %c[launched](%%" _ASM_CX ") \n\t"
10802 		/* Load guest registers.  Don't clobber flags. */
10803 		"mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
10804 		"mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t"
10805 		"mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t"
10806 		"mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t"
10807 		"mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t"
10808 		"mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t"
10809 #ifdef CONFIG_X86_64
10810 		"mov %c[r8](%%" _ASM_CX "),  %%r8  \n\t"
10811 		"mov %c[r9](%%" _ASM_CX "),  %%r9  \n\t"
10812 		"mov %c[r10](%%" _ASM_CX "), %%r10 \n\t"
10813 		"mov %c[r11](%%" _ASM_CX "), %%r11 \n\t"
10814 		"mov %c[r12](%%" _ASM_CX "), %%r12 \n\t"
10815 		"mov %c[r13](%%" _ASM_CX "), %%r13 \n\t"
10816 		"mov %c[r14](%%" _ASM_CX "), %%r14 \n\t"
10817 		"mov %c[r15](%%" _ASM_CX "), %%r15 \n\t"
10818 #endif
10819 		/* Load guest RCX.  This kills the vmx_vcpu pointer! */
10820 		"mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t"
10821 
10822 		/* Enter guest mode */
10823 		"jne 1f \n\t"
10824 		__ex(ASM_VMX_VMLAUNCH) "\n\t"
10825 		"jmp 2f \n\t"
10826 		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
10827 		"2: "
10828 
10829 		/* Save guest's RCX to the stack placeholder (see above) */
10830 		"mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t"
10831 
10832 		/* Load host's RCX, i.e. the vmx_vcpu pointer */
10833 		"pop %%" _ASM_CX " \n\t"
10834 
10835 		/* Set vmx->fail based on EFLAGS.{CF,ZF} */
10836 		"setbe %c[fail](%%" _ASM_CX ")\n\t"
10837 
10838 		/* Save all guest registers, including RCX from the stack */
10839 		"mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t"
10840 		"mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t"
10841 		__ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t"
10842 		"mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t"
10843 		"mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t"
10844 		"mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t"
10845 		"mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t"
10846 #ifdef CONFIG_X86_64
10847 		"mov %%r8,  %c[r8](%%" _ASM_CX ") \n\t"
10848 		"mov %%r9,  %c[r9](%%" _ASM_CX ") \n\t"
10849 		"mov %%r10, %c[r10](%%" _ASM_CX ") \n\t"
10850 		"mov %%r11, %c[r11](%%" _ASM_CX ") \n\t"
10851 		"mov %%r12, %c[r12](%%" _ASM_CX ") \n\t"
10852 		"mov %%r13, %c[r13](%%" _ASM_CX ") \n\t"
10853 		"mov %%r14, %c[r14](%%" _ASM_CX ") \n\t"
10854 		"mov %%r15, %c[r15](%%" _ASM_CX ") \n\t"
10855 
10856 		/*
10857 		 * Clear all general purpose registers (except RSP, which is loaded by
10858 		 * the CPU during VM-Exit) to prevent speculative use of the guest's
10859 		 * values, even those that are saved/loaded via the stack.  In theory,
10860 		 * an L1 cache miss when restoring registers could lead to speculative
10861 		 * execution with the guest's values.  Zeroing XORs are dirt cheap,
10862 		 * i.e. the extra paranoia is essentially free.
10863 		 */
10864 		"xor %%r8d,  %%r8d \n\t"
10865 		"xor %%r9d,  %%r9d \n\t"
10866 		"xor %%r10d, %%r10d \n\t"
10867 		"xor %%r11d, %%r11d \n\t"
10868 		"xor %%r12d, %%r12d \n\t"
10869 		"xor %%r13d, %%r13d \n\t"
10870 		"xor %%r14d, %%r14d \n\t"
10871 		"xor %%r15d, %%r15d \n\t"
10872 #endif
10873 		"mov %%cr2, %%" _ASM_AX "   \n\t"
10874 		"mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t"
10875 
10876 		"xor %%eax, %%eax \n\t"
10877 		"xor %%ebx, %%ebx \n\t"
10878 		"xor %%ecx, %%ecx \n\t"
10879 		"xor %%edx, %%edx \n\t"
10880 		"xor %%esi, %%esi \n\t"
10881 		"xor %%edi, %%edi \n\t"
10882 		"xor %%ebp, %%ebp \n\t"
10883 		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
10884 		".pushsection .rodata \n\t"
10885 		".global vmx_return \n\t"
10886 		"vmx_return: " _ASM_PTR " 2b \n\t"
10887 		".popsection"
10888 	      : "=c"((int){0}), "=d"((int){0}), "=S"((int){0})
10889 	      : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
10890 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
10891 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
10892 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
10893 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
10894 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
10895 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
10896 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
10897 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
10898 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
10899 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
10900 #ifdef CONFIG_X86_64
10901 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
10902 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
10903 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
10904 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
10905 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
10906 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
10907 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
10908 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
10909 #endif
10910 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
10911 		[wordsize]"i"(sizeof(ulong))
10912 	      : "cc", "memory"
10913 #ifdef CONFIG_X86_64
10914 		, "rax", "rbx", "rdi"
10915 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
10916 #else
10917 		, "eax", "ebx", "edi"
10918 #endif
10919 	      );
10920 
10921 	/*
10922 	 * We do not use IBRS in the kernel. If this vCPU has used the
10923 	 * SPEC_CTRL MSR it may have left it on; save the value and
10924 	 * turn it off. This is much more efficient than blindly adding
10925 	 * it to the atomic save/restore list. Especially as the former
10926 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
10927 	 *
10928 	 * For non-nested case:
10929 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
10930 	 * save it.
10931 	 *
10932 	 * For nested case:
10933 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
10934 	 * save it.
10935 	 */
10936 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
10937 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
10938 
10939 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
10940 
10941 	/* Eliminate branch target predictions from guest mode */
10942 	vmexit_fill_RSB();
10943 
10944 	/* All fields are clean at this point */
10945 	if (static_branch_unlikely(&enable_evmcs))
10946 		current_evmcs->hv_clean_fields |=
10947 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
10948 
10949 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
10950 	if (vmx->host_debugctlmsr)
10951 		update_debugctlmsr(vmx->host_debugctlmsr);
10952 
10953 #ifndef CONFIG_X86_64
10954 	/*
10955 	 * The sysexit path does not restore ds/es, so we must set them to
10956 	 * a reasonable value ourselves.
10957 	 *
10958 	 * We can't defer this to vmx_prepare_switch_to_host() since that
10959 	 * function may be executed in interrupt context, which saves and
10960 	 * restore segments around it, nullifying its effect.
10961 	 */
10962 	loadsegment(ds, __USER_DS);
10963 	loadsegment(es, __USER_DS);
10964 #endif
10965 
10966 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
10967 				  | (1 << VCPU_EXREG_RFLAGS)
10968 				  | (1 << VCPU_EXREG_PDPTR)
10969 				  | (1 << VCPU_EXREG_SEGMENTS)
10970 				  | (1 << VCPU_EXREG_CR3));
10971 	vcpu->arch.regs_dirty = 0;
10972 
10973 	/*
10974 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
10975 	 * back on host, so it is safe to read guest PKRU from current
10976 	 * XSAVE.
10977 	 */
10978 	if (static_cpu_has(X86_FEATURE_PKU) &&
10979 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
10980 		vcpu->arch.pkru = __read_pkru();
10981 		if (vcpu->arch.pkru != vmx->host_pkru)
10982 			__write_pkru(vmx->host_pkru);
10983 	}
10984 
10985 	kvm_put_guest_xcr0(vcpu);
10986 
10987 	vmx->nested.nested_run_pending = 0;
10988 	vmx->idt_vectoring_info = 0;
10989 
10990 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
10991 	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
10992 		kvm_machine_check();
10993 
10994 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
10995 		return;
10996 
10997 	vmx->loaded_vmcs->launched = 1;
10998 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
10999 
11000 	vmx_complete_atomic_exit(vmx);
11001 	vmx_recover_nmi_blocking(vmx);
11002 	vmx_complete_interrupts(vmx);
11003 }
11004 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
11005 
vmx_vm_alloc(void)11006 static struct kvm *vmx_vm_alloc(void)
11007 {
11008 	struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
11009 
11010 	if (!kvm_vmx)
11011 		return NULL;
11012 
11013 	return &kvm_vmx->kvm;
11014 }
11015 
vmx_vm_free(struct kvm * kvm)11016 static void vmx_vm_free(struct kvm *kvm)
11017 {
11018 	vfree(to_kvm_vmx(kvm));
11019 }
11020 
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)11021 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
11022 {
11023 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11024 	int cpu;
11025 
11026 	if (vmx->loaded_vmcs == vmcs)
11027 		return;
11028 
11029 	cpu = get_cpu();
11030 	vmx_vcpu_put(vcpu);
11031 	vmx->loaded_vmcs = vmcs;
11032 	vmx_vcpu_load(vcpu, cpu);
11033 	put_cpu();
11034 }
11035 
11036 /*
11037  * Ensure that the current vmcs of the logical processor is the
11038  * vmcs01 of the vcpu before calling free_nested().
11039  */
vmx_free_vcpu_nested(struct kvm_vcpu * vcpu)11040 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
11041 {
11042        struct vcpu_vmx *vmx = to_vmx(vcpu);
11043 
11044        vcpu_load(vcpu);
11045        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11046        free_nested(vmx);
11047        vcpu_put(vcpu);
11048 }
11049 
vmx_free_vcpu(struct kvm_vcpu * vcpu)11050 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
11051 {
11052 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11053 
11054 	if (enable_pml)
11055 		vmx_destroy_pml_buffer(vmx);
11056 	free_vpid(vmx->vpid);
11057 	leave_guest_mode(vcpu);
11058 	vmx_free_vcpu_nested(vcpu);
11059 	free_loaded_vmcs(vmx->loaded_vmcs);
11060 	kfree(vmx->guest_msrs);
11061 	kvm_vcpu_uninit(vcpu);
11062 	kmem_cache_free(kvm_vcpu_cache, vmx);
11063 }
11064 
vmx_create_vcpu(struct kvm * kvm,unsigned int id)11065 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
11066 {
11067 	int err;
11068 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
11069 	unsigned long *msr_bitmap;
11070 	int cpu;
11071 
11072 	if (!vmx)
11073 		return ERR_PTR(-ENOMEM);
11074 
11075 	vmx->vpid = allocate_vpid();
11076 
11077 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
11078 	if (err)
11079 		goto free_vcpu;
11080 
11081 	err = -ENOMEM;
11082 
11083 	/*
11084 	 * If PML is turned on, failure on enabling PML just results in failure
11085 	 * of creating the vcpu, therefore we can simplify PML logic (by
11086 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
11087 	 * for the guest, etc.
11088 	 */
11089 	if (enable_pml) {
11090 		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
11091 		if (!vmx->pml_pg)
11092 			goto uninit_vcpu;
11093 	}
11094 
11095 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
11096 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
11097 		     > PAGE_SIZE);
11098 
11099 	if (!vmx->guest_msrs)
11100 		goto free_pml;
11101 
11102 	err = alloc_loaded_vmcs(&vmx->vmcs01);
11103 	if (err < 0)
11104 		goto free_msrs;
11105 
11106 	msr_bitmap = vmx->vmcs01.msr_bitmap;
11107 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
11108 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
11109 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
11110 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
11111 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
11112 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
11113 	vmx->msr_bitmap_mode = 0;
11114 
11115 	vmx->loaded_vmcs = &vmx->vmcs01;
11116 	cpu = get_cpu();
11117 	vmx_vcpu_load(&vmx->vcpu, cpu);
11118 	vmx->vcpu.cpu = cpu;
11119 	vmx_vcpu_setup(vmx);
11120 	vmx_vcpu_put(&vmx->vcpu);
11121 	put_cpu();
11122 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
11123 		err = alloc_apic_access_page(kvm);
11124 		if (err)
11125 			goto free_vmcs;
11126 	}
11127 
11128 	if (enable_ept && !enable_unrestricted_guest) {
11129 		err = init_rmode_identity_map(kvm);
11130 		if (err)
11131 			goto free_vmcs;
11132 	}
11133 
11134 	if (nested)
11135 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
11136 					   kvm_vcpu_apicv_active(&vmx->vcpu));
11137 
11138 	vmx->nested.posted_intr_nv = -1;
11139 	vmx->nested.current_vmptr = -1ull;
11140 
11141 	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
11142 
11143 	/*
11144 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
11145 	 * or POSTED_INTR_WAKEUP_VECTOR.
11146 	 */
11147 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
11148 	vmx->pi_desc.sn = 1;
11149 
11150 	return &vmx->vcpu;
11151 
11152 free_vmcs:
11153 	free_loaded_vmcs(vmx->loaded_vmcs);
11154 free_msrs:
11155 	kfree(vmx->guest_msrs);
11156 free_pml:
11157 	vmx_destroy_pml_buffer(vmx);
11158 uninit_vcpu:
11159 	kvm_vcpu_uninit(&vmx->vcpu);
11160 free_vcpu:
11161 	free_vpid(vmx->vpid);
11162 	kmem_cache_free(kvm_vcpu_cache, vmx);
11163 	return ERR_PTR(err);
11164 }
11165 
11166 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
11167 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
11168 
vmx_vm_init(struct kvm * kvm)11169 static int vmx_vm_init(struct kvm *kvm)
11170 {
11171 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
11172 
11173 	if (!ple_gap)
11174 		kvm->arch.pause_in_guest = true;
11175 
11176 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
11177 		switch (l1tf_mitigation) {
11178 		case L1TF_MITIGATION_OFF:
11179 		case L1TF_MITIGATION_FLUSH_NOWARN:
11180 			/* 'I explicitly don't care' is set */
11181 			break;
11182 		case L1TF_MITIGATION_FLUSH:
11183 		case L1TF_MITIGATION_FLUSH_NOSMT:
11184 		case L1TF_MITIGATION_FULL:
11185 			/*
11186 			 * Warn upon starting the first VM in a potentially
11187 			 * insecure environment.
11188 			 */
11189 			if (sched_smt_active())
11190 				pr_warn_once(L1TF_MSG_SMT);
11191 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
11192 				pr_warn_once(L1TF_MSG_L1D);
11193 			break;
11194 		case L1TF_MITIGATION_FULL_FORCE:
11195 			/* Flush is enforced */
11196 			break;
11197 		}
11198 	}
11199 	return 0;
11200 }
11201 
vmx_check_processor_compat(void * rtn)11202 static void __init vmx_check_processor_compat(void *rtn)
11203 {
11204 	struct vmcs_config vmcs_conf;
11205 
11206 	*(int *)rtn = 0;
11207 	if (setup_vmcs_config(&vmcs_conf) < 0)
11208 		*(int *)rtn = -EIO;
11209 	nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
11210 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
11211 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
11212 				smp_processor_id());
11213 		*(int *)rtn = -EIO;
11214 	}
11215 }
11216 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)11217 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
11218 {
11219 	u8 cache;
11220 	u64 ipat = 0;
11221 
11222 	/* For VT-d and EPT combination
11223 	 * 1. MMIO: always map as UC
11224 	 * 2. EPT with VT-d:
11225 	 *   a. VT-d without snooping control feature: can't guarantee the
11226 	 *	result, try to trust guest.
11227 	 *   b. VT-d with snooping control feature: snooping control feature of
11228 	 *	VT-d engine can guarantee the cache correctness. Just set it
11229 	 *	to WB to keep consistent with host. So the same as item 3.
11230 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
11231 	 *    consistent with host MTRR
11232 	 */
11233 	if (is_mmio) {
11234 		cache = MTRR_TYPE_UNCACHABLE;
11235 		goto exit;
11236 	}
11237 
11238 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
11239 		ipat = VMX_EPT_IPAT_BIT;
11240 		cache = MTRR_TYPE_WRBACK;
11241 		goto exit;
11242 	}
11243 
11244 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
11245 		ipat = VMX_EPT_IPAT_BIT;
11246 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
11247 			cache = MTRR_TYPE_WRBACK;
11248 		else
11249 			cache = MTRR_TYPE_UNCACHABLE;
11250 		goto exit;
11251 	}
11252 
11253 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
11254 
11255 exit:
11256 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
11257 }
11258 
vmx_get_lpage_level(void)11259 static int vmx_get_lpage_level(void)
11260 {
11261 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
11262 		return PT_DIRECTORY_LEVEL;
11263 	else
11264 		/* For shadow and EPT supported 1GB page */
11265 		return PT_PDPE_LEVEL;
11266 }
11267 
vmcs_set_secondary_exec_control(u32 new_ctl)11268 static void vmcs_set_secondary_exec_control(u32 new_ctl)
11269 {
11270 	/*
11271 	 * These bits in the secondary execution controls field
11272 	 * are dynamic, the others are mostly based on the hypervisor
11273 	 * architecture and the guest's CPUID.  Do not touch the
11274 	 * dynamic bits.
11275 	 */
11276 	u32 mask =
11277 		SECONDARY_EXEC_SHADOW_VMCS |
11278 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
11279 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
11280 		SECONDARY_EXEC_DESC;
11281 
11282 	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
11283 
11284 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
11285 		     (new_ctl & ~mask) | (cur_ctl & mask));
11286 }
11287 
11288 /*
11289  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
11290  * (indicating "allowed-1") if they are supported in the guest's CPUID.
11291  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)11292 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
11293 {
11294 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11295 	struct kvm_cpuid_entry2 *entry;
11296 
11297 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
11298 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
11299 
11300 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
11301 	if (entry && (entry->_reg & (_cpuid_mask)))			\
11302 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
11303 } while (0)
11304 
11305 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
11306 	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
11307 	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
11308 	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
11309 	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
11310 	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
11311 	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
11312 	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
11313 	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
11314 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
11315 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
11316 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
11317 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
11318 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
11319 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
11320 
11321 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
11322 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
11323 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
11324 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
11325 	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
11326 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
11327 
11328 #undef cr4_fixed1_update
11329 }
11330 
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)11331 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
11332 {
11333 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11334 
11335 	if (kvm_mpx_supported()) {
11336 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
11337 
11338 		if (mpx_enabled) {
11339 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
11340 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
11341 		} else {
11342 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
11343 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
11344 		}
11345 	}
11346 }
11347 
vmx_cpuid_update(struct kvm_vcpu * vcpu)11348 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
11349 {
11350 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11351 
11352 	if (cpu_has_secondary_exec_ctrls()) {
11353 		vmx_compute_secondary_exec_control(vmx);
11354 		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
11355 	}
11356 
11357 	if (nested_vmx_allowed(vcpu))
11358 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11359 			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
11360 	else
11361 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11362 			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
11363 
11364 	if (nested_vmx_allowed(vcpu)) {
11365 		nested_vmx_cr_fixed1_bits_update(vcpu);
11366 		nested_vmx_entry_exit_ctls_update(vcpu);
11367 	}
11368 }
11369 
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)11370 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
11371 {
11372 	if (func == 1 && nested)
11373 		entry->ecx |= bit(X86_FEATURE_VMX);
11374 }
11375 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)11376 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
11377 		struct x86_exception *fault)
11378 {
11379 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11380 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11381 	u32 exit_reason;
11382 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
11383 
11384 	if (vmx->nested.pml_full) {
11385 		exit_reason = EXIT_REASON_PML_FULL;
11386 		vmx->nested.pml_full = false;
11387 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
11388 	} else if (fault->error_code & PFERR_RSVD_MASK)
11389 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
11390 	else
11391 		exit_reason = EXIT_REASON_EPT_VIOLATION;
11392 
11393 	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
11394 	vmcs12->guest_physical_address = fault->address;
11395 }
11396 
nested_ept_ad_enabled(struct kvm_vcpu * vcpu)11397 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
11398 {
11399 	return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
11400 }
11401 
11402 /* Callbacks for nested_ept_init_mmu_context: */
11403 
nested_ept_get_cr3(struct kvm_vcpu * vcpu)11404 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
11405 {
11406 	/* return the page table to be shadowed - in our case, EPT12 */
11407 	return get_vmcs12(vcpu)->ept_pointer;
11408 }
11409 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)11410 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
11411 {
11412 	WARN_ON(mmu_is_nested(vcpu));
11413 	if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
11414 		return 1;
11415 
11416 	kvm_init_shadow_ept_mmu(vcpu,
11417 			to_vmx(vcpu)->nested.msrs.ept_caps &
11418 			VMX_EPT_EXECUTE_ONLY_BIT,
11419 			nested_ept_ad_enabled(vcpu),
11420 			nested_ept_get_cr3(vcpu));
11421 	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
11422 	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
11423 	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
11424 
11425 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
11426 	return 0;
11427 }
11428 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)11429 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
11430 {
11431 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
11432 }
11433 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)11434 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
11435 					    u16 error_code)
11436 {
11437 	bool inequality, bit;
11438 
11439 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
11440 	inequality =
11441 		(error_code & vmcs12->page_fault_error_code_mask) !=
11442 		 vmcs12->page_fault_error_code_match;
11443 	return inequality ^ bit;
11444 }
11445 
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)11446 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
11447 		struct x86_exception *fault)
11448 {
11449 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11450 
11451 	WARN_ON(!is_guest_mode(vcpu));
11452 
11453 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
11454 		!to_vmx(vcpu)->nested.nested_run_pending) {
11455 		vmcs12->vm_exit_intr_error_code = fault->error_code;
11456 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11457 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
11458 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
11459 				  fault->address);
11460 	} else {
11461 		kvm_inject_page_fault(vcpu, fault);
11462 	}
11463 }
11464 
11465 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
11466 						 struct vmcs12 *vmcs12);
11467 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)11468 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
11469 {
11470 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11471 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11472 	struct page *page;
11473 	u64 hpa;
11474 
11475 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11476 		/*
11477 		 * Translate L1 physical address to host physical
11478 		 * address for vmcs02. Keep the page pinned, so this
11479 		 * physical address remains valid. We keep a reference
11480 		 * to it so we can release it later.
11481 		 */
11482 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
11483 			kvm_release_page_dirty(vmx->nested.apic_access_page);
11484 			vmx->nested.apic_access_page = NULL;
11485 		}
11486 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
11487 		/*
11488 		 * If translation failed, no matter: This feature asks
11489 		 * to exit when accessing the given address, and if it
11490 		 * can never be accessed, this feature won't do
11491 		 * anything anyway.
11492 		 */
11493 		if (!is_error_page(page)) {
11494 			vmx->nested.apic_access_page = page;
11495 			hpa = page_to_phys(vmx->nested.apic_access_page);
11496 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
11497 		} else {
11498 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
11499 					SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
11500 		}
11501 	}
11502 
11503 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
11504 		if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
11505 			kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11506 			vmx->nested.virtual_apic_page = NULL;
11507 		}
11508 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
11509 
11510 		/*
11511 		 * If translation failed, VM entry will fail because
11512 		 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
11513 		 * Failing the vm entry is _not_ what the processor
11514 		 * does but it's basically the only possibility we
11515 		 * have.  We could still enter the guest if CR8 load
11516 		 * exits are enabled, CR8 store exits are enabled, and
11517 		 * virtualize APIC access is disabled; in this case
11518 		 * the processor would never use the TPR shadow and we
11519 		 * could simply clear the bit from the execution
11520 		 * control.  But such a configuration is useless, so
11521 		 * let's keep the code simple.
11522 		 */
11523 		if (!is_error_page(page)) {
11524 			vmx->nested.virtual_apic_page = page;
11525 			hpa = page_to_phys(vmx->nested.virtual_apic_page);
11526 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
11527 		}
11528 	}
11529 
11530 	if (nested_cpu_has_posted_intr(vmcs12)) {
11531 		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
11532 			kunmap(vmx->nested.pi_desc_page);
11533 			kvm_release_page_dirty(vmx->nested.pi_desc_page);
11534 			vmx->nested.pi_desc_page = NULL;
11535 			vmx->nested.pi_desc = NULL;
11536 			vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
11537 		}
11538 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
11539 		if (is_error_page(page))
11540 			return;
11541 		vmx->nested.pi_desc_page = page;
11542 		vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
11543 		vmx->nested.pi_desc =
11544 			(struct pi_desc *)((void *)vmx->nested.pi_desc +
11545 			(unsigned long)(vmcs12->posted_intr_desc_addr &
11546 			(PAGE_SIZE - 1)));
11547 		vmcs_write64(POSTED_INTR_DESC_ADDR,
11548 			page_to_phys(vmx->nested.pi_desc_page) +
11549 			(unsigned long)(vmcs12->posted_intr_desc_addr &
11550 			(PAGE_SIZE - 1)));
11551 	}
11552 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
11553 		vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
11554 			      CPU_BASED_USE_MSR_BITMAPS);
11555 	else
11556 		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
11557 				CPU_BASED_USE_MSR_BITMAPS);
11558 }
11559 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)11560 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
11561 {
11562 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
11563 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11564 
11565 	/*
11566 	 * A timer value of zero is architecturally guaranteed to cause
11567 	 * a VMExit prior to executing any instructions in the guest.
11568 	 */
11569 	if (preemption_timeout == 0) {
11570 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
11571 		return;
11572 	}
11573 
11574 	if (vcpu->arch.virtual_tsc_khz == 0)
11575 		return;
11576 
11577 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11578 	preemption_timeout *= 1000000;
11579 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
11580 	hrtimer_start(&vmx->nested.preemption_timer,
11581 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
11582 }
11583 
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11584 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
11585 					       struct vmcs12 *vmcs12)
11586 {
11587 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
11588 		return 0;
11589 
11590 	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
11591 	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
11592 		return -EINVAL;
11593 
11594 	return 0;
11595 }
11596 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11597 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
11598 						struct vmcs12 *vmcs12)
11599 {
11600 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
11601 		return 0;
11602 
11603 	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
11604 		return -EINVAL;
11605 
11606 	return 0;
11607 }
11608 
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11609 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
11610 						struct vmcs12 *vmcs12)
11611 {
11612 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
11613 		return 0;
11614 
11615 	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
11616 		return -EINVAL;
11617 
11618 	return 0;
11619 }
11620 
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)11621 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
11622 	int msr;
11623 
11624 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
11625 		unsigned word = msr / BITS_PER_LONG;
11626 
11627 		msr_bitmap[word] = ~0;
11628 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
11629 	}
11630 }
11631 
11632 /*
11633  * Merge L0's and L1's MSR bitmap, return false to indicate that
11634  * we do not use the hardware.
11635  */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11636 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
11637 						 struct vmcs12 *vmcs12)
11638 {
11639 	int msr;
11640 	struct page *page;
11641 	unsigned long *msr_bitmap_l1;
11642 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
11643 	/*
11644 	 * pred_cmd & spec_ctrl are trying to verify two things:
11645 	 *
11646 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
11647 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
11648 	 *    from the L12 MSR bitmap that is too permissive.
11649 	 * 2. That L1 or L2s have actually used the MSR. This avoids
11650 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
11651 	 *    works properly because we only update the L01 MSR bitmap lazily.
11652 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
11653 	 *    updated to reflect this when L1 (or its L2s) actually write to
11654 	 *    the MSR.
11655 	 */
11656 	bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
11657 	bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
11658 
11659 	/* Nothing to do if the MSR bitmap is not in use.  */
11660 	if (!cpu_has_vmx_msr_bitmap() ||
11661 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
11662 		return false;
11663 
11664 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
11665 	    !pred_cmd && !spec_ctrl)
11666 		return false;
11667 
11668 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
11669 	if (is_error_page(page))
11670 		return false;
11671 
11672 	msr_bitmap_l1 = (unsigned long *)kmap(page);
11673 
11674 	/*
11675 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
11676 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
11677 	 * the x2APIC MSR range and selectively disable them below.
11678 	 */
11679 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
11680 
11681 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
11682 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
11683 			/*
11684 			 * L0 need not intercept reads for MSRs between 0x800
11685 			 * and 0x8ff, it just lets the processor take the value
11686 			 * from the virtual-APIC page; take those 256 bits
11687 			 * directly from the L1 bitmap.
11688 			 */
11689 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
11690 				unsigned word = msr / BITS_PER_LONG;
11691 
11692 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
11693 			}
11694 		}
11695 
11696 		nested_vmx_disable_intercept_for_msr(
11697 			msr_bitmap_l1, msr_bitmap_l0,
11698 			X2APIC_MSR(APIC_TASKPRI),
11699 			MSR_TYPE_R | MSR_TYPE_W);
11700 
11701 		if (nested_cpu_has_vid(vmcs12)) {
11702 			nested_vmx_disable_intercept_for_msr(
11703 				msr_bitmap_l1, msr_bitmap_l0,
11704 				X2APIC_MSR(APIC_EOI),
11705 				MSR_TYPE_W);
11706 			nested_vmx_disable_intercept_for_msr(
11707 				msr_bitmap_l1, msr_bitmap_l0,
11708 				X2APIC_MSR(APIC_SELF_IPI),
11709 				MSR_TYPE_W);
11710 		}
11711 	}
11712 
11713 	if (spec_ctrl)
11714 		nested_vmx_disable_intercept_for_msr(
11715 					msr_bitmap_l1, msr_bitmap_l0,
11716 					MSR_IA32_SPEC_CTRL,
11717 					MSR_TYPE_R | MSR_TYPE_W);
11718 
11719 	if (pred_cmd)
11720 		nested_vmx_disable_intercept_for_msr(
11721 					msr_bitmap_l1, msr_bitmap_l0,
11722 					MSR_IA32_PRED_CMD,
11723 					MSR_TYPE_W);
11724 
11725 	kunmap(page);
11726 	kvm_release_page_clean(page);
11727 
11728 	return true;
11729 }
11730 
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11731 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
11732 				       struct vmcs12 *vmcs12)
11733 {
11734 	struct vmcs12 *shadow;
11735 	struct page *page;
11736 
11737 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
11738 	    vmcs12->vmcs_link_pointer == -1ull)
11739 		return;
11740 
11741 	shadow = get_shadow_vmcs12(vcpu);
11742 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
11743 
11744 	memcpy(shadow, kmap(page), VMCS12_SIZE);
11745 
11746 	kunmap(page);
11747 	kvm_release_page_clean(page);
11748 }
11749 
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11750 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
11751 					      struct vmcs12 *vmcs12)
11752 {
11753 	struct vcpu_vmx *vmx = to_vmx(vcpu);
11754 
11755 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
11756 	    vmcs12->vmcs_link_pointer == -1ull)
11757 		return;
11758 
11759 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
11760 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
11761 }
11762 
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11763 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
11764 					  struct vmcs12 *vmcs12)
11765 {
11766 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
11767 	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
11768 		return -EINVAL;
11769 	else
11770 		return 0;
11771 }
11772 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11773 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
11774 					   struct vmcs12 *vmcs12)
11775 {
11776 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
11777 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
11778 	    !nested_cpu_has_vid(vmcs12) &&
11779 	    !nested_cpu_has_posted_intr(vmcs12))
11780 		return 0;
11781 
11782 	/*
11783 	 * If virtualize x2apic mode is enabled,
11784 	 * virtualize apic access must be disabled.
11785 	 */
11786 	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
11787 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
11788 		return -EINVAL;
11789 
11790 	/*
11791 	 * If virtual interrupt delivery is enabled,
11792 	 * we must exit on external interrupts.
11793 	 */
11794 	if (nested_cpu_has_vid(vmcs12) &&
11795 	   !nested_exit_on_intr(vcpu))
11796 		return -EINVAL;
11797 
11798 	/*
11799 	 * bits 15:8 should be zero in posted_intr_nv,
11800 	 * the descriptor address has been already checked
11801 	 * in nested_get_vmcs12_pages.
11802 	 *
11803 	 * bits 5:0 of posted_intr_desc_addr should be zero.
11804 	 */
11805 	if (nested_cpu_has_posted_intr(vmcs12) &&
11806 	   (!nested_cpu_has_vid(vmcs12) ||
11807 	    !nested_exit_intr_ack_set(vcpu) ||
11808 	    (vmcs12->posted_intr_nv & 0xff00) ||
11809 	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
11810 	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
11811 		return -EINVAL;
11812 
11813 	/* tpr shadow is needed by all apicv features. */
11814 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
11815 		return -EINVAL;
11816 
11817 	return 0;
11818 }
11819 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)11820 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
11821 				       unsigned long count_field,
11822 				       unsigned long addr_field)
11823 {
11824 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11825 	int maxphyaddr;
11826 	u64 count, addr;
11827 
11828 	if (vmcs12_read_any(vmcs12, count_field, &count) ||
11829 	    vmcs12_read_any(vmcs12, addr_field, &addr)) {
11830 		WARN_ON(1);
11831 		return -EINVAL;
11832 	}
11833 	if (count == 0)
11834 		return 0;
11835 	maxphyaddr = cpuid_maxphyaddr(vcpu);
11836 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
11837 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
11838 		pr_debug_ratelimited(
11839 			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
11840 			addr_field, maxphyaddr, count, addr);
11841 		return -EINVAL;
11842 	}
11843 	return 0;
11844 }
11845 
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11846 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
11847 						struct vmcs12 *vmcs12)
11848 {
11849 	if (vmcs12->vm_exit_msr_load_count == 0 &&
11850 	    vmcs12->vm_exit_msr_store_count == 0 &&
11851 	    vmcs12->vm_entry_msr_load_count == 0)
11852 		return 0; /* Fast path */
11853 	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
11854 					VM_EXIT_MSR_LOAD_ADDR) ||
11855 	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
11856 					VM_EXIT_MSR_STORE_ADDR) ||
11857 	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
11858 					VM_ENTRY_MSR_LOAD_ADDR))
11859 		return -EINVAL;
11860 	return 0;
11861 }
11862 
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11863 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
11864 					 struct vmcs12 *vmcs12)
11865 {
11866 	u64 address = vmcs12->pml_address;
11867 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
11868 
11869 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
11870 		if (!nested_cpu_has_ept(vmcs12) ||
11871 		    !IS_ALIGNED(address, 4096)  ||
11872 		    address >> maxphyaddr)
11873 			return -EINVAL;
11874 	}
11875 
11876 	return 0;
11877 }
11878 
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)11879 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
11880 						 struct vmcs12 *vmcs12)
11881 {
11882 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
11883 		return 0;
11884 
11885 	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
11886 	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
11887 		return -EINVAL;
11888 
11889 	return 0;
11890 }
11891 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)11892 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
11893 				       struct vmx_msr_entry *e)
11894 {
11895 	/* x2APIC MSR accesses are not allowed */
11896 	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
11897 		return -EINVAL;
11898 	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
11899 	    e->index == MSR_IA32_UCODE_REV)
11900 		return -EINVAL;
11901 	if (e->reserved != 0)
11902 		return -EINVAL;
11903 	return 0;
11904 }
11905 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)11906 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
11907 				     struct vmx_msr_entry *e)
11908 {
11909 	if (e->index == MSR_FS_BASE ||
11910 	    e->index == MSR_GS_BASE ||
11911 	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
11912 	    nested_vmx_msr_check_common(vcpu, e))
11913 		return -EINVAL;
11914 	return 0;
11915 }
11916 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)11917 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
11918 				      struct vmx_msr_entry *e)
11919 {
11920 	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
11921 	    nested_vmx_msr_check_common(vcpu, e))
11922 		return -EINVAL;
11923 	return 0;
11924 }
11925 
11926 /*
11927  * Load guest's/host's msr at nested entry/exit.
11928  * return 0 for success, entry index for failure.
11929  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)11930 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
11931 {
11932 	u32 i;
11933 	struct vmx_msr_entry e;
11934 	struct msr_data msr;
11935 
11936 	msr.host_initiated = false;
11937 	for (i = 0; i < count; i++) {
11938 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
11939 					&e, sizeof(e))) {
11940 			pr_debug_ratelimited(
11941 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
11942 				__func__, i, gpa + i * sizeof(e));
11943 			goto fail;
11944 		}
11945 		if (nested_vmx_load_msr_check(vcpu, &e)) {
11946 			pr_debug_ratelimited(
11947 				"%s check failed (%u, 0x%x, 0x%x)\n",
11948 				__func__, i, e.index, e.reserved);
11949 			goto fail;
11950 		}
11951 		msr.index = e.index;
11952 		msr.data = e.value;
11953 		if (kvm_set_msr(vcpu, &msr)) {
11954 			pr_debug_ratelimited(
11955 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
11956 				__func__, i, e.index, e.value);
11957 			goto fail;
11958 		}
11959 	}
11960 	return 0;
11961 fail:
11962 	return i + 1;
11963 }
11964 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)11965 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
11966 {
11967 	u32 i;
11968 	struct vmx_msr_entry e;
11969 
11970 	for (i = 0; i < count; i++) {
11971 		struct msr_data msr_info;
11972 		if (kvm_vcpu_read_guest(vcpu,
11973 					gpa + i * sizeof(e),
11974 					&e, 2 * sizeof(u32))) {
11975 			pr_debug_ratelimited(
11976 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
11977 				__func__, i, gpa + i * sizeof(e));
11978 			return -EINVAL;
11979 		}
11980 		if (nested_vmx_store_msr_check(vcpu, &e)) {
11981 			pr_debug_ratelimited(
11982 				"%s check failed (%u, 0x%x, 0x%x)\n",
11983 				__func__, i, e.index, e.reserved);
11984 			return -EINVAL;
11985 		}
11986 		msr_info.host_initiated = false;
11987 		msr_info.index = e.index;
11988 		if (kvm_get_msr(vcpu, &msr_info)) {
11989 			pr_debug_ratelimited(
11990 				"%s cannot read MSR (%u, 0x%x)\n",
11991 				__func__, i, e.index);
11992 			return -EINVAL;
11993 		}
11994 		if (kvm_vcpu_write_guest(vcpu,
11995 					 gpa + i * sizeof(e) +
11996 					     offsetof(struct vmx_msr_entry, value),
11997 					 &msr_info.data, sizeof(msr_info.data))) {
11998 			pr_debug_ratelimited(
11999 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
12000 				__func__, i, e.index, msr_info.data);
12001 			return -EINVAL;
12002 		}
12003 	}
12004 	return 0;
12005 }
12006 
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)12007 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
12008 {
12009 	unsigned long invalid_mask;
12010 
12011 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
12012 	return (val & invalid_mask) == 0;
12013 }
12014 
12015 /*
12016  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
12017  * emulating VM entry into a guest with EPT enabled.
12018  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
12019  * is assigned to entry_failure_code on failure.
12020  */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,u32 * entry_failure_code)12021 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
12022 			       u32 *entry_failure_code)
12023 {
12024 	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
12025 		if (!nested_cr3_valid(vcpu, cr3)) {
12026 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
12027 			return 1;
12028 		}
12029 
12030 		/*
12031 		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
12032 		 * must not be dereferenced.
12033 		 */
12034 		if (is_pae_paging(vcpu) && !nested_ept) {
12035 			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
12036 				*entry_failure_code = ENTRY_FAIL_PDPTE;
12037 				return 1;
12038 			}
12039 		}
12040 	}
12041 
12042 	if (!nested_ept)
12043 		kvm_mmu_new_cr3(vcpu, cr3, false);
12044 
12045 	vcpu->arch.cr3 = cr3;
12046 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
12047 
12048 	kvm_init_mmu(vcpu, false);
12049 
12050 	return 0;
12051 }
12052 
prepare_vmcs02_full(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12053 static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12054 {
12055 	struct vcpu_vmx *vmx = to_vmx(vcpu);
12056 
12057 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
12058 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
12059 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
12060 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
12061 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
12062 	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
12063 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
12064 	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
12065 	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
12066 	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
12067 	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
12068 	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
12069 	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
12070 	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
12071 	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
12072 	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
12073 	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
12074 	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
12075 	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
12076 	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
12077 	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
12078 	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
12079 	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
12080 	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
12081 	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
12082 	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
12083 	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
12084 	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
12085 	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
12086 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
12087 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
12088 
12089 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
12090 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
12091 		vmcs12->guest_pending_dbg_exceptions);
12092 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
12093 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
12094 
12095 	if (nested_cpu_has_xsaves(vmcs12))
12096 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
12097 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
12098 
12099 	if (cpu_has_vmx_posted_intr())
12100 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
12101 
12102 	/*
12103 	 * Whether page-faults are trapped is determined by a combination of
12104 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
12105 	 * If enable_ept, L0 doesn't care about page faults and we should
12106 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
12107 	 * care about (at least some) page faults, and because it is not easy
12108 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
12109 	 * to exit on each and every L2 page fault. This is done by setting
12110 	 * MASK=MATCH=0 and (see below) EB.PF=1.
12111 	 * Note that below we don't need special code to set EB.PF beyond the
12112 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
12113 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
12114 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
12115 	 */
12116 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
12117 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
12118 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
12119 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
12120 
12121 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
12122 	if (cpu_has_vmx_vmfunc())
12123 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
12124 
12125 	if (cpu_has_vmx_apicv()) {
12126 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
12127 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
12128 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
12129 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
12130 	}
12131 
12132 	/*
12133 	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
12134 	 * Some constant fields are set here by vmx_set_constant_host_state().
12135 	 * Other fields are different per CPU, and will be set later when
12136 	 * vmx_vcpu_load() is called, and when vmx_prepare_switch_to_guest()
12137 	 * is called.
12138 	 */
12139 	vmx_set_constant_host_state(vmx);
12140 
12141 	/*
12142 	 * Set the MSR load/store lists to match L0's settings.
12143 	 */
12144 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
12145 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
12146 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
12147 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
12148 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
12149 
12150 	set_cr4_guest_host_mask(vmx);
12151 
12152 	if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
12153 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
12154 		vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
12155 
12156 	if (enable_vpid) {
12157 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
12158 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
12159 		else
12160 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
12161 	}
12162 
12163 	/*
12164 	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
12165 	 */
12166 	if (enable_ept) {
12167 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
12168 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
12169 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
12170 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
12171 	}
12172 
12173 	if (cpu_has_vmx_msr_bitmap())
12174 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
12175 }
12176 
12177 /*
12178  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
12179  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
12180  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
12181  * guest in a way that will both be appropriate to L1's requests, and our
12182  * needs. In addition to modifying the active vmcs (which is vmcs02), this
12183  * function also has additional necessary side-effects, like setting various
12184  * vcpu->arch fields.
12185  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
12186  * is assigned to entry_failure_code on failure.
12187  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 * entry_failure_code)12188 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
12189 			  u32 *entry_failure_code)
12190 {
12191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
12192 	u32 exec_control, vmcs12_exec_ctrl;
12193 
12194 	if (vmx->nested.dirty_vmcs12) {
12195 		prepare_vmcs02_full(vcpu, vmcs12);
12196 		vmx->nested.dirty_vmcs12 = false;
12197 	}
12198 
12199 	/*
12200 	 * First, the fields that are shadowed.  This must be kept in sync
12201 	 * with vmx_shadow_fields.h.
12202 	 */
12203 
12204 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
12205 	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
12206 	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
12207 	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
12208 	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
12209 
12210 	if (vmx->nested.nested_run_pending &&
12211 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
12212 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
12213 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
12214 	} else {
12215 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
12216 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
12217 	}
12218 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
12219 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
12220 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
12221 	if (vmx->nested.nested_run_pending) {
12222 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
12223 			     vmcs12->vm_entry_intr_info_field);
12224 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
12225 			     vmcs12->vm_entry_exception_error_code);
12226 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
12227 			     vmcs12->vm_entry_instruction_len);
12228 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
12229 			     vmcs12->guest_interruptibility_info);
12230 		vmx->loaded_vmcs->nmi_known_unmasked =
12231 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
12232 	} else {
12233 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
12234 	}
12235 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
12236 
12237 	exec_control = vmcs12->pin_based_vm_exec_control;
12238 
12239 	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
12240 	exec_control |= vmcs_config.pin_based_exec_ctrl;
12241 	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
12242 	vmx->loaded_vmcs->hv_timer_armed = false;
12243 
12244 	/* Posted interrupts setting is only taken from vmcs12.  */
12245 	if (nested_cpu_has_posted_intr(vmcs12)) {
12246 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
12247 		vmx->nested.pi_pending = false;
12248 	} else {
12249 		exec_control &= ~PIN_BASED_POSTED_INTR;
12250 	}
12251 
12252 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
12253 
12254 	vmx->nested.preemption_timer_expired = false;
12255 	if (nested_cpu_has_preemption_timer(vmcs12))
12256 		vmx_start_preemption_timer(vcpu);
12257 
12258 	if (cpu_has_secondary_exec_ctrls()) {
12259 		exec_control = vmx->secondary_exec_control;
12260 
12261 		/* Take the following fields only from vmcs12 */
12262 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
12263 				  SECONDARY_EXEC_ENABLE_INVPCID |
12264 				  SECONDARY_EXEC_RDTSCP |
12265 				  SECONDARY_EXEC_XSAVES |
12266 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
12267 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
12268 				  SECONDARY_EXEC_ENABLE_VMFUNC);
12269 		if (nested_cpu_has(vmcs12,
12270 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
12271 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
12272 				~SECONDARY_EXEC_ENABLE_PML;
12273 			exec_control |= vmcs12_exec_ctrl;
12274 		}
12275 
12276 		/* VMCS shadowing for L2 is emulated for now */
12277 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
12278 
12279 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
12280 			vmcs_write16(GUEST_INTR_STATUS,
12281 				vmcs12->guest_intr_status);
12282 
12283 		/*
12284 		 * Write an illegal value to APIC_ACCESS_ADDR. Later,
12285 		 * nested_get_vmcs12_pages will either fix it up or
12286 		 * remove the VM execution control.
12287 		 */
12288 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
12289 			vmcs_write64(APIC_ACCESS_ADDR, -1ull);
12290 
12291 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
12292 			vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
12293 
12294 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
12295 	}
12296 
12297 	/*
12298 	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
12299 	 * entry, but only if the current (host) sp changed from the value
12300 	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
12301 	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
12302 	 * here we just force the write to happen on entry.
12303 	 */
12304 	vmx->host_rsp = 0;
12305 
12306 	exec_control = vmx_exec_control(vmx); /* L0's desires */
12307 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
12308 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
12309 	exec_control &= ~CPU_BASED_TPR_SHADOW;
12310 	exec_control |= vmcs12->cpu_based_vm_exec_control;
12311 
12312 	/*
12313 	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
12314 	 * nested_get_vmcs12_pages can't fix it up, the illegal value
12315 	 * will result in a VM entry failure.
12316 	 */
12317 	if (exec_control & CPU_BASED_TPR_SHADOW) {
12318 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
12319 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
12320 	} else {
12321 #ifdef CONFIG_X86_64
12322 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
12323 				CPU_BASED_CR8_STORE_EXITING;
12324 #endif
12325 	}
12326 
12327 	/*
12328 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
12329 	 * for I/O port accesses.
12330 	 */
12331 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
12332 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
12333 
12334 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
12335 
12336 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
12337 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
12338 	 * trap. Note that CR0.TS also needs updating - we do this later.
12339 	 */
12340 	update_exception_bitmap(vcpu);
12341 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
12342 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
12343 
12344 	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
12345 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
12346 	 * bits are further modified by vmx_set_efer() below.
12347 	 */
12348 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
12349 
12350 	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
12351 	 * emulated by vmx_set_efer(), below.
12352 	 */
12353 	vm_entry_controls_init(vmx,
12354 		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
12355 			~VM_ENTRY_IA32E_MODE) |
12356 		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
12357 
12358 	if (vmx->nested.nested_run_pending &&
12359 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
12360 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
12361 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
12362 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
12363 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
12364 	}
12365 
12366 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
12367 
12368 	if (kvm_has_tsc_control)
12369 		decache_tsc_multiplier(vmx);
12370 
12371 	if (enable_vpid) {
12372 		/*
12373 		 * There is no direct mapping between vpid02 and vpid12, the
12374 		 * vpid02 is per-vCPU for L0 and reused while the value of
12375 		 * vpid12 is changed w/ one invvpid during nested vmentry.
12376 		 * The vpid12 is allocated by L1 for L2, so it will not
12377 		 * influence global bitmap(for vpid01 and vpid02 allocation)
12378 		 * even if spawn a lot of nested vCPUs.
12379 		 */
12380 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
12381 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
12382 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
12383 				__vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
12384 			}
12385 		} else {
12386 			vmx_flush_tlb(vcpu, true);
12387 		}
12388 	}
12389 
12390 	if (enable_pml) {
12391 		/*
12392 		 * Conceptually we want to copy the PML address and index from
12393 		 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
12394 		 * since we always flush the log on each vmexit, this happens
12395 		 * to be equivalent to simply resetting the fields in vmcs02.
12396 		 */
12397 		ASSERT(vmx->pml_pg);
12398 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
12399 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
12400 	}
12401 
12402 	if (nested_cpu_has_ept(vmcs12)) {
12403 		if (nested_ept_init_mmu_context(vcpu)) {
12404 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
12405 			return 1;
12406 		}
12407 	} else if (nested_cpu_has2(vmcs12,
12408 				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
12409 		vmx_flush_tlb(vcpu, true);
12410 	}
12411 
12412 	/*
12413 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
12414 	 * bits which we consider mandatory enabled.
12415 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
12416 	 * the specifications by L1; It's not enough to take
12417 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
12418 	 * have more bits than L1 expected.
12419 	 */
12420 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
12421 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
12422 
12423 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
12424 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
12425 
12426 	if (vmx->nested.nested_run_pending &&
12427 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
12428 		vcpu->arch.efer = vmcs12->guest_ia32_efer;
12429 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
12430 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
12431 	else
12432 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
12433 	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
12434 	vmx_set_efer(vcpu, vcpu->arch.efer);
12435 
12436 	/*
12437 	 * Guest state is invalid and unrestricted guest is disabled,
12438 	 * which means L1 attempted VMEntry to L2 with invalid state.
12439 	 * Fail the VMEntry.
12440 	 */
12441 	if (vmx->emulation_required) {
12442 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
12443 		return 1;
12444 	}
12445 
12446 	/* Shadow page tables on either EPT or shadow page tables. */
12447 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
12448 				entry_failure_code))
12449 		return 1;
12450 
12451 	if (!enable_ept)
12452 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
12453 
12454 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
12455 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
12456 	return 0;
12457 }
12458 
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)12459 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
12460 {
12461 	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
12462 	    nested_cpu_has_virtual_nmis(vmcs12))
12463 		return -EINVAL;
12464 
12465 	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
12466 	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
12467 		return -EINVAL;
12468 
12469 	return 0;
12470 }
12471 
check_vmentry_prereqs(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12472 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12473 {
12474 	struct vcpu_vmx *vmx = to_vmx(vcpu);
12475 
12476 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
12477 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
12478 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12479 
12480 	if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
12481 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12482 
12483 	if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
12484 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12485 
12486 	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
12487 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12488 
12489 	if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
12490 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12491 
12492 	if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
12493 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12494 
12495 	if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
12496 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12497 
12498 	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
12499 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12500 
12501 	if (nested_vmx_check_pml_controls(vcpu, vmcs12))
12502 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12503 
12504 	if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
12505 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12506 
12507 	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
12508 				vmx->nested.msrs.procbased_ctls_low,
12509 				vmx->nested.msrs.procbased_ctls_high) ||
12510 	    (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
12511 	     !vmx_control_verify(vmcs12->secondary_vm_exec_control,
12512 				 vmx->nested.msrs.secondary_ctls_low,
12513 				 vmx->nested.msrs.secondary_ctls_high)) ||
12514 	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
12515 				vmx->nested.msrs.pinbased_ctls_low,
12516 				vmx->nested.msrs.pinbased_ctls_high) ||
12517 	    !vmx_control_verify(vmcs12->vm_exit_controls,
12518 				vmx->nested.msrs.exit_ctls_low,
12519 				vmx->nested.msrs.exit_ctls_high) ||
12520 	    !vmx_control_verify(vmcs12->vm_entry_controls,
12521 				vmx->nested.msrs.entry_ctls_low,
12522 				vmx->nested.msrs.entry_ctls_high))
12523 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12524 
12525 	if (nested_vmx_check_nmi_controls(vmcs12))
12526 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12527 
12528 	if (nested_cpu_has_vmfunc(vmcs12)) {
12529 		if (vmcs12->vm_function_control &
12530 		    ~vmx->nested.msrs.vmfunc_controls)
12531 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12532 
12533 		if (nested_cpu_has_eptp_switching(vmcs12)) {
12534 			if (!nested_cpu_has_ept(vmcs12) ||
12535 			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
12536 				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12537 		}
12538 	}
12539 
12540 	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
12541 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12542 
12543 	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
12544 	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
12545 	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
12546 		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
12547 
12548 	/*
12549 	 * From the Intel SDM, volume 3:
12550 	 * Fields relevant to VM-entry event injection must be set properly.
12551 	 * These fields are the VM-entry interruption-information field, the
12552 	 * VM-entry exception error code, and the VM-entry instruction length.
12553 	 */
12554 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
12555 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
12556 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
12557 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
12558 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
12559 		bool should_have_error_code;
12560 		bool urg = nested_cpu_has2(vmcs12,
12561 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
12562 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
12563 
12564 		/* VM-entry interruption-info field: interruption type */
12565 		if (intr_type == INTR_TYPE_RESERVED ||
12566 		    (intr_type == INTR_TYPE_OTHER_EVENT &&
12567 		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
12568 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12569 
12570 		/* VM-entry interruption-info field: vector */
12571 		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
12572 		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
12573 		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
12574 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12575 
12576 		/* VM-entry interruption-info field: deliver error code */
12577 		should_have_error_code =
12578 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
12579 			x86_exception_has_error_code(vector);
12580 		if (has_error_code != should_have_error_code)
12581 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12582 
12583 		/* VM-entry exception error code */
12584 		if (has_error_code &&
12585 		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))
12586 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12587 
12588 		/* VM-entry interruption-info field: reserved bits */
12589 		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
12590 			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12591 
12592 		/* VM-entry instruction length */
12593 		switch (intr_type) {
12594 		case INTR_TYPE_SOFT_EXCEPTION:
12595 		case INTR_TYPE_SOFT_INTR:
12596 		case INTR_TYPE_PRIV_SW_EXCEPTION:
12597 			if ((vmcs12->vm_entry_instruction_len > 15) ||
12598 			    (vmcs12->vm_entry_instruction_len == 0 &&
12599 			     !nested_cpu_has_zero_length_injection(vcpu)))
12600 				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
12601 		}
12602 	}
12603 
12604 	return 0;
12605 }
12606 
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12607 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
12608 					  struct vmcs12 *vmcs12)
12609 {
12610 	int r;
12611 	struct page *page;
12612 	struct vmcs12 *shadow;
12613 
12614 	if (vmcs12->vmcs_link_pointer == -1ull)
12615 		return 0;
12616 
12617 	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
12618 		return -EINVAL;
12619 
12620 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
12621 	if (is_error_page(page))
12622 		return -EINVAL;
12623 
12624 	r = 0;
12625 	shadow = kmap(page);
12626 	if (shadow->hdr.revision_id != VMCS12_REVISION ||
12627 	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
12628 		r = -EINVAL;
12629 	kunmap(page);
12630 	kvm_release_page_clean(page);
12631 	return r;
12632 }
12633 
check_vmentry_postreqs(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 * exit_qual)12634 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
12635 				  u32 *exit_qual)
12636 {
12637 	bool ia32e;
12638 
12639 	*exit_qual = ENTRY_FAIL_DEFAULT;
12640 
12641 	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
12642 	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
12643 		return 1;
12644 
12645 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
12646 		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
12647 		return 1;
12648 	}
12649 
12650 	/*
12651 	 * If the load IA32_EFER VM-entry control is 1, the following checks
12652 	 * are performed on the field for the IA32_EFER MSR:
12653 	 * - Bits reserved in the IA32_EFER MSR must be 0.
12654 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
12655 	 *   the IA-32e mode guest VM-exit control. It must also be identical
12656 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
12657 	 *   CR0.PG) is 1.
12658 	 */
12659 	if (to_vmx(vcpu)->nested.nested_run_pending &&
12660 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
12661 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
12662 		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
12663 		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
12664 		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
12665 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
12666 			return 1;
12667 	}
12668 
12669 	/*
12670 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
12671 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
12672 	 * the values of the LMA and LME bits in the field must each be that of
12673 	 * the host address-space size VM-exit control.
12674 	 */
12675 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
12676 		ia32e = (vmcs12->vm_exit_controls &
12677 			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
12678 		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
12679 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
12680 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
12681 			return 1;
12682 	}
12683 
12684 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
12685 		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
12686 		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
12687 			return 1;
12688 
12689 	return 0;
12690 }
12691 
12692 /*
12693  * If exit_qual is NULL, this is being called from state restore (either RSM
12694  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
12695  */
enter_vmx_non_root_mode(struct kvm_vcpu * vcpu,u32 * exit_qual)12696 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, u32 *exit_qual)
12697 {
12698 	struct vcpu_vmx *vmx = to_vmx(vcpu);
12699 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12700 	bool from_vmentry = !!exit_qual;
12701 	u32 dummy_exit_qual;
12702 	bool evaluate_pending_interrupts;
12703 	int r = 0;
12704 
12705 	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
12706 		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
12707 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
12708 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
12709 
12710 	enter_guest_mode(vcpu);
12711 
12712 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
12713 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
12714 	if (kvm_mpx_supported() &&
12715 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
12716 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
12717 
12718 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
12719 	vmx_segment_cache_clear(vmx);
12720 
12721 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
12722 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
12723 
12724 	r = EXIT_REASON_INVALID_STATE;
12725 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry ? exit_qual : &dummy_exit_qual))
12726 		goto fail;
12727 
12728 	if (from_vmentry) {
12729 		nested_get_vmcs12_pages(vcpu);
12730 
12731 		r = EXIT_REASON_MSR_LOAD_FAIL;
12732 		*exit_qual = nested_vmx_load_msr(vcpu,
12733 	     					 vmcs12->vm_entry_msr_load_addr,
12734 					      	 vmcs12->vm_entry_msr_load_count);
12735 		if (*exit_qual)
12736 			goto fail;
12737 	} else {
12738 		/*
12739 		 * The MMU is not initialized to point at the right entities yet and
12740 		 * "get pages" would need to read data from the guest (i.e. we will
12741 		 * need to perform gpa to hpa translation). Request a call
12742 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
12743 		 * have already been set at vmentry time and should not be reset.
12744 		 */
12745 		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
12746 	}
12747 
12748 	/*
12749 	 * If L1 had a pending IRQ/NMI until it executed
12750 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
12751 	 * disallowed (e.g. interrupts disabled), L0 needs to
12752 	 * evaluate if this pending event should cause an exit from L2
12753 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
12754 	 * intercept EXTERNAL_INTERRUPT).
12755 	 *
12756 	 * Usually this would be handled by the processor noticing an
12757 	 * IRQ/NMI window request, or checking RVI during evaluation of
12758 	 * pending virtual interrupts.  However, this setting was done
12759 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
12760 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
12761 	 */
12762 	if (unlikely(evaluate_pending_interrupts))
12763 		kvm_make_request(KVM_REQ_EVENT, vcpu);
12764 
12765 	/*
12766 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
12767 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
12768 	 * returned as far as L1 is concerned. It will only return (and set
12769 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
12770 	 */
12771 	return 0;
12772 
12773 fail:
12774 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
12775 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
12776 	leave_guest_mode(vcpu);
12777 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
12778 	return r;
12779 }
12780 
12781 /*
12782  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
12783  * for running an L2 nested guest.
12784  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)12785 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
12786 {
12787 	struct vmcs12 *vmcs12;
12788 	struct vcpu_vmx *vmx = to_vmx(vcpu);
12789 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
12790 	u32 exit_qual;
12791 	int ret;
12792 
12793 	if (!nested_vmx_check_permission(vcpu))
12794 		return 1;
12795 
12796 	if (!nested_vmx_check_vmcs12(vcpu))
12797 		goto out;
12798 
12799 	vmcs12 = get_vmcs12(vcpu);
12800 
12801 	/*
12802 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
12803 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
12804 	 * rather than RFLAGS.ZF, and no error number is stored to the
12805 	 * VM-instruction error field.
12806 	 */
12807 	if (vmcs12->hdr.shadow_vmcs) {
12808 		nested_vmx_failInvalid(vcpu);
12809 		goto out;
12810 	}
12811 
12812 	if (enable_shadow_vmcs)
12813 		copy_shadow_to_vmcs12(vmx);
12814 
12815 	/*
12816 	 * The nested entry process starts with enforcing various prerequisites
12817 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
12818 	 * they fail: As the SDM explains, some conditions should cause the
12819 	 * instruction to fail, while others will cause the instruction to seem
12820 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
12821 	 * To speed up the normal (success) code path, we should avoid checking
12822 	 * for misconfigurations which will anyway be caught by the processor
12823 	 * when using the merged vmcs02.
12824 	 */
12825 	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
12826 		nested_vmx_failValid(vcpu,
12827 				     VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
12828 		goto out;
12829 	}
12830 
12831 	if (vmcs12->launch_state == launch) {
12832 		nested_vmx_failValid(vcpu,
12833 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
12834 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
12835 		goto out;
12836 	}
12837 
12838 	ret = check_vmentry_prereqs(vcpu, vmcs12);
12839 	if (ret) {
12840 		nested_vmx_failValid(vcpu, ret);
12841 		goto out;
12842 	}
12843 
12844 	/*
12845 	 * After this point, the trap flag no longer triggers a singlestep trap
12846 	 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
12847 	 * This is not 100% correct; for performance reasons, we delegate most
12848 	 * of the checks on host state to the processor.  If those fail,
12849 	 * the singlestep trap is missed.
12850 	 */
12851 	skip_emulated_instruction(vcpu);
12852 
12853 	ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
12854 	if (ret) {
12855 		nested_vmx_entry_failure(vcpu, vmcs12,
12856 					 EXIT_REASON_INVALID_STATE, exit_qual);
12857 		return 1;
12858 	}
12859 
12860 	/*
12861 	 * We're finally done with prerequisite checking, and can start with
12862 	 * the nested entry.
12863 	 */
12864 
12865 	vmx->nested.nested_run_pending = 1;
12866 	ret = enter_vmx_non_root_mode(vcpu, &exit_qual);
12867 	if (ret) {
12868 		nested_vmx_entry_failure(vcpu, vmcs12, ret, exit_qual);
12869 		vmx->nested.nested_run_pending = 0;
12870 		return 1;
12871 	}
12872 
12873 	/* Hide L1D cache contents from the nested guest.  */
12874 	vmx->vcpu.arch.l1tf_flush_l1d = true;
12875 
12876 	/*
12877 	 * Must happen outside of enter_vmx_non_root_mode() as it will
12878 	 * also be used as part of restoring nVMX state for
12879 	 * snapshot restore (migration).
12880 	 *
12881 	 * In this flow, it is assumed that vmcs12 cache was
12882 	 * trasferred as part of captured nVMX state and should
12883 	 * therefore not be read from guest memory (which may not
12884 	 * exist on destination host yet).
12885 	 */
12886 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
12887 
12888 	/*
12889 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
12890 	 * awakened by event injection or by an NMI-window VM-exit or
12891 	 * by an interrupt-window VM-exit, halt the vcpu.
12892 	 */
12893 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
12894 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
12895 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
12896 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
12897 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
12898 		vmx->nested.nested_run_pending = 0;
12899 		return kvm_vcpu_halt(vcpu);
12900 	}
12901 	return 1;
12902 
12903 out:
12904 	return kvm_skip_emulated_instruction(vcpu);
12905 }
12906 
12907 /*
12908  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
12909  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
12910  * This function returns the new value we should put in vmcs12.guest_cr0.
12911  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
12912  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
12913  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
12914  *     didn't trap the bit, because if L1 did, so would L0).
12915  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
12916  *     been modified by L2, and L1 knows it. So just leave the old value of
12917  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
12918  *     isn't relevant, because if L0 traps this bit it can set it to anything.
12919  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
12920  *     changed these bits, and therefore they need to be updated, but L0
12921  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
12922  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
12923  */
12924 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12925 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12926 {
12927 	return
12928 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
12929 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
12930 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
12931 			vcpu->arch.cr0_guest_owned_bits));
12932 }
12933 
12934 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12935 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12936 {
12937 	return
12938 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
12939 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
12940 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
12941 			vcpu->arch.cr4_guest_owned_bits));
12942 }
12943 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)12944 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
12945 				       struct vmcs12 *vmcs12)
12946 {
12947 	u32 idt_vectoring;
12948 	unsigned int nr;
12949 
12950 	if (vcpu->arch.exception.injected) {
12951 		nr = vcpu->arch.exception.nr;
12952 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
12953 
12954 		if (kvm_exception_is_soft(nr)) {
12955 			vmcs12->vm_exit_instruction_len =
12956 				vcpu->arch.event_exit_inst_len;
12957 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
12958 		} else
12959 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
12960 
12961 		if (vcpu->arch.exception.has_error_code) {
12962 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
12963 			vmcs12->idt_vectoring_error_code =
12964 				vcpu->arch.exception.error_code;
12965 		}
12966 
12967 		vmcs12->idt_vectoring_info_field = idt_vectoring;
12968 	} else if (vcpu->arch.nmi_injected) {
12969 		vmcs12->idt_vectoring_info_field =
12970 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
12971 	} else if (vcpu->arch.interrupt.injected) {
12972 		nr = vcpu->arch.interrupt.nr;
12973 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
12974 
12975 		if (vcpu->arch.interrupt.soft) {
12976 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
12977 			vmcs12->vm_entry_instruction_len =
12978 				vcpu->arch.event_exit_inst_len;
12979 		} else
12980 			idt_vectoring |= INTR_TYPE_EXT_INTR;
12981 
12982 		vmcs12->idt_vectoring_info_field = idt_vectoring;
12983 	}
12984 }
12985 
vmx_check_nested_events(struct kvm_vcpu * vcpu)12986 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
12987 {
12988 	struct vcpu_vmx *vmx = to_vmx(vcpu);
12989 	unsigned long exit_qual;
12990 	bool block_nested_events =
12991 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
12992 
12993 	if (vcpu->arch.exception.pending &&
12994 		nested_vmx_check_exception(vcpu, &exit_qual)) {
12995 		if (block_nested_events)
12996 			return -EBUSY;
12997 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
12998 		return 0;
12999 	}
13000 
13001 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
13002 	    vmx->nested.preemption_timer_expired) {
13003 		if (block_nested_events)
13004 			return -EBUSY;
13005 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
13006 		return 0;
13007 	}
13008 
13009 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
13010 		if (block_nested_events)
13011 			return -EBUSY;
13012 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
13013 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
13014 				  INTR_INFO_VALID_MASK, 0);
13015 		/*
13016 		 * The NMI-triggered VM exit counts as injection:
13017 		 * clear this one and block further NMIs.
13018 		 */
13019 		vcpu->arch.nmi_pending = 0;
13020 		vmx_set_nmi_mask(vcpu, true);
13021 		return 0;
13022 	}
13023 
13024 	if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
13025 		if (block_nested_events)
13026 			return -EBUSY;
13027 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
13028 		return 0;
13029 	}
13030 
13031 	vmx_complete_nested_posted_interrupt(vcpu);
13032 	return 0;
13033 }
13034 
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)13035 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
13036 {
13037 	to_vmx(vcpu)->req_immediate_exit = true;
13038 }
13039 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)13040 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
13041 {
13042 	ktime_t remaining =
13043 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
13044 	u64 value;
13045 
13046 	if (ktime_to_ns(remaining) <= 0)
13047 		return 0;
13048 
13049 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
13050 	do_div(value, 1000000);
13051 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
13052 }
13053 
13054 /*
13055  * Update the guest state fields of vmcs12 to reflect changes that
13056  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
13057  * VM-entry controls is also updated, since this is really a guest
13058  * state bit.)
13059  */
sync_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)13060 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
13061 {
13062 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
13063 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
13064 
13065 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
13066 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
13067 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
13068 
13069 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
13070 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
13071 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
13072 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
13073 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
13074 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
13075 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
13076 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
13077 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
13078 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
13079 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
13080 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
13081 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
13082 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
13083 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
13084 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
13085 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
13086 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
13087 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
13088 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
13089 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
13090 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
13091 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
13092 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
13093 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
13094 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
13095 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
13096 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
13097 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
13098 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
13099 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
13100 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
13101 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
13102 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
13103 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
13104 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
13105 
13106 	vmcs12->guest_interruptibility_info =
13107 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
13108 	vmcs12->guest_pending_dbg_exceptions =
13109 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
13110 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
13111 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
13112 	else
13113 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
13114 
13115 	if (nested_cpu_has_preemption_timer(vmcs12)) {
13116 		if (vmcs12->vm_exit_controls &
13117 		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
13118 			vmcs12->vmx_preemption_timer_value =
13119 				vmx_get_preemption_timer_value(vcpu);
13120 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
13121 	}
13122 
13123 	/*
13124 	 * In some cases (usually, nested EPT), L2 is allowed to change its
13125 	 * own CR3 without exiting. If it has changed it, we must keep it.
13126 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
13127 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
13128 	 *
13129 	 * Additionally, restore L2's PDPTR to vmcs12.
13130 	 */
13131 	if (enable_ept) {
13132 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
13133 		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
13134 		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
13135 		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
13136 		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
13137 	}
13138 
13139 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
13140 
13141 	if (nested_cpu_has_vid(vmcs12))
13142 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
13143 
13144 	vmcs12->vm_entry_controls =
13145 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
13146 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
13147 
13148 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
13149 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
13150 		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
13151 	}
13152 
13153 	/* TODO: These cannot have changed unless we have MSR bitmaps and
13154 	 * the relevant bit asks not to trap the change */
13155 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
13156 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
13157 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
13158 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
13159 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
13160 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
13161 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
13162 	if (kvm_mpx_supported())
13163 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
13164 }
13165 
13166 /*
13167  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
13168  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
13169  * and this function updates it to reflect the changes to the guest state while
13170  * L2 was running (and perhaps made some exits which were handled directly by L0
13171  * without going back to L1), and to reflect the exit reason.
13172  * Note that we do not have to copy here all VMCS fields, just those that
13173  * could have changed by the L2 guest or the exit - i.e., the guest-state and
13174  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
13175  * which already writes to vmcs12 directly.
13176  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)13177 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
13178 			   u32 exit_reason, u32 exit_intr_info,
13179 			   unsigned long exit_qualification)
13180 {
13181 	/* update guest state fields: */
13182 	sync_vmcs12(vcpu, vmcs12);
13183 
13184 	/* update exit information fields: */
13185 
13186 	vmcs12->vm_exit_reason = exit_reason;
13187 	vmcs12->exit_qualification = exit_qualification;
13188 	vmcs12->vm_exit_intr_info = exit_intr_info;
13189 
13190 	vmcs12->idt_vectoring_info_field = 0;
13191 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
13192 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
13193 
13194 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
13195 		vmcs12->launch_state = 1;
13196 
13197 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
13198 		 * instead of reading the real value. */
13199 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
13200 
13201 		/*
13202 		 * Transfer the event that L0 or L1 may wanted to inject into
13203 		 * L2 to IDT_VECTORING_INFO_FIELD.
13204 		 */
13205 		vmcs12_save_pending_event(vcpu, vmcs12);
13206 	}
13207 
13208 	/*
13209 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
13210 	 * preserved above and would only end up incorrectly in L1.
13211 	 */
13212 	vcpu->arch.nmi_injected = false;
13213 	kvm_clear_exception_queue(vcpu);
13214 	kvm_clear_interrupt_queue(vcpu);
13215 }
13216 
13217 /*
13218  * A part of what we need to when the nested L2 guest exits and we want to
13219  * run its L1 parent, is to reset L1's guest state to the host state specified
13220  * in vmcs12.
13221  * This function is to be called not only on normal nested exit, but also on
13222  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
13223  * Failures During or After Loading Guest State").
13224  * This function should be called when the active VMCS is L1's (vmcs01).
13225  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)13226 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
13227 				   struct vmcs12 *vmcs12)
13228 {
13229 	struct kvm_segment seg;
13230 	u32 entry_failure_code;
13231 
13232 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
13233 		vcpu->arch.efer = vmcs12->host_ia32_efer;
13234 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
13235 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
13236 	else
13237 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
13238 	vmx_set_efer(vcpu, vcpu->arch.efer);
13239 
13240 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
13241 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
13242 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
13243 	/*
13244 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
13245 	 * actually changed, because vmx_set_cr0 refers to efer set above.
13246 	 *
13247 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
13248 	 * (KVM doesn't change it);
13249 	 */
13250 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
13251 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
13252 
13253 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
13254 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
13255 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
13256 
13257 	nested_ept_uninit_mmu_context(vcpu);
13258 
13259 	/*
13260 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
13261 	 * couldn't have changed.
13262 	 */
13263 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
13264 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
13265 
13266 	if (!enable_ept)
13267 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
13268 
13269 	/*
13270 	 * If vmcs01 don't use VPID, CPU flushes TLB on every
13271 	 * VMEntry/VMExit. Thus, no need to flush TLB.
13272 	 *
13273 	 * If vmcs12 uses VPID, TLB entries populated by L2 are
13274 	 * tagged with vmx->nested.vpid02 while L1 entries are tagged
13275 	 * with vmx->vpid. Thus, no need to flush TLB.
13276 	 *
13277 	 * Therefore, flush TLB only in case vmcs01 uses VPID and
13278 	 * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
13279 	 * are both tagged with vmx->vpid.
13280 	 */
13281 	if (enable_vpid &&
13282 	    !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) {
13283 		vmx_flush_tlb(vcpu, true);
13284 	}
13285 
13286 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
13287 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
13288 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
13289 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
13290 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
13291 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
13292 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
13293 
13294 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
13295 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
13296 		vmcs_write64(GUEST_BNDCFGS, 0);
13297 
13298 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
13299 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
13300 		vcpu->arch.pat = vmcs12->host_ia32_pat;
13301 	}
13302 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
13303 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
13304 			vmcs12->host_ia32_perf_global_ctrl);
13305 
13306 	/* Set L1 segment info according to Intel SDM
13307 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
13308 	seg = (struct kvm_segment) {
13309 		.base = 0,
13310 		.limit = 0xFFFFFFFF,
13311 		.selector = vmcs12->host_cs_selector,
13312 		.type = 11,
13313 		.present = 1,
13314 		.s = 1,
13315 		.g = 1
13316 	};
13317 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
13318 		seg.l = 1;
13319 	else
13320 		seg.db = 1;
13321 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
13322 	seg = (struct kvm_segment) {
13323 		.base = 0,
13324 		.limit = 0xFFFFFFFF,
13325 		.type = 3,
13326 		.present = 1,
13327 		.s = 1,
13328 		.db = 1,
13329 		.g = 1
13330 	};
13331 	seg.selector = vmcs12->host_ds_selector;
13332 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
13333 	seg.selector = vmcs12->host_es_selector;
13334 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
13335 	seg.selector = vmcs12->host_ss_selector;
13336 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
13337 	seg.selector = vmcs12->host_fs_selector;
13338 	seg.base = vmcs12->host_fs_base;
13339 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
13340 	seg.selector = vmcs12->host_gs_selector;
13341 	seg.base = vmcs12->host_gs_base;
13342 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
13343 	seg = (struct kvm_segment) {
13344 		.base = vmcs12->host_tr_base,
13345 		.limit = 0x67,
13346 		.selector = vmcs12->host_tr_selector,
13347 		.type = 11,
13348 		.present = 1
13349 	};
13350 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
13351 
13352 	kvm_set_dr(vcpu, 7, 0x400);
13353 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
13354 
13355 	if (cpu_has_vmx_msr_bitmap())
13356 		vmx_update_msr_bitmap(vcpu);
13357 
13358 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
13359 				vmcs12->vm_exit_msr_load_count))
13360 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
13361 }
13362 
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)13363 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
13364 {
13365 	struct shared_msr_entry *efer_msr;
13366 	unsigned int i;
13367 
13368 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
13369 		return vmcs_read64(GUEST_IA32_EFER);
13370 
13371 	if (cpu_has_load_ia32_efer)
13372 		return host_efer;
13373 
13374 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
13375 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
13376 			return vmx->msr_autoload.guest.val[i].value;
13377 	}
13378 
13379 	efer_msr = find_msr_entry(vmx, MSR_EFER);
13380 	if (efer_msr)
13381 		return efer_msr->data;
13382 
13383 	return host_efer;
13384 }
13385 
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)13386 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
13387 {
13388 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
13389 	struct vcpu_vmx *vmx = to_vmx(vcpu);
13390 	struct vmx_msr_entry g, h;
13391 	struct msr_data msr;
13392 	gpa_t gpa;
13393 	u32 i, j;
13394 
13395 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
13396 
13397 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
13398 		/*
13399 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
13400 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
13401 		 * and vcpu->arch.dr7 is not squirreled away before the
13402 		 * nested VMENTER (not worth adding a variable in nested_vmx).
13403 		 */
13404 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
13405 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
13406 		else
13407 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
13408 	}
13409 
13410 	/*
13411 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
13412 	 * handle a variety of side effects to KVM's software model.
13413 	 */
13414 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
13415 
13416 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
13417 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
13418 
13419 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
13420 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
13421 
13422 	nested_ept_uninit_mmu_context(vcpu);
13423 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
13424 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
13425 
13426 	/*
13427 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
13428 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
13429 	 * VMFail, like everything else we just need to ensure our
13430 	 * software model is up-to-date.
13431 	 */
13432 	ept_save_pdptrs(vcpu);
13433 
13434 	kvm_mmu_reset_context(vcpu);
13435 
13436 	if (cpu_has_vmx_msr_bitmap())
13437 		vmx_update_msr_bitmap(vcpu);
13438 
13439 	/*
13440 	 * This nasty bit of open coding is a compromise between blindly
13441 	 * loading L1's MSRs using the exit load lists (incorrect emulation
13442 	 * of VMFail), leaving the nested VM's MSRs in the software model
13443 	 * (incorrect behavior) and snapshotting the modified MSRs (too
13444 	 * expensive since the lists are unbound by hardware).  For each
13445 	 * MSR that was (prematurely) loaded from the nested VMEntry load
13446 	 * list, reload it from the exit load list if it exists and differs
13447 	 * from the guest value.  The intent is to stuff host state as
13448 	 * silently as possible, not to fully process the exit load list.
13449 	 */
13450 	msr.host_initiated = false;
13451 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
13452 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
13453 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
13454 			pr_debug_ratelimited(
13455 				"%s read MSR index failed (%u, 0x%08llx)\n",
13456 				__func__, i, gpa);
13457 			goto vmabort;
13458 		}
13459 
13460 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
13461 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
13462 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
13463 				pr_debug_ratelimited(
13464 					"%s read MSR failed (%u, 0x%08llx)\n",
13465 					__func__, j, gpa);
13466 				goto vmabort;
13467 			}
13468 			if (h.index != g.index)
13469 				continue;
13470 			if (h.value == g.value)
13471 				break;
13472 
13473 			if (nested_vmx_load_msr_check(vcpu, &h)) {
13474 				pr_debug_ratelimited(
13475 					"%s check failed (%u, 0x%x, 0x%x)\n",
13476 					__func__, j, h.index, h.reserved);
13477 				goto vmabort;
13478 			}
13479 
13480 			msr.index = h.index;
13481 			msr.data = h.value;
13482 			if (kvm_set_msr(vcpu, &msr)) {
13483 				pr_debug_ratelimited(
13484 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
13485 					__func__, j, h.index, h.value);
13486 				goto vmabort;
13487 			}
13488 		}
13489 	}
13490 
13491 	return;
13492 
13493 vmabort:
13494 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
13495 }
13496 
13497 /*
13498  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
13499  * and modify vmcs12 to make it see what it would expect to see there if
13500  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
13501  */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)13502 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
13503 			      u32 exit_intr_info,
13504 			      unsigned long exit_qualification)
13505 {
13506 	struct vcpu_vmx *vmx = to_vmx(vcpu);
13507 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
13508 
13509 	/* trying to cancel vmlaunch/vmresume is a bug */
13510 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
13511 
13512 	/*
13513 	 * The only expected VM-instruction error is "VM entry with
13514 	 * invalid control field(s)." Anything else indicates a
13515 	 * problem with L0.
13516 	 */
13517 	WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
13518 				   VMXERR_ENTRY_INVALID_CONTROL_FIELD));
13519 
13520 	leave_guest_mode(vcpu);
13521 
13522 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
13523 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
13524 
13525 	if (likely(!vmx->fail)) {
13526 		if (exit_reason == -1)
13527 			sync_vmcs12(vcpu, vmcs12);
13528 		else
13529 			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
13530 				       exit_qualification);
13531 
13532 		/*
13533 		 * Must happen outside of sync_vmcs12() as it will
13534 		 * also be used to capture vmcs12 cache as part of
13535 		 * capturing nVMX state for snapshot (migration).
13536 		 *
13537 		 * Otherwise, this flush will dirty guest memory at a
13538 		 * point it is already assumed by user-space to be
13539 		 * immutable.
13540 		 */
13541 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
13542 
13543 		if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
13544 					 vmcs12->vm_exit_msr_store_count))
13545 			nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
13546 	}
13547 
13548 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
13549 	vm_entry_controls_reset_shadow(vmx);
13550 	vm_exit_controls_reset_shadow(vmx);
13551 	vmx_segment_cache_clear(vmx);
13552 
13553 	/* Update any VMCS fields that might have changed while L2 ran */
13554 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
13555 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
13556 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
13557 
13558 	if (kvm_has_tsc_control)
13559 		decache_tsc_multiplier(vmx);
13560 
13561 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
13562 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
13563 		vmx_set_virtual_apic_mode(vcpu);
13564 	} else if (!nested_cpu_has_ept(vmcs12) &&
13565 		   nested_cpu_has2(vmcs12,
13566 				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
13567 		vmx_flush_tlb(vcpu, true);
13568 	}
13569 
13570 	/* This is needed for same reason as it was needed in prepare_vmcs02 */
13571 	vmx->host_rsp = 0;
13572 
13573 	/* Unpin physical memory we referred to in vmcs02 */
13574 	if (vmx->nested.apic_access_page) {
13575 		kvm_release_page_dirty(vmx->nested.apic_access_page);
13576 		vmx->nested.apic_access_page = NULL;
13577 	}
13578 	if (vmx->nested.virtual_apic_page) {
13579 		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
13580 		vmx->nested.virtual_apic_page = NULL;
13581 	}
13582 	if (vmx->nested.pi_desc_page) {
13583 		kunmap(vmx->nested.pi_desc_page);
13584 		kvm_release_page_dirty(vmx->nested.pi_desc_page);
13585 		vmx->nested.pi_desc_page = NULL;
13586 		vmx->nested.pi_desc = NULL;
13587 	}
13588 
13589 	/*
13590 	 * We are now running in L2, mmu_notifier will force to reload the
13591 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
13592 	 */
13593 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
13594 
13595 	if (enable_shadow_vmcs && exit_reason != -1)
13596 		vmx->nested.sync_shadow_vmcs = true;
13597 
13598 	/* in case we halted in L2 */
13599 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13600 
13601 	if (likely(!vmx->fail)) {
13602 		if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
13603 		    nested_exit_intr_ack_set(vcpu)) {
13604 			int irq = kvm_cpu_get_interrupt(vcpu);
13605 			WARN_ON(irq < 0);
13606 			vmcs12->vm_exit_intr_info = irq |
13607 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
13608 		}
13609 
13610 		if (exit_reason != -1)
13611 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
13612 						       vmcs12->exit_qualification,
13613 						       vmcs12->idt_vectoring_info_field,
13614 						       vmcs12->vm_exit_intr_info,
13615 						       vmcs12->vm_exit_intr_error_code,
13616 						       KVM_ISA_VMX);
13617 
13618 		load_vmcs12_host_state(vcpu, vmcs12);
13619 
13620 		return;
13621 	}
13622 
13623 	/*
13624 	 * After an early L2 VM-entry failure, we're now back
13625 	 * in L1 which thinks it just finished a VMLAUNCH or
13626 	 * VMRESUME instruction, so we need to set the failure
13627 	 * flag and the VM-instruction error field of the VMCS
13628 	 * accordingly.
13629 	 */
13630 	nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
13631 
13632 	/*
13633 	 * Restore L1's host state to KVM's software model.  We're here
13634 	 * because a consistency check was caught by hardware, which
13635 	 * means some amount of guest state has been propagated to KVM's
13636 	 * model and needs to be unwound to the host's state.
13637 	 */
13638 	nested_vmx_restore_host_state(vcpu);
13639 
13640 	/*
13641 	 * The emulated instruction was already skipped in
13642 	 * nested_vmx_run, but the updated RIP was never
13643 	 * written back to the vmcs01.
13644 	 */
13645 	skip_emulated_instruction(vcpu);
13646 	vmx->fail = 0;
13647 }
13648 
13649 /*
13650  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
13651  */
vmx_leave_nested(struct kvm_vcpu * vcpu)13652 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
13653 {
13654 	if (is_guest_mode(vcpu)) {
13655 		to_vmx(vcpu)->nested.nested_run_pending = 0;
13656 		nested_vmx_vmexit(vcpu, -1, 0, 0);
13657 	}
13658 	free_nested(to_vmx(vcpu));
13659 }
13660 
13661 /*
13662  * L1's failure to enter L2 is a subset of a normal exit, as explained in
13663  * 23.7 "VM-entry failures during or after loading guest state" (this also
13664  * lists the acceptable exit-reason and exit-qualification parameters).
13665  * It should only be called before L2 actually succeeded to run, and when
13666  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
13667  */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)13668 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
13669 			struct vmcs12 *vmcs12,
13670 			u32 reason, unsigned long qualification)
13671 {
13672 	load_vmcs12_host_state(vcpu, vmcs12);
13673 	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
13674 	vmcs12->exit_qualification = qualification;
13675 	nested_vmx_succeed(vcpu);
13676 	if (enable_shadow_vmcs)
13677 		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
13678 }
13679 
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)13680 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
13681 				  struct x86_instruction_info *info)
13682 {
13683 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
13684 	unsigned short port;
13685 	bool intercept;
13686 	int size;
13687 
13688 	if (info->intercept == x86_intercept_in ||
13689 	    info->intercept == x86_intercept_ins) {
13690 		port = info->src_val;
13691 		size = info->dst_bytes;
13692 	} else {
13693 		port = info->dst_val;
13694 		size = info->src_bytes;
13695 	}
13696 
13697 	/*
13698 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
13699 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
13700 	 * control.
13701 	 *
13702 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
13703 	 */
13704 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
13705 		intercept = nested_cpu_has(vmcs12,
13706 					   CPU_BASED_UNCOND_IO_EXITING);
13707 	else
13708 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
13709 
13710 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
13711 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
13712 }
13713 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)13714 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
13715 			       struct x86_instruction_info *info,
13716 			       enum x86_intercept_stage stage)
13717 {
13718 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
13719 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
13720 
13721 	switch (info->intercept) {
13722 	/*
13723 	 * RDPID causes #UD if disabled through secondary execution controls.
13724 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
13725 	 */
13726 	case x86_intercept_rdtscp:
13727 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
13728 			ctxt->exception.vector = UD_VECTOR;
13729 			ctxt->exception.error_code_valid = false;
13730 			return X86EMUL_PROPAGATE_FAULT;
13731 		}
13732 		break;
13733 
13734 	case x86_intercept_in:
13735 	case x86_intercept_ins:
13736 	case x86_intercept_out:
13737 	case x86_intercept_outs:
13738 		return vmx_check_intercept_io(vcpu, info);
13739 
13740 	case x86_intercept_lgdt:
13741 	case x86_intercept_lidt:
13742 	case x86_intercept_lldt:
13743 	case x86_intercept_ltr:
13744 	case x86_intercept_sgdt:
13745 	case x86_intercept_sidt:
13746 	case x86_intercept_sldt:
13747 	case x86_intercept_str:
13748 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
13749 			return X86EMUL_CONTINUE;
13750 
13751 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
13752 		break;
13753 
13754 	/* TODO: check more intercepts... */
13755 	default:
13756 		break;
13757 	}
13758 
13759 	return X86EMUL_UNHANDLEABLE;
13760 }
13761 
13762 #ifdef CONFIG_X86_64
13763 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)13764 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
13765 				  u64 divisor, u64 *result)
13766 {
13767 	u64 low = a << shift, high = a >> (64 - shift);
13768 
13769 	/* To avoid the overflow on divq */
13770 	if (high >= divisor)
13771 		return 1;
13772 
13773 	/* Low hold the result, high hold rem which is discarded */
13774 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
13775 	    "rm" (divisor), "0" (low), "1" (high));
13776 	*result = low;
13777 
13778 	return 0;
13779 }
13780 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc)13781 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
13782 {
13783 	struct vcpu_vmx *vmx;
13784 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
13785 
13786 	if (kvm_mwait_in_guest(vcpu->kvm))
13787 		return -EOPNOTSUPP;
13788 
13789 	vmx = to_vmx(vcpu);
13790 	tscl = rdtsc();
13791 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
13792 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
13793 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
13794 
13795 	if (delta_tsc > lapic_timer_advance_cycles)
13796 		delta_tsc -= lapic_timer_advance_cycles;
13797 	else
13798 		delta_tsc = 0;
13799 
13800 	/* Convert to host delta tsc if tsc scaling is enabled */
13801 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
13802 			u64_shl_div_u64(delta_tsc,
13803 				kvm_tsc_scaling_ratio_frac_bits,
13804 				vcpu->arch.tsc_scaling_ratio,
13805 				&delta_tsc))
13806 		return -ERANGE;
13807 
13808 	/*
13809 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
13810 	 * we can't use the preemption timer.
13811 	 * It's possible that it fits on later vmentries, but checking
13812 	 * on every vmentry is costly so we just use an hrtimer.
13813 	 */
13814 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
13815 		return -ERANGE;
13816 
13817 	vmx->hv_deadline_tsc = tscl + delta_tsc;
13818 	return delta_tsc == 0;
13819 }
13820 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)13821 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
13822 {
13823 	to_vmx(vcpu)->hv_deadline_tsc = -1;
13824 }
13825 #endif
13826 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)13827 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
13828 {
13829 	if (!kvm_pause_in_guest(vcpu->kvm))
13830 		shrink_ple_window(vcpu);
13831 }
13832 
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)13833 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
13834 				     struct kvm_memory_slot *slot)
13835 {
13836 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
13837 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
13838 }
13839 
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)13840 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
13841 				       struct kvm_memory_slot *slot)
13842 {
13843 	kvm_mmu_slot_set_dirty(kvm, slot);
13844 }
13845 
vmx_flush_log_dirty(struct kvm * kvm)13846 static void vmx_flush_log_dirty(struct kvm *kvm)
13847 {
13848 	kvm_flush_pml_buffers(kvm);
13849 }
13850 
vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)13851 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
13852 {
13853 	struct vmcs12 *vmcs12;
13854 	struct vcpu_vmx *vmx = to_vmx(vcpu);
13855 	struct page *page = NULL;
13856 	u64 *pml_address;
13857 
13858 	if (is_guest_mode(vcpu)) {
13859 		WARN_ON_ONCE(vmx->nested.pml_full);
13860 
13861 		/*
13862 		 * Check if PML is enabled for the nested guest.
13863 		 * Whether eptp bit 6 is set is already checked
13864 		 * as part of A/D emulation.
13865 		 */
13866 		vmcs12 = get_vmcs12(vcpu);
13867 		if (!nested_cpu_has_pml(vmcs12))
13868 			return 0;
13869 
13870 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
13871 			vmx->nested.pml_full = true;
13872 			return 1;
13873 		}
13874 
13875 		gpa &= ~0xFFFull;
13876 
13877 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
13878 		if (is_error_page(page))
13879 			return 0;
13880 
13881 		pml_address = kmap(page);
13882 		pml_address[vmcs12->guest_pml_index--] = gpa;
13883 		kunmap(page);
13884 		kvm_release_page_clean(page);
13885 	}
13886 
13887 	return 0;
13888 }
13889 
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)13890 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
13891 					   struct kvm_memory_slot *memslot,
13892 					   gfn_t offset, unsigned long mask)
13893 {
13894 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
13895 }
13896 
__pi_post_block(struct kvm_vcpu * vcpu)13897 static void __pi_post_block(struct kvm_vcpu *vcpu)
13898 {
13899 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
13900 	struct pi_desc old, new;
13901 	unsigned int dest;
13902 
13903 	do {
13904 		old.control = new.control = pi_desc->control;
13905 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
13906 		     "Wakeup handler not enabled while the VCPU is blocked\n");
13907 
13908 		dest = cpu_physical_id(vcpu->cpu);
13909 
13910 		if (x2apic_enabled())
13911 			new.ndst = dest;
13912 		else
13913 			new.ndst = (dest << 8) & 0xFF00;
13914 
13915 		/* set 'NV' to 'notification vector' */
13916 		new.nv = POSTED_INTR_VECTOR;
13917 	} while (cmpxchg64(&pi_desc->control, old.control,
13918 			   new.control) != old.control);
13919 
13920 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
13921 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13922 		list_del(&vcpu->blocked_vcpu_list);
13923 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13924 		vcpu->pre_pcpu = -1;
13925 	}
13926 }
13927 
13928 /*
13929  * This routine does the following things for vCPU which is going
13930  * to be blocked if VT-d PI is enabled.
13931  * - Store the vCPU to the wakeup list, so when interrupts happen
13932  *   we can find the right vCPU to wake up.
13933  * - Change the Posted-interrupt descriptor as below:
13934  *      'NDST' <-- vcpu->pre_pcpu
13935  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
13936  * - If 'ON' is set during this process, which means at least one
13937  *   interrupt is posted for this vCPU, we cannot block it, in
13938  *   this case, return 1, otherwise, return 0.
13939  *
13940  */
pi_pre_block(struct kvm_vcpu * vcpu)13941 static int pi_pre_block(struct kvm_vcpu *vcpu)
13942 {
13943 	unsigned int dest;
13944 	struct pi_desc old, new;
13945 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
13946 
13947 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
13948 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
13949 		!kvm_vcpu_apicv_active(vcpu))
13950 		return 0;
13951 
13952 	WARN_ON(irqs_disabled());
13953 	local_irq_disable();
13954 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
13955 		vcpu->pre_pcpu = vcpu->cpu;
13956 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13957 		list_add_tail(&vcpu->blocked_vcpu_list,
13958 			      &per_cpu(blocked_vcpu_on_cpu,
13959 				       vcpu->pre_pcpu));
13960 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
13961 	}
13962 
13963 	do {
13964 		old.control = new.control = pi_desc->control;
13965 
13966 		WARN((pi_desc->sn == 1),
13967 		     "Warning: SN field of posted-interrupts "
13968 		     "is set before blocking\n");
13969 
13970 		/*
13971 		 * Since vCPU can be preempted during this process,
13972 		 * vcpu->cpu could be different with pre_pcpu, we
13973 		 * need to set pre_pcpu as the destination of wakeup
13974 		 * notification event, then we can find the right vCPU
13975 		 * to wakeup in wakeup handler if interrupts happen
13976 		 * when the vCPU is in blocked state.
13977 		 */
13978 		dest = cpu_physical_id(vcpu->pre_pcpu);
13979 
13980 		if (x2apic_enabled())
13981 			new.ndst = dest;
13982 		else
13983 			new.ndst = (dest << 8) & 0xFF00;
13984 
13985 		/* set 'NV' to 'wakeup vector' */
13986 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
13987 	} while (cmpxchg64(&pi_desc->control, old.control,
13988 			   new.control) != old.control);
13989 
13990 	/* We should not block the vCPU if an interrupt is posted for it.  */
13991 	if (pi_test_on(pi_desc) == 1)
13992 		__pi_post_block(vcpu);
13993 
13994 	local_irq_enable();
13995 	return (vcpu->pre_pcpu == -1);
13996 }
13997 
vmx_pre_block(struct kvm_vcpu * vcpu)13998 static int vmx_pre_block(struct kvm_vcpu *vcpu)
13999 {
14000 	if (pi_pre_block(vcpu))
14001 		return 1;
14002 
14003 	if (kvm_lapic_hv_timer_in_use(vcpu))
14004 		kvm_lapic_switch_to_sw_timer(vcpu);
14005 
14006 	return 0;
14007 }
14008 
pi_post_block(struct kvm_vcpu * vcpu)14009 static void pi_post_block(struct kvm_vcpu *vcpu)
14010 {
14011 	if (vcpu->pre_pcpu == -1)
14012 		return;
14013 
14014 	WARN_ON(irqs_disabled());
14015 	local_irq_disable();
14016 	__pi_post_block(vcpu);
14017 	local_irq_enable();
14018 }
14019 
vmx_post_block(struct kvm_vcpu * vcpu)14020 static void vmx_post_block(struct kvm_vcpu *vcpu)
14021 {
14022 	if (kvm_x86_ops->set_hv_timer)
14023 		kvm_lapic_switch_to_hv_timer(vcpu);
14024 
14025 	pi_post_block(vcpu);
14026 }
14027 
14028 /*
14029  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
14030  *
14031  * @kvm: kvm
14032  * @host_irq: host irq of the interrupt
14033  * @guest_irq: gsi of the interrupt
14034  * @set: set or unset PI
14035  * returns 0 on success, < 0 on failure
14036  */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)14037 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
14038 			      uint32_t guest_irq, bool set)
14039 {
14040 	struct kvm_kernel_irq_routing_entry *e;
14041 	struct kvm_irq_routing_table *irq_rt;
14042 	struct kvm_lapic_irq irq;
14043 	struct kvm_vcpu *vcpu;
14044 	struct vcpu_data vcpu_info;
14045 	int idx, ret = 0;
14046 
14047 	if (!kvm_arch_has_assigned_device(kvm) ||
14048 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
14049 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
14050 		return 0;
14051 
14052 	idx = srcu_read_lock(&kvm->irq_srcu);
14053 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
14054 	if (guest_irq >= irq_rt->nr_rt_entries ||
14055 	    hlist_empty(&irq_rt->map[guest_irq])) {
14056 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
14057 			     guest_irq, irq_rt->nr_rt_entries);
14058 		goto out;
14059 	}
14060 
14061 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
14062 		if (e->type != KVM_IRQ_ROUTING_MSI)
14063 			continue;
14064 		/*
14065 		 * VT-d PI cannot support posting multicast/broadcast
14066 		 * interrupts to a vCPU, we still use interrupt remapping
14067 		 * for these kind of interrupts.
14068 		 *
14069 		 * For lowest-priority interrupts, we only support
14070 		 * those with single CPU as the destination, e.g. user
14071 		 * configures the interrupts via /proc/irq or uses
14072 		 * irqbalance to make the interrupts single-CPU.
14073 		 *
14074 		 * We will support full lowest-priority interrupt later.
14075 		 */
14076 
14077 		kvm_set_msi_irq(kvm, e, &irq);
14078 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
14079 			/*
14080 			 * Make sure the IRTE is in remapped mode if
14081 			 * we don't handle it in posted mode.
14082 			 */
14083 			ret = irq_set_vcpu_affinity(host_irq, NULL);
14084 			if (ret < 0) {
14085 				printk(KERN_INFO
14086 				   "failed to back to remapped mode, irq: %u\n",
14087 				   host_irq);
14088 				goto out;
14089 			}
14090 
14091 			continue;
14092 		}
14093 
14094 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
14095 		vcpu_info.vector = irq.vector;
14096 
14097 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
14098 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
14099 
14100 		if (set)
14101 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
14102 		else
14103 			ret = irq_set_vcpu_affinity(host_irq, NULL);
14104 
14105 		if (ret < 0) {
14106 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
14107 					__func__);
14108 			goto out;
14109 		}
14110 	}
14111 
14112 	ret = 0;
14113 out:
14114 	srcu_read_unlock(&kvm->irq_srcu, idx);
14115 	return ret;
14116 }
14117 
vmx_setup_mce(struct kvm_vcpu * vcpu)14118 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
14119 {
14120 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
14121 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
14122 			FEATURE_CONTROL_LMCE;
14123 	else
14124 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
14125 			~FEATURE_CONTROL_LMCE;
14126 }
14127 
vmx_smi_allowed(struct kvm_vcpu * vcpu)14128 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
14129 {
14130 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
14131 	if (to_vmx(vcpu)->nested.nested_run_pending)
14132 		return 0;
14133 	return 1;
14134 }
14135 
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)14136 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
14137 {
14138 	struct vcpu_vmx *vmx = to_vmx(vcpu);
14139 
14140 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
14141 	if (vmx->nested.smm.guest_mode)
14142 		nested_vmx_vmexit(vcpu, -1, 0, 0);
14143 
14144 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
14145 	vmx->nested.vmxon = false;
14146 	vmx_clear_hlt(vcpu);
14147 	return 0;
14148 }
14149 
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,u64 smbase)14150 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
14151 {
14152 	struct vcpu_vmx *vmx = to_vmx(vcpu);
14153 	int ret;
14154 
14155 	if (vmx->nested.smm.vmxon) {
14156 		vmx->nested.vmxon = true;
14157 		vmx->nested.smm.vmxon = false;
14158 	}
14159 
14160 	if (vmx->nested.smm.guest_mode) {
14161 		vcpu->arch.hflags &= ~HF_SMM_MASK;
14162 		ret = enter_vmx_non_root_mode(vcpu, NULL);
14163 		vcpu->arch.hflags |= HF_SMM_MASK;
14164 		if (ret)
14165 			return ret;
14166 
14167 		vmx->nested.smm.guest_mode = false;
14168 	}
14169 	return 0;
14170 }
14171 
enable_smi_window(struct kvm_vcpu * vcpu)14172 static int enable_smi_window(struct kvm_vcpu *vcpu)
14173 {
14174 	return 0;
14175 }
14176 
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)14177 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
14178 				struct kvm_nested_state __user *user_kvm_nested_state,
14179 				u32 user_data_size)
14180 {
14181 	struct vcpu_vmx *vmx;
14182 	struct vmcs12 *vmcs12;
14183 	struct kvm_nested_state kvm_state = {
14184 		.flags = 0,
14185 		.format = 0,
14186 		.size = sizeof(kvm_state),
14187 		.vmx.vmxon_pa = -1ull,
14188 		.vmx.vmcs_pa = -1ull,
14189 	};
14190 
14191 	if (!vcpu)
14192 		return kvm_state.size + 2 * VMCS12_SIZE;
14193 
14194 	vmx = to_vmx(vcpu);
14195 	vmcs12 = get_vmcs12(vcpu);
14196 	if (nested_vmx_allowed(vcpu) &&
14197 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
14198 		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
14199 		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
14200 
14201 		if (vmx->nested.current_vmptr != -1ull) {
14202 			kvm_state.size += VMCS12_SIZE;
14203 
14204 			if (is_guest_mode(vcpu) &&
14205 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
14206 			    vmcs12->vmcs_link_pointer != -1ull)
14207 				kvm_state.size += VMCS12_SIZE;
14208 		}
14209 
14210 		if (vmx->nested.smm.vmxon)
14211 			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
14212 
14213 		if (vmx->nested.smm.guest_mode)
14214 			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
14215 
14216 		if (is_guest_mode(vcpu)) {
14217 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
14218 
14219 			if (vmx->nested.nested_run_pending)
14220 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
14221 		}
14222 	}
14223 
14224 	if (user_data_size < kvm_state.size)
14225 		goto out;
14226 
14227 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
14228 		return -EFAULT;
14229 
14230 	if (vmx->nested.current_vmptr == -1ull)
14231 		goto out;
14232 
14233 	/*
14234 	 * When running L2, the authoritative vmcs12 state is in the
14235 	 * vmcs02. When running L1, the authoritative vmcs12 state is
14236 	 * in the shadow vmcs linked to vmcs01, unless
14237 	 * sync_shadow_vmcs is set, in which case, the authoritative
14238 	 * vmcs12 state is in the vmcs12 already.
14239 	 */
14240 	if (is_guest_mode(vcpu))
14241 		sync_vmcs12(vcpu, vmcs12);
14242 	else if (enable_shadow_vmcs && !vmx->nested.sync_shadow_vmcs)
14243 		copy_shadow_to_vmcs12(vmx);
14244 
14245 	/*
14246 	 * Copy over the full allocated size of vmcs12 rather than just the size
14247 	 * of the struct.
14248 	 */
14249 	if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
14250 		return -EFAULT;
14251 
14252 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
14253 	    vmcs12->vmcs_link_pointer != -1ull) {
14254 		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
14255 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
14256 			return -EFAULT;
14257 	}
14258 
14259 out:
14260 	return kvm_state.size;
14261 }
14262 
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)14263 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
14264 				struct kvm_nested_state __user *user_kvm_nested_state,
14265 				struct kvm_nested_state *kvm_state)
14266 {
14267 	struct vcpu_vmx *vmx = to_vmx(vcpu);
14268 	struct vmcs12 *vmcs12;
14269 	u32 exit_qual;
14270 	int ret;
14271 
14272 	if (kvm_state->format != 0)
14273 		return -EINVAL;
14274 
14275 	if (!nested_vmx_allowed(vcpu))
14276 		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
14277 
14278 	if (kvm_state->vmx.vmxon_pa == -1ull) {
14279 		if (kvm_state->vmx.smm.flags)
14280 			return -EINVAL;
14281 
14282 		if (kvm_state->vmx.vmcs_pa != -1ull)
14283 			return -EINVAL;
14284 
14285 		vmx_leave_nested(vcpu);
14286 		return 0;
14287 	}
14288 
14289 	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
14290 		return -EINVAL;
14291 
14292 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
14293 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
14294 		return -EINVAL;
14295 
14296 	if (kvm_state->vmx.smm.flags &
14297 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
14298 		return -EINVAL;
14299 
14300 	/*
14301 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
14302 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
14303 	 * must be zero.
14304 	 */
14305 	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
14306 		return -EINVAL;
14307 
14308 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
14309 	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
14310 		return -EINVAL;
14311 
14312 	vmx_leave_nested(vcpu);
14313 	if (kvm_state->vmx.vmxon_pa == -1ull)
14314 		return 0;
14315 
14316 	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
14317 	ret = enter_vmx_operation(vcpu);
14318 	if (ret)
14319 		return ret;
14320 
14321 	/* Empty 'VMXON' state is permitted */
14322 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
14323 		return 0;
14324 
14325 	if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
14326 	    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
14327 		return -EINVAL;
14328 
14329 	set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
14330 
14331 	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
14332 		vmx->nested.smm.vmxon = true;
14333 		vmx->nested.vmxon = false;
14334 
14335 		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
14336 			vmx->nested.smm.guest_mode = true;
14337 	}
14338 
14339 	vmcs12 = get_vmcs12(vcpu);
14340 	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
14341 		return -EFAULT;
14342 
14343 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
14344 		return -EINVAL;
14345 
14346 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
14347 		return 0;
14348 
14349 	vmx->nested.nested_run_pending =
14350 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
14351 
14352 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
14353 	    vmcs12->vmcs_link_pointer != -1ull) {
14354 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
14355 		if (kvm_state->size < sizeof(*kvm_state) + 2 * sizeof(*vmcs12))
14356 			return -EINVAL;
14357 
14358 		if (copy_from_user(shadow_vmcs12,
14359 				   user_kvm_nested_state->data + VMCS12_SIZE,
14360 				   sizeof(*vmcs12)))
14361 			return -EFAULT;
14362 
14363 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
14364 		    !shadow_vmcs12->hdr.shadow_vmcs)
14365 			return -EINVAL;
14366 	}
14367 
14368 	if (check_vmentry_prereqs(vcpu, vmcs12) ||
14369 	    check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
14370 		return -EINVAL;
14371 
14372 	vmx->nested.dirty_vmcs12 = true;
14373 	ret = enter_vmx_non_root_mode(vcpu, NULL);
14374 	if (ret)
14375 		return -EINVAL;
14376 
14377 	return 0;
14378 }
14379 
14380 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
14381 	.cpu_has_kvm_support = cpu_has_kvm_support,
14382 	.disabled_by_bios = vmx_disabled_by_bios,
14383 	.hardware_setup = hardware_setup,
14384 	.hardware_unsetup = hardware_unsetup,
14385 	.check_processor_compatibility = vmx_check_processor_compat,
14386 	.hardware_enable = hardware_enable,
14387 	.hardware_disable = hardware_disable,
14388 	.cpu_has_accelerated_tpr = report_flexpriority,
14389 	.has_emulated_msr = vmx_has_emulated_msr,
14390 
14391 	.vm_init = vmx_vm_init,
14392 	.vm_alloc = vmx_vm_alloc,
14393 	.vm_free = vmx_vm_free,
14394 
14395 	.vcpu_create = vmx_create_vcpu,
14396 	.vcpu_free = vmx_free_vcpu,
14397 	.vcpu_reset = vmx_vcpu_reset,
14398 
14399 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
14400 	.vcpu_load = vmx_vcpu_load,
14401 	.vcpu_put = vmx_vcpu_put,
14402 
14403 	.update_bp_intercept = update_exception_bitmap,
14404 	.get_msr_feature = vmx_get_msr_feature,
14405 	.get_msr = vmx_get_msr,
14406 	.set_msr = vmx_set_msr,
14407 	.get_segment_base = vmx_get_segment_base,
14408 	.get_segment = vmx_get_segment,
14409 	.set_segment = vmx_set_segment,
14410 	.get_cpl = vmx_get_cpl,
14411 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
14412 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
14413 	.decache_cr3 = vmx_decache_cr3,
14414 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
14415 	.set_cr0 = vmx_set_cr0,
14416 	.set_cr3 = vmx_set_cr3,
14417 	.set_cr4 = vmx_set_cr4,
14418 	.set_efer = vmx_set_efer,
14419 	.get_idt = vmx_get_idt,
14420 	.set_idt = vmx_set_idt,
14421 	.get_gdt = vmx_get_gdt,
14422 	.set_gdt = vmx_set_gdt,
14423 	.get_dr6 = vmx_get_dr6,
14424 	.set_dr6 = vmx_set_dr6,
14425 	.set_dr7 = vmx_set_dr7,
14426 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
14427 	.cache_reg = vmx_cache_reg,
14428 	.get_rflags = vmx_get_rflags,
14429 	.set_rflags = vmx_set_rflags,
14430 
14431 	.tlb_flush = vmx_flush_tlb,
14432 	.tlb_flush_gva = vmx_flush_tlb_gva,
14433 
14434 	.run = vmx_vcpu_run,
14435 	.handle_exit = vmx_handle_exit,
14436 	.skip_emulated_instruction = skip_emulated_instruction,
14437 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
14438 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
14439 	.patch_hypercall = vmx_patch_hypercall,
14440 	.set_irq = vmx_inject_irq,
14441 	.set_nmi = vmx_inject_nmi,
14442 	.queue_exception = vmx_queue_exception,
14443 	.cancel_injection = vmx_cancel_injection,
14444 	.interrupt_allowed = vmx_interrupt_allowed,
14445 	.nmi_allowed = vmx_nmi_allowed,
14446 	.get_nmi_mask = vmx_get_nmi_mask,
14447 	.set_nmi_mask = vmx_set_nmi_mask,
14448 	.enable_nmi_window = enable_nmi_window,
14449 	.enable_irq_window = enable_irq_window,
14450 	.update_cr8_intercept = update_cr8_intercept,
14451 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
14452 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
14453 	.get_enable_apicv = vmx_get_enable_apicv,
14454 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
14455 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
14456 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
14457 	.hwapic_irr_update = vmx_hwapic_irr_update,
14458 	.hwapic_isr_update = vmx_hwapic_isr_update,
14459 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
14460 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
14461 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
14462 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
14463 
14464 	.set_tss_addr = vmx_set_tss_addr,
14465 	.set_identity_map_addr = vmx_set_identity_map_addr,
14466 	.get_tdp_level = get_ept_level,
14467 	.get_mt_mask = vmx_get_mt_mask,
14468 
14469 	.get_exit_info = vmx_get_exit_info,
14470 
14471 	.get_lpage_level = vmx_get_lpage_level,
14472 
14473 	.cpuid_update = vmx_cpuid_update,
14474 
14475 	.rdtscp_supported = vmx_rdtscp_supported,
14476 	.invpcid_supported = vmx_invpcid_supported,
14477 
14478 	.set_supported_cpuid = vmx_set_supported_cpuid,
14479 
14480 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
14481 
14482 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
14483 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
14484 
14485 	.set_tdp_cr3 = vmx_set_cr3,
14486 
14487 	.check_intercept = vmx_check_intercept,
14488 	.handle_external_intr = vmx_handle_external_intr,
14489 	.mpx_supported = vmx_mpx_supported,
14490 	.xsaves_supported = vmx_xsaves_supported,
14491 	.umip_emulated = vmx_umip_emulated,
14492 
14493 	.check_nested_events = vmx_check_nested_events,
14494 	.request_immediate_exit = vmx_request_immediate_exit,
14495 
14496 	.sched_in = vmx_sched_in,
14497 
14498 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
14499 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
14500 	.flush_log_dirty = vmx_flush_log_dirty,
14501 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
14502 	.write_log_dirty = vmx_write_pml_buffer,
14503 
14504 	.pre_block = vmx_pre_block,
14505 	.post_block = vmx_post_block,
14506 
14507 	.pmu_ops = &intel_pmu_ops,
14508 
14509 	.update_pi_irte = vmx_update_pi_irte,
14510 
14511 #ifdef CONFIG_X86_64
14512 	.set_hv_timer = vmx_set_hv_timer,
14513 	.cancel_hv_timer = vmx_cancel_hv_timer,
14514 #endif
14515 
14516 	.setup_mce = vmx_setup_mce,
14517 
14518 	.get_nested_state = vmx_get_nested_state,
14519 	.set_nested_state = vmx_set_nested_state,
14520 	.get_vmcs12_pages = nested_get_vmcs12_pages,
14521 
14522 	.smi_allowed = vmx_smi_allowed,
14523 	.pre_enter_smm = vmx_pre_enter_smm,
14524 	.pre_leave_smm = vmx_pre_leave_smm,
14525 	.enable_smi_window = enable_smi_window,
14526 };
14527 
vmx_cleanup_l1d_flush(void)14528 static void vmx_cleanup_l1d_flush(void)
14529 {
14530 	if (vmx_l1d_flush_pages) {
14531 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
14532 		vmx_l1d_flush_pages = NULL;
14533 	}
14534 	/* Restore state so sysfs ignores VMX */
14535 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
14536 }
14537 
vmx_exit(void)14538 static void vmx_exit(void)
14539 {
14540 #ifdef CONFIG_KEXEC_CORE
14541 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
14542 	synchronize_rcu();
14543 #endif
14544 
14545 	kvm_exit();
14546 
14547 #if IS_ENABLED(CONFIG_HYPERV)
14548 	if (static_branch_unlikely(&enable_evmcs)) {
14549 		int cpu;
14550 		struct hv_vp_assist_page *vp_ap;
14551 		/*
14552 		 * Reset everything to support using non-enlightened VMCS
14553 		 * access later (e.g. when we reload the module with
14554 		 * enlightened_vmcs=0)
14555 		 */
14556 		for_each_online_cpu(cpu) {
14557 			vp_ap =	hv_get_vp_assist_page(cpu);
14558 
14559 			if (!vp_ap)
14560 				continue;
14561 
14562 			vp_ap->current_nested_vmcs = 0;
14563 			vp_ap->enlighten_vmentry = 0;
14564 		}
14565 
14566 		static_branch_disable(&enable_evmcs);
14567 	}
14568 #endif
14569 	vmx_cleanup_l1d_flush();
14570 }
14571 module_exit(vmx_exit);
14572 
vmx_init(void)14573 static int __init vmx_init(void)
14574 {
14575 	int r, cpu;
14576 
14577 #if IS_ENABLED(CONFIG_HYPERV)
14578 	/*
14579 	 * Enlightened VMCS usage should be recommended and the host needs
14580 	 * to support eVMCS v1 or above. We can also disable eVMCS support
14581 	 * with module parameter.
14582 	 */
14583 	if (enlightened_vmcs &&
14584 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
14585 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
14586 	    KVM_EVMCS_VERSION) {
14587 		int cpu;
14588 
14589 		/* Check that we have assist pages on all online CPUs */
14590 		for_each_online_cpu(cpu) {
14591 			if (!hv_get_vp_assist_page(cpu)) {
14592 				enlightened_vmcs = false;
14593 				break;
14594 			}
14595 		}
14596 
14597 		if (enlightened_vmcs) {
14598 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
14599 			static_branch_enable(&enable_evmcs);
14600 		}
14601 	} else {
14602 		enlightened_vmcs = false;
14603 	}
14604 #endif
14605 
14606 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
14607 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
14608 	if (r)
14609 		return r;
14610 
14611 	/*
14612 	 * Must be called after kvm_init() so enable_ept is properly set
14613 	 * up. Hand the parameter mitigation value in which was stored in
14614 	 * the pre module init parser. If no parameter was given, it will
14615 	 * contain 'auto' which will be turned into the default 'cond'
14616 	 * mitigation mode.
14617 	 */
14618 	if (boot_cpu_has(X86_BUG_L1TF)) {
14619 		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
14620 		if (r) {
14621 			vmx_exit();
14622 			return r;
14623 		}
14624 	}
14625 
14626 	for_each_possible_cpu(cpu) {
14627 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
14628 		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
14629 		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
14630 	}
14631 
14632 #ifdef CONFIG_KEXEC_CORE
14633 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
14634 			   crash_vmclear_local_loaded_vmcss);
14635 #endif
14636 	vmx_check_vmcs12_offsets();
14637 
14638 	return 0;
14639 }
14640 module_init(vmx_init);
14641