• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Functions to sequence PREFLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no data
21  * or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
27  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
32  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without PREFLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each PREFLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78 
79 /* PREFLUSH/FUA sequences */
80 enum {
81 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
82 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
83 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
84 	REQ_FSEQ_DONE		= (1 << 3),
85 
86 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 				  REQ_FSEQ_POSTFLUSH,
88 
89 	/*
90 	 * If flush has been pending longer than the following timeout,
91 	 * it's issued even if flush_data requests are still in flight.
92 	 */
93 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
94 };
95 
96 static bool blk_kick_flush(struct request_queue *q,
97 			   struct blk_flush_queue *fq, unsigned int flags);
98 
blk_flush_policy(unsigned long fflags,struct request * rq)99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100 {
101 	unsigned int policy = 0;
102 
103 	if (blk_rq_sectors(rq))
104 		policy |= REQ_FSEQ_DATA;
105 
106 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
107 		if (rq->cmd_flags & REQ_PREFLUSH)
108 			policy |= REQ_FSEQ_PREFLUSH;
109 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110 		    (rq->cmd_flags & REQ_FUA))
111 			policy |= REQ_FSEQ_POSTFLUSH;
112 	}
113 	return policy;
114 }
115 
blk_flush_cur_seq(struct request * rq)116 static unsigned int blk_flush_cur_seq(struct request *rq)
117 {
118 	return 1 << ffz(rq->flush.seq);
119 }
120 
blk_flush_restore_request(struct request * rq)121 static void blk_flush_restore_request(struct request *rq)
122 {
123 	/*
124 	 * After flush data completion, @rq->bio is %NULL but we need to
125 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
126 	 * original @rq->bio.  Restore it.
127 	 */
128 	rq->bio = rq->biotail;
129 
130 	/* make @rq a normal request */
131 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
132 	rq->end_io = rq->flush.saved_end_io;
133 }
134 
blk_flush_queue_rq(struct request * rq,bool add_front)135 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
136 {
137 	if (rq->q->mq_ops) {
138 		blk_mq_add_to_requeue_list(rq, add_front, true);
139 		return false;
140 	} else {
141 		if (add_front)
142 			list_add(&rq->queuelist, &rq->q->queue_head);
143 		else
144 			list_add_tail(&rq->queuelist, &rq->q->queue_head);
145 		return true;
146 	}
147 }
148 
149 /**
150  * blk_flush_complete_seq - complete flush sequence
151  * @rq: PREFLUSH/FUA request being sequenced
152  * @fq: flush queue
153  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
154  * @error: whether an error occurred
155  *
156  * @rq just completed @seq part of its flush sequence, record the
157  * completion and trigger the next step.
158  *
159  * CONTEXT:
160  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
161  *
162  * RETURNS:
163  * %true if requests were added to the dispatch queue, %false otherwise.
164  */
blk_flush_complete_seq(struct request * rq,struct blk_flush_queue * fq,unsigned int seq,blk_status_t error)165 static bool blk_flush_complete_seq(struct request *rq,
166 				   struct blk_flush_queue *fq,
167 				   unsigned int seq, blk_status_t error)
168 {
169 	struct request_queue *q = rq->q;
170 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
171 	bool queued = false, kicked;
172 	unsigned int cmd_flags;
173 
174 	BUG_ON(rq->flush.seq & seq);
175 	rq->flush.seq |= seq;
176 	cmd_flags = rq->cmd_flags;
177 
178 	if (likely(!error))
179 		seq = blk_flush_cur_seq(rq);
180 	else
181 		seq = REQ_FSEQ_DONE;
182 
183 	switch (seq) {
184 	case REQ_FSEQ_PREFLUSH:
185 	case REQ_FSEQ_POSTFLUSH:
186 		/* queue for flush */
187 		if (list_empty(pending))
188 			fq->flush_pending_since = jiffies;
189 		list_move_tail(&rq->flush.list, pending);
190 		break;
191 
192 	case REQ_FSEQ_DATA:
193 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
194 		queued = blk_flush_queue_rq(rq, true);
195 		break;
196 
197 	case REQ_FSEQ_DONE:
198 		/*
199 		 * @rq was previously adjusted by blk_flush_issue() for
200 		 * flush sequencing and may already have gone through the
201 		 * flush data request completion path.  Restore @rq for
202 		 * normal completion and end it.
203 		 */
204 		BUG_ON(!list_empty(&rq->queuelist));
205 		list_del_init(&rq->flush.list);
206 		blk_flush_restore_request(rq);
207 		if (q->mq_ops)
208 			blk_mq_end_request(rq, error);
209 		else
210 			__blk_end_request_all(rq, error);
211 		break;
212 
213 	default:
214 		BUG();
215 	}
216 
217 	kicked = blk_kick_flush(q, fq, cmd_flags);
218 	return kicked | queued;
219 }
220 
flush_end_io(struct request * flush_rq,blk_status_t error)221 static void flush_end_io(struct request *flush_rq, blk_status_t error)
222 {
223 	struct request_queue *q = flush_rq->q;
224 	struct list_head *running;
225 	bool queued = false;
226 	struct request *rq, *n;
227 	unsigned long flags = 0;
228 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
229 
230 	if (q->mq_ops) {
231 		struct blk_mq_hw_ctx *hctx;
232 
233 		/* release the tag's ownership to the req cloned from */
234 		spin_lock_irqsave(&fq->mq_flush_lock, flags);
235 
236 		if (!refcount_dec_and_test(&flush_rq->ref)) {
237 			fq->rq_status = error;
238 			spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
239 			return;
240 		}
241 
242 		if (fq->rq_status != BLK_STS_OK)
243 			error = fq->rq_status;
244 
245 		hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
246 		if (!q->elevator) {
247 			blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
248 			flush_rq->tag = -1;
249 		} else {
250 			blk_mq_put_driver_tag_hctx(hctx, flush_rq);
251 			flush_rq->internal_tag = -1;
252 		}
253 	}
254 
255 	running = &fq->flush_queue[fq->flush_running_idx];
256 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
257 
258 	/* account completion of the flush request */
259 	fq->flush_running_idx ^= 1;
260 
261 	if (!q->mq_ops)
262 		elv_completed_request(q, flush_rq);
263 
264 	/* and push the waiting requests to the next stage */
265 	list_for_each_entry_safe(rq, n, running, flush.list) {
266 		unsigned int seq = blk_flush_cur_seq(rq);
267 
268 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
269 		queued |= blk_flush_complete_seq(rq, fq, seq, error);
270 	}
271 
272 	/*
273 	 * Kick the queue to avoid stall for two cases:
274 	 * 1. Moving a request silently to empty queue_head may stall the
275 	 * queue.
276 	 * 2. When flush request is running in non-queueable queue, the
277 	 * queue is hold. Restart the queue after flush request is finished
278 	 * to avoid stall.
279 	 * This function is called from request completion path and calling
280 	 * directly into request_fn may confuse the driver.  Always use
281 	 * kblockd.
282 	 */
283 	if (queued || fq->flush_queue_delayed) {
284 		WARN_ON(q->mq_ops);
285 		blk_run_queue_async(q);
286 	}
287 	fq->flush_queue_delayed = 0;
288 	if (q->mq_ops)
289 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
290 }
291 
292 /**
293  * blk_kick_flush - consider issuing flush request
294  * @q: request_queue being kicked
295  * @fq: flush queue
296  * @flags: cmd_flags of the original request
297  *
298  * Flush related states of @q have changed, consider issuing flush request.
299  * Please read the comment at the top of this file for more info.
300  *
301  * CONTEXT:
302  * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
303  *
304  * RETURNS:
305  * %true if flush was issued, %false otherwise.
306  */
blk_kick_flush(struct request_queue * q,struct blk_flush_queue * fq,unsigned int flags)307 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
308 			   unsigned int flags)
309 {
310 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
311 	struct request *first_rq =
312 		list_first_entry(pending, struct request, flush.list);
313 	struct request *flush_rq = fq->flush_rq;
314 
315 	/* C1 described at the top of this file */
316 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
317 		return false;
318 
319 	/* C2 and C3
320 	 *
321 	 * For blk-mq + scheduling, we can risk having all driver tags
322 	 * assigned to empty flushes, and we deadlock if we are expecting
323 	 * other requests to make progress. Don't defer for that case.
324 	 */
325 	if (!list_empty(&fq->flush_data_in_flight) &&
326 	    !(q->mq_ops && q->elevator) &&
327 	    time_before(jiffies,
328 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
329 		return false;
330 
331 	/*
332 	 * Issue flush and toggle pending_idx.  This makes pending_idx
333 	 * different from running_idx, which means flush is in flight.
334 	 */
335 	fq->flush_pending_idx ^= 1;
336 
337 	blk_rq_init(q, flush_rq);
338 
339 	/*
340 	 * In case of none scheduler, borrow tag from the first request
341 	 * since they can't be in flight at the same time. And acquire
342 	 * the tag's ownership for flush req.
343 	 *
344 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
345 	 * just for cheating put/get driver tag.
346 	 */
347 	if (q->mq_ops) {
348 		struct blk_mq_hw_ctx *hctx;
349 
350 		flush_rq->mq_ctx = first_rq->mq_ctx;
351 
352 		if (!q->elevator) {
353 			fq->orig_rq = first_rq;
354 			flush_rq->tag = first_rq->tag;
355 			hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
356 			blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
357 		} else {
358 			flush_rq->internal_tag = first_rq->internal_tag;
359 		}
360 	}
361 
362 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
363 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
364 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
365 	flush_rq->rq_disk = first_rq->rq_disk;
366 	flush_rq->end_io = flush_end_io;
367 
368 	return blk_flush_queue_rq(flush_rq, false);
369 }
370 
flush_data_end_io(struct request * rq,blk_status_t error)371 static void flush_data_end_io(struct request *rq, blk_status_t error)
372 {
373 	struct request_queue *q = rq->q;
374 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
375 
376 	lockdep_assert_held(q->queue_lock);
377 
378 	/*
379 	 * Updating q->in_flight[] here for making this tag usable
380 	 * early. Because in blk_queue_start_tag(),
381 	 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
382 	 * reserve tags for sync I/O.
383 	 *
384 	 * More importantly this way can avoid the following I/O
385 	 * deadlock:
386 	 *
387 	 * - suppose there are 40 fua requests comming to flush queue
388 	 *   and queue depth is 31
389 	 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
390 	 *   tag for async I/O any more
391 	 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
392 	 *   and flush_data_end_io() is called
393 	 * - the other rqs still can't go ahead if not updating
394 	 *   q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
395 	 *   are held in flush data queue and make no progress of
396 	 *   handling post flush rq
397 	 * - only after the post flush rq is handled, all these rqs
398 	 *   can be completed
399 	 */
400 
401 	elv_completed_request(q, rq);
402 
403 	/* for avoiding double accounting */
404 	rq->rq_flags &= ~RQF_STARTED;
405 
406 	/*
407 	 * After populating an empty queue, kick it to avoid stall.  Read
408 	 * the comment in flush_end_io().
409 	 */
410 	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
411 		blk_run_queue_async(q);
412 }
413 
mq_flush_data_end_io(struct request * rq,blk_status_t error)414 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
415 {
416 	struct request_queue *q = rq->q;
417 	struct blk_mq_hw_ctx *hctx;
418 	struct blk_mq_ctx *ctx = rq->mq_ctx;
419 	unsigned long flags;
420 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
421 
422 	hctx = blk_mq_map_queue(q, ctx->cpu);
423 
424 	if (q->elevator) {
425 		WARN_ON(rq->tag < 0);
426 		blk_mq_put_driver_tag_hctx(hctx, rq);
427 	}
428 
429 	/*
430 	 * After populating an empty queue, kick it to avoid stall.  Read
431 	 * the comment in flush_end_io().
432 	 */
433 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
434 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
435 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
436 
437 	blk_mq_sched_restart(hctx);
438 }
439 
440 /**
441  * blk_insert_flush - insert a new PREFLUSH/FUA request
442  * @rq: request to insert
443  *
444  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
445  * or __blk_mq_run_hw_queue() to dispatch request.
446  * @rq is being submitted.  Analyze what needs to be done and put it on the
447  * right queue.
448  */
blk_insert_flush(struct request * rq)449 void blk_insert_flush(struct request *rq)
450 {
451 	struct request_queue *q = rq->q;
452 	unsigned long fflags = q->queue_flags;	/* may change, cache */
453 	unsigned int policy = blk_flush_policy(fflags, rq);
454 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
455 
456 	if (!q->mq_ops)
457 		lockdep_assert_held(q->queue_lock);
458 
459 	/*
460 	 * @policy now records what operations need to be done.  Adjust
461 	 * REQ_PREFLUSH and FUA for the driver.
462 	 */
463 	rq->cmd_flags &= ~REQ_PREFLUSH;
464 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
465 		rq->cmd_flags &= ~REQ_FUA;
466 
467 	/*
468 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
469 	 * of those flags, we have to set REQ_SYNC to avoid skewing
470 	 * the request accounting.
471 	 */
472 	rq->cmd_flags |= REQ_SYNC;
473 
474 	/*
475 	 * An empty flush handed down from a stacking driver may
476 	 * translate into nothing if the underlying device does not
477 	 * advertise a write-back cache.  In this case, simply
478 	 * complete the request.
479 	 */
480 	if (!policy) {
481 		if (q->mq_ops)
482 			blk_mq_end_request(rq, 0);
483 		else
484 			__blk_end_request(rq, 0, 0);
485 		return;
486 	}
487 
488 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
489 
490 	/*
491 	 * If there's data but flush is not necessary, the request can be
492 	 * processed directly without going through flush machinery.  Queue
493 	 * for normal execution.
494 	 */
495 	if ((policy & REQ_FSEQ_DATA) &&
496 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
497 		if (q->mq_ops)
498 			blk_mq_request_bypass_insert(rq, false);
499 		else
500 			list_add_tail(&rq->queuelist, &q->queue_head);
501 		return;
502 	}
503 
504 	/*
505 	 * @rq should go through flush machinery.  Mark it part of flush
506 	 * sequence and submit for further processing.
507 	 */
508 	memset(&rq->flush, 0, sizeof(rq->flush));
509 	INIT_LIST_HEAD(&rq->flush.list);
510 	rq->rq_flags |= RQF_FLUSH_SEQ;
511 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
512 	if (q->mq_ops) {
513 		rq->end_io = mq_flush_data_end_io;
514 
515 		spin_lock_irq(&fq->mq_flush_lock);
516 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
517 		spin_unlock_irq(&fq->mq_flush_lock);
518 		return;
519 	}
520 	rq->end_io = flush_data_end_io;
521 
522 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
523 }
524 
525 /**
526  * blkdev_issue_flush - queue a flush
527  * @bdev:	blockdev to issue flush for
528  * @gfp_mask:	memory allocation flags (for bio_alloc)
529  * @error_sector:	error sector
530  *
531  * Description:
532  *    Issue a flush for the block device in question. Caller can supply
533  *    room for storing the error offset in case of a flush error, if they
534  *    wish to.
535  */
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)536 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
537 		sector_t *error_sector)
538 {
539 	struct request_queue *q;
540 	struct bio *bio;
541 	int ret = 0;
542 
543 	if (bdev->bd_disk == NULL)
544 		return -ENXIO;
545 
546 	q = bdev_get_queue(bdev);
547 	if (!q)
548 		return -ENXIO;
549 
550 	/*
551 	 * some block devices may not have their queue correctly set up here
552 	 * (e.g. loop device without a backing file) and so issuing a flush
553 	 * here will panic. Ensure there is a request function before issuing
554 	 * the flush.
555 	 */
556 	if (!q->make_request_fn)
557 		return -ENXIO;
558 
559 	bio = bio_alloc(gfp_mask, 0);
560 	bio_set_dev(bio, bdev);
561 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
562 
563 	ret = submit_bio_wait(bio);
564 
565 	/*
566 	 * The driver must store the error location in ->bi_sector, if
567 	 * it supports it. For non-stacked drivers, this should be
568 	 * copied from blk_rq_pos(rq).
569 	 */
570 	if (error_sector)
571 		*error_sector = bio->bi_iter.bi_sector;
572 
573 	bio_put(bio);
574 	return ret;
575 }
576 EXPORT_SYMBOL(blkdev_issue_flush);
577 
blk_alloc_flush_queue(struct request_queue * q,int node,int cmd_size,gfp_t flags)578 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
579 		int node, int cmd_size, gfp_t flags)
580 {
581 	struct blk_flush_queue *fq;
582 	int rq_sz = sizeof(struct request);
583 
584 	fq = kzalloc_node(sizeof(*fq), flags, node);
585 	if (!fq)
586 		goto fail;
587 
588 	if (q->mq_ops)
589 		spin_lock_init(&fq->mq_flush_lock);
590 
591 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
592 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
593 	if (!fq->flush_rq)
594 		goto fail_rq;
595 
596 	INIT_LIST_HEAD(&fq->flush_queue[0]);
597 	INIT_LIST_HEAD(&fq->flush_queue[1]);
598 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
599 
600 	return fq;
601 
602  fail_rq:
603 	kfree(fq);
604  fail:
605 	return NULL;
606 }
607 
blk_free_flush_queue(struct blk_flush_queue * fq)608 void blk_free_flush_queue(struct blk_flush_queue *fq)
609 {
610 	/* bio based request queue hasn't flush queue */
611 	if (!fq)
612 		return;
613 
614 	kfree(fq->flush_rq);
615 	kfree(fq);
616 }
617