1 /*
2 * Functions to sequence PREFLUSH and FUA writes.
3 *
4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11 * properties and hardware capability.
12 *
13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
14 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
15 * that the device cache should be flushed before the data is executed, and
16 * REQ_FUA means that the data must be on non-volatile media on request
17 * completion.
18 *
19 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
20 * difference. The requests are either completed immediately if there's no data
21 * or executed as normal requests otherwise.
22 *
23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25 *
26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28 *
29 * The actual execution of flush is double buffered. Whenever a request
30 * needs to execute PRE or POSTFLUSH, it queues at
31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
32 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
33 * completes, all the requests which were pending are proceeded to the next
34 * step. This allows arbitrary merging of different types of PREFLUSH/FUA
35 * requests.
36 *
37 * Currently, the following conditions are used to determine when to issue
38 * flush.
39 *
40 * C1. At any given time, only one flush shall be in progress. This makes
41 * double buffering sufficient.
42 *
43 * C2. Flush is deferred if any request is executing DATA of its sequence.
44 * This avoids issuing separate POSTFLUSHes for requests which shared
45 * PREFLUSH.
46 *
47 * C3. The second condition is ignored if there is a request which has
48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
49 * starvation in the unlikely case where there are continuous stream of
50 * FUA (without PREFLUSH) requests.
51 *
52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53 * is beneficial.
54 *
55 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
56 * Once while executing DATA and again after the whole sequence is
57 * complete. The first completion updates the contained bio but doesn't
58 * finish it so that the bio submitter is notified only after the whole
59 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
60 * req_bio_endio().
61 *
62 * The above peculiarity requires that each PREFLUSH/FUA request has only one
63 * bio attached to it, which is guaranteed as they aren't allowed to be
64 * merged in the usual way.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78
79 /* PREFLUSH/FUA sequences */
80 enum {
81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
84 REQ_FSEQ_DONE = (1 << 3),
85
86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 REQ_FSEQ_POSTFLUSH,
88
89 /*
90 * If flush has been pending longer than the following timeout,
91 * it's issued even if flush_data requests are still in flight.
92 */
93 FLUSH_PENDING_TIMEOUT = 5 * HZ,
94 };
95
96 static bool blk_kick_flush(struct request_queue *q,
97 struct blk_flush_queue *fq, unsigned int flags);
98
blk_flush_policy(unsigned long fflags,struct request * rq)99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100 {
101 unsigned int policy = 0;
102
103 if (blk_rq_sectors(rq))
104 policy |= REQ_FSEQ_DATA;
105
106 if (fflags & (1UL << QUEUE_FLAG_WC)) {
107 if (rq->cmd_flags & REQ_PREFLUSH)
108 policy |= REQ_FSEQ_PREFLUSH;
109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110 (rq->cmd_flags & REQ_FUA))
111 policy |= REQ_FSEQ_POSTFLUSH;
112 }
113 return policy;
114 }
115
blk_flush_cur_seq(struct request * rq)116 static unsigned int blk_flush_cur_seq(struct request *rq)
117 {
118 return 1 << ffz(rq->flush.seq);
119 }
120
blk_flush_restore_request(struct request * rq)121 static void blk_flush_restore_request(struct request *rq)
122 {
123 /*
124 * After flush data completion, @rq->bio is %NULL but we need to
125 * complete the bio again. @rq->biotail is guaranteed to equal the
126 * original @rq->bio. Restore it.
127 */
128 rq->bio = rq->biotail;
129
130 /* make @rq a normal request */
131 rq->rq_flags &= ~RQF_FLUSH_SEQ;
132 rq->end_io = rq->flush.saved_end_io;
133 }
134
blk_flush_queue_rq(struct request * rq,bool add_front)135 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
136 {
137 if (rq->q->mq_ops) {
138 blk_mq_add_to_requeue_list(rq, add_front, true);
139 return false;
140 } else {
141 if (add_front)
142 list_add(&rq->queuelist, &rq->q->queue_head);
143 else
144 list_add_tail(&rq->queuelist, &rq->q->queue_head);
145 return true;
146 }
147 }
148
149 /**
150 * blk_flush_complete_seq - complete flush sequence
151 * @rq: PREFLUSH/FUA request being sequenced
152 * @fq: flush queue
153 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
154 * @error: whether an error occurred
155 *
156 * @rq just completed @seq part of its flush sequence, record the
157 * completion and trigger the next step.
158 *
159 * CONTEXT:
160 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
161 *
162 * RETURNS:
163 * %true if requests were added to the dispatch queue, %false otherwise.
164 */
blk_flush_complete_seq(struct request * rq,struct blk_flush_queue * fq,unsigned int seq,blk_status_t error)165 static bool blk_flush_complete_seq(struct request *rq,
166 struct blk_flush_queue *fq,
167 unsigned int seq, blk_status_t error)
168 {
169 struct request_queue *q = rq->q;
170 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
171 bool queued = false, kicked;
172 unsigned int cmd_flags;
173
174 BUG_ON(rq->flush.seq & seq);
175 rq->flush.seq |= seq;
176 cmd_flags = rq->cmd_flags;
177
178 if (likely(!error))
179 seq = blk_flush_cur_seq(rq);
180 else
181 seq = REQ_FSEQ_DONE;
182
183 switch (seq) {
184 case REQ_FSEQ_PREFLUSH:
185 case REQ_FSEQ_POSTFLUSH:
186 /* queue for flush */
187 if (list_empty(pending))
188 fq->flush_pending_since = jiffies;
189 list_move_tail(&rq->flush.list, pending);
190 break;
191
192 case REQ_FSEQ_DATA:
193 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
194 queued = blk_flush_queue_rq(rq, true);
195 break;
196
197 case REQ_FSEQ_DONE:
198 /*
199 * @rq was previously adjusted by blk_flush_issue() for
200 * flush sequencing and may already have gone through the
201 * flush data request completion path. Restore @rq for
202 * normal completion and end it.
203 */
204 BUG_ON(!list_empty(&rq->queuelist));
205 list_del_init(&rq->flush.list);
206 blk_flush_restore_request(rq);
207 if (q->mq_ops)
208 blk_mq_end_request(rq, error);
209 else
210 __blk_end_request_all(rq, error);
211 break;
212
213 default:
214 BUG();
215 }
216
217 kicked = blk_kick_flush(q, fq, cmd_flags);
218 return kicked | queued;
219 }
220
flush_end_io(struct request * flush_rq,blk_status_t error)221 static void flush_end_io(struct request *flush_rq, blk_status_t error)
222 {
223 struct request_queue *q = flush_rq->q;
224 struct list_head *running;
225 bool queued = false;
226 struct request *rq, *n;
227 unsigned long flags = 0;
228 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
229
230 if (q->mq_ops) {
231 struct blk_mq_hw_ctx *hctx;
232
233 /* release the tag's ownership to the req cloned from */
234 spin_lock_irqsave(&fq->mq_flush_lock, flags);
235
236 if (!refcount_dec_and_test(&flush_rq->ref)) {
237 fq->rq_status = error;
238 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
239 return;
240 }
241
242 if (fq->rq_status != BLK_STS_OK)
243 error = fq->rq_status;
244
245 hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
246 if (!q->elevator) {
247 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
248 flush_rq->tag = -1;
249 } else {
250 blk_mq_put_driver_tag_hctx(hctx, flush_rq);
251 flush_rq->internal_tag = -1;
252 }
253 }
254
255 running = &fq->flush_queue[fq->flush_running_idx];
256 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
257
258 /* account completion of the flush request */
259 fq->flush_running_idx ^= 1;
260
261 if (!q->mq_ops)
262 elv_completed_request(q, flush_rq);
263
264 /* and push the waiting requests to the next stage */
265 list_for_each_entry_safe(rq, n, running, flush.list) {
266 unsigned int seq = blk_flush_cur_seq(rq);
267
268 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
269 queued |= blk_flush_complete_seq(rq, fq, seq, error);
270 }
271
272 /*
273 * Kick the queue to avoid stall for two cases:
274 * 1. Moving a request silently to empty queue_head may stall the
275 * queue.
276 * 2. When flush request is running in non-queueable queue, the
277 * queue is hold. Restart the queue after flush request is finished
278 * to avoid stall.
279 * This function is called from request completion path and calling
280 * directly into request_fn may confuse the driver. Always use
281 * kblockd.
282 */
283 if (queued || fq->flush_queue_delayed) {
284 WARN_ON(q->mq_ops);
285 blk_run_queue_async(q);
286 }
287 fq->flush_queue_delayed = 0;
288 if (q->mq_ops)
289 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
290 }
291
292 /**
293 * blk_kick_flush - consider issuing flush request
294 * @q: request_queue being kicked
295 * @fq: flush queue
296 * @flags: cmd_flags of the original request
297 *
298 * Flush related states of @q have changed, consider issuing flush request.
299 * Please read the comment at the top of this file for more info.
300 *
301 * CONTEXT:
302 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
303 *
304 * RETURNS:
305 * %true if flush was issued, %false otherwise.
306 */
blk_kick_flush(struct request_queue * q,struct blk_flush_queue * fq,unsigned int flags)307 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
308 unsigned int flags)
309 {
310 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
311 struct request *first_rq =
312 list_first_entry(pending, struct request, flush.list);
313 struct request *flush_rq = fq->flush_rq;
314
315 /* C1 described at the top of this file */
316 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
317 return false;
318
319 /* C2 and C3
320 *
321 * For blk-mq + scheduling, we can risk having all driver tags
322 * assigned to empty flushes, and we deadlock if we are expecting
323 * other requests to make progress. Don't defer for that case.
324 */
325 if (!list_empty(&fq->flush_data_in_flight) &&
326 !(q->mq_ops && q->elevator) &&
327 time_before(jiffies,
328 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
329 return false;
330
331 /*
332 * Issue flush and toggle pending_idx. This makes pending_idx
333 * different from running_idx, which means flush is in flight.
334 */
335 fq->flush_pending_idx ^= 1;
336
337 blk_rq_init(q, flush_rq);
338
339 /*
340 * In case of none scheduler, borrow tag from the first request
341 * since they can't be in flight at the same time. And acquire
342 * the tag's ownership for flush req.
343 *
344 * In case of IO scheduler, flush rq need to borrow scheduler tag
345 * just for cheating put/get driver tag.
346 */
347 if (q->mq_ops) {
348 struct blk_mq_hw_ctx *hctx;
349
350 flush_rq->mq_ctx = first_rq->mq_ctx;
351
352 if (!q->elevator) {
353 fq->orig_rq = first_rq;
354 flush_rq->tag = first_rq->tag;
355 hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
356 blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
357 } else {
358 flush_rq->internal_tag = first_rq->internal_tag;
359 }
360 }
361
362 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
363 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
364 flush_rq->rq_flags |= RQF_FLUSH_SEQ;
365 flush_rq->rq_disk = first_rq->rq_disk;
366 flush_rq->end_io = flush_end_io;
367
368 return blk_flush_queue_rq(flush_rq, false);
369 }
370
flush_data_end_io(struct request * rq,blk_status_t error)371 static void flush_data_end_io(struct request *rq, blk_status_t error)
372 {
373 struct request_queue *q = rq->q;
374 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
375
376 lockdep_assert_held(q->queue_lock);
377
378 /*
379 * Updating q->in_flight[] here for making this tag usable
380 * early. Because in blk_queue_start_tag(),
381 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
382 * reserve tags for sync I/O.
383 *
384 * More importantly this way can avoid the following I/O
385 * deadlock:
386 *
387 * - suppose there are 40 fua requests comming to flush queue
388 * and queue depth is 31
389 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
390 * tag for async I/O any more
391 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
392 * and flush_data_end_io() is called
393 * - the other rqs still can't go ahead if not updating
394 * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
395 * are held in flush data queue and make no progress of
396 * handling post flush rq
397 * - only after the post flush rq is handled, all these rqs
398 * can be completed
399 */
400
401 elv_completed_request(q, rq);
402
403 /* for avoiding double accounting */
404 rq->rq_flags &= ~RQF_STARTED;
405
406 /*
407 * After populating an empty queue, kick it to avoid stall. Read
408 * the comment in flush_end_io().
409 */
410 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
411 blk_run_queue_async(q);
412 }
413
mq_flush_data_end_io(struct request * rq,blk_status_t error)414 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
415 {
416 struct request_queue *q = rq->q;
417 struct blk_mq_hw_ctx *hctx;
418 struct blk_mq_ctx *ctx = rq->mq_ctx;
419 unsigned long flags;
420 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
421
422 hctx = blk_mq_map_queue(q, ctx->cpu);
423
424 if (q->elevator) {
425 WARN_ON(rq->tag < 0);
426 blk_mq_put_driver_tag_hctx(hctx, rq);
427 }
428
429 /*
430 * After populating an empty queue, kick it to avoid stall. Read
431 * the comment in flush_end_io().
432 */
433 spin_lock_irqsave(&fq->mq_flush_lock, flags);
434 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
435 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
436
437 blk_mq_sched_restart(hctx);
438 }
439
440 /**
441 * blk_insert_flush - insert a new PREFLUSH/FUA request
442 * @rq: request to insert
443 *
444 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
445 * or __blk_mq_run_hw_queue() to dispatch request.
446 * @rq is being submitted. Analyze what needs to be done and put it on the
447 * right queue.
448 */
blk_insert_flush(struct request * rq)449 void blk_insert_flush(struct request *rq)
450 {
451 struct request_queue *q = rq->q;
452 unsigned long fflags = q->queue_flags; /* may change, cache */
453 unsigned int policy = blk_flush_policy(fflags, rq);
454 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
455
456 if (!q->mq_ops)
457 lockdep_assert_held(q->queue_lock);
458
459 /*
460 * @policy now records what operations need to be done. Adjust
461 * REQ_PREFLUSH and FUA for the driver.
462 */
463 rq->cmd_flags &= ~REQ_PREFLUSH;
464 if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
465 rq->cmd_flags &= ~REQ_FUA;
466
467 /*
468 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
469 * of those flags, we have to set REQ_SYNC to avoid skewing
470 * the request accounting.
471 */
472 rq->cmd_flags |= REQ_SYNC;
473
474 /*
475 * An empty flush handed down from a stacking driver may
476 * translate into nothing if the underlying device does not
477 * advertise a write-back cache. In this case, simply
478 * complete the request.
479 */
480 if (!policy) {
481 if (q->mq_ops)
482 blk_mq_end_request(rq, 0);
483 else
484 __blk_end_request(rq, 0, 0);
485 return;
486 }
487
488 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
489
490 /*
491 * If there's data but flush is not necessary, the request can be
492 * processed directly without going through flush machinery. Queue
493 * for normal execution.
494 */
495 if ((policy & REQ_FSEQ_DATA) &&
496 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
497 if (q->mq_ops)
498 blk_mq_request_bypass_insert(rq, false);
499 else
500 list_add_tail(&rq->queuelist, &q->queue_head);
501 return;
502 }
503
504 /*
505 * @rq should go through flush machinery. Mark it part of flush
506 * sequence and submit for further processing.
507 */
508 memset(&rq->flush, 0, sizeof(rq->flush));
509 INIT_LIST_HEAD(&rq->flush.list);
510 rq->rq_flags |= RQF_FLUSH_SEQ;
511 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
512 if (q->mq_ops) {
513 rq->end_io = mq_flush_data_end_io;
514
515 spin_lock_irq(&fq->mq_flush_lock);
516 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
517 spin_unlock_irq(&fq->mq_flush_lock);
518 return;
519 }
520 rq->end_io = flush_data_end_io;
521
522 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
523 }
524
525 /**
526 * blkdev_issue_flush - queue a flush
527 * @bdev: blockdev to issue flush for
528 * @gfp_mask: memory allocation flags (for bio_alloc)
529 * @error_sector: error sector
530 *
531 * Description:
532 * Issue a flush for the block device in question. Caller can supply
533 * room for storing the error offset in case of a flush error, if they
534 * wish to.
535 */
blkdev_issue_flush(struct block_device * bdev,gfp_t gfp_mask,sector_t * error_sector)536 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
537 sector_t *error_sector)
538 {
539 struct request_queue *q;
540 struct bio *bio;
541 int ret = 0;
542
543 if (bdev->bd_disk == NULL)
544 return -ENXIO;
545
546 q = bdev_get_queue(bdev);
547 if (!q)
548 return -ENXIO;
549
550 /*
551 * some block devices may not have their queue correctly set up here
552 * (e.g. loop device without a backing file) and so issuing a flush
553 * here will panic. Ensure there is a request function before issuing
554 * the flush.
555 */
556 if (!q->make_request_fn)
557 return -ENXIO;
558
559 bio = bio_alloc(gfp_mask, 0);
560 bio_set_dev(bio, bdev);
561 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
562
563 ret = submit_bio_wait(bio);
564
565 /*
566 * The driver must store the error location in ->bi_sector, if
567 * it supports it. For non-stacked drivers, this should be
568 * copied from blk_rq_pos(rq).
569 */
570 if (error_sector)
571 *error_sector = bio->bi_iter.bi_sector;
572
573 bio_put(bio);
574 return ret;
575 }
576 EXPORT_SYMBOL(blkdev_issue_flush);
577
blk_alloc_flush_queue(struct request_queue * q,int node,int cmd_size,gfp_t flags)578 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
579 int node, int cmd_size, gfp_t flags)
580 {
581 struct blk_flush_queue *fq;
582 int rq_sz = sizeof(struct request);
583
584 fq = kzalloc_node(sizeof(*fq), flags, node);
585 if (!fq)
586 goto fail;
587
588 if (q->mq_ops)
589 spin_lock_init(&fq->mq_flush_lock);
590
591 rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
592 fq->flush_rq = kzalloc_node(rq_sz, flags, node);
593 if (!fq->flush_rq)
594 goto fail_rq;
595
596 INIT_LIST_HEAD(&fq->flush_queue[0]);
597 INIT_LIST_HEAD(&fq->flush_queue[1]);
598 INIT_LIST_HEAD(&fq->flush_data_in_flight);
599
600 return fq;
601
602 fail_rq:
603 kfree(fq);
604 fail:
605 return NULL;
606 }
607
blk_free_flush_queue(struct blk_flush_queue * fq)608 void blk_free_flush_queue(struct blk_flush_queue *fq)
609 {
610 /* bio based request queue hasn't flush queue */
611 if (!fq)
612 return;
613
614 kfree(fq->flush_rq);
615 kfree(fq);
616 }
617