1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
blk_mq_poll_stats_bkt(const struct request * rq)44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 /*
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
102 */
103 if (rq->part == mi->part)
104 mi->inflight[0]++;
105 if (mi->part->partno)
106 mi->inflight[1]++;
107 }
108
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 unsigned int inflight[2])
111 {
112 struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114 inflight[0] = inflight[1] = 0;
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
blk_mq_check_inflight_rw(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 struct request *rq, void *priv,
120 bool reserved)
121 {
122 struct mq_inflight *mi = priv;
123
124 if (rq->part == mi->part)
125 mi->inflight[rq_data_dir(rq)]++;
126 }
127
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 unsigned int inflight[2])
130 {
131 struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133 inflight[0] = inflight[1] = 0;
134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
blk_freeze_queue_start(struct request_queue * q)137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 int freeze_depth;
140
141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 if (freeze_depth == 1) {
143 percpu_ref_kill(&q->q_usage_counter);
144 if (q->mq_ops)
145 blk_mq_run_hw_queues(q, false);
146 }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
blk_mq_freeze_queue_wait(struct request_queue * q)150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 unsigned long timeout)
158 {
159 return wait_event_timeout(q->mq_freeze_wq,
160 percpu_ref_is_zero(&q->q_usage_counter),
161 timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
168 */
blk_freeze_queue(struct request_queue * q)169 void blk_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
177 */
178 blk_freeze_queue_start(q);
179 if (!q->mq_ops)
180 blk_drain_queue(q);
181 blk_mq_freeze_queue_wait(q);
182 }
183
blk_mq_freeze_queue(struct request_queue * q)184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 /*
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
189 */
190 blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
blk_mq_unfreeze_queue(struct request_queue * q)194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 int freeze_depth;
197
198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 WARN_ON_ONCE(freeze_depth < 0);
200 if (!freeze_depth) {
201 percpu_ref_reinit(&q->q_usage_counter);
202 wake_up_all(&q->mq_freeze_wq);
203 }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
210 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 * @q: request queue.
220 *
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
225 */
blk_mq_quiesce_queue(struct request_queue * q)226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 struct blk_mq_hw_ctx *hctx;
229 unsigned int i;
230 bool rcu = false;
231
232 blk_mq_quiesce_queue_nowait(q);
233
234 queue_for_each_hw_ctx(q, hctx, i) {
235 if (hctx->flags & BLK_MQ_F_BLOCKING)
236 synchronize_srcu(hctx->srcu);
237 else
238 rcu = true;
239 }
240 if (rcu)
241 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247 * @q: request queue.
248 *
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
251 */
blk_mq_unquiesce_queue(struct request_queue * q)252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
blk_mq_wake_waiters(struct request_queue * q)261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 struct blk_mq_hw_ctx *hctx;
264 unsigned int i;
265
266 queue_for_each_hw_ctx(q, hctx, i)
267 if (blk_mq_hw_queue_mapped(hctx))
268 blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
blk_mq_can_queue(struct blk_mq_hw_ctx * hctx)271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,unsigned int op)277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, unsigned int op)
279 {
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282 req_flags_t rq_flags = 0;
283
284 if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 rq->tag = -1;
286 rq->internal_tag = tag;
287 } else {
288 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 rq_flags = RQF_MQ_INFLIGHT;
290 atomic_inc(&data->hctx->nr_active);
291 }
292 rq->tag = tag;
293 rq->internal_tag = -1;
294 data->hctx->tags->rqs[rq->tag] = rq;
295 }
296
297 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->q = data->q;
299 rq->mq_ctx = data->ctx;
300 rq->rq_flags = rq_flags;
301 rq->cpu = -1;
302 rq->cmd_flags = op;
303 if (data->flags & BLK_MQ_REQ_PREEMPT)
304 rq->rq_flags |= RQF_PREEMPT;
305 if (blk_queue_io_stat(data->q))
306 rq->rq_flags |= RQF_IO_STAT;
307 INIT_LIST_HEAD(&rq->queuelist);
308 INIT_HLIST_NODE(&rq->hash);
309 RB_CLEAR_NODE(&rq->rb_node);
310 rq->rq_disk = NULL;
311 rq->part = NULL;
312 rq->start_time_ns = ktime_get_ns();
313 rq->io_start_time_ns = 0;
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321 rq->__deadline = 0;
322
323 INIT_LIST_HEAD(&rq->timeout_list);
324 rq->timeout = 0;
325
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328 rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331 rq->rl = NULL;
332 #endif
333
334 data->ctx->rq_dispatched[op_is_sync(op)]++;
335 refcount_set(&rq->ref, 1);
336 return rq;
337 }
338
blk_mq_get_request(struct request_queue * q,struct bio * bio,unsigned int op,struct blk_mq_alloc_data * data)339 static struct request *blk_mq_get_request(struct request_queue *q,
340 struct bio *bio, unsigned int op,
341 struct blk_mq_alloc_data *data)
342 {
343 struct elevator_queue *e = q->elevator;
344 struct request *rq;
345 unsigned int tag;
346 bool put_ctx_on_error = false;
347
348 blk_queue_enter_live(q);
349 data->q = q;
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 put_ctx_on_error = true;
353 }
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 if (op & REQ_NOWAIT)
357 data->flags |= BLK_MQ_REQ_NOWAIT;
358
359 if (e) {
360 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362 /*
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
366 */
367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.mq.limit_depth(op, data);
370 } else {
371 blk_mq_tag_busy(data->hctx);
372 }
373
374 tag = blk_mq_get_tag(data);
375 if (tag == BLK_MQ_TAG_FAIL) {
376 if (put_ctx_on_error) {
377 blk_mq_put_ctx(data->ctx);
378 data->ctx = NULL;
379 }
380 blk_queue_exit(q);
381 return NULL;
382 }
383
384 rq = blk_mq_rq_ctx_init(data, tag, op);
385 if (!op_is_flush(op)) {
386 rq->elv.icq = NULL;
387 if (e && e->type->ops.mq.prepare_request) {
388 if (e->type->icq_cache && rq_ioc(bio))
389 blk_mq_sched_assign_ioc(rq, bio);
390
391 e->type->ops.mq.prepare_request(rq, bio);
392 rq->rq_flags |= RQF_ELVPRIV;
393 }
394 }
395 data->hctx->queued++;
396 return rq;
397 }
398
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
401 {
402 struct blk_mq_alloc_data alloc_data = { .flags = flags };
403 struct request *rq;
404 int ret;
405
406 ret = blk_queue_enter(q, flags);
407 if (ret)
408 return ERR_PTR(ret);
409
410 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411 blk_queue_exit(q);
412
413 if (!rq)
414 return ERR_PTR(-EWOULDBLOCK);
415
416 blk_mq_put_ctx(alloc_data.ctx);
417
418 rq->__data_len = 0;
419 rq->__sector = (sector_t) -1;
420 rq->bio = rq->biotail = NULL;
421 return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428 struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 struct request *rq;
430 unsigned int cpu;
431 int ret;
432
433 /*
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
437 * a specific queue.
438 */
439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 return ERR_PTR(-EINVAL);
441
442 if (hctx_idx >= q->nr_hw_queues)
443 return ERR_PTR(-EIO);
444
445 ret = blk_queue_enter(q, flags);
446 if (ret)
447 return ERR_PTR(ret);
448
449 /*
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
452 */
453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 blk_queue_exit(q);
456 return ERR_PTR(-EXDEV);
457 }
458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460
461 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462 blk_queue_exit(q);
463
464 if (!rq)
465 return ERR_PTR(-EWOULDBLOCK);
466
467 return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470
__blk_mq_free_request(struct request * rq)471 static void __blk_mq_free_request(struct request *rq)
472 {
473 struct request_queue *q = rq->q;
474 struct blk_mq_ctx *ctx = rq->mq_ctx;
475 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 const int sched_tag = rq->internal_tag;
477
478 if (rq->tag != -1)
479 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480 if (sched_tag != -1)
481 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 blk_mq_sched_restart(hctx);
483 blk_queue_exit(q);
484 }
485
blk_mq_free_request(struct request * rq)486 void blk_mq_free_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489 struct elevator_queue *e = q->elevator;
490 struct blk_mq_ctx *ctx = rq->mq_ctx;
491 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
492
493 if (rq->rq_flags & RQF_ELVPRIV) {
494 if (e && e->type->ops.mq.finish_request)
495 e->type->ops.mq.finish_request(rq);
496 if (rq->elv.icq) {
497 put_io_context(rq->elv.icq->ioc);
498 rq->elv.icq = NULL;
499 }
500 }
501
502 ctx->rq_completed[rq_is_sync(rq)]++;
503 if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 atomic_dec(&hctx->nr_active);
505
506 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 laptop_io_completion(q->backing_dev_info);
508
509 rq_qos_done(q, rq);
510
511 if (blk_rq_rl(rq))
512 blk_put_rl(blk_rq_rl(rq));
513
514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 if (refcount_dec_and_test(&rq->ref))
516 __blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
__blk_mq_end_request(struct request * rq,blk_status_t error)520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 u64 now = ktime_get_ns();
523
524 if (rq->rq_flags & RQF_STATS) {
525 blk_mq_poll_stats_start(rq->q);
526 blk_stat_add(rq, now);
527 }
528
529 blk_account_io_done(rq, now);
530
531 if (rq->end_io) {
532 rq_qos_done(rq->q, rq);
533 rq->end_io(rq, error);
534 } else {
535 if (unlikely(blk_bidi_rq(rq)))
536 blk_mq_free_request(rq->next_rq);
537 blk_mq_free_request(rq);
538 }
539 }
540 EXPORT_SYMBOL(__blk_mq_end_request);
541
blk_mq_end_request(struct request * rq,blk_status_t error)542 void blk_mq_end_request(struct request *rq, blk_status_t error)
543 {
544 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545 BUG();
546 __blk_mq_end_request(rq, error);
547 }
548 EXPORT_SYMBOL(blk_mq_end_request);
549
__blk_mq_complete_request_remote(void * data)550 static void __blk_mq_complete_request_remote(void *data)
551 {
552 struct request *rq = data;
553
554 rq->q->softirq_done_fn(rq);
555 }
556
__blk_mq_complete_request(struct request * rq)557 static void __blk_mq_complete_request(struct request *rq)
558 {
559 struct blk_mq_ctx *ctx = rq->mq_ctx;
560 bool shared = false;
561 int cpu;
562
563 if (!blk_mq_mark_complete(rq))
564 return;
565 if (rq->internal_tag != -1)
566 blk_mq_sched_completed_request(rq);
567
568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 rq->q->softirq_done_fn(rq);
570 return;
571 }
572
573 cpu = get_cpu();
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 shared = cpus_share_cache(cpu, ctx->cpu);
576
577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 rq->csd.func = __blk_mq_complete_request_remote;
579 rq->csd.info = rq;
580 rq->csd.flags = 0;
581 smp_call_function_single_async(ctx->cpu, &rq->csd);
582 } else {
583 rq->q->softirq_done_fn(rq);
584 }
585 put_cpu();
586 }
587
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 __releases(hctx->srcu)
590 {
591 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 rcu_read_unlock();
593 else
594 srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 __acquires(hctx->srcu)
599 {
600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 /* shut up gcc false positive */
602 *srcu_idx = 0;
603 rcu_read_lock();
604 } else
605 *srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607
608 /**
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
611 *
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
615 **/
blk_mq_complete_request(struct request * rq)616 void blk_mq_complete_request(struct request *rq)
617 {
618 if (unlikely(blk_should_fake_timeout(rq->q)))
619 return;
620 __blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623
blk_mq_request_started(struct request * rq)624 int blk_mq_request_started(struct request *rq)
625 {
626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629
blk_mq_start_request(struct request * rq)630 void blk_mq_start_request(struct request *rq)
631 {
632 struct request_queue *q = rq->q;
633
634 blk_mq_sched_started_request(rq);
635
636 trace_block_rq_issue(q, rq);
637
638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 rq->rq_flags |= RQF_STATS;
644 rq_qos_issue(q, rq);
645 }
646
647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648
649 blk_add_timer(rq);
650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651
652 if (q->dma_drain_size && blk_rq_bytes(rq)) {
653 /*
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
657 */
658 rq->nr_phys_segments++;
659 }
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662
__blk_mq_requeue_request(struct request * rq)663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665 struct request_queue *q = rq->q;
666
667 blk_mq_put_driver_tag(rq);
668
669 trace_block_rq_requeue(q, rq);
670 rq_qos_requeue(q, rq);
671
672 if (blk_mq_request_started(rq)) {
673 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 rq->rq_flags &= ~RQF_TIMED_OUT;
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
677 }
678 }
679
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682 __blk_mq_requeue_request(rq);
683
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq);
686
687 BUG_ON(blk_queued_rq(rq));
688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691
blk_mq_requeue_work(struct work_struct * work)692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694 struct request_queue *q =
695 container_of(work, struct request_queue, requeue_work.work);
696 LIST_HEAD(rq_list);
697 struct request *rq, *next;
698
699 spin_lock_irq(&q->requeue_lock);
700 list_splice_init(&q->requeue_list, &rq_list);
701 spin_unlock_irq(&q->requeue_lock);
702
703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705 continue;
706
707 rq->rq_flags &= ~RQF_SOFTBARRIER;
708 list_del_init(&rq->queuelist);
709 /*
710 * If RQF_DONTPREP, rq has contained some driver specific
711 * data, so insert it to hctx dispatch list to avoid any
712 * merge.
713 */
714 if (rq->rq_flags & RQF_DONTPREP)
715 blk_mq_request_bypass_insert(rq, false);
716 else
717 blk_mq_sched_insert_request(rq, true, false, false);
718 }
719
720 while (!list_empty(&rq_list)) {
721 rq = list_entry(rq_list.next, struct request, queuelist);
722 list_del_init(&rq->queuelist);
723 blk_mq_sched_insert_request(rq, false, false, false);
724 }
725
726 blk_mq_run_hw_queues(q, false);
727 }
728
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730 bool kick_requeue_list)
731 {
732 struct request_queue *q = rq->q;
733 unsigned long flags;
734
735 /*
736 * We abuse this flag that is otherwise used by the I/O scheduler to
737 * request head insertion from the workqueue.
738 */
739 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
740
741 spin_lock_irqsave(&q->requeue_lock, flags);
742 if (at_head) {
743 rq->rq_flags |= RQF_SOFTBARRIER;
744 list_add(&rq->queuelist, &q->requeue_list);
745 } else {
746 list_add_tail(&rq->queuelist, &q->requeue_list);
747 }
748 spin_unlock_irqrestore(&q->requeue_lock, flags);
749
750 if (kick_requeue_list)
751 blk_mq_kick_requeue_list(q);
752 }
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
754
blk_mq_kick_requeue_list(struct request_queue * q)755 void blk_mq_kick_requeue_list(struct request_queue *q)
756 {
757 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
758 }
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
760
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762 unsigned long msecs)
763 {
764 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765 msecs_to_jiffies(msecs));
766 }
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
768
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
770 {
771 if (tag < tags->nr_tags) {
772 prefetch(tags->rqs[tag]);
773 return tags->rqs[tag];
774 }
775
776 return NULL;
777 }
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
779
blk_mq_rq_timed_out(struct request * req,bool reserved)780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
781 {
782 req->rq_flags |= RQF_TIMED_OUT;
783 if (req->q->mq_ops->timeout) {
784 enum blk_eh_timer_return ret;
785
786 ret = req->q->mq_ops->timeout(req, reserved);
787 if (ret == BLK_EH_DONE)
788 return;
789 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
790 }
791
792 blk_add_timer(req);
793 }
794
blk_mq_req_expired(struct request * rq,unsigned long * next)795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
796 {
797 unsigned long deadline;
798
799 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800 return false;
801 if (rq->rq_flags & RQF_TIMED_OUT)
802 return false;
803
804 deadline = blk_rq_deadline(rq);
805 if (time_after_eq(jiffies, deadline))
806 return true;
807
808 if (*next == 0)
809 *next = deadline;
810 else if (time_after(*next, deadline))
811 *next = deadline;
812 return false;
813 }
814
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816 struct request *rq, void *priv, bool reserved)
817 {
818 unsigned long *next = priv;
819
820 /*
821 * Just do a quick check if it is expired before locking the request in
822 * so we're not unnecessarilly synchronizing across CPUs.
823 */
824 if (!blk_mq_req_expired(rq, next))
825 return;
826
827 /*
828 * We have reason to believe the request may be expired. Take a
829 * reference on the request to lock this request lifetime into its
830 * currently allocated context to prevent it from being reallocated in
831 * the event the completion by-passes this timeout handler.
832 *
833 * If the reference was already released, then the driver beat the
834 * timeout handler to posting a natural completion.
835 */
836 if (!refcount_inc_not_zero(&rq->ref))
837 return;
838
839 /*
840 * The request is now locked and cannot be reallocated underneath the
841 * timeout handler's processing. Re-verify this exact request is truly
842 * expired; if it is not expired, then the request was completed and
843 * reallocated as a new request.
844 */
845 if (blk_mq_req_expired(rq, next))
846 blk_mq_rq_timed_out(rq, reserved);
847
848 if (is_flush_rq(rq, hctx))
849 rq->end_io(rq, 0);
850 else if (refcount_dec_and_test(&rq->ref))
851 __blk_mq_free_request(rq);
852 }
853
blk_mq_timeout_work(struct work_struct * work)854 static void blk_mq_timeout_work(struct work_struct *work)
855 {
856 struct request_queue *q =
857 container_of(work, struct request_queue, timeout_work);
858 unsigned long next = 0;
859 struct blk_mq_hw_ctx *hctx;
860 int i;
861
862 /* A deadlock might occur if a request is stuck requiring a
863 * timeout at the same time a queue freeze is waiting
864 * completion, since the timeout code would not be able to
865 * acquire the queue reference here.
866 *
867 * That's why we don't use blk_queue_enter here; instead, we use
868 * percpu_ref_tryget directly, because we need to be able to
869 * obtain a reference even in the short window between the queue
870 * starting to freeze, by dropping the first reference in
871 * blk_freeze_queue_start, and the moment the last request is
872 * consumed, marked by the instant q_usage_counter reaches
873 * zero.
874 */
875 if (!percpu_ref_tryget(&q->q_usage_counter))
876 return;
877
878 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
879
880 if (next != 0) {
881 mod_timer(&q->timeout, next);
882 } else {
883 /*
884 * Request timeouts are handled as a forward rolling timer. If
885 * we end up here it means that no requests are pending and
886 * also that no request has been pending for a while. Mark
887 * each hctx as idle.
888 */
889 queue_for_each_hw_ctx(q, hctx, i) {
890 /* the hctx may be unmapped, so check it here */
891 if (blk_mq_hw_queue_mapped(hctx))
892 blk_mq_tag_idle(hctx);
893 }
894 }
895 blk_queue_exit(q);
896 }
897
898 struct flush_busy_ctx_data {
899 struct blk_mq_hw_ctx *hctx;
900 struct list_head *list;
901 };
902
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)903 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
904 {
905 struct flush_busy_ctx_data *flush_data = data;
906 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
907 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
908
909 spin_lock(&ctx->lock);
910 list_splice_tail_init(&ctx->rq_list, flush_data->list);
911 sbitmap_clear_bit(sb, bitnr);
912 spin_unlock(&ctx->lock);
913 return true;
914 }
915
916 /*
917 * Process software queues that have been marked busy, splicing them
918 * to the for-dispatch
919 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)920 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
921 {
922 struct flush_busy_ctx_data data = {
923 .hctx = hctx,
924 .list = list,
925 };
926
927 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
928 }
929 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
930
931 struct dispatch_rq_data {
932 struct blk_mq_hw_ctx *hctx;
933 struct request *rq;
934 };
935
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)936 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
937 void *data)
938 {
939 struct dispatch_rq_data *dispatch_data = data;
940 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
941 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
942
943 spin_lock(&ctx->lock);
944 if (!list_empty(&ctx->rq_list)) {
945 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
946 list_del_init(&dispatch_data->rq->queuelist);
947 if (list_empty(&ctx->rq_list))
948 sbitmap_clear_bit(sb, bitnr);
949 }
950 spin_unlock(&ctx->lock);
951
952 return !dispatch_data->rq;
953 }
954
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)955 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
956 struct blk_mq_ctx *start)
957 {
958 unsigned off = start ? start->index_hw : 0;
959 struct dispatch_rq_data data = {
960 .hctx = hctx,
961 .rq = NULL,
962 };
963
964 __sbitmap_for_each_set(&hctx->ctx_map, off,
965 dispatch_rq_from_ctx, &data);
966
967 return data.rq;
968 }
969
queued_to_index(unsigned int queued)970 static inline unsigned int queued_to_index(unsigned int queued)
971 {
972 if (!queued)
973 return 0;
974
975 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
976 }
977
blk_mq_get_driver_tag(struct request * rq)978 bool blk_mq_get_driver_tag(struct request *rq)
979 {
980 struct blk_mq_alloc_data data = {
981 .q = rq->q,
982 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
983 .flags = BLK_MQ_REQ_NOWAIT,
984 };
985 bool shared;
986
987 if (rq->tag != -1)
988 goto done;
989
990 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
991 data.flags |= BLK_MQ_REQ_RESERVED;
992
993 shared = blk_mq_tag_busy(data.hctx);
994 rq->tag = blk_mq_get_tag(&data);
995 if (rq->tag >= 0) {
996 if (shared) {
997 rq->rq_flags |= RQF_MQ_INFLIGHT;
998 atomic_inc(&data.hctx->nr_active);
999 }
1000 data.hctx->tags->rqs[rq->tag] = rq;
1001 }
1002
1003 done:
1004 return rq->tag != -1;
1005 }
1006
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1007 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1008 int flags, void *key)
1009 {
1010 struct blk_mq_hw_ctx *hctx;
1011
1012 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1013
1014 spin_lock(&hctx->dispatch_wait_lock);
1015 list_del_init(&wait->entry);
1016 spin_unlock(&hctx->dispatch_wait_lock);
1017
1018 blk_mq_run_hw_queue(hctx, true);
1019 return 1;
1020 }
1021
1022 /*
1023 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1024 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1025 * restart. For both cases, take care to check the condition again after
1026 * marking us as waiting.
1027 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1028 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1029 struct request *rq)
1030 {
1031 struct wait_queue_head *wq;
1032 wait_queue_entry_t *wait;
1033 bool ret;
1034
1035 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1036 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1037 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1038
1039 /*
1040 * It's possible that a tag was freed in the window between the
1041 * allocation failure and adding the hardware queue to the wait
1042 * queue.
1043 *
1044 * Don't clear RESTART here, someone else could have set it.
1045 * At most this will cost an extra queue run.
1046 */
1047 return blk_mq_get_driver_tag(rq);
1048 }
1049
1050 wait = &hctx->dispatch_wait;
1051 if (!list_empty_careful(&wait->entry))
1052 return false;
1053
1054 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1055
1056 spin_lock_irq(&wq->lock);
1057 spin_lock(&hctx->dispatch_wait_lock);
1058 if (!list_empty(&wait->entry)) {
1059 spin_unlock(&hctx->dispatch_wait_lock);
1060 spin_unlock_irq(&wq->lock);
1061 return false;
1062 }
1063
1064 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1065 __add_wait_queue(wq, wait);
1066
1067 /*
1068 * It's possible that a tag was freed in the window between the
1069 * allocation failure and adding the hardware queue to the wait
1070 * queue.
1071 */
1072 ret = blk_mq_get_driver_tag(rq);
1073 if (!ret) {
1074 spin_unlock(&hctx->dispatch_wait_lock);
1075 spin_unlock_irq(&wq->lock);
1076 return false;
1077 }
1078
1079 /*
1080 * We got a tag, remove ourselves from the wait queue to ensure
1081 * someone else gets the wakeup.
1082 */
1083 list_del_init(&wait->entry);
1084 spin_unlock(&hctx->dispatch_wait_lock);
1085 spin_unlock_irq(&wq->lock);
1086
1087 return true;
1088 }
1089
1090 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1091 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1092 /*
1093 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1094 * - EWMA is one simple way to compute running average value
1095 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1096 * - take 4 as factor for avoiding to get too small(0) result, and this
1097 * factor doesn't matter because EWMA decreases exponentially
1098 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1099 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1100 {
1101 unsigned int ewma;
1102
1103 if (hctx->queue->elevator)
1104 return;
1105
1106 ewma = hctx->dispatch_busy;
1107
1108 if (!ewma && !busy)
1109 return;
1110
1111 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1112 if (busy)
1113 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1114 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1115
1116 hctx->dispatch_busy = ewma;
1117 }
1118
1119 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1120
1121 /*
1122 * Returns true if we did some work AND can potentially do more.
1123 */
blk_mq_dispatch_rq_list(struct request_queue * q,struct list_head * list,bool got_budget)1124 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1125 bool got_budget)
1126 {
1127 struct blk_mq_hw_ctx *hctx;
1128 struct request *rq, *nxt;
1129 bool no_tag = false;
1130 int errors, queued;
1131 blk_status_t ret = BLK_STS_OK;
1132
1133 if (list_empty(list))
1134 return false;
1135
1136 WARN_ON(!list_is_singular(list) && got_budget);
1137
1138 /*
1139 * Now process all the entries, sending them to the driver.
1140 */
1141 errors = queued = 0;
1142 do {
1143 struct blk_mq_queue_data bd;
1144
1145 rq = list_first_entry(list, struct request, queuelist);
1146
1147 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1148 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1149 break;
1150
1151 if (!blk_mq_get_driver_tag(rq)) {
1152 /*
1153 * The initial allocation attempt failed, so we need to
1154 * rerun the hardware queue when a tag is freed. The
1155 * waitqueue takes care of that. If the queue is run
1156 * before we add this entry back on the dispatch list,
1157 * we'll re-run it below.
1158 */
1159 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1160 blk_mq_put_dispatch_budget(hctx);
1161 /*
1162 * For non-shared tags, the RESTART check
1163 * will suffice.
1164 */
1165 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1166 no_tag = true;
1167 break;
1168 }
1169 }
1170
1171 list_del_init(&rq->queuelist);
1172
1173 bd.rq = rq;
1174
1175 /*
1176 * Flag last if we have no more requests, or if we have more
1177 * but can't assign a driver tag to it.
1178 */
1179 if (list_empty(list))
1180 bd.last = true;
1181 else {
1182 nxt = list_first_entry(list, struct request, queuelist);
1183 bd.last = !blk_mq_get_driver_tag(nxt);
1184 }
1185
1186 ret = q->mq_ops->queue_rq(hctx, &bd);
1187 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1188 /*
1189 * If an I/O scheduler has been configured and we got a
1190 * driver tag for the next request already, free it
1191 * again.
1192 */
1193 if (!list_empty(list)) {
1194 nxt = list_first_entry(list, struct request, queuelist);
1195 blk_mq_put_driver_tag(nxt);
1196 }
1197 list_add(&rq->queuelist, list);
1198 __blk_mq_requeue_request(rq);
1199 break;
1200 }
1201
1202 if (unlikely(ret != BLK_STS_OK)) {
1203 errors++;
1204 blk_mq_end_request(rq, BLK_STS_IOERR);
1205 continue;
1206 }
1207
1208 queued++;
1209 } while (!list_empty(list));
1210
1211 hctx->dispatched[queued_to_index(queued)]++;
1212
1213 /*
1214 * Any items that need requeuing? Stuff them into hctx->dispatch,
1215 * that is where we will continue on next queue run.
1216 */
1217 if (!list_empty(list)) {
1218 bool needs_restart;
1219
1220 spin_lock(&hctx->lock);
1221 list_splice_init(list, &hctx->dispatch);
1222 spin_unlock(&hctx->lock);
1223
1224 /*
1225 * Order adding requests to hctx->dispatch and checking
1226 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1227 * in blk_mq_sched_restart(). Avoid restart code path to
1228 * miss the new added requests to hctx->dispatch, meantime
1229 * SCHED_RESTART is observed here.
1230 */
1231 smp_mb();
1232
1233 /*
1234 * If SCHED_RESTART was set by the caller of this function and
1235 * it is no longer set that means that it was cleared by another
1236 * thread and hence that a queue rerun is needed.
1237 *
1238 * If 'no_tag' is set, that means that we failed getting
1239 * a driver tag with an I/O scheduler attached. If our dispatch
1240 * waitqueue is no longer active, ensure that we run the queue
1241 * AFTER adding our entries back to the list.
1242 *
1243 * If no I/O scheduler has been configured it is possible that
1244 * the hardware queue got stopped and restarted before requests
1245 * were pushed back onto the dispatch list. Rerun the queue to
1246 * avoid starvation. Notes:
1247 * - blk_mq_run_hw_queue() checks whether or not a queue has
1248 * been stopped before rerunning a queue.
1249 * - Some but not all block drivers stop a queue before
1250 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1251 * and dm-rq.
1252 *
1253 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1254 * bit is set, run queue after a delay to avoid IO stalls
1255 * that could otherwise occur if the queue is idle.
1256 */
1257 needs_restart = blk_mq_sched_needs_restart(hctx);
1258 if (!needs_restart ||
1259 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1260 blk_mq_run_hw_queue(hctx, true);
1261 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1262 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1263
1264 blk_mq_update_dispatch_busy(hctx, true);
1265 return false;
1266 } else
1267 blk_mq_update_dispatch_busy(hctx, false);
1268
1269 /*
1270 * If the host/device is unable to accept more work, inform the
1271 * caller of that.
1272 */
1273 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1274 return false;
1275
1276 return (queued + errors) != 0;
1277 }
1278
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1279 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1280 {
1281 int srcu_idx;
1282
1283 /*
1284 * We should be running this queue from one of the CPUs that
1285 * are mapped to it.
1286 *
1287 * There are at least two related races now between setting
1288 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1289 * __blk_mq_run_hw_queue():
1290 *
1291 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1292 * but later it becomes online, then this warning is harmless
1293 * at all
1294 *
1295 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1296 * but later it becomes offline, then the warning can't be
1297 * triggered, and we depend on blk-mq timeout handler to
1298 * handle dispatched requests to this hctx
1299 */
1300 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1301 cpu_online(hctx->next_cpu)) {
1302 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1303 raw_smp_processor_id(),
1304 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1305 dump_stack();
1306 }
1307
1308 /*
1309 * We can't run the queue inline with ints disabled. Ensure that
1310 * we catch bad users of this early.
1311 */
1312 WARN_ON_ONCE(in_interrupt());
1313
1314 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1315
1316 hctx_lock(hctx, &srcu_idx);
1317 blk_mq_sched_dispatch_requests(hctx);
1318 hctx_unlock(hctx, srcu_idx);
1319 }
1320
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1321 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1322 {
1323 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1324
1325 if (cpu >= nr_cpu_ids)
1326 cpu = cpumask_first(hctx->cpumask);
1327 return cpu;
1328 }
1329
1330 /*
1331 * It'd be great if the workqueue API had a way to pass
1332 * in a mask and had some smarts for more clever placement.
1333 * For now we just round-robin here, switching for every
1334 * BLK_MQ_CPU_WORK_BATCH queued items.
1335 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1336 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1337 {
1338 bool tried = false;
1339 int next_cpu = hctx->next_cpu;
1340
1341 if (hctx->queue->nr_hw_queues == 1)
1342 return WORK_CPU_UNBOUND;
1343
1344 if (--hctx->next_cpu_batch <= 0) {
1345 select_cpu:
1346 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1347 cpu_online_mask);
1348 if (next_cpu >= nr_cpu_ids)
1349 next_cpu = blk_mq_first_mapped_cpu(hctx);
1350 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1351 }
1352
1353 /*
1354 * Do unbound schedule if we can't find a online CPU for this hctx,
1355 * and it should only happen in the path of handling CPU DEAD.
1356 */
1357 if (!cpu_online(next_cpu)) {
1358 if (!tried) {
1359 tried = true;
1360 goto select_cpu;
1361 }
1362
1363 /*
1364 * Make sure to re-select CPU next time once after CPUs
1365 * in hctx->cpumask become online again.
1366 */
1367 hctx->next_cpu = next_cpu;
1368 hctx->next_cpu_batch = 1;
1369 return WORK_CPU_UNBOUND;
1370 }
1371
1372 hctx->next_cpu = next_cpu;
1373 return next_cpu;
1374 }
1375
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1376 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1377 unsigned long msecs)
1378 {
1379 if (unlikely(blk_mq_hctx_stopped(hctx)))
1380 return;
1381
1382 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1383 int cpu = get_cpu();
1384 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1385 __blk_mq_run_hw_queue(hctx);
1386 put_cpu();
1387 return;
1388 }
1389
1390 put_cpu();
1391 }
1392
1393 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1394 msecs_to_jiffies(msecs));
1395 }
1396
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1397 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1398 {
1399 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1400 }
1401 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1402
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1403 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1404 {
1405 int srcu_idx;
1406 bool need_run;
1407
1408 /*
1409 * When queue is quiesced, we may be switching io scheduler, or
1410 * updating nr_hw_queues, or other things, and we can't run queue
1411 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1412 *
1413 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1414 * quiesced.
1415 */
1416 hctx_lock(hctx, &srcu_idx);
1417 need_run = !blk_queue_quiesced(hctx->queue) &&
1418 blk_mq_hctx_has_pending(hctx);
1419 hctx_unlock(hctx, srcu_idx);
1420
1421 if (need_run) {
1422 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1423 return true;
1424 }
1425
1426 return false;
1427 }
1428 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1429
blk_mq_run_hw_queues(struct request_queue * q,bool async)1430 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1431 {
1432 struct blk_mq_hw_ctx *hctx;
1433 int i;
1434
1435 queue_for_each_hw_ctx(q, hctx, i) {
1436 if (blk_mq_hctx_stopped(hctx))
1437 continue;
1438
1439 blk_mq_run_hw_queue(hctx, async);
1440 }
1441 }
1442 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1443
1444 /**
1445 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1446 * @q: request queue.
1447 *
1448 * The caller is responsible for serializing this function against
1449 * blk_mq_{start,stop}_hw_queue().
1450 */
blk_mq_queue_stopped(struct request_queue * q)1451 bool blk_mq_queue_stopped(struct request_queue *q)
1452 {
1453 struct blk_mq_hw_ctx *hctx;
1454 int i;
1455
1456 queue_for_each_hw_ctx(q, hctx, i)
1457 if (blk_mq_hctx_stopped(hctx))
1458 return true;
1459
1460 return false;
1461 }
1462 EXPORT_SYMBOL(blk_mq_queue_stopped);
1463
1464 /*
1465 * This function is often used for pausing .queue_rq() by driver when
1466 * there isn't enough resource or some conditions aren't satisfied, and
1467 * BLK_STS_RESOURCE is usually returned.
1468 *
1469 * We do not guarantee that dispatch can be drained or blocked
1470 * after blk_mq_stop_hw_queue() returns. Please use
1471 * blk_mq_quiesce_queue() for that requirement.
1472 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1473 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1474 {
1475 cancel_delayed_work(&hctx->run_work);
1476
1477 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1478 }
1479 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1480
1481 /*
1482 * This function is often used for pausing .queue_rq() by driver when
1483 * there isn't enough resource or some conditions aren't satisfied, and
1484 * BLK_STS_RESOURCE is usually returned.
1485 *
1486 * We do not guarantee that dispatch can be drained or blocked
1487 * after blk_mq_stop_hw_queues() returns. Please use
1488 * blk_mq_quiesce_queue() for that requirement.
1489 */
blk_mq_stop_hw_queues(struct request_queue * q)1490 void blk_mq_stop_hw_queues(struct request_queue *q)
1491 {
1492 struct blk_mq_hw_ctx *hctx;
1493 int i;
1494
1495 queue_for_each_hw_ctx(q, hctx, i)
1496 blk_mq_stop_hw_queue(hctx);
1497 }
1498 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1499
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1500 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1501 {
1502 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1503
1504 blk_mq_run_hw_queue(hctx, false);
1505 }
1506 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1507
blk_mq_start_hw_queues(struct request_queue * q)1508 void blk_mq_start_hw_queues(struct request_queue *q)
1509 {
1510 struct blk_mq_hw_ctx *hctx;
1511 int i;
1512
1513 queue_for_each_hw_ctx(q, hctx, i)
1514 blk_mq_start_hw_queue(hctx);
1515 }
1516 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1517
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1518 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1519 {
1520 if (!blk_mq_hctx_stopped(hctx))
1521 return;
1522
1523 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1524 blk_mq_run_hw_queue(hctx, async);
1525 }
1526 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1527
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1528 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1529 {
1530 struct blk_mq_hw_ctx *hctx;
1531 int i;
1532
1533 queue_for_each_hw_ctx(q, hctx, i)
1534 blk_mq_start_stopped_hw_queue(hctx, async);
1535 }
1536 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1537
blk_mq_run_work_fn(struct work_struct * work)1538 static void blk_mq_run_work_fn(struct work_struct *work)
1539 {
1540 struct blk_mq_hw_ctx *hctx;
1541
1542 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1543
1544 /*
1545 * If we are stopped, don't run the queue.
1546 */
1547 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1548 return;
1549
1550 __blk_mq_run_hw_queue(hctx);
1551 }
1552
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1553 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1554 struct request *rq,
1555 bool at_head)
1556 {
1557 struct blk_mq_ctx *ctx = rq->mq_ctx;
1558
1559 lockdep_assert_held(&ctx->lock);
1560
1561 trace_block_rq_insert(hctx->queue, rq);
1562
1563 if (at_head)
1564 list_add(&rq->queuelist, &ctx->rq_list);
1565 else
1566 list_add_tail(&rq->queuelist, &ctx->rq_list);
1567 }
1568
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1569 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1570 bool at_head)
1571 {
1572 struct blk_mq_ctx *ctx = rq->mq_ctx;
1573
1574 lockdep_assert_held(&ctx->lock);
1575
1576 __blk_mq_insert_req_list(hctx, rq, at_head);
1577 blk_mq_hctx_mark_pending(hctx, ctx);
1578 }
1579
1580 /*
1581 * Should only be used carefully, when the caller knows we want to
1582 * bypass a potential IO scheduler on the target device.
1583 */
blk_mq_request_bypass_insert(struct request * rq,bool run_queue)1584 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1585 {
1586 struct blk_mq_ctx *ctx = rq->mq_ctx;
1587 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1588
1589 spin_lock(&hctx->lock);
1590 list_add_tail(&rq->queuelist, &hctx->dispatch);
1591 spin_unlock(&hctx->lock);
1592
1593 if (run_queue)
1594 blk_mq_run_hw_queue(hctx, false);
1595 }
1596
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1597 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1598 struct list_head *list)
1599
1600 {
1601 struct request *rq;
1602
1603 /*
1604 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1605 * offline now
1606 */
1607 list_for_each_entry(rq, list, queuelist) {
1608 BUG_ON(rq->mq_ctx != ctx);
1609 trace_block_rq_insert(hctx->queue, rq);
1610 }
1611
1612 spin_lock(&ctx->lock);
1613 list_splice_tail_init(list, &ctx->rq_list);
1614 blk_mq_hctx_mark_pending(hctx, ctx);
1615 spin_unlock(&ctx->lock);
1616 }
1617
plug_ctx_cmp(void * priv,struct list_head * a,struct list_head * b)1618 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1619 {
1620 struct request *rqa = container_of(a, struct request, queuelist);
1621 struct request *rqb = container_of(b, struct request, queuelist);
1622
1623 return !(rqa->mq_ctx < rqb->mq_ctx ||
1624 (rqa->mq_ctx == rqb->mq_ctx &&
1625 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1626 }
1627
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1628 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1629 {
1630 struct blk_mq_ctx *this_ctx;
1631 struct request_queue *this_q;
1632 struct request *rq;
1633 LIST_HEAD(list);
1634 LIST_HEAD(ctx_list);
1635 unsigned int depth;
1636
1637 list_splice_init(&plug->mq_list, &list);
1638
1639 list_sort(NULL, &list, plug_ctx_cmp);
1640
1641 this_q = NULL;
1642 this_ctx = NULL;
1643 depth = 0;
1644
1645 while (!list_empty(&list)) {
1646 rq = list_entry_rq(list.next);
1647 list_del_init(&rq->queuelist);
1648 BUG_ON(!rq->q);
1649 if (rq->mq_ctx != this_ctx) {
1650 if (this_ctx) {
1651 trace_block_unplug(this_q, depth, !from_schedule);
1652 blk_mq_sched_insert_requests(this_q, this_ctx,
1653 &ctx_list,
1654 from_schedule);
1655 }
1656
1657 this_ctx = rq->mq_ctx;
1658 this_q = rq->q;
1659 depth = 0;
1660 }
1661
1662 depth++;
1663 list_add_tail(&rq->queuelist, &ctx_list);
1664 }
1665
1666 /*
1667 * If 'this_ctx' is set, we know we have entries to complete
1668 * on 'ctx_list'. Do those.
1669 */
1670 if (this_ctx) {
1671 trace_block_unplug(this_q, depth, !from_schedule);
1672 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1673 from_schedule);
1674 }
1675 }
1676
blk_mq_bio_to_request(struct request * rq,struct bio * bio)1677 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1678 {
1679 blk_init_request_from_bio(rq, bio);
1680
1681 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1682
1683 blk_account_io_start(rq, true);
1684 }
1685
request_to_qc_t(struct blk_mq_hw_ctx * hctx,struct request * rq)1686 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1687 {
1688 if (rq->tag != -1)
1689 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1690
1691 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1692 }
1693
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)1694 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1695 struct request *rq,
1696 blk_qc_t *cookie)
1697 {
1698 struct request_queue *q = rq->q;
1699 struct blk_mq_queue_data bd = {
1700 .rq = rq,
1701 .last = true,
1702 };
1703 blk_qc_t new_cookie;
1704 blk_status_t ret;
1705
1706 new_cookie = request_to_qc_t(hctx, rq);
1707
1708 /*
1709 * For OK queue, we are done. For error, caller may kill it.
1710 * Any other error (busy), just add it to our list as we
1711 * previously would have done.
1712 */
1713 ret = q->mq_ops->queue_rq(hctx, &bd);
1714 switch (ret) {
1715 case BLK_STS_OK:
1716 blk_mq_update_dispatch_busy(hctx, false);
1717 *cookie = new_cookie;
1718 break;
1719 case BLK_STS_RESOURCE:
1720 case BLK_STS_DEV_RESOURCE:
1721 blk_mq_update_dispatch_busy(hctx, true);
1722 __blk_mq_requeue_request(rq);
1723 break;
1724 default:
1725 blk_mq_update_dispatch_busy(hctx, false);
1726 *cookie = BLK_QC_T_NONE;
1727 break;
1728 }
1729
1730 return ret;
1731 }
1732
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert)1733 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1734 struct request *rq,
1735 blk_qc_t *cookie,
1736 bool bypass_insert)
1737 {
1738 struct request_queue *q = rq->q;
1739 bool run_queue = true;
1740
1741 /*
1742 * RCU or SRCU read lock is needed before checking quiesced flag.
1743 *
1744 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1745 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1746 * and avoid driver to try to dispatch again.
1747 */
1748 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1749 run_queue = false;
1750 bypass_insert = false;
1751 goto insert;
1752 }
1753
1754 if (q->elevator && !bypass_insert)
1755 goto insert;
1756
1757 if (!blk_mq_get_dispatch_budget(hctx))
1758 goto insert;
1759
1760 if (!blk_mq_get_driver_tag(rq)) {
1761 blk_mq_put_dispatch_budget(hctx);
1762 goto insert;
1763 }
1764
1765 return __blk_mq_issue_directly(hctx, rq, cookie);
1766 insert:
1767 if (bypass_insert)
1768 return BLK_STS_RESOURCE;
1769
1770 blk_mq_request_bypass_insert(rq, run_queue);
1771 return BLK_STS_OK;
1772 }
1773
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)1774 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1775 struct request *rq, blk_qc_t *cookie)
1776 {
1777 blk_status_t ret;
1778 int srcu_idx;
1779
1780 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1781
1782 hctx_lock(hctx, &srcu_idx);
1783
1784 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1785 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1786 blk_mq_request_bypass_insert(rq, true);
1787 else if (ret != BLK_STS_OK)
1788 blk_mq_end_request(rq, ret);
1789
1790 hctx_unlock(hctx, srcu_idx);
1791 }
1792
blk_mq_request_issue_directly(struct request * rq)1793 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1794 {
1795 blk_status_t ret;
1796 int srcu_idx;
1797 blk_qc_t unused_cookie;
1798 struct blk_mq_ctx *ctx = rq->mq_ctx;
1799 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1800
1801 hctx_lock(hctx, &srcu_idx);
1802 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1803 hctx_unlock(hctx, srcu_idx);
1804
1805 return ret;
1806 }
1807
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)1808 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1809 struct list_head *list)
1810 {
1811 while (!list_empty(list)) {
1812 blk_status_t ret;
1813 struct request *rq = list_first_entry(list, struct request,
1814 queuelist);
1815
1816 list_del_init(&rq->queuelist);
1817 ret = blk_mq_request_issue_directly(rq);
1818 if (ret != BLK_STS_OK) {
1819 if (ret == BLK_STS_RESOURCE ||
1820 ret == BLK_STS_DEV_RESOURCE) {
1821 blk_mq_request_bypass_insert(rq,
1822 list_empty(list));
1823 break;
1824 }
1825 blk_mq_end_request(rq, ret);
1826 }
1827 }
1828 }
1829
blk_mq_make_request(struct request_queue * q,struct bio * bio)1830 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1831 {
1832 const int is_sync = op_is_sync(bio->bi_opf);
1833 const int is_flush_fua = op_is_flush(bio->bi_opf);
1834 struct blk_mq_alloc_data data = { .flags = 0 };
1835 struct request *rq;
1836 unsigned int request_count = 0;
1837 struct blk_plug *plug;
1838 struct request *same_queue_rq = NULL;
1839 blk_qc_t cookie;
1840
1841 blk_queue_bounce(q, &bio);
1842
1843 blk_queue_split(q, &bio);
1844
1845 if (!bio_integrity_prep(bio))
1846 return BLK_QC_T_NONE;
1847
1848 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1849 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1850 return BLK_QC_T_NONE;
1851
1852 if (blk_mq_sched_bio_merge(q, bio))
1853 return BLK_QC_T_NONE;
1854
1855 rq_qos_throttle(q, bio, NULL);
1856
1857 trace_block_getrq(q, bio, bio->bi_opf);
1858
1859 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1860 if (unlikely(!rq)) {
1861 rq_qos_cleanup(q, bio);
1862 if (bio->bi_opf & REQ_NOWAIT)
1863 bio_wouldblock_error(bio);
1864 return BLK_QC_T_NONE;
1865 }
1866
1867 rq_qos_track(q, rq, bio);
1868
1869 cookie = request_to_qc_t(data.hctx, rq);
1870
1871 plug = current->plug;
1872 if (unlikely(is_flush_fua)) {
1873 blk_mq_put_ctx(data.ctx);
1874 blk_mq_bio_to_request(rq, bio);
1875
1876 /* bypass scheduler for flush rq */
1877 blk_insert_flush(rq);
1878 blk_mq_run_hw_queue(data.hctx, true);
1879 } else if (plug && q->nr_hw_queues == 1) {
1880 struct request *last = NULL;
1881
1882 blk_mq_put_ctx(data.ctx);
1883 blk_mq_bio_to_request(rq, bio);
1884
1885 /*
1886 * @request_count may become stale because of schedule
1887 * out, so check the list again.
1888 */
1889 if (list_empty(&plug->mq_list))
1890 request_count = 0;
1891 else if (blk_queue_nomerges(q))
1892 request_count = blk_plug_queued_count(q);
1893
1894 if (!request_count)
1895 trace_block_plug(q);
1896 else
1897 last = list_entry_rq(plug->mq_list.prev);
1898
1899 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1900 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1901 blk_flush_plug_list(plug, false);
1902 trace_block_plug(q);
1903 }
1904
1905 list_add_tail(&rq->queuelist, &plug->mq_list);
1906 } else if (plug && !blk_queue_nomerges(q)) {
1907 blk_mq_bio_to_request(rq, bio);
1908
1909 /*
1910 * We do limited plugging. If the bio can be merged, do that.
1911 * Otherwise the existing request in the plug list will be
1912 * issued. So the plug list will have one request at most
1913 * The plug list might get flushed before this. If that happens,
1914 * the plug list is empty, and same_queue_rq is invalid.
1915 */
1916 if (list_empty(&plug->mq_list))
1917 same_queue_rq = NULL;
1918 if (same_queue_rq)
1919 list_del_init(&same_queue_rq->queuelist);
1920 list_add_tail(&rq->queuelist, &plug->mq_list);
1921
1922 blk_mq_put_ctx(data.ctx);
1923
1924 if (same_queue_rq) {
1925 data.hctx = blk_mq_map_queue(q,
1926 same_queue_rq->mq_ctx->cpu);
1927 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1928 &cookie);
1929 }
1930 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1931 !data.hctx->dispatch_busy)) {
1932 blk_mq_put_ctx(data.ctx);
1933 blk_mq_bio_to_request(rq, bio);
1934 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1935 } else {
1936 blk_mq_put_ctx(data.ctx);
1937 blk_mq_bio_to_request(rq, bio);
1938 blk_mq_sched_insert_request(rq, false, true, true);
1939 }
1940
1941 return cookie;
1942 }
1943
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)1944 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1945 unsigned int hctx_idx)
1946 {
1947 struct page *page;
1948
1949 if (tags->rqs && set->ops->exit_request) {
1950 int i;
1951
1952 for (i = 0; i < tags->nr_tags; i++) {
1953 struct request *rq = tags->static_rqs[i];
1954
1955 if (!rq)
1956 continue;
1957 set->ops->exit_request(set, rq, hctx_idx);
1958 tags->static_rqs[i] = NULL;
1959 }
1960 }
1961
1962 while (!list_empty(&tags->page_list)) {
1963 page = list_first_entry(&tags->page_list, struct page, lru);
1964 list_del_init(&page->lru);
1965 /*
1966 * Remove kmemleak object previously allocated in
1967 * blk_mq_init_rq_map().
1968 */
1969 kmemleak_free(page_address(page));
1970 __free_pages(page, page->private);
1971 }
1972 }
1973
blk_mq_free_rq_map(struct blk_mq_tags * tags)1974 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1975 {
1976 kfree(tags->rqs);
1977 tags->rqs = NULL;
1978 kfree(tags->static_rqs);
1979 tags->static_rqs = NULL;
1980
1981 blk_mq_free_tags(tags);
1982 }
1983
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)1984 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1985 unsigned int hctx_idx,
1986 unsigned int nr_tags,
1987 unsigned int reserved_tags)
1988 {
1989 struct blk_mq_tags *tags;
1990 int node;
1991
1992 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1993 if (node == NUMA_NO_NODE)
1994 node = set->numa_node;
1995
1996 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1997 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1998 if (!tags)
1999 return NULL;
2000
2001 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2002 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2003 node);
2004 if (!tags->rqs) {
2005 blk_mq_free_tags(tags);
2006 return NULL;
2007 }
2008
2009 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2010 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2011 node);
2012 if (!tags->static_rqs) {
2013 kfree(tags->rqs);
2014 blk_mq_free_tags(tags);
2015 return NULL;
2016 }
2017
2018 return tags;
2019 }
2020
order_to_size(unsigned int order)2021 static size_t order_to_size(unsigned int order)
2022 {
2023 return (size_t)PAGE_SIZE << order;
2024 }
2025
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2026 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2027 unsigned int hctx_idx, int node)
2028 {
2029 int ret;
2030
2031 if (set->ops->init_request) {
2032 ret = set->ops->init_request(set, rq, hctx_idx, node);
2033 if (ret)
2034 return ret;
2035 }
2036
2037 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2038 return 0;
2039 }
2040
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2041 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2042 unsigned int hctx_idx, unsigned int depth)
2043 {
2044 unsigned int i, j, entries_per_page, max_order = 4;
2045 size_t rq_size, left;
2046 int node;
2047
2048 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2049 if (node == NUMA_NO_NODE)
2050 node = set->numa_node;
2051
2052 INIT_LIST_HEAD(&tags->page_list);
2053
2054 /*
2055 * rq_size is the size of the request plus driver payload, rounded
2056 * to the cacheline size
2057 */
2058 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2059 cache_line_size());
2060 left = rq_size * depth;
2061
2062 for (i = 0; i < depth; ) {
2063 int this_order = max_order;
2064 struct page *page;
2065 int to_do;
2066 void *p;
2067
2068 while (this_order && left < order_to_size(this_order - 1))
2069 this_order--;
2070
2071 do {
2072 page = alloc_pages_node(node,
2073 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2074 this_order);
2075 if (page)
2076 break;
2077 if (!this_order--)
2078 break;
2079 if (order_to_size(this_order) < rq_size)
2080 break;
2081 } while (1);
2082
2083 if (!page)
2084 goto fail;
2085
2086 page->private = this_order;
2087 list_add_tail(&page->lru, &tags->page_list);
2088
2089 p = page_address(page);
2090 /*
2091 * Allow kmemleak to scan these pages as they contain pointers
2092 * to additional allocations like via ops->init_request().
2093 */
2094 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2095 entries_per_page = order_to_size(this_order) / rq_size;
2096 to_do = min(entries_per_page, depth - i);
2097 left -= to_do * rq_size;
2098 for (j = 0; j < to_do; j++) {
2099 struct request *rq = p;
2100
2101 tags->static_rqs[i] = rq;
2102 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2103 tags->static_rqs[i] = NULL;
2104 goto fail;
2105 }
2106
2107 p += rq_size;
2108 i++;
2109 }
2110 }
2111 return 0;
2112
2113 fail:
2114 blk_mq_free_rqs(set, tags, hctx_idx);
2115 return -ENOMEM;
2116 }
2117
2118 /*
2119 * 'cpu' is going away. splice any existing rq_list entries from this
2120 * software queue to the hw queue dispatch list, and ensure that it
2121 * gets run.
2122 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2123 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2124 {
2125 struct blk_mq_hw_ctx *hctx;
2126 struct blk_mq_ctx *ctx;
2127 LIST_HEAD(tmp);
2128
2129 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2130 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2131
2132 spin_lock(&ctx->lock);
2133 if (!list_empty(&ctx->rq_list)) {
2134 list_splice_init(&ctx->rq_list, &tmp);
2135 blk_mq_hctx_clear_pending(hctx, ctx);
2136 }
2137 spin_unlock(&ctx->lock);
2138
2139 if (list_empty(&tmp))
2140 return 0;
2141
2142 spin_lock(&hctx->lock);
2143 list_splice_tail_init(&tmp, &hctx->dispatch);
2144 spin_unlock(&hctx->lock);
2145
2146 blk_mq_run_hw_queue(hctx, true);
2147 return 0;
2148 }
2149
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2150 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2151 {
2152 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2153 &hctx->cpuhp_dead);
2154 }
2155
2156 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2157 static void blk_mq_exit_hctx(struct request_queue *q,
2158 struct blk_mq_tag_set *set,
2159 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2160 {
2161 blk_mq_debugfs_unregister_hctx(hctx);
2162
2163 if (blk_mq_hw_queue_mapped(hctx))
2164 blk_mq_tag_idle(hctx);
2165
2166 if (set->ops->exit_request)
2167 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2168
2169 if (set->ops->exit_hctx)
2170 set->ops->exit_hctx(hctx, hctx_idx);
2171
2172 blk_mq_remove_cpuhp(hctx);
2173 }
2174
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2175 static void blk_mq_exit_hw_queues(struct request_queue *q,
2176 struct blk_mq_tag_set *set, int nr_queue)
2177 {
2178 struct blk_mq_hw_ctx *hctx;
2179 unsigned int i;
2180
2181 queue_for_each_hw_ctx(q, hctx, i) {
2182 if (i == nr_queue)
2183 break;
2184 blk_mq_exit_hctx(q, set, hctx, i);
2185 }
2186 }
2187
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2188 static int blk_mq_init_hctx(struct request_queue *q,
2189 struct blk_mq_tag_set *set,
2190 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2191 {
2192 int node;
2193
2194 node = hctx->numa_node;
2195 if (node == NUMA_NO_NODE)
2196 node = hctx->numa_node = set->numa_node;
2197
2198 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2199 spin_lock_init(&hctx->lock);
2200 INIT_LIST_HEAD(&hctx->dispatch);
2201 hctx->queue = q;
2202 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2203
2204 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2205
2206 hctx->tags = set->tags[hctx_idx];
2207
2208 /*
2209 * Allocate space for all possible cpus to avoid allocation at
2210 * runtime
2211 */
2212 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2213 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2214 if (!hctx->ctxs)
2215 goto unregister_cpu_notifier;
2216
2217 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2218 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2219 goto free_ctxs;
2220
2221 hctx->nr_ctx = 0;
2222
2223 spin_lock_init(&hctx->dispatch_wait_lock);
2224 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2225 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2226
2227 if (set->ops->init_hctx &&
2228 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2229 goto free_bitmap;
2230
2231 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2232 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2233 if (!hctx->fq)
2234 goto exit_hctx;
2235
2236 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2237 goto free_fq;
2238
2239 if (hctx->flags & BLK_MQ_F_BLOCKING)
2240 init_srcu_struct(hctx->srcu);
2241
2242 blk_mq_debugfs_register_hctx(q, hctx);
2243
2244 return 0;
2245
2246 free_fq:
2247 blk_free_flush_queue(hctx->fq);
2248 exit_hctx:
2249 if (set->ops->exit_hctx)
2250 set->ops->exit_hctx(hctx, hctx_idx);
2251 free_bitmap:
2252 sbitmap_free(&hctx->ctx_map);
2253 free_ctxs:
2254 kfree(hctx->ctxs);
2255 unregister_cpu_notifier:
2256 blk_mq_remove_cpuhp(hctx);
2257 return -1;
2258 }
2259
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2260 static void blk_mq_init_cpu_queues(struct request_queue *q,
2261 unsigned int nr_hw_queues)
2262 {
2263 unsigned int i;
2264
2265 for_each_possible_cpu(i) {
2266 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2267 struct blk_mq_hw_ctx *hctx;
2268
2269 __ctx->cpu = i;
2270 spin_lock_init(&__ctx->lock);
2271 INIT_LIST_HEAD(&__ctx->rq_list);
2272 __ctx->queue = q;
2273
2274 /*
2275 * Set local node, IFF we have more than one hw queue. If
2276 * not, we remain on the home node of the device
2277 */
2278 hctx = blk_mq_map_queue(q, i);
2279 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2280 hctx->numa_node = local_memory_node(cpu_to_node(i));
2281 }
2282 }
2283
__blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,int hctx_idx)2284 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2285 {
2286 int ret = 0;
2287
2288 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2289 set->queue_depth, set->reserved_tags);
2290 if (!set->tags[hctx_idx])
2291 return false;
2292
2293 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2294 set->queue_depth);
2295 if (!ret)
2296 return true;
2297
2298 blk_mq_free_rq_map(set->tags[hctx_idx]);
2299 set->tags[hctx_idx] = NULL;
2300 return false;
2301 }
2302
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2303 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2304 unsigned int hctx_idx)
2305 {
2306 if (set->tags[hctx_idx]) {
2307 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2308 blk_mq_free_rq_map(set->tags[hctx_idx]);
2309 set->tags[hctx_idx] = NULL;
2310 }
2311 }
2312
blk_mq_map_swqueue(struct request_queue * q)2313 static void blk_mq_map_swqueue(struct request_queue *q)
2314 {
2315 unsigned int i, hctx_idx;
2316 struct blk_mq_hw_ctx *hctx;
2317 struct blk_mq_ctx *ctx;
2318 struct blk_mq_tag_set *set = q->tag_set;
2319
2320 /*
2321 * Avoid others reading imcomplete hctx->cpumask through sysfs
2322 */
2323 mutex_lock(&q->sysfs_lock);
2324
2325 queue_for_each_hw_ctx(q, hctx, i) {
2326 cpumask_clear(hctx->cpumask);
2327 hctx->nr_ctx = 0;
2328 hctx->dispatch_from = NULL;
2329 }
2330
2331 /*
2332 * Map software to hardware queues.
2333 *
2334 * If the cpu isn't present, the cpu is mapped to first hctx.
2335 */
2336 for_each_possible_cpu(i) {
2337 hctx_idx = q->mq_map[i];
2338 /* unmapped hw queue can be remapped after CPU topo changed */
2339 if (!set->tags[hctx_idx] &&
2340 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2341 /*
2342 * If tags initialization fail for some hctx,
2343 * that hctx won't be brought online. In this
2344 * case, remap the current ctx to hctx[0] which
2345 * is guaranteed to always have tags allocated
2346 */
2347 q->mq_map[i] = 0;
2348 }
2349
2350 ctx = per_cpu_ptr(q->queue_ctx, i);
2351 hctx = blk_mq_map_queue(q, i);
2352
2353 cpumask_set_cpu(i, hctx->cpumask);
2354 ctx->index_hw = hctx->nr_ctx;
2355 hctx->ctxs[hctx->nr_ctx++] = ctx;
2356 }
2357
2358 mutex_unlock(&q->sysfs_lock);
2359
2360 queue_for_each_hw_ctx(q, hctx, i) {
2361 /*
2362 * If no software queues are mapped to this hardware queue,
2363 * disable it and free the request entries.
2364 */
2365 if (!hctx->nr_ctx) {
2366 /* Never unmap queue 0. We need it as a
2367 * fallback in case of a new remap fails
2368 * allocation
2369 */
2370 if (i && set->tags[i])
2371 blk_mq_free_map_and_requests(set, i);
2372
2373 hctx->tags = NULL;
2374 continue;
2375 }
2376
2377 hctx->tags = set->tags[i];
2378 WARN_ON(!hctx->tags);
2379
2380 /*
2381 * Set the map size to the number of mapped software queues.
2382 * This is more accurate and more efficient than looping
2383 * over all possibly mapped software queues.
2384 */
2385 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2386
2387 /*
2388 * Initialize batch roundrobin counts
2389 */
2390 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2391 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2392 }
2393 }
2394
2395 /*
2396 * Caller needs to ensure that we're either frozen/quiesced, or that
2397 * the queue isn't live yet.
2398 */
queue_set_hctx_shared(struct request_queue * q,bool shared)2399 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2400 {
2401 struct blk_mq_hw_ctx *hctx;
2402 int i;
2403
2404 queue_for_each_hw_ctx(q, hctx, i) {
2405 if (shared)
2406 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2407 else
2408 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2409 }
2410 }
2411
blk_mq_update_tag_set_depth(struct blk_mq_tag_set * set,bool shared)2412 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2413 bool shared)
2414 {
2415 struct request_queue *q;
2416
2417 lockdep_assert_held(&set->tag_list_lock);
2418
2419 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2420 blk_mq_freeze_queue(q);
2421 queue_set_hctx_shared(q, shared);
2422 blk_mq_unfreeze_queue(q);
2423 }
2424 }
2425
blk_mq_del_queue_tag_set(struct request_queue * q)2426 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2427 {
2428 struct blk_mq_tag_set *set = q->tag_set;
2429
2430 mutex_lock(&set->tag_list_lock);
2431 list_del_rcu(&q->tag_set_list);
2432 if (list_is_singular(&set->tag_list)) {
2433 /* just transitioned to unshared */
2434 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2435 /* update existing queue */
2436 blk_mq_update_tag_set_depth(set, false);
2437 }
2438 mutex_unlock(&set->tag_list_lock);
2439 INIT_LIST_HEAD(&q->tag_set_list);
2440 }
2441
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)2442 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2443 struct request_queue *q)
2444 {
2445 q->tag_set = set;
2446
2447 mutex_lock(&set->tag_list_lock);
2448
2449 /*
2450 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2451 */
2452 if (!list_empty(&set->tag_list) &&
2453 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2454 set->flags |= BLK_MQ_F_TAG_SHARED;
2455 /* update existing queue */
2456 blk_mq_update_tag_set_depth(set, true);
2457 }
2458 if (set->flags & BLK_MQ_F_TAG_SHARED)
2459 queue_set_hctx_shared(q, true);
2460 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2461
2462 mutex_unlock(&set->tag_list_lock);
2463 }
2464
2465 /*
2466 * It is the actual release handler for mq, but we do it from
2467 * request queue's release handler for avoiding use-after-free
2468 * and headache because q->mq_kobj shouldn't have been introduced,
2469 * but we can't group ctx/kctx kobj without it.
2470 */
blk_mq_release(struct request_queue * q)2471 void blk_mq_release(struct request_queue *q)
2472 {
2473 struct blk_mq_hw_ctx *hctx;
2474 unsigned int i;
2475
2476 /* hctx kobj stays in hctx */
2477 queue_for_each_hw_ctx(q, hctx, i) {
2478 if (!hctx)
2479 continue;
2480 kobject_put(&hctx->kobj);
2481 }
2482
2483 q->mq_map = NULL;
2484
2485 kfree(q->queue_hw_ctx);
2486
2487 /*
2488 * release .mq_kobj and sw queue's kobject now because
2489 * both share lifetime with request queue.
2490 */
2491 blk_mq_sysfs_deinit(q);
2492
2493 free_percpu(q->queue_ctx);
2494 }
2495
blk_mq_init_queue(struct blk_mq_tag_set * set)2496 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2497 {
2498 struct request_queue *uninit_q, *q;
2499
2500 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2501 if (!uninit_q)
2502 return ERR_PTR(-ENOMEM);
2503
2504 q = blk_mq_init_allocated_queue(set, uninit_q);
2505 if (IS_ERR(q))
2506 blk_cleanup_queue(uninit_q);
2507
2508 return q;
2509 }
2510 EXPORT_SYMBOL(blk_mq_init_queue);
2511
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2512 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2513 {
2514 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2515
2516 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2517 __alignof__(struct blk_mq_hw_ctx)) !=
2518 sizeof(struct blk_mq_hw_ctx));
2519
2520 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2521 hw_ctx_size += sizeof(struct srcu_struct);
2522
2523 return hw_ctx_size;
2524 }
2525
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)2526 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2527 struct request_queue *q)
2528 {
2529 int i, j;
2530 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2531
2532 blk_mq_sysfs_unregister(q);
2533
2534 /* protect against switching io scheduler */
2535 mutex_lock(&q->sysfs_lock);
2536 for (i = 0; i < set->nr_hw_queues; i++) {
2537 int node;
2538
2539 if (hctxs[i])
2540 continue;
2541
2542 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2543 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2544 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2545 node);
2546 if (!hctxs[i])
2547 break;
2548
2549 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2550 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2551 node)) {
2552 kfree(hctxs[i]);
2553 hctxs[i] = NULL;
2554 break;
2555 }
2556
2557 atomic_set(&hctxs[i]->nr_active, 0);
2558 hctxs[i]->numa_node = node;
2559 hctxs[i]->queue_num = i;
2560
2561 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2562 free_cpumask_var(hctxs[i]->cpumask);
2563 kfree(hctxs[i]);
2564 hctxs[i] = NULL;
2565 break;
2566 }
2567 blk_mq_hctx_kobj_init(hctxs[i]);
2568 }
2569 for (j = i; j < q->nr_hw_queues; j++) {
2570 struct blk_mq_hw_ctx *hctx = hctxs[j];
2571
2572 if (hctx) {
2573 if (hctx->tags)
2574 blk_mq_free_map_and_requests(set, j);
2575 blk_mq_exit_hctx(q, set, hctx, j);
2576 kobject_put(&hctx->kobj);
2577 hctxs[j] = NULL;
2578
2579 }
2580 }
2581 q->nr_hw_queues = i;
2582 mutex_unlock(&q->sysfs_lock);
2583 blk_mq_sysfs_register(q);
2584 }
2585
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)2586 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2587 struct request_queue *q)
2588 {
2589 /* mark the queue as mq asap */
2590 q->mq_ops = set->ops;
2591
2592 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2593 blk_mq_poll_stats_bkt,
2594 BLK_MQ_POLL_STATS_BKTS, q);
2595 if (!q->poll_cb)
2596 goto err_exit;
2597
2598 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2599 if (!q->queue_ctx)
2600 goto err_exit;
2601
2602 /* init q->mq_kobj and sw queues' kobjects */
2603 blk_mq_sysfs_init(q);
2604
2605 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2606 GFP_KERNEL, set->numa_node);
2607 if (!q->queue_hw_ctx)
2608 goto err_percpu;
2609
2610 q->mq_map = set->mq_map;
2611
2612 blk_mq_realloc_hw_ctxs(set, q);
2613 if (!q->nr_hw_queues)
2614 goto err_hctxs;
2615
2616 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2617 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2618
2619 q->nr_queues = nr_cpu_ids;
2620
2621 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2622
2623 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2624 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2625
2626 q->sg_reserved_size = INT_MAX;
2627
2628 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2629 INIT_LIST_HEAD(&q->requeue_list);
2630 spin_lock_init(&q->requeue_lock);
2631
2632 blk_queue_make_request(q, blk_mq_make_request);
2633 if (q->mq_ops->poll)
2634 q->poll_fn = blk_mq_poll;
2635
2636 /*
2637 * Do this after blk_queue_make_request() overrides it...
2638 */
2639 q->nr_requests = set->queue_depth;
2640
2641 /*
2642 * Default to classic polling
2643 */
2644 q->poll_nsec = -1;
2645
2646 if (set->ops->complete)
2647 blk_queue_softirq_done(q, set->ops->complete);
2648
2649 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2650 blk_mq_add_queue_tag_set(set, q);
2651 blk_mq_map_swqueue(q);
2652
2653 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2654 int ret;
2655
2656 ret = elevator_init_mq(q);
2657 if (ret)
2658 return ERR_PTR(ret);
2659 }
2660
2661 return q;
2662
2663 err_hctxs:
2664 kfree(q->queue_hw_ctx);
2665 err_percpu:
2666 free_percpu(q->queue_ctx);
2667 err_exit:
2668 q->mq_ops = NULL;
2669 return ERR_PTR(-ENOMEM);
2670 }
2671 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2672
2673 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)2674 void blk_mq_exit_queue(struct request_queue *q)
2675 {
2676 struct blk_mq_tag_set *set = q->tag_set;
2677
2678 blk_mq_del_queue_tag_set(q);
2679 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2680 }
2681
2682 /* Basically redo blk_mq_init_queue with queue frozen */
blk_mq_queue_reinit(struct request_queue * q)2683 static void blk_mq_queue_reinit(struct request_queue *q)
2684 {
2685 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2686
2687 blk_mq_debugfs_unregister_hctxs(q);
2688 blk_mq_sysfs_unregister(q);
2689
2690 /*
2691 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2692 * we should change hctx numa_node according to the new topology (this
2693 * involves freeing and re-allocating memory, worth doing?)
2694 */
2695 blk_mq_map_swqueue(q);
2696
2697 blk_mq_sysfs_register(q);
2698 blk_mq_debugfs_register_hctxs(q);
2699 }
2700
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2701 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2702 {
2703 int i;
2704
2705 for (i = 0; i < set->nr_hw_queues; i++)
2706 if (!__blk_mq_alloc_rq_map(set, i))
2707 goto out_unwind;
2708
2709 return 0;
2710
2711 out_unwind:
2712 while (--i >= 0)
2713 blk_mq_free_rq_map(set->tags[i]);
2714
2715 return -ENOMEM;
2716 }
2717
2718 /*
2719 * Allocate the request maps associated with this tag_set. Note that this
2720 * may reduce the depth asked for, if memory is tight. set->queue_depth
2721 * will be updated to reflect the allocated depth.
2722 */
blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2723 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2724 {
2725 unsigned int depth;
2726 int err;
2727
2728 depth = set->queue_depth;
2729 do {
2730 err = __blk_mq_alloc_rq_maps(set);
2731 if (!err)
2732 break;
2733
2734 set->queue_depth >>= 1;
2735 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2736 err = -ENOMEM;
2737 break;
2738 }
2739 } while (set->queue_depth);
2740
2741 if (!set->queue_depth || err) {
2742 pr_err("blk-mq: failed to allocate request map\n");
2743 return -ENOMEM;
2744 }
2745
2746 if (depth != set->queue_depth)
2747 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2748 depth, set->queue_depth);
2749
2750 return 0;
2751 }
2752
blk_mq_update_queue_map(struct blk_mq_tag_set * set)2753 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2754 {
2755 if (set->ops->map_queues) {
2756 /*
2757 * transport .map_queues is usually done in the following
2758 * way:
2759 *
2760 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2761 * mask = get_cpu_mask(queue)
2762 * for_each_cpu(cpu, mask)
2763 * set->mq_map[cpu] = queue;
2764 * }
2765 *
2766 * When we need to remap, the table has to be cleared for
2767 * killing stale mapping since one CPU may not be mapped
2768 * to any hw queue.
2769 */
2770 blk_mq_clear_mq_map(set);
2771
2772 return set->ops->map_queues(set);
2773 } else
2774 return blk_mq_map_queues(set);
2775 }
2776
2777 /*
2778 * Alloc a tag set to be associated with one or more request queues.
2779 * May fail with EINVAL for various error conditions. May adjust the
2780 * requested depth down, if it's too large. In that case, the set
2781 * value will be stored in set->queue_depth.
2782 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)2783 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2784 {
2785 int ret;
2786
2787 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2788
2789 if (!set->nr_hw_queues)
2790 return -EINVAL;
2791 if (!set->queue_depth)
2792 return -EINVAL;
2793 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2794 return -EINVAL;
2795
2796 if (!set->ops->queue_rq)
2797 return -EINVAL;
2798
2799 if (!set->ops->get_budget ^ !set->ops->put_budget)
2800 return -EINVAL;
2801
2802 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2803 pr_info("blk-mq: reduced tag depth to %u\n",
2804 BLK_MQ_MAX_DEPTH);
2805 set->queue_depth = BLK_MQ_MAX_DEPTH;
2806 }
2807
2808 /*
2809 * If a crashdump is active, then we are potentially in a very
2810 * memory constrained environment. Limit us to 1 queue and
2811 * 64 tags to prevent using too much memory.
2812 */
2813 if (is_kdump_kernel()) {
2814 set->nr_hw_queues = 1;
2815 set->queue_depth = min(64U, set->queue_depth);
2816 }
2817 /*
2818 * There is no use for more h/w queues than cpus.
2819 */
2820 if (set->nr_hw_queues > nr_cpu_ids)
2821 set->nr_hw_queues = nr_cpu_ids;
2822
2823 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2824 GFP_KERNEL, set->numa_node);
2825 if (!set->tags)
2826 return -ENOMEM;
2827
2828 ret = -ENOMEM;
2829 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2830 GFP_KERNEL, set->numa_node);
2831 if (!set->mq_map)
2832 goto out_free_tags;
2833
2834 ret = blk_mq_update_queue_map(set);
2835 if (ret)
2836 goto out_free_mq_map;
2837
2838 ret = blk_mq_alloc_rq_maps(set);
2839 if (ret)
2840 goto out_free_mq_map;
2841
2842 mutex_init(&set->tag_list_lock);
2843 INIT_LIST_HEAD(&set->tag_list);
2844
2845 return 0;
2846
2847 out_free_mq_map:
2848 kfree(set->mq_map);
2849 set->mq_map = NULL;
2850 out_free_tags:
2851 kfree(set->tags);
2852 set->tags = NULL;
2853 return ret;
2854 }
2855 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2856
blk_mq_free_tag_set(struct blk_mq_tag_set * set)2857 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2858 {
2859 int i;
2860
2861 for (i = 0; i < nr_cpu_ids; i++)
2862 blk_mq_free_map_and_requests(set, i);
2863
2864 kfree(set->mq_map);
2865 set->mq_map = NULL;
2866
2867 kfree(set->tags);
2868 set->tags = NULL;
2869 }
2870 EXPORT_SYMBOL(blk_mq_free_tag_set);
2871
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)2872 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2873 {
2874 struct blk_mq_tag_set *set = q->tag_set;
2875 struct blk_mq_hw_ctx *hctx;
2876 int i, ret;
2877
2878 if (!set)
2879 return -EINVAL;
2880
2881 blk_mq_freeze_queue(q);
2882 blk_mq_quiesce_queue(q);
2883
2884 ret = 0;
2885 queue_for_each_hw_ctx(q, hctx, i) {
2886 if (!hctx->tags)
2887 continue;
2888 /*
2889 * If we're using an MQ scheduler, just update the scheduler
2890 * queue depth. This is similar to what the old code would do.
2891 */
2892 if (!hctx->sched_tags) {
2893 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2894 false);
2895 } else {
2896 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2897 nr, true);
2898 }
2899 if (ret)
2900 break;
2901 if (q->elevator && q->elevator->type->ops.mq.depth_updated)
2902 q->elevator->type->ops.mq.depth_updated(hctx);
2903 }
2904
2905 if (!ret)
2906 q->nr_requests = nr;
2907
2908 blk_mq_unquiesce_queue(q);
2909 blk_mq_unfreeze_queue(q);
2910
2911 return ret;
2912 }
2913
2914 /*
2915 * request_queue and elevator_type pair.
2916 * It is just used by __blk_mq_update_nr_hw_queues to cache
2917 * the elevator_type associated with a request_queue.
2918 */
2919 struct blk_mq_qe_pair {
2920 struct list_head node;
2921 struct request_queue *q;
2922 struct elevator_type *type;
2923 };
2924
2925 /*
2926 * Cache the elevator_type in qe pair list and switch the
2927 * io scheduler to 'none'
2928 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)2929 static bool blk_mq_elv_switch_none(struct list_head *head,
2930 struct request_queue *q)
2931 {
2932 struct blk_mq_qe_pair *qe;
2933
2934 if (!q->elevator)
2935 return true;
2936
2937 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2938 if (!qe)
2939 return false;
2940
2941 INIT_LIST_HEAD(&qe->node);
2942 qe->q = q;
2943 qe->type = q->elevator->type;
2944 list_add(&qe->node, head);
2945
2946 mutex_lock(&q->sysfs_lock);
2947 /*
2948 * After elevator_switch_mq, the previous elevator_queue will be
2949 * released by elevator_release. The reference of the io scheduler
2950 * module get by elevator_get will also be put. So we need to get
2951 * a reference of the io scheduler module here to prevent it to be
2952 * removed.
2953 */
2954 __module_get(qe->type->elevator_owner);
2955 elevator_switch_mq(q, NULL);
2956 mutex_unlock(&q->sysfs_lock);
2957
2958 return true;
2959 }
2960
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)2961 static void blk_mq_elv_switch_back(struct list_head *head,
2962 struct request_queue *q)
2963 {
2964 struct blk_mq_qe_pair *qe;
2965 struct elevator_type *t = NULL;
2966
2967 list_for_each_entry(qe, head, node)
2968 if (qe->q == q) {
2969 t = qe->type;
2970 break;
2971 }
2972
2973 if (!t)
2974 return;
2975
2976 list_del(&qe->node);
2977 kfree(qe);
2978
2979 mutex_lock(&q->sysfs_lock);
2980 elevator_switch_mq(q, t);
2981 mutex_unlock(&q->sysfs_lock);
2982 }
2983
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)2984 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2985 int nr_hw_queues)
2986 {
2987 struct request_queue *q;
2988 LIST_HEAD(head);
2989
2990 lockdep_assert_held(&set->tag_list_lock);
2991
2992 if (nr_hw_queues > nr_cpu_ids)
2993 nr_hw_queues = nr_cpu_ids;
2994 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2995 return;
2996
2997 list_for_each_entry(q, &set->tag_list, tag_set_list)
2998 blk_mq_freeze_queue(q);
2999 /*
3000 * Sync with blk_mq_queue_tag_busy_iter.
3001 */
3002 synchronize_rcu();
3003 /*
3004 * Switch IO scheduler to 'none', cleaning up the data associated
3005 * with the previous scheduler. We will switch back once we are done
3006 * updating the new sw to hw queue mappings.
3007 */
3008 list_for_each_entry(q, &set->tag_list, tag_set_list)
3009 if (!blk_mq_elv_switch_none(&head, q))
3010 goto switch_back;
3011
3012 set->nr_hw_queues = nr_hw_queues;
3013 blk_mq_update_queue_map(set);
3014 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3015 blk_mq_realloc_hw_ctxs(set, q);
3016 blk_mq_queue_reinit(q);
3017 }
3018
3019 switch_back:
3020 list_for_each_entry(q, &set->tag_list, tag_set_list)
3021 blk_mq_elv_switch_back(&head, q);
3022
3023 list_for_each_entry(q, &set->tag_list, tag_set_list)
3024 blk_mq_unfreeze_queue(q);
3025 }
3026
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3027 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3028 {
3029 mutex_lock(&set->tag_list_lock);
3030 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3031 mutex_unlock(&set->tag_list_lock);
3032 }
3033 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3034
3035 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3036 static bool blk_poll_stats_enable(struct request_queue *q)
3037 {
3038 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3039 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3040 return true;
3041 blk_stat_add_callback(q, q->poll_cb);
3042 return false;
3043 }
3044
blk_mq_poll_stats_start(struct request_queue * q)3045 static void blk_mq_poll_stats_start(struct request_queue *q)
3046 {
3047 /*
3048 * We don't arm the callback if polling stats are not enabled or the
3049 * callback is already active.
3050 */
3051 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3052 blk_stat_is_active(q->poll_cb))
3053 return;
3054
3055 blk_stat_activate_msecs(q->poll_cb, 100);
3056 }
3057
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3058 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3059 {
3060 struct request_queue *q = cb->data;
3061 int bucket;
3062
3063 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3064 if (cb->stat[bucket].nr_samples)
3065 q->poll_stat[bucket] = cb->stat[bucket];
3066 }
3067 }
3068
blk_mq_poll_nsecs(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct request * rq)3069 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3070 struct blk_mq_hw_ctx *hctx,
3071 struct request *rq)
3072 {
3073 unsigned long ret = 0;
3074 int bucket;
3075
3076 /*
3077 * If stats collection isn't on, don't sleep but turn it on for
3078 * future users
3079 */
3080 if (!blk_poll_stats_enable(q))
3081 return 0;
3082
3083 /*
3084 * As an optimistic guess, use half of the mean service time
3085 * for this type of request. We can (and should) make this smarter.
3086 * For instance, if the completion latencies are tight, we can
3087 * get closer than just half the mean. This is especially
3088 * important on devices where the completion latencies are longer
3089 * than ~10 usec. We do use the stats for the relevant IO size
3090 * if available which does lead to better estimates.
3091 */
3092 bucket = blk_mq_poll_stats_bkt(rq);
3093 if (bucket < 0)
3094 return ret;
3095
3096 if (q->poll_stat[bucket].nr_samples)
3097 ret = (q->poll_stat[bucket].mean + 1) / 2;
3098
3099 return ret;
3100 }
3101
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct request * rq)3102 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3103 struct blk_mq_hw_ctx *hctx,
3104 struct request *rq)
3105 {
3106 struct hrtimer_sleeper hs;
3107 enum hrtimer_mode mode;
3108 unsigned int nsecs;
3109 ktime_t kt;
3110
3111 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3112 return false;
3113
3114 /*
3115 * poll_nsec can be:
3116 *
3117 * -1: don't ever hybrid sleep
3118 * 0: use half of prev avg
3119 * >0: use this specific value
3120 */
3121 if (q->poll_nsec == -1)
3122 return false;
3123 else if (q->poll_nsec > 0)
3124 nsecs = q->poll_nsec;
3125 else
3126 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3127
3128 if (!nsecs)
3129 return false;
3130
3131 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3132
3133 /*
3134 * This will be replaced with the stats tracking code, using
3135 * 'avg_completion_time / 2' as the pre-sleep target.
3136 */
3137 kt = nsecs;
3138
3139 mode = HRTIMER_MODE_REL;
3140 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3141 hrtimer_set_expires(&hs.timer, kt);
3142
3143 hrtimer_init_sleeper(&hs, current);
3144 do {
3145 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3146 break;
3147 set_current_state(TASK_UNINTERRUPTIBLE);
3148 hrtimer_start_expires(&hs.timer, mode);
3149 if (hs.task)
3150 io_schedule();
3151 hrtimer_cancel(&hs.timer);
3152 mode = HRTIMER_MODE_ABS;
3153 } while (hs.task && !signal_pending(current));
3154
3155 __set_current_state(TASK_RUNNING);
3156 destroy_hrtimer_on_stack(&hs.timer);
3157 return true;
3158 }
3159
__blk_mq_poll(struct blk_mq_hw_ctx * hctx,struct request * rq)3160 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3161 {
3162 struct request_queue *q = hctx->queue;
3163 long state;
3164
3165 /*
3166 * If we sleep, have the caller restart the poll loop to reset
3167 * the state. Like for the other success return cases, the
3168 * caller is responsible for checking if the IO completed. If
3169 * the IO isn't complete, we'll get called again and will go
3170 * straight to the busy poll loop.
3171 */
3172 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3173 return true;
3174
3175 hctx->poll_considered++;
3176
3177 state = current->state;
3178 while (!need_resched()) {
3179 int ret;
3180
3181 hctx->poll_invoked++;
3182
3183 ret = q->mq_ops->poll(hctx, rq->tag);
3184 if (ret > 0) {
3185 hctx->poll_success++;
3186 set_current_state(TASK_RUNNING);
3187 return true;
3188 }
3189
3190 if (signal_pending_state(state, current))
3191 set_current_state(TASK_RUNNING);
3192
3193 if (current->state == TASK_RUNNING)
3194 return true;
3195 if (ret < 0)
3196 break;
3197 cpu_relax();
3198 }
3199
3200 __set_current_state(TASK_RUNNING);
3201 return false;
3202 }
3203
blk_mq_poll(struct request_queue * q,blk_qc_t cookie)3204 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3205 {
3206 struct blk_mq_hw_ctx *hctx;
3207 struct request *rq;
3208
3209 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3210 return false;
3211
3212 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3213 if (!blk_qc_t_is_internal(cookie))
3214 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3215 else {
3216 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3217 /*
3218 * With scheduling, if the request has completed, we'll
3219 * get a NULL return here, as we clear the sched tag when
3220 * that happens. The request still remains valid, like always,
3221 * so we should be safe with just the NULL check.
3222 */
3223 if (!rq)
3224 return false;
3225 }
3226
3227 return __blk_mq_poll(hctx, rq);
3228 }
3229
blk_mq_init(void)3230 static int __init blk_mq_init(void)
3231 {
3232 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3233 blk_mq_hctx_notify_dead);
3234 return 0;
3235 }
3236 subsys_initcall(blk_mq_init);
3237