• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
blk_mq_poll_stats_bkt(const struct request * rq)44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	/*
99 	 * index[0] counts the specific partition that was asked for. index[1]
100 	 * counts the ones that are active on the whole device, so increment
101 	 * that if mi->part is indeed a partition, and not a whole device.
102 	 */
103 	if (rq->part == mi->part)
104 		mi->inflight[0]++;
105 	if (mi->part->partno)
106 		mi->inflight[1]++;
107 }
108 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 		      unsigned int inflight[2])
111 {
112 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
113 
114 	inflight[0] = inflight[1] = 0;
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117 
blk_mq_check_inflight_rw(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 				     struct request *rq, void *priv,
120 				     bool reserved)
121 {
122 	struct mq_inflight *mi = priv;
123 
124 	if (rq->part == mi->part)
125 		mi->inflight[rq_data_dir(rq)]++;
126 }
127 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 			 unsigned int inflight[2])
130 {
131 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
132 
133 	inflight[0] = inflight[1] = 0;
134 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136 
blk_freeze_queue_start(struct request_queue * q)137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 	int freeze_depth;
140 
141 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 	if (freeze_depth == 1) {
143 		percpu_ref_kill(&q->q_usage_counter);
144 		if (q->mq_ops)
145 			blk_mq_run_hw_queues(q, false);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
blk_mq_freeze_queue_wait(struct request_queue * q)150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
blk_freeze_queue(struct request_queue * q)169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	if (!q->mq_ops)
180 		blk_drain_queue(q);
181 	blk_mq_freeze_queue_wait(q);
182 }
183 
blk_mq_freeze_queue(struct request_queue * q)184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 	/*
187 	 * ...just an alias to keep freeze and unfreeze actions balanced
188 	 * in the blk_mq_* namespace
189 	 */
190 	blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 
blk_mq_unfreeze_queue(struct request_queue * q)194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	int freeze_depth;
197 
198 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 	WARN_ON_ONCE(freeze_depth < 0);
200 	if (!freeze_depth) {
201 		percpu_ref_reinit(&q->q_usage_counter);
202 		wake_up_all(&q->mq_freeze_wq);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206 
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216 
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
blk_mq_quiesce_queue(struct request_queue * q)226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 	struct blk_mq_hw_ctx *hctx;
229 	unsigned int i;
230 	bool rcu = false;
231 
232 	blk_mq_quiesce_queue_nowait(q);
233 
234 	queue_for_each_hw_ctx(q, hctx, i) {
235 		if (hctx->flags & BLK_MQ_F_BLOCKING)
236 			synchronize_srcu(hctx->srcu);
237 		else
238 			rcu = true;
239 	}
240 	if (rcu)
241 		synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244 
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
blk_mq_unquiesce_queue(struct request_queue * q)252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 
256 	/* dispatch requests which are inserted during quiescing */
257 	blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 
blk_mq_wake_waiters(struct request_queue * q)261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 	struct blk_mq_hw_ctx *hctx;
264 	unsigned int i;
265 
266 	queue_for_each_hw_ctx(q, hctx, i)
267 		if (blk_mq_hw_queue_mapped(hctx))
268 			blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270 
blk_mq_can_queue(struct blk_mq_hw_ctx * hctx)271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 	return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,unsigned int op)277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, unsigned int op)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 	req_flags_t rq_flags = 0;
283 
284 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 		rq->tag = -1;
286 		rq->internal_tag = tag;
287 	} else {
288 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 			rq_flags = RQF_MQ_INFLIGHT;
290 			atomic_inc(&data->hctx->nr_active);
291 		}
292 		rq->tag = tag;
293 		rq->internal_tag = -1;
294 		data->hctx->tags->rqs[rq->tag] = rq;
295 	}
296 
297 	/* csd/requeue_work/fifo_time is initialized before use */
298 	rq->q = data->q;
299 	rq->mq_ctx = data->ctx;
300 	rq->rq_flags = rq_flags;
301 	rq->cpu = -1;
302 	rq->cmd_flags = op;
303 	if (data->flags & BLK_MQ_REQ_PREEMPT)
304 		rq->rq_flags |= RQF_PREEMPT;
305 	if (blk_queue_io_stat(data->q))
306 		rq->rq_flags |= RQF_IO_STAT;
307 	INIT_LIST_HEAD(&rq->queuelist);
308 	INIT_HLIST_NODE(&rq->hash);
309 	RB_CLEAR_NODE(&rq->rb_node);
310 	rq->rq_disk = NULL;
311 	rq->part = NULL;
312 	rq->start_time_ns = ktime_get_ns();
313 	rq->io_start_time_ns = 0;
314 	rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 	rq->nr_integrity_segments = 0;
317 #endif
318 	rq->special = NULL;
319 	/* tag was already set */
320 	rq->extra_len = 0;
321 	rq->__deadline = 0;
322 
323 	INIT_LIST_HEAD(&rq->timeout_list);
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 	rq->next_rq = NULL;
329 
330 #ifdef CONFIG_BLK_CGROUP
331 	rq->rl = NULL;
332 #endif
333 
334 	data->ctx->rq_dispatched[op_is_sync(op)]++;
335 	refcount_set(&rq->ref, 1);
336 	return rq;
337 }
338 
blk_mq_get_request(struct request_queue * q,struct bio * bio,unsigned int op,struct blk_mq_alloc_data * data)339 static struct request *blk_mq_get_request(struct request_queue *q,
340 		struct bio *bio, unsigned int op,
341 		struct blk_mq_alloc_data *data)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct request *rq;
345 	unsigned int tag;
346 	bool put_ctx_on_error = false;
347 
348 	blk_queue_enter_live(q);
349 	data->q = q;
350 	if (likely(!data->ctx)) {
351 		data->ctx = blk_mq_get_ctx(q);
352 		put_ctx_on_error = true;
353 	}
354 	if (likely(!data->hctx))
355 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 	if (op & REQ_NOWAIT)
357 		data->flags |= BLK_MQ_REQ_NOWAIT;
358 
359 	if (e) {
360 		data->flags |= BLK_MQ_REQ_INTERNAL;
361 
362 		/*
363 		 * Flush requests are special and go directly to the
364 		 * dispatch list. Don't include reserved tags in the
365 		 * limiting, as it isn't useful.
366 		 */
367 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.mq.limit_depth(op, data);
370 	} else {
371 		blk_mq_tag_busy(data->hctx);
372 	}
373 
374 	tag = blk_mq_get_tag(data);
375 	if (tag == BLK_MQ_TAG_FAIL) {
376 		if (put_ctx_on_error) {
377 			blk_mq_put_ctx(data->ctx);
378 			data->ctx = NULL;
379 		}
380 		blk_queue_exit(q);
381 		return NULL;
382 	}
383 
384 	rq = blk_mq_rq_ctx_init(data, tag, op);
385 	if (!op_is_flush(op)) {
386 		rq->elv.icq = NULL;
387 		if (e && e->type->ops.mq.prepare_request) {
388 			if (e->type->icq_cache && rq_ioc(bio))
389 				blk_mq_sched_assign_ioc(rq, bio);
390 
391 			e->type->ops.mq.prepare_request(rq, bio);
392 			rq->rq_flags |= RQF_ELVPRIV;
393 		}
394 	}
395 	data->hctx->queued++;
396 	return rq;
397 }
398 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
403 	struct request *rq;
404 	int ret;
405 
406 	ret = blk_queue_enter(q, flags);
407 	if (ret)
408 		return ERR_PTR(ret);
409 
410 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411 	blk_queue_exit(q);
412 
413 	if (!rq)
414 		return ERR_PTR(-EWOULDBLOCK);
415 
416 	blk_mq_put_ctx(alloc_data.ctx);
417 
418 	rq->__data_len = 0;
419 	rq->__sector = (sector_t) -1;
420 	rq->bio = rq->biotail = NULL;
421 	return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 	struct request *rq;
430 	unsigned int cpu;
431 	int ret;
432 
433 	/*
434 	 * If the tag allocator sleeps we could get an allocation for a
435 	 * different hardware context.  No need to complicate the low level
436 	 * allocator for this for the rare use case of a command tied to
437 	 * a specific queue.
438 	 */
439 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 		return ERR_PTR(-EINVAL);
441 
442 	if (hctx_idx >= q->nr_hw_queues)
443 		return ERR_PTR(-EIO);
444 
445 	ret = blk_queue_enter(q, flags);
446 	if (ret)
447 		return ERR_PTR(ret);
448 
449 	/*
450 	 * Check if the hardware context is actually mapped to anything.
451 	 * If not tell the caller that it should skip this queue.
452 	 */
453 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 		blk_queue_exit(q);
456 		return ERR_PTR(-EXDEV);
457 	}
458 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460 
461 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462 	blk_queue_exit(q);
463 
464 	if (!rq)
465 		return ERR_PTR(-EWOULDBLOCK);
466 
467 	return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470 
__blk_mq_free_request(struct request * rq)471 static void __blk_mq_free_request(struct request *rq)
472 {
473 	struct request_queue *q = rq->q;
474 	struct blk_mq_ctx *ctx = rq->mq_ctx;
475 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 	const int sched_tag = rq->internal_tag;
477 
478 	if (rq->tag != -1)
479 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480 	if (sched_tag != -1)
481 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 	blk_mq_sched_restart(hctx);
483 	blk_queue_exit(q);
484 }
485 
blk_mq_free_request(struct request * rq)486 void blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct elevator_queue *e = q->elevator;
490 	struct blk_mq_ctx *ctx = rq->mq_ctx;
491 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
492 
493 	if (rq->rq_flags & RQF_ELVPRIV) {
494 		if (e && e->type->ops.mq.finish_request)
495 			e->type->ops.mq.finish_request(rq);
496 		if (rq->elv.icq) {
497 			put_io_context(rq->elv.icq->ioc);
498 			rq->elv.icq = NULL;
499 		}
500 	}
501 
502 	ctx->rq_completed[rq_is_sync(rq)]++;
503 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 		atomic_dec(&hctx->nr_active);
505 
506 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 		laptop_io_completion(q->backing_dev_info);
508 
509 	rq_qos_done(q, rq);
510 
511 	if (blk_rq_rl(rq))
512 		blk_put_rl(blk_rq_rl(rq));
513 
514 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 	if (refcount_dec_and_test(&rq->ref))
516 		__blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519 
__blk_mq_end_request(struct request * rq,blk_status_t error)520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 	u64 now = ktime_get_ns();
523 
524 	if (rq->rq_flags & RQF_STATS) {
525 		blk_mq_poll_stats_start(rq->q);
526 		blk_stat_add(rq, now);
527 	}
528 
529 	blk_account_io_done(rq, now);
530 
531 	if (rq->end_io) {
532 		rq_qos_done(rq->q, rq);
533 		rq->end_io(rq, error);
534 	} else {
535 		if (unlikely(blk_bidi_rq(rq)))
536 			blk_mq_free_request(rq->next_rq);
537 		blk_mq_free_request(rq);
538 	}
539 }
540 EXPORT_SYMBOL(__blk_mq_end_request);
541 
blk_mq_end_request(struct request * rq,blk_status_t error)542 void blk_mq_end_request(struct request *rq, blk_status_t error)
543 {
544 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545 		BUG();
546 	__blk_mq_end_request(rq, error);
547 }
548 EXPORT_SYMBOL(blk_mq_end_request);
549 
__blk_mq_complete_request_remote(void * data)550 static void __blk_mq_complete_request_remote(void *data)
551 {
552 	struct request *rq = data;
553 
554 	rq->q->softirq_done_fn(rq);
555 }
556 
__blk_mq_complete_request(struct request * rq)557 static void __blk_mq_complete_request(struct request *rq)
558 {
559 	struct blk_mq_ctx *ctx = rq->mq_ctx;
560 	bool shared = false;
561 	int cpu;
562 
563 	if (!blk_mq_mark_complete(rq))
564 		return;
565 	if (rq->internal_tag != -1)
566 		blk_mq_sched_completed_request(rq);
567 
568 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 		rq->q->softirq_done_fn(rq);
570 		return;
571 	}
572 
573 	cpu = get_cpu();
574 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 		shared = cpus_share_cache(cpu, ctx->cpu);
576 
577 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 		rq->csd.func = __blk_mq_complete_request_remote;
579 		rq->csd.info = rq;
580 		rq->csd.flags = 0;
581 		smp_call_function_single_async(ctx->cpu, &rq->csd);
582 	} else {
583 		rq->q->softirq_done_fn(rq);
584 	}
585 	put_cpu();
586 }
587 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 	__releases(hctx->srcu)
590 {
591 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 		rcu_read_unlock();
593 	else
594 		srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 	__acquires(hctx->srcu)
599 {
600 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 		/* shut up gcc false positive */
602 		*srcu_idx = 0;
603 		rcu_read_lock();
604 	} else
605 		*srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607 
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:		the request being processed
611  *
612  * Description:
613  *	Ends all I/O on a request. It does not handle partial completions.
614  *	The actual completion happens out-of-order, through a IPI handler.
615  **/
blk_mq_complete_request(struct request * rq)616 void blk_mq_complete_request(struct request *rq)
617 {
618 	if (unlikely(blk_should_fake_timeout(rq->q)))
619 		return;
620 	__blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623 
blk_mq_request_started(struct request * rq)624 int blk_mq_request_started(struct request *rq)
625 {
626 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629 
blk_mq_start_request(struct request * rq)630 void blk_mq_start_request(struct request *rq)
631 {
632 	struct request_queue *q = rq->q;
633 
634 	blk_mq_sched_started_request(rq);
635 
636 	trace_block_rq_issue(q, rq);
637 
638 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 		rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 		rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 		rq->rq_flags |= RQF_STATS;
644 		rq_qos_issue(q, rq);
645 	}
646 
647 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648 
649 	blk_add_timer(rq);
650 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 
652 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
653 		/*
654 		 * Make sure space for the drain appears.  We know we can do
655 		 * this because max_hw_segments has been adjusted to be one
656 		 * fewer than the device can handle.
657 		 */
658 		rq->nr_phys_segments++;
659 	}
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662 
__blk_mq_requeue_request(struct request * rq)663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665 	struct request_queue *q = rq->q;
666 
667 	blk_mq_put_driver_tag(rq);
668 
669 	trace_block_rq_requeue(q, rq);
670 	rq_qos_requeue(q, rq);
671 
672 	if (blk_mq_request_started(rq)) {
673 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 		rq->rq_flags &= ~RQF_TIMED_OUT;
675 		if (q->dma_drain_size && blk_rq_bytes(rq))
676 			rq->nr_phys_segments--;
677 	}
678 }
679 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682 	__blk_mq_requeue_request(rq);
683 
684 	/* this request will be re-inserted to io scheduler queue */
685 	blk_mq_sched_requeue_request(rq);
686 
687 	BUG_ON(blk_queued_rq(rq));
688 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691 
blk_mq_requeue_work(struct work_struct * work)692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694 	struct request_queue *q =
695 		container_of(work, struct request_queue, requeue_work.work);
696 	LIST_HEAD(rq_list);
697 	struct request *rq, *next;
698 
699 	spin_lock_irq(&q->requeue_lock);
700 	list_splice_init(&q->requeue_list, &rq_list);
701 	spin_unlock_irq(&q->requeue_lock);
702 
703 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705 			continue;
706 
707 		rq->rq_flags &= ~RQF_SOFTBARRIER;
708 		list_del_init(&rq->queuelist);
709 		/*
710 		 * If RQF_DONTPREP, rq has contained some driver specific
711 		 * data, so insert it to hctx dispatch list to avoid any
712 		 * merge.
713 		 */
714 		if (rq->rq_flags & RQF_DONTPREP)
715 			blk_mq_request_bypass_insert(rq, false);
716 		else
717 			blk_mq_sched_insert_request(rq, true, false, false);
718 	}
719 
720 	while (!list_empty(&rq_list)) {
721 		rq = list_entry(rq_list.next, struct request, queuelist);
722 		list_del_init(&rq->queuelist);
723 		blk_mq_sched_insert_request(rq, false, false, false);
724 	}
725 
726 	blk_mq_run_hw_queues(q, false);
727 }
728 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730 				bool kick_requeue_list)
731 {
732 	struct request_queue *q = rq->q;
733 	unsigned long flags;
734 
735 	/*
736 	 * We abuse this flag that is otherwise used by the I/O scheduler to
737 	 * request head insertion from the workqueue.
738 	 */
739 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
740 
741 	spin_lock_irqsave(&q->requeue_lock, flags);
742 	if (at_head) {
743 		rq->rq_flags |= RQF_SOFTBARRIER;
744 		list_add(&rq->queuelist, &q->requeue_list);
745 	} else {
746 		list_add_tail(&rq->queuelist, &q->requeue_list);
747 	}
748 	spin_unlock_irqrestore(&q->requeue_lock, flags);
749 
750 	if (kick_requeue_list)
751 		blk_mq_kick_requeue_list(q);
752 }
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
754 
blk_mq_kick_requeue_list(struct request_queue * q)755 void blk_mq_kick_requeue_list(struct request_queue *q)
756 {
757 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
758 }
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
760 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762 				    unsigned long msecs)
763 {
764 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765 				    msecs_to_jiffies(msecs));
766 }
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
768 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
770 {
771 	if (tag < tags->nr_tags) {
772 		prefetch(tags->rqs[tag]);
773 		return tags->rqs[tag];
774 	}
775 
776 	return NULL;
777 }
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
779 
blk_mq_rq_timed_out(struct request * req,bool reserved)780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
781 {
782 	req->rq_flags |= RQF_TIMED_OUT;
783 	if (req->q->mq_ops->timeout) {
784 		enum blk_eh_timer_return ret;
785 
786 		ret = req->q->mq_ops->timeout(req, reserved);
787 		if (ret == BLK_EH_DONE)
788 			return;
789 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
790 	}
791 
792 	blk_add_timer(req);
793 }
794 
blk_mq_req_expired(struct request * rq,unsigned long * next)795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
796 {
797 	unsigned long deadline;
798 
799 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800 		return false;
801 	if (rq->rq_flags & RQF_TIMED_OUT)
802 		return false;
803 
804 	deadline = blk_rq_deadline(rq);
805 	if (time_after_eq(jiffies, deadline))
806 		return true;
807 
808 	if (*next == 0)
809 		*next = deadline;
810 	else if (time_after(*next, deadline))
811 		*next = deadline;
812 	return false;
813 }
814 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816 		struct request *rq, void *priv, bool reserved)
817 {
818 	unsigned long *next = priv;
819 
820 	/*
821 	 * Just do a quick check if it is expired before locking the request in
822 	 * so we're not unnecessarilly synchronizing across CPUs.
823 	 */
824 	if (!blk_mq_req_expired(rq, next))
825 		return;
826 
827 	/*
828 	 * We have reason to believe the request may be expired. Take a
829 	 * reference on the request to lock this request lifetime into its
830 	 * currently allocated context to prevent it from being reallocated in
831 	 * the event the completion by-passes this timeout handler.
832 	 *
833 	 * If the reference was already released, then the driver beat the
834 	 * timeout handler to posting a natural completion.
835 	 */
836 	if (!refcount_inc_not_zero(&rq->ref))
837 		return;
838 
839 	/*
840 	 * The request is now locked and cannot be reallocated underneath the
841 	 * timeout handler's processing. Re-verify this exact request is truly
842 	 * expired; if it is not expired, then the request was completed and
843 	 * reallocated as a new request.
844 	 */
845 	if (blk_mq_req_expired(rq, next))
846 		blk_mq_rq_timed_out(rq, reserved);
847 
848 	if (is_flush_rq(rq, hctx))
849 		rq->end_io(rq, 0);
850 	else if (refcount_dec_and_test(&rq->ref))
851 		__blk_mq_free_request(rq);
852 }
853 
blk_mq_timeout_work(struct work_struct * work)854 static void blk_mq_timeout_work(struct work_struct *work)
855 {
856 	struct request_queue *q =
857 		container_of(work, struct request_queue, timeout_work);
858 	unsigned long next = 0;
859 	struct blk_mq_hw_ctx *hctx;
860 	int i;
861 
862 	/* A deadlock might occur if a request is stuck requiring a
863 	 * timeout at the same time a queue freeze is waiting
864 	 * completion, since the timeout code would not be able to
865 	 * acquire the queue reference here.
866 	 *
867 	 * That's why we don't use blk_queue_enter here; instead, we use
868 	 * percpu_ref_tryget directly, because we need to be able to
869 	 * obtain a reference even in the short window between the queue
870 	 * starting to freeze, by dropping the first reference in
871 	 * blk_freeze_queue_start, and the moment the last request is
872 	 * consumed, marked by the instant q_usage_counter reaches
873 	 * zero.
874 	 */
875 	if (!percpu_ref_tryget(&q->q_usage_counter))
876 		return;
877 
878 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
879 
880 	if (next != 0) {
881 		mod_timer(&q->timeout, next);
882 	} else {
883 		/*
884 		 * Request timeouts are handled as a forward rolling timer. If
885 		 * we end up here it means that no requests are pending and
886 		 * also that no request has been pending for a while. Mark
887 		 * each hctx as idle.
888 		 */
889 		queue_for_each_hw_ctx(q, hctx, i) {
890 			/* the hctx may be unmapped, so check it here */
891 			if (blk_mq_hw_queue_mapped(hctx))
892 				blk_mq_tag_idle(hctx);
893 		}
894 	}
895 	blk_queue_exit(q);
896 }
897 
898 struct flush_busy_ctx_data {
899 	struct blk_mq_hw_ctx *hctx;
900 	struct list_head *list;
901 };
902 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)903 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
904 {
905 	struct flush_busy_ctx_data *flush_data = data;
906 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
907 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
908 
909 	spin_lock(&ctx->lock);
910 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
911 	sbitmap_clear_bit(sb, bitnr);
912 	spin_unlock(&ctx->lock);
913 	return true;
914 }
915 
916 /*
917  * Process software queues that have been marked busy, splicing them
918  * to the for-dispatch
919  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)920 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
921 {
922 	struct flush_busy_ctx_data data = {
923 		.hctx = hctx,
924 		.list = list,
925 	};
926 
927 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
928 }
929 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
930 
931 struct dispatch_rq_data {
932 	struct blk_mq_hw_ctx *hctx;
933 	struct request *rq;
934 };
935 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)936 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
937 		void *data)
938 {
939 	struct dispatch_rq_data *dispatch_data = data;
940 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
941 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
942 
943 	spin_lock(&ctx->lock);
944 	if (!list_empty(&ctx->rq_list)) {
945 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
946 		list_del_init(&dispatch_data->rq->queuelist);
947 		if (list_empty(&ctx->rq_list))
948 			sbitmap_clear_bit(sb, bitnr);
949 	}
950 	spin_unlock(&ctx->lock);
951 
952 	return !dispatch_data->rq;
953 }
954 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)955 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
956 					struct blk_mq_ctx *start)
957 {
958 	unsigned off = start ? start->index_hw : 0;
959 	struct dispatch_rq_data data = {
960 		.hctx = hctx,
961 		.rq   = NULL,
962 	};
963 
964 	__sbitmap_for_each_set(&hctx->ctx_map, off,
965 			       dispatch_rq_from_ctx, &data);
966 
967 	return data.rq;
968 }
969 
queued_to_index(unsigned int queued)970 static inline unsigned int queued_to_index(unsigned int queued)
971 {
972 	if (!queued)
973 		return 0;
974 
975 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
976 }
977 
blk_mq_get_driver_tag(struct request * rq)978 bool blk_mq_get_driver_tag(struct request *rq)
979 {
980 	struct blk_mq_alloc_data data = {
981 		.q = rq->q,
982 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
983 		.flags = BLK_MQ_REQ_NOWAIT,
984 	};
985 	bool shared;
986 
987 	if (rq->tag != -1)
988 		goto done;
989 
990 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
991 		data.flags |= BLK_MQ_REQ_RESERVED;
992 
993 	shared = blk_mq_tag_busy(data.hctx);
994 	rq->tag = blk_mq_get_tag(&data);
995 	if (rq->tag >= 0) {
996 		if (shared) {
997 			rq->rq_flags |= RQF_MQ_INFLIGHT;
998 			atomic_inc(&data.hctx->nr_active);
999 		}
1000 		data.hctx->tags->rqs[rq->tag] = rq;
1001 	}
1002 
1003 done:
1004 	return rq->tag != -1;
1005 }
1006 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1007 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1008 				int flags, void *key)
1009 {
1010 	struct blk_mq_hw_ctx *hctx;
1011 
1012 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1013 
1014 	spin_lock(&hctx->dispatch_wait_lock);
1015 	list_del_init(&wait->entry);
1016 	spin_unlock(&hctx->dispatch_wait_lock);
1017 
1018 	blk_mq_run_hw_queue(hctx, true);
1019 	return 1;
1020 }
1021 
1022 /*
1023  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1024  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1025  * restart. For both cases, take care to check the condition again after
1026  * marking us as waiting.
1027  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1028 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1029 				 struct request *rq)
1030 {
1031 	struct wait_queue_head *wq;
1032 	wait_queue_entry_t *wait;
1033 	bool ret;
1034 
1035 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1036 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1037 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1038 
1039 		/*
1040 		 * It's possible that a tag was freed in the window between the
1041 		 * allocation failure and adding the hardware queue to the wait
1042 		 * queue.
1043 		 *
1044 		 * Don't clear RESTART here, someone else could have set it.
1045 		 * At most this will cost an extra queue run.
1046 		 */
1047 		return blk_mq_get_driver_tag(rq);
1048 	}
1049 
1050 	wait = &hctx->dispatch_wait;
1051 	if (!list_empty_careful(&wait->entry))
1052 		return false;
1053 
1054 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1055 
1056 	spin_lock_irq(&wq->lock);
1057 	spin_lock(&hctx->dispatch_wait_lock);
1058 	if (!list_empty(&wait->entry)) {
1059 		spin_unlock(&hctx->dispatch_wait_lock);
1060 		spin_unlock_irq(&wq->lock);
1061 		return false;
1062 	}
1063 
1064 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1065 	__add_wait_queue(wq, wait);
1066 
1067 	/*
1068 	 * It's possible that a tag was freed in the window between the
1069 	 * allocation failure and adding the hardware queue to the wait
1070 	 * queue.
1071 	 */
1072 	ret = blk_mq_get_driver_tag(rq);
1073 	if (!ret) {
1074 		spin_unlock(&hctx->dispatch_wait_lock);
1075 		spin_unlock_irq(&wq->lock);
1076 		return false;
1077 	}
1078 
1079 	/*
1080 	 * We got a tag, remove ourselves from the wait queue to ensure
1081 	 * someone else gets the wakeup.
1082 	 */
1083 	list_del_init(&wait->entry);
1084 	spin_unlock(&hctx->dispatch_wait_lock);
1085 	spin_unlock_irq(&wq->lock);
1086 
1087 	return true;
1088 }
1089 
1090 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1091 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1092 /*
1093  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1094  * - EWMA is one simple way to compute running average value
1095  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1096  * - take 4 as factor for avoiding to get too small(0) result, and this
1097  *   factor doesn't matter because EWMA decreases exponentially
1098  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1099 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1100 {
1101 	unsigned int ewma;
1102 
1103 	if (hctx->queue->elevator)
1104 		return;
1105 
1106 	ewma = hctx->dispatch_busy;
1107 
1108 	if (!ewma && !busy)
1109 		return;
1110 
1111 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1112 	if (busy)
1113 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1114 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1115 
1116 	hctx->dispatch_busy = ewma;
1117 }
1118 
1119 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1120 
1121 /*
1122  * Returns true if we did some work AND can potentially do more.
1123  */
blk_mq_dispatch_rq_list(struct request_queue * q,struct list_head * list,bool got_budget)1124 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1125 			     bool got_budget)
1126 {
1127 	struct blk_mq_hw_ctx *hctx;
1128 	struct request *rq, *nxt;
1129 	bool no_tag = false;
1130 	int errors, queued;
1131 	blk_status_t ret = BLK_STS_OK;
1132 
1133 	if (list_empty(list))
1134 		return false;
1135 
1136 	WARN_ON(!list_is_singular(list) && got_budget);
1137 
1138 	/*
1139 	 * Now process all the entries, sending them to the driver.
1140 	 */
1141 	errors = queued = 0;
1142 	do {
1143 		struct blk_mq_queue_data bd;
1144 
1145 		rq = list_first_entry(list, struct request, queuelist);
1146 
1147 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1148 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1149 			break;
1150 
1151 		if (!blk_mq_get_driver_tag(rq)) {
1152 			/*
1153 			 * The initial allocation attempt failed, so we need to
1154 			 * rerun the hardware queue when a tag is freed. The
1155 			 * waitqueue takes care of that. If the queue is run
1156 			 * before we add this entry back on the dispatch list,
1157 			 * we'll re-run it below.
1158 			 */
1159 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1160 				blk_mq_put_dispatch_budget(hctx);
1161 				/*
1162 				 * For non-shared tags, the RESTART check
1163 				 * will suffice.
1164 				 */
1165 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1166 					no_tag = true;
1167 				break;
1168 			}
1169 		}
1170 
1171 		list_del_init(&rq->queuelist);
1172 
1173 		bd.rq = rq;
1174 
1175 		/*
1176 		 * Flag last if we have no more requests, or if we have more
1177 		 * but can't assign a driver tag to it.
1178 		 */
1179 		if (list_empty(list))
1180 			bd.last = true;
1181 		else {
1182 			nxt = list_first_entry(list, struct request, queuelist);
1183 			bd.last = !blk_mq_get_driver_tag(nxt);
1184 		}
1185 
1186 		ret = q->mq_ops->queue_rq(hctx, &bd);
1187 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1188 			/*
1189 			 * If an I/O scheduler has been configured and we got a
1190 			 * driver tag for the next request already, free it
1191 			 * again.
1192 			 */
1193 			if (!list_empty(list)) {
1194 				nxt = list_first_entry(list, struct request, queuelist);
1195 				blk_mq_put_driver_tag(nxt);
1196 			}
1197 			list_add(&rq->queuelist, list);
1198 			__blk_mq_requeue_request(rq);
1199 			break;
1200 		}
1201 
1202 		if (unlikely(ret != BLK_STS_OK)) {
1203 			errors++;
1204 			blk_mq_end_request(rq, BLK_STS_IOERR);
1205 			continue;
1206 		}
1207 
1208 		queued++;
1209 	} while (!list_empty(list));
1210 
1211 	hctx->dispatched[queued_to_index(queued)]++;
1212 
1213 	/*
1214 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1215 	 * that is where we will continue on next queue run.
1216 	 */
1217 	if (!list_empty(list)) {
1218 		bool needs_restart;
1219 
1220 		spin_lock(&hctx->lock);
1221 		list_splice_init(list, &hctx->dispatch);
1222 		spin_unlock(&hctx->lock);
1223 
1224 		/*
1225 		 * Order adding requests to hctx->dispatch and checking
1226 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1227 		 * in blk_mq_sched_restart(). Avoid restart code path to
1228 		 * miss the new added requests to hctx->dispatch, meantime
1229 		 * SCHED_RESTART is observed here.
1230 		 */
1231 		smp_mb();
1232 
1233 		/*
1234 		 * If SCHED_RESTART was set by the caller of this function and
1235 		 * it is no longer set that means that it was cleared by another
1236 		 * thread and hence that a queue rerun is needed.
1237 		 *
1238 		 * If 'no_tag' is set, that means that we failed getting
1239 		 * a driver tag with an I/O scheduler attached. If our dispatch
1240 		 * waitqueue is no longer active, ensure that we run the queue
1241 		 * AFTER adding our entries back to the list.
1242 		 *
1243 		 * If no I/O scheduler has been configured it is possible that
1244 		 * the hardware queue got stopped and restarted before requests
1245 		 * were pushed back onto the dispatch list. Rerun the queue to
1246 		 * avoid starvation. Notes:
1247 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1248 		 *   been stopped before rerunning a queue.
1249 		 * - Some but not all block drivers stop a queue before
1250 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1251 		 *   and dm-rq.
1252 		 *
1253 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1254 		 * bit is set, run queue after a delay to avoid IO stalls
1255 		 * that could otherwise occur if the queue is idle.
1256 		 */
1257 		needs_restart = blk_mq_sched_needs_restart(hctx);
1258 		if (!needs_restart ||
1259 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1260 			blk_mq_run_hw_queue(hctx, true);
1261 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1262 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1263 
1264 		blk_mq_update_dispatch_busy(hctx, true);
1265 		return false;
1266 	} else
1267 		blk_mq_update_dispatch_busy(hctx, false);
1268 
1269 	/*
1270 	 * If the host/device is unable to accept more work, inform the
1271 	 * caller of that.
1272 	 */
1273 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1274 		return false;
1275 
1276 	return (queued + errors) != 0;
1277 }
1278 
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1279 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1280 {
1281 	int srcu_idx;
1282 
1283 	/*
1284 	 * We should be running this queue from one of the CPUs that
1285 	 * are mapped to it.
1286 	 *
1287 	 * There are at least two related races now between setting
1288 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1289 	 * __blk_mq_run_hw_queue():
1290 	 *
1291 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1292 	 *   but later it becomes online, then this warning is harmless
1293 	 *   at all
1294 	 *
1295 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1296 	 *   but later it becomes offline, then the warning can't be
1297 	 *   triggered, and we depend on blk-mq timeout handler to
1298 	 *   handle dispatched requests to this hctx
1299 	 */
1300 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1301 		cpu_online(hctx->next_cpu)) {
1302 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1303 			raw_smp_processor_id(),
1304 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1305 		dump_stack();
1306 	}
1307 
1308 	/*
1309 	 * We can't run the queue inline with ints disabled. Ensure that
1310 	 * we catch bad users of this early.
1311 	 */
1312 	WARN_ON_ONCE(in_interrupt());
1313 
1314 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1315 
1316 	hctx_lock(hctx, &srcu_idx);
1317 	blk_mq_sched_dispatch_requests(hctx);
1318 	hctx_unlock(hctx, srcu_idx);
1319 }
1320 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1321 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1322 {
1323 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1324 
1325 	if (cpu >= nr_cpu_ids)
1326 		cpu = cpumask_first(hctx->cpumask);
1327 	return cpu;
1328 }
1329 
1330 /*
1331  * It'd be great if the workqueue API had a way to pass
1332  * in a mask and had some smarts for more clever placement.
1333  * For now we just round-robin here, switching for every
1334  * BLK_MQ_CPU_WORK_BATCH queued items.
1335  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1336 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1337 {
1338 	bool tried = false;
1339 	int next_cpu = hctx->next_cpu;
1340 
1341 	if (hctx->queue->nr_hw_queues == 1)
1342 		return WORK_CPU_UNBOUND;
1343 
1344 	if (--hctx->next_cpu_batch <= 0) {
1345 select_cpu:
1346 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1347 				cpu_online_mask);
1348 		if (next_cpu >= nr_cpu_ids)
1349 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1350 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1351 	}
1352 
1353 	/*
1354 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1355 	 * and it should only happen in the path of handling CPU DEAD.
1356 	 */
1357 	if (!cpu_online(next_cpu)) {
1358 		if (!tried) {
1359 			tried = true;
1360 			goto select_cpu;
1361 		}
1362 
1363 		/*
1364 		 * Make sure to re-select CPU next time once after CPUs
1365 		 * in hctx->cpumask become online again.
1366 		 */
1367 		hctx->next_cpu = next_cpu;
1368 		hctx->next_cpu_batch = 1;
1369 		return WORK_CPU_UNBOUND;
1370 	}
1371 
1372 	hctx->next_cpu = next_cpu;
1373 	return next_cpu;
1374 }
1375 
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1376 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1377 					unsigned long msecs)
1378 {
1379 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1380 		return;
1381 
1382 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1383 		int cpu = get_cpu();
1384 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1385 			__blk_mq_run_hw_queue(hctx);
1386 			put_cpu();
1387 			return;
1388 		}
1389 
1390 		put_cpu();
1391 	}
1392 
1393 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1394 				    msecs_to_jiffies(msecs));
1395 }
1396 
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1397 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1398 {
1399 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1400 }
1401 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1402 
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1403 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1404 {
1405 	int srcu_idx;
1406 	bool need_run;
1407 
1408 	/*
1409 	 * When queue is quiesced, we may be switching io scheduler, or
1410 	 * updating nr_hw_queues, or other things, and we can't run queue
1411 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1412 	 *
1413 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1414 	 * quiesced.
1415 	 */
1416 	hctx_lock(hctx, &srcu_idx);
1417 	need_run = !blk_queue_quiesced(hctx->queue) &&
1418 		blk_mq_hctx_has_pending(hctx);
1419 	hctx_unlock(hctx, srcu_idx);
1420 
1421 	if (need_run) {
1422 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1423 		return true;
1424 	}
1425 
1426 	return false;
1427 }
1428 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1429 
blk_mq_run_hw_queues(struct request_queue * q,bool async)1430 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1431 {
1432 	struct blk_mq_hw_ctx *hctx;
1433 	int i;
1434 
1435 	queue_for_each_hw_ctx(q, hctx, i) {
1436 		if (blk_mq_hctx_stopped(hctx))
1437 			continue;
1438 
1439 		blk_mq_run_hw_queue(hctx, async);
1440 	}
1441 }
1442 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1443 
1444 /**
1445  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1446  * @q: request queue.
1447  *
1448  * The caller is responsible for serializing this function against
1449  * blk_mq_{start,stop}_hw_queue().
1450  */
blk_mq_queue_stopped(struct request_queue * q)1451 bool blk_mq_queue_stopped(struct request_queue *q)
1452 {
1453 	struct blk_mq_hw_ctx *hctx;
1454 	int i;
1455 
1456 	queue_for_each_hw_ctx(q, hctx, i)
1457 		if (blk_mq_hctx_stopped(hctx))
1458 			return true;
1459 
1460 	return false;
1461 }
1462 EXPORT_SYMBOL(blk_mq_queue_stopped);
1463 
1464 /*
1465  * This function is often used for pausing .queue_rq() by driver when
1466  * there isn't enough resource or some conditions aren't satisfied, and
1467  * BLK_STS_RESOURCE is usually returned.
1468  *
1469  * We do not guarantee that dispatch can be drained or blocked
1470  * after blk_mq_stop_hw_queue() returns. Please use
1471  * blk_mq_quiesce_queue() for that requirement.
1472  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1473 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1474 {
1475 	cancel_delayed_work(&hctx->run_work);
1476 
1477 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1478 }
1479 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1480 
1481 /*
1482  * This function is often used for pausing .queue_rq() by driver when
1483  * there isn't enough resource or some conditions aren't satisfied, and
1484  * BLK_STS_RESOURCE is usually returned.
1485  *
1486  * We do not guarantee that dispatch can be drained or blocked
1487  * after blk_mq_stop_hw_queues() returns. Please use
1488  * blk_mq_quiesce_queue() for that requirement.
1489  */
blk_mq_stop_hw_queues(struct request_queue * q)1490 void blk_mq_stop_hw_queues(struct request_queue *q)
1491 {
1492 	struct blk_mq_hw_ctx *hctx;
1493 	int i;
1494 
1495 	queue_for_each_hw_ctx(q, hctx, i)
1496 		blk_mq_stop_hw_queue(hctx);
1497 }
1498 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1499 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1500 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1501 {
1502 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1503 
1504 	blk_mq_run_hw_queue(hctx, false);
1505 }
1506 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1507 
blk_mq_start_hw_queues(struct request_queue * q)1508 void blk_mq_start_hw_queues(struct request_queue *q)
1509 {
1510 	struct blk_mq_hw_ctx *hctx;
1511 	int i;
1512 
1513 	queue_for_each_hw_ctx(q, hctx, i)
1514 		blk_mq_start_hw_queue(hctx);
1515 }
1516 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1517 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1518 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1519 {
1520 	if (!blk_mq_hctx_stopped(hctx))
1521 		return;
1522 
1523 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1524 	blk_mq_run_hw_queue(hctx, async);
1525 }
1526 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1527 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1528 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1529 {
1530 	struct blk_mq_hw_ctx *hctx;
1531 	int i;
1532 
1533 	queue_for_each_hw_ctx(q, hctx, i)
1534 		blk_mq_start_stopped_hw_queue(hctx, async);
1535 }
1536 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1537 
blk_mq_run_work_fn(struct work_struct * work)1538 static void blk_mq_run_work_fn(struct work_struct *work)
1539 {
1540 	struct blk_mq_hw_ctx *hctx;
1541 
1542 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1543 
1544 	/*
1545 	 * If we are stopped, don't run the queue.
1546 	 */
1547 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1548 		return;
1549 
1550 	__blk_mq_run_hw_queue(hctx);
1551 }
1552 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1553 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1554 					    struct request *rq,
1555 					    bool at_head)
1556 {
1557 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1558 
1559 	lockdep_assert_held(&ctx->lock);
1560 
1561 	trace_block_rq_insert(hctx->queue, rq);
1562 
1563 	if (at_head)
1564 		list_add(&rq->queuelist, &ctx->rq_list);
1565 	else
1566 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1567 }
1568 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1569 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1570 			     bool at_head)
1571 {
1572 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1573 
1574 	lockdep_assert_held(&ctx->lock);
1575 
1576 	__blk_mq_insert_req_list(hctx, rq, at_head);
1577 	blk_mq_hctx_mark_pending(hctx, ctx);
1578 }
1579 
1580 /*
1581  * Should only be used carefully, when the caller knows we want to
1582  * bypass a potential IO scheduler on the target device.
1583  */
blk_mq_request_bypass_insert(struct request * rq,bool run_queue)1584 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1585 {
1586 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1587 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1588 
1589 	spin_lock(&hctx->lock);
1590 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1591 	spin_unlock(&hctx->lock);
1592 
1593 	if (run_queue)
1594 		blk_mq_run_hw_queue(hctx, false);
1595 }
1596 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1597 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1598 			    struct list_head *list)
1599 
1600 {
1601 	struct request *rq;
1602 
1603 	/*
1604 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1605 	 * offline now
1606 	 */
1607 	list_for_each_entry(rq, list, queuelist) {
1608 		BUG_ON(rq->mq_ctx != ctx);
1609 		trace_block_rq_insert(hctx->queue, rq);
1610 	}
1611 
1612 	spin_lock(&ctx->lock);
1613 	list_splice_tail_init(list, &ctx->rq_list);
1614 	blk_mq_hctx_mark_pending(hctx, ctx);
1615 	spin_unlock(&ctx->lock);
1616 }
1617 
plug_ctx_cmp(void * priv,struct list_head * a,struct list_head * b)1618 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1619 {
1620 	struct request *rqa = container_of(a, struct request, queuelist);
1621 	struct request *rqb = container_of(b, struct request, queuelist);
1622 
1623 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1624 		 (rqa->mq_ctx == rqb->mq_ctx &&
1625 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1626 }
1627 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1628 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1629 {
1630 	struct blk_mq_ctx *this_ctx;
1631 	struct request_queue *this_q;
1632 	struct request *rq;
1633 	LIST_HEAD(list);
1634 	LIST_HEAD(ctx_list);
1635 	unsigned int depth;
1636 
1637 	list_splice_init(&plug->mq_list, &list);
1638 
1639 	list_sort(NULL, &list, plug_ctx_cmp);
1640 
1641 	this_q = NULL;
1642 	this_ctx = NULL;
1643 	depth = 0;
1644 
1645 	while (!list_empty(&list)) {
1646 		rq = list_entry_rq(list.next);
1647 		list_del_init(&rq->queuelist);
1648 		BUG_ON(!rq->q);
1649 		if (rq->mq_ctx != this_ctx) {
1650 			if (this_ctx) {
1651 				trace_block_unplug(this_q, depth, !from_schedule);
1652 				blk_mq_sched_insert_requests(this_q, this_ctx,
1653 								&ctx_list,
1654 								from_schedule);
1655 			}
1656 
1657 			this_ctx = rq->mq_ctx;
1658 			this_q = rq->q;
1659 			depth = 0;
1660 		}
1661 
1662 		depth++;
1663 		list_add_tail(&rq->queuelist, &ctx_list);
1664 	}
1665 
1666 	/*
1667 	 * If 'this_ctx' is set, we know we have entries to complete
1668 	 * on 'ctx_list'. Do those.
1669 	 */
1670 	if (this_ctx) {
1671 		trace_block_unplug(this_q, depth, !from_schedule);
1672 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1673 						from_schedule);
1674 	}
1675 }
1676 
blk_mq_bio_to_request(struct request * rq,struct bio * bio)1677 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1678 {
1679 	blk_init_request_from_bio(rq, bio);
1680 
1681 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1682 
1683 	blk_account_io_start(rq, true);
1684 }
1685 
request_to_qc_t(struct blk_mq_hw_ctx * hctx,struct request * rq)1686 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1687 {
1688 	if (rq->tag != -1)
1689 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1690 
1691 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1692 }
1693 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)1694 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1695 					    struct request *rq,
1696 					    blk_qc_t *cookie)
1697 {
1698 	struct request_queue *q = rq->q;
1699 	struct blk_mq_queue_data bd = {
1700 		.rq = rq,
1701 		.last = true,
1702 	};
1703 	blk_qc_t new_cookie;
1704 	blk_status_t ret;
1705 
1706 	new_cookie = request_to_qc_t(hctx, rq);
1707 
1708 	/*
1709 	 * For OK queue, we are done. For error, caller may kill it.
1710 	 * Any other error (busy), just add it to our list as we
1711 	 * previously would have done.
1712 	 */
1713 	ret = q->mq_ops->queue_rq(hctx, &bd);
1714 	switch (ret) {
1715 	case BLK_STS_OK:
1716 		blk_mq_update_dispatch_busy(hctx, false);
1717 		*cookie = new_cookie;
1718 		break;
1719 	case BLK_STS_RESOURCE:
1720 	case BLK_STS_DEV_RESOURCE:
1721 		blk_mq_update_dispatch_busy(hctx, true);
1722 		__blk_mq_requeue_request(rq);
1723 		break;
1724 	default:
1725 		blk_mq_update_dispatch_busy(hctx, false);
1726 		*cookie = BLK_QC_T_NONE;
1727 		break;
1728 	}
1729 
1730 	return ret;
1731 }
1732 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert)1733 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1734 						struct request *rq,
1735 						blk_qc_t *cookie,
1736 						bool bypass_insert)
1737 {
1738 	struct request_queue *q = rq->q;
1739 	bool run_queue = true;
1740 
1741 	/*
1742 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1743 	 *
1744 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1745 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1746 	 * and avoid driver to try to dispatch again.
1747 	 */
1748 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1749 		run_queue = false;
1750 		bypass_insert = false;
1751 		goto insert;
1752 	}
1753 
1754 	if (q->elevator && !bypass_insert)
1755 		goto insert;
1756 
1757 	if (!blk_mq_get_dispatch_budget(hctx))
1758 		goto insert;
1759 
1760 	if (!blk_mq_get_driver_tag(rq)) {
1761 		blk_mq_put_dispatch_budget(hctx);
1762 		goto insert;
1763 	}
1764 
1765 	return __blk_mq_issue_directly(hctx, rq, cookie);
1766 insert:
1767 	if (bypass_insert)
1768 		return BLK_STS_RESOURCE;
1769 
1770 	blk_mq_request_bypass_insert(rq, run_queue);
1771 	return BLK_STS_OK;
1772 }
1773 
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)1774 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1775 		struct request *rq, blk_qc_t *cookie)
1776 {
1777 	blk_status_t ret;
1778 	int srcu_idx;
1779 
1780 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1781 
1782 	hctx_lock(hctx, &srcu_idx);
1783 
1784 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1785 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1786 		blk_mq_request_bypass_insert(rq, true);
1787 	else if (ret != BLK_STS_OK)
1788 		blk_mq_end_request(rq, ret);
1789 
1790 	hctx_unlock(hctx, srcu_idx);
1791 }
1792 
blk_mq_request_issue_directly(struct request * rq)1793 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1794 {
1795 	blk_status_t ret;
1796 	int srcu_idx;
1797 	blk_qc_t unused_cookie;
1798 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1799 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1800 
1801 	hctx_lock(hctx, &srcu_idx);
1802 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1803 	hctx_unlock(hctx, srcu_idx);
1804 
1805 	return ret;
1806 }
1807 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)1808 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1809 		struct list_head *list)
1810 {
1811 	while (!list_empty(list)) {
1812 		blk_status_t ret;
1813 		struct request *rq = list_first_entry(list, struct request,
1814 				queuelist);
1815 
1816 		list_del_init(&rq->queuelist);
1817 		ret = blk_mq_request_issue_directly(rq);
1818 		if (ret != BLK_STS_OK) {
1819 			if (ret == BLK_STS_RESOURCE ||
1820 					ret == BLK_STS_DEV_RESOURCE) {
1821 				blk_mq_request_bypass_insert(rq,
1822 							list_empty(list));
1823 				break;
1824 			}
1825 			blk_mq_end_request(rq, ret);
1826 		}
1827 	}
1828 }
1829 
blk_mq_make_request(struct request_queue * q,struct bio * bio)1830 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1831 {
1832 	const int is_sync = op_is_sync(bio->bi_opf);
1833 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1834 	struct blk_mq_alloc_data data = { .flags = 0 };
1835 	struct request *rq;
1836 	unsigned int request_count = 0;
1837 	struct blk_plug *plug;
1838 	struct request *same_queue_rq = NULL;
1839 	blk_qc_t cookie;
1840 
1841 	blk_queue_bounce(q, &bio);
1842 
1843 	blk_queue_split(q, &bio);
1844 
1845 	if (!bio_integrity_prep(bio))
1846 		return BLK_QC_T_NONE;
1847 
1848 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1849 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1850 		return BLK_QC_T_NONE;
1851 
1852 	if (blk_mq_sched_bio_merge(q, bio))
1853 		return BLK_QC_T_NONE;
1854 
1855 	rq_qos_throttle(q, bio, NULL);
1856 
1857 	trace_block_getrq(q, bio, bio->bi_opf);
1858 
1859 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1860 	if (unlikely(!rq)) {
1861 		rq_qos_cleanup(q, bio);
1862 		if (bio->bi_opf & REQ_NOWAIT)
1863 			bio_wouldblock_error(bio);
1864 		return BLK_QC_T_NONE;
1865 	}
1866 
1867 	rq_qos_track(q, rq, bio);
1868 
1869 	cookie = request_to_qc_t(data.hctx, rq);
1870 
1871 	plug = current->plug;
1872 	if (unlikely(is_flush_fua)) {
1873 		blk_mq_put_ctx(data.ctx);
1874 		blk_mq_bio_to_request(rq, bio);
1875 
1876 		/* bypass scheduler for flush rq */
1877 		blk_insert_flush(rq);
1878 		blk_mq_run_hw_queue(data.hctx, true);
1879 	} else if (plug && q->nr_hw_queues == 1) {
1880 		struct request *last = NULL;
1881 
1882 		blk_mq_put_ctx(data.ctx);
1883 		blk_mq_bio_to_request(rq, bio);
1884 
1885 		/*
1886 		 * @request_count may become stale because of schedule
1887 		 * out, so check the list again.
1888 		 */
1889 		if (list_empty(&plug->mq_list))
1890 			request_count = 0;
1891 		else if (blk_queue_nomerges(q))
1892 			request_count = blk_plug_queued_count(q);
1893 
1894 		if (!request_count)
1895 			trace_block_plug(q);
1896 		else
1897 			last = list_entry_rq(plug->mq_list.prev);
1898 
1899 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1900 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1901 			blk_flush_plug_list(plug, false);
1902 			trace_block_plug(q);
1903 		}
1904 
1905 		list_add_tail(&rq->queuelist, &plug->mq_list);
1906 	} else if (plug && !blk_queue_nomerges(q)) {
1907 		blk_mq_bio_to_request(rq, bio);
1908 
1909 		/*
1910 		 * We do limited plugging. If the bio can be merged, do that.
1911 		 * Otherwise the existing request in the plug list will be
1912 		 * issued. So the plug list will have one request at most
1913 		 * The plug list might get flushed before this. If that happens,
1914 		 * the plug list is empty, and same_queue_rq is invalid.
1915 		 */
1916 		if (list_empty(&plug->mq_list))
1917 			same_queue_rq = NULL;
1918 		if (same_queue_rq)
1919 			list_del_init(&same_queue_rq->queuelist);
1920 		list_add_tail(&rq->queuelist, &plug->mq_list);
1921 
1922 		blk_mq_put_ctx(data.ctx);
1923 
1924 		if (same_queue_rq) {
1925 			data.hctx = blk_mq_map_queue(q,
1926 					same_queue_rq->mq_ctx->cpu);
1927 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1928 					&cookie);
1929 		}
1930 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1931 			!data.hctx->dispatch_busy)) {
1932 		blk_mq_put_ctx(data.ctx);
1933 		blk_mq_bio_to_request(rq, bio);
1934 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1935 	} else {
1936 		blk_mq_put_ctx(data.ctx);
1937 		blk_mq_bio_to_request(rq, bio);
1938 		blk_mq_sched_insert_request(rq, false, true, true);
1939 	}
1940 
1941 	return cookie;
1942 }
1943 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)1944 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1945 		     unsigned int hctx_idx)
1946 {
1947 	struct page *page;
1948 
1949 	if (tags->rqs && set->ops->exit_request) {
1950 		int i;
1951 
1952 		for (i = 0; i < tags->nr_tags; i++) {
1953 			struct request *rq = tags->static_rqs[i];
1954 
1955 			if (!rq)
1956 				continue;
1957 			set->ops->exit_request(set, rq, hctx_idx);
1958 			tags->static_rqs[i] = NULL;
1959 		}
1960 	}
1961 
1962 	while (!list_empty(&tags->page_list)) {
1963 		page = list_first_entry(&tags->page_list, struct page, lru);
1964 		list_del_init(&page->lru);
1965 		/*
1966 		 * Remove kmemleak object previously allocated in
1967 		 * blk_mq_init_rq_map().
1968 		 */
1969 		kmemleak_free(page_address(page));
1970 		__free_pages(page, page->private);
1971 	}
1972 }
1973 
blk_mq_free_rq_map(struct blk_mq_tags * tags)1974 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1975 {
1976 	kfree(tags->rqs);
1977 	tags->rqs = NULL;
1978 	kfree(tags->static_rqs);
1979 	tags->static_rqs = NULL;
1980 
1981 	blk_mq_free_tags(tags);
1982 }
1983 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)1984 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1985 					unsigned int hctx_idx,
1986 					unsigned int nr_tags,
1987 					unsigned int reserved_tags)
1988 {
1989 	struct blk_mq_tags *tags;
1990 	int node;
1991 
1992 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1993 	if (node == NUMA_NO_NODE)
1994 		node = set->numa_node;
1995 
1996 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1997 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1998 	if (!tags)
1999 		return NULL;
2000 
2001 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2002 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2003 				 node);
2004 	if (!tags->rqs) {
2005 		blk_mq_free_tags(tags);
2006 		return NULL;
2007 	}
2008 
2009 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2010 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2011 					node);
2012 	if (!tags->static_rqs) {
2013 		kfree(tags->rqs);
2014 		blk_mq_free_tags(tags);
2015 		return NULL;
2016 	}
2017 
2018 	return tags;
2019 }
2020 
order_to_size(unsigned int order)2021 static size_t order_to_size(unsigned int order)
2022 {
2023 	return (size_t)PAGE_SIZE << order;
2024 }
2025 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2026 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2027 			       unsigned int hctx_idx, int node)
2028 {
2029 	int ret;
2030 
2031 	if (set->ops->init_request) {
2032 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2033 		if (ret)
2034 			return ret;
2035 	}
2036 
2037 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2038 	return 0;
2039 }
2040 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2041 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2042 		     unsigned int hctx_idx, unsigned int depth)
2043 {
2044 	unsigned int i, j, entries_per_page, max_order = 4;
2045 	size_t rq_size, left;
2046 	int node;
2047 
2048 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2049 	if (node == NUMA_NO_NODE)
2050 		node = set->numa_node;
2051 
2052 	INIT_LIST_HEAD(&tags->page_list);
2053 
2054 	/*
2055 	 * rq_size is the size of the request plus driver payload, rounded
2056 	 * to the cacheline size
2057 	 */
2058 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2059 				cache_line_size());
2060 	left = rq_size * depth;
2061 
2062 	for (i = 0; i < depth; ) {
2063 		int this_order = max_order;
2064 		struct page *page;
2065 		int to_do;
2066 		void *p;
2067 
2068 		while (this_order && left < order_to_size(this_order - 1))
2069 			this_order--;
2070 
2071 		do {
2072 			page = alloc_pages_node(node,
2073 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2074 				this_order);
2075 			if (page)
2076 				break;
2077 			if (!this_order--)
2078 				break;
2079 			if (order_to_size(this_order) < rq_size)
2080 				break;
2081 		} while (1);
2082 
2083 		if (!page)
2084 			goto fail;
2085 
2086 		page->private = this_order;
2087 		list_add_tail(&page->lru, &tags->page_list);
2088 
2089 		p = page_address(page);
2090 		/*
2091 		 * Allow kmemleak to scan these pages as they contain pointers
2092 		 * to additional allocations like via ops->init_request().
2093 		 */
2094 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2095 		entries_per_page = order_to_size(this_order) / rq_size;
2096 		to_do = min(entries_per_page, depth - i);
2097 		left -= to_do * rq_size;
2098 		for (j = 0; j < to_do; j++) {
2099 			struct request *rq = p;
2100 
2101 			tags->static_rqs[i] = rq;
2102 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2103 				tags->static_rqs[i] = NULL;
2104 				goto fail;
2105 			}
2106 
2107 			p += rq_size;
2108 			i++;
2109 		}
2110 	}
2111 	return 0;
2112 
2113 fail:
2114 	blk_mq_free_rqs(set, tags, hctx_idx);
2115 	return -ENOMEM;
2116 }
2117 
2118 /*
2119  * 'cpu' is going away. splice any existing rq_list entries from this
2120  * software queue to the hw queue dispatch list, and ensure that it
2121  * gets run.
2122  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2123 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2124 {
2125 	struct blk_mq_hw_ctx *hctx;
2126 	struct blk_mq_ctx *ctx;
2127 	LIST_HEAD(tmp);
2128 
2129 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2130 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2131 
2132 	spin_lock(&ctx->lock);
2133 	if (!list_empty(&ctx->rq_list)) {
2134 		list_splice_init(&ctx->rq_list, &tmp);
2135 		blk_mq_hctx_clear_pending(hctx, ctx);
2136 	}
2137 	spin_unlock(&ctx->lock);
2138 
2139 	if (list_empty(&tmp))
2140 		return 0;
2141 
2142 	spin_lock(&hctx->lock);
2143 	list_splice_tail_init(&tmp, &hctx->dispatch);
2144 	spin_unlock(&hctx->lock);
2145 
2146 	blk_mq_run_hw_queue(hctx, true);
2147 	return 0;
2148 }
2149 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2150 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2151 {
2152 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2153 					    &hctx->cpuhp_dead);
2154 }
2155 
2156 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2157 static void blk_mq_exit_hctx(struct request_queue *q,
2158 		struct blk_mq_tag_set *set,
2159 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2160 {
2161 	blk_mq_debugfs_unregister_hctx(hctx);
2162 
2163 	if (blk_mq_hw_queue_mapped(hctx))
2164 		blk_mq_tag_idle(hctx);
2165 
2166 	if (set->ops->exit_request)
2167 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2168 
2169 	if (set->ops->exit_hctx)
2170 		set->ops->exit_hctx(hctx, hctx_idx);
2171 
2172 	blk_mq_remove_cpuhp(hctx);
2173 }
2174 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2175 static void blk_mq_exit_hw_queues(struct request_queue *q,
2176 		struct blk_mq_tag_set *set, int nr_queue)
2177 {
2178 	struct blk_mq_hw_ctx *hctx;
2179 	unsigned int i;
2180 
2181 	queue_for_each_hw_ctx(q, hctx, i) {
2182 		if (i == nr_queue)
2183 			break;
2184 		blk_mq_exit_hctx(q, set, hctx, i);
2185 	}
2186 }
2187 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2188 static int blk_mq_init_hctx(struct request_queue *q,
2189 		struct blk_mq_tag_set *set,
2190 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2191 {
2192 	int node;
2193 
2194 	node = hctx->numa_node;
2195 	if (node == NUMA_NO_NODE)
2196 		node = hctx->numa_node = set->numa_node;
2197 
2198 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2199 	spin_lock_init(&hctx->lock);
2200 	INIT_LIST_HEAD(&hctx->dispatch);
2201 	hctx->queue = q;
2202 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2203 
2204 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2205 
2206 	hctx->tags = set->tags[hctx_idx];
2207 
2208 	/*
2209 	 * Allocate space for all possible cpus to avoid allocation at
2210 	 * runtime
2211 	 */
2212 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2213 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2214 	if (!hctx->ctxs)
2215 		goto unregister_cpu_notifier;
2216 
2217 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2218 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2219 		goto free_ctxs;
2220 
2221 	hctx->nr_ctx = 0;
2222 
2223 	spin_lock_init(&hctx->dispatch_wait_lock);
2224 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2225 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2226 
2227 	if (set->ops->init_hctx &&
2228 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2229 		goto free_bitmap;
2230 
2231 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2232 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2233 	if (!hctx->fq)
2234 		goto exit_hctx;
2235 
2236 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2237 		goto free_fq;
2238 
2239 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2240 		init_srcu_struct(hctx->srcu);
2241 
2242 	blk_mq_debugfs_register_hctx(q, hctx);
2243 
2244 	return 0;
2245 
2246  free_fq:
2247 	blk_free_flush_queue(hctx->fq);
2248  exit_hctx:
2249 	if (set->ops->exit_hctx)
2250 		set->ops->exit_hctx(hctx, hctx_idx);
2251  free_bitmap:
2252 	sbitmap_free(&hctx->ctx_map);
2253  free_ctxs:
2254 	kfree(hctx->ctxs);
2255  unregister_cpu_notifier:
2256 	blk_mq_remove_cpuhp(hctx);
2257 	return -1;
2258 }
2259 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2260 static void blk_mq_init_cpu_queues(struct request_queue *q,
2261 				   unsigned int nr_hw_queues)
2262 {
2263 	unsigned int i;
2264 
2265 	for_each_possible_cpu(i) {
2266 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2267 		struct blk_mq_hw_ctx *hctx;
2268 
2269 		__ctx->cpu = i;
2270 		spin_lock_init(&__ctx->lock);
2271 		INIT_LIST_HEAD(&__ctx->rq_list);
2272 		__ctx->queue = q;
2273 
2274 		/*
2275 		 * Set local node, IFF we have more than one hw queue. If
2276 		 * not, we remain on the home node of the device
2277 		 */
2278 		hctx = blk_mq_map_queue(q, i);
2279 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2280 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2281 	}
2282 }
2283 
__blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,int hctx_idx)2284 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2285 {
2286 	int ret = 0;
2287 
2288 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2289 					set->queue_depth, set->reserved_tags);
2290 	if (!set->tags[hctx_idx])
2291 		return false;
2292 
2293 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2294 				set->queue_depth);
2295 	if (!ret)
2296 		return true;
2297 
2298 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2299 	set->tags[hctx_idx] = NULL;
2300 	return false;
2301 }
2302 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2303 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2304 					 unsigned int hctx_idx)
2305 {
2306 	if (set->tags[hctx_idx]) {
2307 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2308 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2309 		set->tags[hctx_idx] = NULL;
2310 	}
2311 }
2312 
blk_mq_map_swqueue(struct request_queue * q)2313 static void blk_mq_map_swqueue(struct request_queue *q)
2314 {
2315 	unsigned int i, hctx_idx;
2316 	struct blk_mq_hw_ctx *hctx;
2317 	struct blk_mq_ctx *ctx;
2318 	struct blk_mq_tag_set *set = q->tag_set;
2319 
2320 	/*
2321 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2322 	 */
2323 	mutex_lock(&q->sysfs_lock);
2324 
2325 	queue_for_each_hw_ctx(q, hctx, i) {
2326 		cpumask_clear(hctx->cpumask);
2327 		hctx->nr_ctx = 0;
2328 		hctx->dispatch_from = NULL;
2329 	}
2330 
2331 	/*
2332 	 * Map software to hardware queues.
2333 	 *
2334 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2335 	 */
2336 	for_each_possible_cpu(i) {
2337 		hctx_idx = q->mq_map[i];
2338 		/* unmapped hw queue can be remapped after CPU topo changed */
2339 		if (!set->tags[hctx_idx] &&
2340 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2341 			/*
2342 			 * If tags initialization fail for some hctx,
2343 			 * that hctx won't be brought online.  In this
2344 			 * case, remap the current ctx to hctx[0] which
2345 			 * is guaranteed to always have tags allocated
2346 			 */
2347 			q->mq_map[i] = 0;
2348 		}
2349 
2350 		ctx = per_cpu_ptr(q->queue_ctx, i);
2351 		hctx = blk_mq_map_queue(q, i);
2352 
2353 		cpumask_set_cpu(i, hctx->cpumask);
2354 		ctx->index_hw = hctx->nr_ctx;
2355 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2356 	}
2357 
2358 	mutex_unlock(&q->sysfs_lock);
2359 
2360 	queue_for_each_hw_ctx(q, hctx, i) {
2361 		/*
2362 		 * If no software queues are mapped to this hardware queue,
2363 		 * disable it and free the request entries.
2364 		 */
2365 		if (!hctx->nr_ctx) {
2366 			/* Never unmap queue 0.  We need it as a
2367 			 * fallback in case of a new remap fails
2368 			 * allocation
2369 			 */
2370 			if (i && set->tags[i])
2371 				blk_mq_free_map_and_requests(set, i);
2372 
2373 			hctx->tags = NULL;
2374 			continue;
2375 		}
2376 
2377 		hctx->tags = set->tags[i];
2378 		WARN_ON(!hctx->tags);
2379 
2380 		/*
2381 		 * Set the map size to the number of mapped software queues.
2382 		 * This is more accurate and more efficient than looping
2383 		 * over all possibly mapped software queues.
2384 		 */
2385 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2386 
2387 		/*
2388 		 * Initialize batch roundrobin counts
2389 		 */
2390 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2391 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2392 	}
2393 }
2394 
2395 /*
2396  * Caller needs to ensure that we're either frozen/quiesced, or that
2397  * the queue isn't live yet.
2398  */
queue_set_hctx_shared(struct request_queue * q,bool shared)2399 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2400 {
2401 	struct blk_mq_hw_ctx *hctx;
2402 	int i;
2403 
2404 	queue_for_each_hw_ctx(q, hctx, i) {
2405 		if (shared)
2406 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2407 		else
2408 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2409 	}
2410 }
2411 
blk_mq_update_tag_set_depth(struct blk_mq_tag_set * set,bool shared)2412 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2413 					bool shared)
2414 {
2415 	struct request_queue *q;
2416 
2417 	lockdep_assert_held(&set->tag_list_lock);
2418 
2419 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2420 		blk_mq_freeze_queue(q);
2421 		queue_set_hctx_shared(q, shared);
2422 		blk_mq_unfreeze_queue(q);
2423 	}
2424 }
2425 
blk_mq_del_queue_tag_set(struct request_queue * q)2426 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2427 {
2428 	struct blk_mq_tag_set *set = q->tag_set;
2429 
2430 	mutex_lock(&set->tag_list_lock);
2431 	list_del_rcu(&q->tag_set_list);
2432 	if (list_is_singular(&set->tag_list)) {
2433 		/* just transitioned to unshared */
2434 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2435 		/* update existing queue */
2436 		blk_mq_update_tag_set_depth(set, false);
2437 	}
2438 	mutex_unlock(&set->tag_list_lock);
2439 	INIT_LIST_HEAD(&q->tag_set_list);
2440 }
2441 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)2442 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2443 				     struct request_queue *q)
2444 {
2445 	q->tag_set = set;
2446 
2447 	mutex_lock(&set->tag_list_lock);
2448 
2449 	/*
2450 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2451 	 */
2452 	if (!list_empty(&set->tag_list) &&
2453 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2454 		set->flags |= BLK_MQ_F_TAG_SHARED;
2455 		/* update existing queue */
2456 		blk_mq_update_tag_set_depth(set, true);
2457 	}
2458 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2459 		queue_set_hctx_shared(q, true);
2460 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2461 
2462 	mutex_unlock(&set->tag_list_lock);
2463 }
2464 
2465 /*
2466  * It is the actual release handler for mq, but we do it from
2467  * request queue's release handler for avoiding use-after-free
2468  * and headache because q->mq_kobj shouldn't have been introduced,
2469  * but we can't group ctx/kctx kobj without it.
2470  */
blk_mq_release(struct request_queue * q)2471 void blk_mq_release(struct request_queue *q)
2472 {
2473 	struct blk_mq_hw_ctx *hctx;
2474 	unsigned int i;
2475 
2476 	/* hctx kobj stays in hctx */
2477 	queue_for_each_hw_ctx(q, hctx, i) {
2478 		if (!hctx)
2479 			continue;
2480 		kobject_put(&hctx->kobj);
2481 	}
2482 
2483 	q->mq_map = NULL;
2484 
2485 	kfree(q->queue_hw_ctx);
2486 
2487 	/*
2488 	 * release .mq_kobj and sw queue's kobject now because
2489 	 * both share lifetime with request queue.
2490 	 */
2491 	blk_mq_sysfs_deinit(q);
2492 
2493 	free_percpu(q->queue_ctx);
2494 }
2495 
blk_mq_init_queue(struct blk_mq_tag_set * set)2496 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2497 {
2498 	struct request_queue *uninit_q, *q;
2499 
2500 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2501 	if (!uninit_q)
2502 		return ERR_PTR(-ENOMEM);
2503 
2504 	q = blk_mq_init_allocated_queue(set, uninit_q);
2505 	if (IS_ERR(q))
2506 		blk_cleanup_queue(uninit_q);
2507 
2508 	return q;
2509 }
2510 EXPORT_SYMBOL(blk_mq_init_queue);
2511 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2512 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2513 {
2514 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2515 
2516 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2517 			   __alignof__(struct blk_mq_hw_ctx)) !=
2518 		     sizeof(struct blk_mq_hw_ctx));
2519 
2520 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2521 		hw_ctx_size += sizeof(struct srcu_struct);
2522 
2523 	return hw_ctx_size;
2524 }
2525 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)2526 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2527 						struct request_queue *q)
2528 {
2529 	int i, j;
2530 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2531 
2532 	blk_mq_sysfs_unregister(q);
2533 
2534 	/* protect against switching io scheduler  */
2535 	mutex_lock(&q->sysfs_lock);
2536 	for (i = 0; i < set->nr_hw_queues; i++) {
2537 		int node;
2538 
2539 		if (hctxs[i])
2540 			continue;
2541 
2542 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2543 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2544 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2545 				node);
2546 		if (!hctxs[i])
2547 			break;
2548 
2549 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2550 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2551 					node)) {
2552 			kfree(hctxs[i]);
2553 			hctxs[i] = NULL;
2554 			break;
2555 		}
2556 
2557 		atomic_set(&hctxs[i]->nr_active, 0);
2558 		hctxs[i]->numa_node = node;
2559 		hctxs[i]->queue_num = i;
2560 
2561 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2562 			free_cpumask_var(hctxs[i]->cpumask);
2563 			kfree(hctxs[i]);
2564 			hctxs[i] = NULL;
2565 			break;
2566 		}
2567 		blk_mq_hctx_kobj_init(hctxs[i]);
2568 	}
2569 	for (j = i; j < q->nr_hw_queues; j++) {
2570 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2571 
2572 		if (hctx) {
2573 			if (hctx->tags)
2574 				blk_mq_free_map_and_requests(set, j);
2575 			blk_mq_exit_hctx(q, set, hctx, j);
2576 			kobject_put(&hctx->kobj);
2577 			hctxs[j] = NULL;
2578 
2579 		}
2580 	}
2581 	q->nr_hw_queues = i;
2582 	mutex_unlock(&q->sysfs_lock);
2583 	blk_mq_sysfs_register(q);
2584 }
2585 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)2586 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2587 						  struct request_queue *q)
2588 {
2589 	/* mark the queue as mq asap */
2590 	q->mq_ops = set->ops;
2591 
2592 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2593 					     blk_mq_poll_stats_bkt,
2594 					     BLK_MQ_POLL_STATS_BKTS, q);
2595 	if (!q->poll_cb)
2596 		goto err_exit;
2597 
2598 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2599 	if (!q->queue_ctx)
2600 		goto err_exit;
2601 
2602 	/* init q->mq_kobj and sw queues' kobjects */
2603 	blk_mq_sysfs_init(q);
2604 
2605 	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2606 						GFP_KERNEL, set->numa_node);
2607 	if (!q->queue_hw_ctx)
2608 		goto err_percpu;
2609 
2610 	q->mq_map = set->mq_map;
2611 
2612 	blk_mq_realloc_hw_ctxs(set, q);
2613 	if (!q->nr_hw_queues)
2614 		goto err_hctxs;
2615 
2616 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2617 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2618 
2619 	q->nr_queues = nr_cpu_ids;
2620 
2621 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2622 
2623 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2624 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2625 
2626 	q->sg_reserved_size = INT_MAX;
2627 
2628 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2629 	INIT_LIST_HEAD(&q->requeue_list);
2630 	spin_lock_init(&q->requeue_lock);
2631 
2632 	blk_queue_make_request(q, blk_mq_make_request);
2633 	if (q->mq_ops->poll)
2634 		q->poll_fn = blk_mq_poll;
2635 
2636 	/*
2637 	 * Do this after blk_queue_make_request() overrides it...
2638 	 */
2639 	q->nr_requests = set->queue_depth;
2640 
2641 	/*
2642 	 * Default to classic polling
2643 	 */
2644 	q->poll_nsec = -1;
2645 
2646 	if (set->ops->complete)
2647 		blk_queue_softirq_done(q, set->ops->complete);
2648 
2649 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2650 	blk_mq_add_queue_tag_set(set, q);
2651 	blk_mq_map_swqueue(q);
2652 
2653 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2654 		int ret;
2655 
2656 		ret = elevator_init_mq(q);
2657 		if (ret)
2658 			return ERR_PTR(ret);
2659 	}
2660 
2661 	return q;
2662 
2663 err_hctxs:
2664 	kfree(q->queue_hw_ctx);
2665 err_percpu:
2666 	free_percpu(q->queue_ctx);
2667 err_exit:
2668 	q->mq_ops = NULL;
2669 	return ERR_PTR(-ENOMEM);
2670 }
2671 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2672 
2673 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)2674 void blk_mq_exit_queue(struct request_queue *q)
2675 {
2676 	struct blk_mq_tag_set	*set = q->tag_set;
2677 
2678 	blk_mq_del_queue_tag_set(q);
2679 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2680 }
2681 
2682 /* Basically redo blk_mq_init_queue with queue frozen */
blk_mq_queue_reinit(struct request_queue * q)2683 static void blk_mq_queue_reinit(struct request_queue *q)
2684 {
2685 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2686 
2687 	blk_mq_debugfs_unregister_hctxs(q);
2688 	blk_mq_sysfs_unregister(q);
2689 
2690 	/*
2691 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2692 	 * we should change hctx numa_node according to the new topology (this
2693 	 * involves freeing and re-allocating memory, worth doing?)
2694 	 */
2695 	blk_mq_map_swqueue(q);
2696 
2697 	blk_mq_sysfs_register(q);
2698 	blk_mq_debugfs_register_hctxs(q);
2699 }
2700 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2701 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2702 {
2703 	int i;
2704 
2705 	for (i = 0; i < set->nr_hw_queues; i++)
2706 		if (!__blk_mq_alloc_rq_map(set, i))
2707 			goto out_unwind;
2708 
2709 	return 0;
2710 
2711 out_unwind:
2712 	while (--i >= 0)
2713 		blk_mq_free_rq_map(set->tags[i]);
2714 
2715 	return -ENOMEM;
2716 }
2717 
2718 /*
2719  * Allocate the request maps associated with this tag_set. Note that this
2720  * may reduce the depth asked for, if memory is tight. set->queue_depth
2721  * will be updated to reflect the allocated depth.
2722  */
blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2723 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2724 {
2725 	unsigned int depth;
2726 	int err;
2727 
2728 	depth = set->queue_depth;
2729 	do {
2730 		err = __blk_mq_alloc_rq_maps(set);
2731 		if (!err)
2732 			break;
2733 
2734 		set->queue_depth >>= 1;
2735 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2736 			err = -ENOMEM;
2737 			break;
2738 		}
2739 	} while (set->queue_depth);
2740 
2741 	if (!set->queue_depth || err) {
2742 		pr_err("blk-mq: failed to allocate request map\n");
2743 		return -ENOMEM;
2744 	}
2745 
2746 	if (depth != set->queue_depth)
2747 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2748 						depth, set->queue_depth);
2749 
2750 	return 0;
2751 }
2752 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)2753 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2754 {
2755 	if (set->ops->map_queues) {
2756 		/*
2757 		 * transport .map_queues is usually done in the following
2758 		 * way:
2759 		 *
2760 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2761 		 * 	mask = get_cpu_mask(queue)
2762 		 * 	for_each_cpu(cpu, mask)
2763 		 * 		set->mq_map[cpu] = queue;
2764 		 * }
2765 		 *
2766 		 * When we need to remap, the table has to be cleared for
2767 		 * killing stale mapping since one CPU may not be mapped
2768 		 * to any hw queue.
2769 		 */
2770 		blk_mq_clear_mq_map(set);
2771 
2772 		return set->ops->map_queues(set);
2773 	} else
2774 		return blk_mq_map_queues(set);
2775 }
2776 
2777 /*
2778  * Alloc a tag set to be associated with one or more request queues.
2779  * May fail with EINVAL for various error conditions. May adjust the
2780  * requested depth down, if it's too large. In that case, the set
2781  * value will be stored in set->queue_depth.
2782  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)2783 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2784 {
2785 	int ret;
2786 
2787 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2788 
2789 	if (!set->nr_hw_queues)
2790 		return -EINVAL;
2791 	if (!set->queue_depth)
2792 		return -EINVAL;
2793 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2794 		return -EINVAL;
2795 
2796 	if (!set->ops->queue_rq)
2797 		return -EINVAL;
2798 
2799 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2800 		return -EINVAL;
2801 
2802 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2803 		pr_info("blk-mq: reduced tag depth to %u\n",
2804 			BLK_MQ_MAX_DEPTH);
2805 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2806 	}
2807 
2808 	/*
2809 	 * If a crashdump is active, then we are potentially in a very
2810 	 * memory constrained environment. Limit us to 1 queue and
2811 	 * 64 tags to prevent using too much memory.
2812 	 */
2813 	if (is_kdump_kernel()) {
2814 		set->nr_hw_queues = 1;
2815 		set->queue_depth = min(64U, set->queue_depth);
2816 	}
2817 	/*
2818 	 * There is no use for more h/w queues than cpus.
2819 	 */
2820 	if (set->nr_hw_queues > nr_cpu_ids)
2821 		set->nr_hw_queues = nr_cpu_ids;
2822 
2823 	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2824 				 GFP_KERNEL, set->numa_node);
2825 	if (!set->tags)
2826 		return -ENOMEM;
2827 
2828 	ret = -ENOMEM;
2829 	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2830 				   GFP_KERNEL, set->numa_node);
2831 	if (!set->mq_map)
2832 		goto out_free_tags;
2833 
2834 	ret = blk_mq_update_queue_map(set);
2835 	if (ret)
2836 		goto out_free_mq_map;
2837 
2838 	ret = blk_mq_alloc_rq_maps(set);
2839 	if (ret)
2840 		goto out_free_mq_map;
2841 
2842 	mutex_init(&set->tag_list_lock);
2843 	INIT_LIST_HEAD(&set->tag_list);
2844 
2845 	return 0;
2846 
2847 out_free_mq_map:
2848 	kfree(set->mq_map);
2849 	set->mq_map = NULL;
2850 out_free_tags:
2851 	kfree(set->tags);
2852 	set->tags = NULL;
2853 	return ret;
2854 }
2855 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2856 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)2857 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2858 {
2859 	int i;
2860 
2861 	for (i = 0; i < nr_cpu_ids; i++)
2862 		blk_mq_free_map_and_requests(set, i);
2863 
2864 	kfree(set->mq_map);
2865 	set->mq_map = NULL;
2866 
2867 	kfree(set->tags);
2868 	set->tags = NULL;
2869 }
2870 EXPORT_SYMBOL(blk_mq_free_tag_set);
2871 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)2872 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2873 {
2874 	struct blk_mq_tag_set *set = q->tag_set;
2875 	struct blk_mq_hw_ctx *hctx;
2876 	int i, ret;
2877 
2878 	if (!set)
2879 		return -EINVAL;
2880 
2881 	blk_mq_freeze_queue(q);
2882 	blk_mq_quiesce_queue(q);
2883 
2884 	ret = 0;
2885 	queue_for_each_hw_ctx(q, hctx, i) {
2886 		if (!hctx->tags)
2887 			continue;
2888 		/*
2889 		 * If we're using an MQ scheduler, just update the scheduler
2890 		 * queue depth. This is similar to what the old code would do.
2891 		 */
2892 		if (!hctx->sched_tags) {
2893 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2894 							false);
2895 		} else {
2896 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2897 							nr, true);
2898 		}
2899 		if (ret)
2900 			break;
2901 		if (q->elevator && q->elevator->type->ops.mq.depth_updated)
2902 			q->elevator->type->ops.mq.depth_updated(hctx);
2903 	}
2904 
2905 	if (!ret)
2906 		q->nr_requests = nr;
2907 
2908 	blk_mq_unquiesce_queue(q);
2909 	blk_mq_unfreeze_queue(q);
2910 
2911 	return ret;
2912 }
2913 
2914 /*
2915  * request_queue and elevator_type pair.
2916  * It is just used by __blk_mq_update_nr_hw_queues to cache
2917  * the elevator_type associated with a request_queue.
2918  */
2919 struct blk_mq_qe_pair {
2920 	struct list_head node;
2921 	struct request_queue *q;
2922 	struct elevator_type *type;
2923 };
2924 
2925 /*
2926  * Cache the elevator_type in qe pair list and switch the
2927  * io scheduler to 'none'
2928  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)2929 static bool blk_mq_elv_switch_none(struct list_head *head,
2930 		struct request_queue *q)
2931 {
2932 	struct blk_mq_qe_pair *qe;
2933 
2934 	if (!q->elevator)
2935 		return true;
2936 
2937 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2938 	if (!qe)
2939 		return false;
2940 
2941 	INIT_LIST_HEAD(&qe->node);
2942 	qe->q = q;
2943 	qe->type = q->elevator->type;
2944 	list_add(&qe->node, head);
2945 
2946 	mutex_lock(&q->sysfs_lock);
2947 	/*
2948 	 * After elevator_switch_mq, the previous elevator_queue will be
2949 	 * released by elevator_release. The reference of the io scheduler
2950 	 * module get by elevator_get will also be put. So we need to get
2951 	 * a reference of the io scheduler module here to prevent it to be
2952 	 * removed.
2953 	 */
2954 	__module_get(qe->type->elevator_owner);
2955 	elevator_switch_mq(q, NULL);
2956 	mutex_unlock(&q->sysfs_lock);
2957 
2958 	return true;
2959 }
2960 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)2961 static void blk_mq_elv_switch_back(struct list_head *head,
2962 		struct request_queue *q)
2963 {
2964 	struct blk_mq_qe_pair *qe;
2965 	struct elevator_type *t = NULL;
2966 
2967 	list_for_each_entry(qe, head, node)
2968 		if (qe->q == q) {
2969 			t = qe->type;
2970 			break;
2971 		}
2972 
2973 	if (!t)
2974 		return;
2975 
2976 	list_del(&qe->node);
2977 	kfree(qe);
2978 
2979 	mutex_lock(&q->sysfs_lock);
2980 	elevator_switch_mq(q, t);
2981 	mutex_unlock(&q->sysfs_lock);
2982 }
2983 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)2984 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2985 							int nr_hw_queues)
2986 {
2987 	struct request_queue *q;
2988 	LIST_HEAD(head);
2989 
2990 	lockdep_assert_held(&set->tag_list_lock);
2991 
2992 	if (nr_hw_queues > nr_cpu_ids)
2993 		nr_hw_queues = nr_cpu_ids;
2994 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2995 		return;
2996 
2997 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2998 		blk_mq_freeze_queue(q);
2999 	/*
3000 	 * Sync with blk_mq_queue_tag_busy_iter.
3001 	 */
3002 	synchronize_rcu();
3003 	/*
3004 	 * Switch IO scheduler to 'none', cleaning up the data associated
3005 	 * with the previous scheduler. We will switch back once we are done
3006 	 * updating the new sw to hw queue mappings.
3007 	 */
3008 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3009 		if (!blk_mq_elv_switch_none(&head, q))
3010 			goto switch_back;
3011 
3012 	set->nr_hw_queues = nr_hw_queues;
3013 	blk_mq_update_queue_map(set);
3014 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3015 		blk_mq_realloc_hw_ctxs(set, q);
3016 		blk_mq_queue_reinit(q);
3017 	}
3018 
3019 switch_back:
3020 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3021 		blk_mq_elv_switch_back(&head, q);
3022 
3023 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3024 		blk_mq_unfreeze_queue(q);
3025 }
3026 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3027 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3028 {
3029 	mutex_lock(&set->tag_list_lock);
3030 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3031 	mutex_unlock(&set->tag_list_lock);
3032 }
3033 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3034 
3035 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3036 static bool blk_poll_stats_enable(struct request_queue *q)
3037 {
3038 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3039 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3040 		return true;
3041 	blk_stat_add_callback(q, q->poll_cb);
3042 	return false;
3043 }
3044 
blk_mq_poll_stats_start(struct request_queue * q)3045 static void blk_mq_poll_stats_start(struct request_queue *q)
3046 {
3047 	/*
3048 	 * We don't arm the callback if polling stats are not enabled or the
3049 	 * callback is already active.
3050 	 */
3051 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3052 	    blk_stat_is_active(q->poll_cb))
3053 		return;
3054 
3055 	blk_stat_activate_msecs(q->poll_cb, 100);
3056 }
3057 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3058 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3059 {
3060 	struct request_queue *q = cb->data;
3061 	int bucket;
3062 
3063 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3064 		if (cb->stat[bucket].nr_samples)
3065 			q->poll_stat[bucket] = cb->stat[bucket];
3066 	}
3067 }
3068 
blk_mq_poll_nsecs(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct request * rq)3069 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3070 				       struct blk_mq_hw_ctx *hctx,
3071 				       struct request *rq)
3072 {
3073 	unsigned long ret = 0;
3074 	int bucket;
3075 
3076 	/*
3077 	 * If stats collection isn't on, don't sleep but turn it on for
3078 	 * future users
3079 	 */
3080 	if (!blk_poll_stats_enable(q))
3081 		return 0;
3082 
3083 	/*
3084 	 * As an optimistic guess, use half of the mean service time
3085 	 * for this type of request. We can (and should) make this smarter.
3086 	 * For instance, if the completion latencies are tight, we can
3087 	 * get closer than just half the mean. This is especially
3088 	 * important on devices where the completion latencies are longer
3089 	 * than ~10 usec. We do use the stats for the relevant IO size
3090 	 * if available which does lead to better estimates.
3091 	 */
3092 	bucket = blk_mq_poll_stats_bkt(rq);
3093 	if (bucket < 0)
3094 		return ret;
3095 
3096 	if (q->poll_stat[bucket].nr_samples)
3097 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3098 
3099 	return ret;
3100 }
3101 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct request * rq)3102 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3103 				     struct blk_mq_hw_ctx *hctx,
3104 				     struct request *rq)
3105 {
3106 	struct hrtimer_sleeper hs;
3107 	enum hrtimer_mode mode;
3108 	unsigned int nsecs;
3109 	ktime_t kt;
3110 
3111 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3112 		return false;
3113 
3114 	/*
3115 	 * poll_nsec can be:
3116 	 *
3117 	 * -1:	don't ever hybrid sleep
3118 	 *  0:	use half of prev avg
3119 	 * >0:	use this specific value
3120 	 */
3121 	if (q->poll_nsec == -1)
3122 		return false;
3123 	else if (q->poll_nsec > 0)
3124 		nsecs = q->poll_nsec;
3125 	else
3126 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3127 
3128 	if (!nsecs)
3129 		return false;
3130 
3131 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3132 
3133 	/*
3134 	 * This will be replaced with the stats tracking code, using
3135 	 * 'avg_completion_time / 2' as the pre-sleep target.
3136 	 */
3137 	kt = nsecs;
3138 
3139 	mode = HRTIMER_MODE_REL;
3140 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3141 	hrtimer_set_expires(&hs.timer, kt);
3142 
3143 	hrtimer_init_sleeper(&hs, current);
3144 	do {
3145 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3146 			break;
3147 		set_current_state(TASK_UNINTERRUPTIBLE);
3148 		hrtimer_start_expires(&hs.timer, mode);
3149 		if (hs.task)
3150 			io_schedule();
3151 		hrtimer_cancel(&hs.timer);
3152 		mode = HRTIMER_MODE_ABS;
3153 	} while (hs.task && !signal_pending(current));
3154 
3155 	__set_current_state(TASK_RUNNING);
3156 	destroy_hrtimer_on_stack(&hs.timer);
3157 	return true;
3158 }
3159 
__blk_mq_poll(struct blk_mq_hw_ctx * hctx,struct request * rq)3160 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3161 {
3162 	struct request_queue *q = hctx->queue;
3163 	long state;
3164 
3165 	/*
3166 	 * If we sleep, have the caller restart the poll loop to reset
3167 	 * the state. Like for the other success return cases, the
3168 	 * caller is responsible for checking if the IO completed. If
3169 	 * the IO isn't complete, we'll get called again and will go
3170 	 * straight to the busy poll loop.
3171 	 */
3172 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3173 		return true;
3174 
3175 	hctx->poll_considered++;
3176 
3177 	state = current->state;
3178 	while (!need_resched()) {
3179 		int ret;
3180 
3181 		hctx->poll_invoked++;
3182 
3183 		ret = q->mq_ops->poll(hctx, rq->tag);
3184 		if (ret > 0) {
3185 			hctx->poll_success++;
3186 			set_current_state(TASK_RUNNING);
3187 			return true;
3188 		}
3189 
3190 		if (signal_pending_state(state, current))
3191 			set_current_state(TASK_RUNNING);
3192 
3193 		if (current->state == TASK_RUNNING)
3194 			return true;
3195 		if (ret < 0)
3196 			break;
3197 		cpu_relax();
3198 	}
3199 
3200 	__set_current_state(TASK_RUNNING);
3201 	return false;
3202 }
3203 
blk_mq_poll(struct request_queue * q,blk_qc_t cookie)3204 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3205 {
3206 	struct blk_mq_hw_ctx *hctx;
3207 	struct request *rq;
3208 
3209 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3210 		return false;
3211 
3212 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3213 	if (!blk_qc_t_is_internal(cookie))
3214 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3215 	else {
3216 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3217 		/*
3218 		 * With scheduling, if the request has completed, we'll
3219 		 * get a NULL return here, as we clear the sched tag when
3220 		 * that happens. The request still remains valid, like always,
3221 		 * so we should be safe with just the NULL check.
3222 		 */
3223 		if (!rq)
3224 			return false;
3225 	}
3226 
3227 	return __blk_mq_poll(hctx, rq);
3228 }
3229 
blk_mq_init(void)3230 static int __init blk_mq_init(void)
3231 {
3232 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3233 				blk_mq_hctx_notify_dead);
3234 	return 0;
3235 }
3236 subsys_initcall(blk_mq_init);
3237