1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <linux/glob.h>
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_host.h>
66 #include <linux/libata.h>
67 #include <asm/byteorder.h>
68 #include <asm/unaligned.h>
69 #include <linux/cdrom.h>
70 #include <linux/ratelimit.h>
71 #include <linux/leds.h>
72 #include <linux/pm_runtime.h>
73 #include <linux/platform_device.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/libata.h>
77
78 #include "libata.h"
79 #include "libata-transport.h"
80
81 /* debounce timing parameters in msecs { interval, duration, timeout } */
82 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
83 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
84 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
85
86 const struct ata_port_operations ata_base_port_ops = {
87 .prereset = ata_std_prereset,
88 .postreset = ata_std_postreset,
89 .error_handler = ata_std_error_handler,
90 .sched_eh = ata_std_sched_eh,
91 .end_eh = ata_std_end_eh,
92 };
93
94 const struct ata_port_operations sata_port_ops = {
95 .inherits = &ata_base_port_ops,
96
97 .qc_defer = ata_std_qc_defer,
98 .hardreset = sata_std_hardreset,
99 };
100
101 static unsigned int ata_dev_init_params(struct ata_device *dev,
102 u16 heads, u16 sectors);
103 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
104 static void ata_dev_xfermask(struct ata_device *dev);
105 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
106
107 atomic_t ata_print_id = ATOMIC_INIT(0);
108
109 struct ata_force_param {
110 const char *name;
111 unsigned int cbl;
112 int spd_limit;
113 unsigned long xfer_mask;
114 unsigned int horkage_on;
115 unsigned int horkage_off;
116 unsigned int lflags;
117 };
118
119 struct ata_force_ent {
120 int port;
121 int device;
122 struct ata_force_param param;
123 };
124
125 static struct ata_force_ent *ata_force_tbl;
126 static int ata_force_tbl_size;
127
128 static char ata_force_param_buf[PAGE_SIZE] __initdata;
129 /* param_buf is thrown away after initialization, disallow read */
130 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
131 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
132
133 static int atapi_enabled = 1;
134 module_param(atapi_enabled, int, 0444);
135 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
136
137 static int atapi_dmadir = 0;
138 module_param(atapi_dmadir, int, 0444);
139 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
140
141 int atapi_passthru16 = 1;
142 module_param(atapi_passthru16, int, 0444);
143 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
144
145 int libata_fua = 0;
146 module_param_named(fua, libata_fua, int, 0444);
147 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
148
149 static int ata_ignore_hpa;
150 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
151 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
152
153 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
154 module_param_named(dma, libata_dma_mask, int, 0444);
155 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
156
157 static int ata_probe_timeout;
158 module_param(ata_probe_timeout, int, 0444);
159 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
160
161 int libata_noacpi = 0;
162 module_param_named(noacpi, libata_noacpi, int, 0444);
163 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
164
165 int libata_allow_tpm = 0;
166 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
167 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
168
169 static int atapi_an;
170 module_param(atapi_an, int, 0444);
171 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
172
173 MODULE_AUTHOR("Jeff Garzik");
174 MODULE_DESCRIPTION("Library module for ATA devices");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178
ata_sstatus_online(u32 sstatus)179 static bool ata_sstatus_online(u32 sstatus)
180 {
181 return (sstatus & 0xf) == 0x3;
182 }
183
184 /**
185 * ata_link_next - link iteration helper
186 * @link: the previous link, NULL to start
187 * @ap: ATA port containing links to iterate
188 * @mode: iteration mode, one of ATA_LITER_*
189 *
190 * LOCKING:
191 * Host lock or EH context.
192 *
193 * RETURNS:
194 * Pointer to the next link.
195 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)196 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
197 enum ata_link_iter_mode mode)
198 {
199 BUG_ON(mode != ATA_LITER_EDGE &&
200 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
201
202 /* NULL link indicates start of iteration */
203 if (!link)
204 switch (mode) {
205 case ATA_LITER_EDGE:
206 case ATA_LITER_PMP_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_HOST_FIRST:
211 return &ap->link;
212 }
213
214 /* we just iterated over the host link, what's next? */
215 if (link == &ap->link)
216 switch (mode) {
217 case ATA_LITER_HOST_FIRST:
218 if (sata_pmp_attached(ap))
219 return ap->pmp_link;
220 /* fall through */
221 case ATA_LITER_PMP_FIRST:
222 if (unlikely(ap->slave_link))
223 return ap->slave_link;
224 /* fall through */
225 case ATA_LITER_EDGE:
226 return NULL;
227 }
228
229 /* slave_link excludes PMP */
230 if (unlikely(link == ap->slave_link))
231 return NULL;
232
233 /* we were over a PMP link */
234 if (++link < ap->pmp_link + ap->nr_pmp_links)
235 return link;
236
237 if (mode == ATA_LITER_PMP_FIRST)
238 return &ap->link;
239
240 return NULL;
241 }
242
243 /**
244 * ata_dev_next - device iteration helper
245 * @dev: the previous device, NULL to start
246 * @link: ATA link containing devices to iterate
247 * @mode: iteration mode, one of ATA_DITER_*
248 *
249 * LOCKING:
250 * Host lock or EH context.
251 *
252 * RETURNS:
253 * Pointer to the next device.
254 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)255 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
256 enum ata_dev_iter_mode mode)
257 {
258 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
259 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
260
261 /* NULL dev indicates start of iteration */
262 if (!dev)
263 switch (mode) {
264 case ATA_DITER_ENABLED:
265 case ATA_DITER_ALL:
266 dev = link->device;
267 goto check;
268 case ATA_DITER_ENABLED_REVERSE:
269 case ATA_DITER_ALL_REVERSE:
270 dev = link->device + ata_link_max_devices(link) - 1;
271 goto check;
272 }
273
274 next:
275 /* move to the next one */
276 switch (mode) {
277 case ATA_DITER_ENABLED:
278 case ATA_DITER_ALL:
279 if (++dev < link->device + ata_link_max_devices(link))
280 goto check;
281 return NULL;
282 case ATA_DITER_ENABLED_REVERSE:
283 case ATA_DITER_ALL_REVERSE:
284 if (--dev >= link->device)
285 goto check;
286 return NULL;
287 }
288
289 check:
290 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
291 !ata_dev_enabled(dev))
292 goto next;
293 return dev;
294 }
295
296 /**
297 * ata_dev_phys_link - find physical link for a device
298 * @dev: ATA device to look up physical link for
299 *
300 * Look up physical link which @dev is attached to. Note that
301 * this is different from @dev->link only when @dev is on slave
302 * link. For all other cases, it's the same as @dev->link.
303 *
304 * LOCKING:
305 * Don't care.
306 *
307 * RETURNS:
308 * Pointer to the found physical link.
309 */
ata_dev_phys_link(struct ata_device * dev)310 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
311 {
312 struct ata_port *ap = dev->link->ap;
313
314 if (!ap->slave_link)
315 return dev->link;
316 if (!dev->devno)
317 return &ap->link;
318 return ap->slave_link;
319 }
320
321 /**
322 * ata_force_cbl - force cable type according to libata.force
323 * @ap: ATA port of interest
324 *
325 * Force cable type according to libata.force and whine about it.
326 * The last entry which has matching port number is used, so it
327 * can be specified as part of device force parameters. For
328 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
329 * same effect.
330 *
331 * LOCKING:
332 * EH context.
333 */
ata_force_cbl(struct ata_port * ap)334 void ata_force_cbl(struct ata_port *ap)
335 {
336 int i;
337
338 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
339 const struct ata_force_ent *fe = &ata_force_tbl[i];
340
341 if (fe->port != -1 && fe->port != ap->print_id)
342 continue;
343
344 if (fe->param.cbl == ATA_CBL_NONE)
345 continue;
346
347 ap->cbl = fe->param.cbl;
348 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
349 return;
350 }
351 }
352
353 /**
354 * ata_force_link_limits - force link limits according to libata.force
355 * @link: ATA link of interest
356 *
357 * Force link flags and SATA spd limit according to libata.force
358 * and whine about it. When only the port part is specified
359 * (e.g. 1:), the limit applies to all links connected to both
360 * the host link and all fan-out ports connected via PMP. If the
361 * device part is specified as 0 (e.g. 1.00:), it specifies the
362 * first fan-out link not the host link. Device number 15 always
363 * points to the host link whether PMP is attached or not. If the
364 * controller has slave link, device number 16 points to it.
365 *
366 * LOCKING:
367 * EH context.
368 */
ata_force_link_limits(struct ata_link * link)369 static void ata_force_link_limits(struct ata_link *link)
370 {
371 bool did_spd = false;
372 int linkno = link->pmp;
373 int i;
374
375 if (ata_is_host_link(link))
376 linkno += 15;
377
378 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
379 const struct ata_force_ent *fe = &ata_force_tbl[i];
380
381 if (fe->port != -1 && fe->port != link->ap->print_id)
382 continue;
383
384 if (fe->device != -1 && fe->device != linkno)
385 continue;
386
387 /* only honor the first spd limit */
388 if (!did_spd && fe->param.spd_limit) {
389 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
390 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
391 fe->param.name);
392 did_spd = true;
393 }
394
395 /* let lflags stack */
396 if (fe->param.lflags) {
397 link->flags |= fe->param.lflags;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x forced -> 0x%x\n",
400 fe->param.lflags, link->flags);
401 }
402 }
403 }
404
405 /**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned long pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457 }
458
459 /**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500 }
501
502 /**
503 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
504 * @opcode: SCSI opcode
505 *
506 * Determine ATAPI command type from @opcode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
513 */
atapi_cmd_type(u8 opcode)514 int atapi_cmd_type(u8 opcode)
515 {
516 switch (opcode) {
517 case GPCMD_READ_10:
518 case GPCMD_READ_12:
519 return ATAPI_READ;
520
521 case GPCMD_WRITE_10:
522 case GPCMD_WRITE_12:
523 case GPCMD_WRITE_AND_VERIFY_10:
524 return ATAPI_WRITE;
525
526 case GPCMD_READ_CD:
527 case GPCMD_READ_CD_MSF:
528 return ATAPI_READ_CD;
529
530 case ATA_16:
531 case ATA_12:
532 if (atapi_passthru16)
533 return ATAPI_PASS_THRU;
534 /* fall thru */
535 default:
536 return ATAPI_MISC;
537 }
538 }
539
540 /**
541 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
542 * @tf: Taskfile to convert
543 * @pmp: Port multiplier port
544 * @is_cmd: This FIS is for command
545 * @fis: Buffer into which data will output
546 *
547 * Converts a standard ATA taskfile to a Serial ATA
548 * FIS structure (Register - Host to Device).
549 *
550 * LOCKING:
551 * Inherited from caller.
552 */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)553 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
554 {
555 fis[0] = 0x27; /* Register - Host to Device FIS */
556 fis[1] = pmp & 0xf; /* Port multiplier number*/
557 if (is_cmd)
558 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
559
560 fis[2] = tf->command;
561 fis[3] = tf->feature;
562
563 fis[4] = tf->lbal;
564 fis[5] = tf->lbam;
565 fis[6] = tf->lbah;
566 fis[7] = tf->device;
567
568 fis[8] = tf->hob_lbal;
569 fis[9] = tf->hob_lbam;
570 fis[10] = tf->hob_lbah;
571 fis[11] = tf->hob_feature;
572
573 fis[12] = tf->nsect;
574 fis[13] = tf->hob_nsect;
575 fis[14] = 0;
576 fis[15] = tf->ctl;
577
578 fis[16] = tf->auxiliary & 0xff;
579 fis[17] = (tf->auxiliary >> 8) & 0xff;
580 fis[18] = (tf->auxiliary >> 16) & 0xff;
581 fis[19] = (tf->auxiliary >> 24) & 0xff;
582 }
583
584 /**
585 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
586 * @fis: Buffer from which data will be input
587 * @tf: Taskfile to output
588 *
589 * Converts a serial ATA FIS structure to a standard ATA taskfile.
590 *
591 * LOCKING:
592 * Inherited from caller.
593 */
594
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)595 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
596 {
597 tf->command = fis[2]; /* status */
598 tf->feature = fis[3]; /* error */
599
600 tf->lbal = fis[4];
601 tf->lbam = fis[5];
602 tf->lbah = fis[6];
603 tf->device = fis[7];
604
605 tf->hob_lbal = fis[8];
606 tf->hob_lbam = fis[9];
607 tf->hob_lbah = fis[10];
608
609 tf->nsect = fis[12];
610 tf->hob_nsect = fis[13];
611 }
612
613 static const u8 ata_rw_cmds[] = {
614 /* pio multi */
615 ATA_CMD_READ_MULTI,
616 ATA_CMD_WRITE_MULTI,
617 ATA_CMD_READ_MULTI_EXT,
618 ATA_CMD_WRITE_MULTI_EXT,
619 0,
620 0,
621 0,
622 ATA_CMD_WRITE_MULTI_FUA_EXT,
623 /* pio */
624 ATA_CMD_PIO_READ,
625 ATA_CMD_PIO_WRITE,
626 ATA_CMD_PIO_READ_EXT,
627 ATA_CMD_PIO_WRITE_EXT,
628 0,
629 0,
630 0,
631 0,
632 /* dma */
633 ATA_CMD_READ,
634 ATA_CMD_WRITE,
635 ATA_CMD_READ_EXT,
636 ATA_CMD_WRITE_EXT,
637 0,
638 0,
639 0,
640 ATA_CMD_WRITE_FUA_EXT
641 };
642
643 /**
644 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
645 * @tf: command to examine and configure
646 * @dev: device tf belongs to
647 *
648 * Examine the device configuration and tf->flags to calculate
649 * the proper read/write commands and protocol to use.
650 *
651 * LOCKING:
652 * caller.
653 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)654 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
655 {
656 u8 cmd;
657
658 int index, fua, lba48, write;
659
660 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
661 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
662 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
663
664 if (dev->flags & ATA_DFLAG_PIO) {
665 tf->protocol = ATA_PROT_PIO;
666 index = dev->multi_count ? 0 : 8;
667 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
668 /* Unable to use DMA due to host limitation */
669 tf->protocol = ATA_PROT_PIO;
670 index = dev->multi_count ? 0 : 8;
671 } else {
672 tf->protocol = ATA_PROT_DMA;
673 index = 16;
674 }
675
676 cmd = ata_rw_cmds[index + fua + lba48 + write];
677 if (cmd) {
678 tf->command = cmd;
679 return 0;
680 }
681 return -1;
682 }
683
684 /**
685 * ata_tf_read_block - Read block address from ATA taskfile
686 * @tf: ATA taskfile of interest
687 * @dev: ATA device @tf belongs to
688 *
689 * LOCKING:
690 * None.
691 *
692 * Read block address from @tf. This function can handle all
693 * three address formats - LBA, LBA48 and CHS. tf->protocol and
694 * flags select the address format to use.
695 *
696 * RETURNS:
697 * Block address read from @tf.
698 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)699 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
700 {
701 u64 block = 0;
702
703 if (tf->flags & ATA_TFLAG_LBA) {
704 if (tf->flags & ATA_TFLAG_LBA48) {
705 block |= (u64)tf->hob_lbah << 40;
706 block |= (u64)tf->hob_lbam << 32;
707 block |= (u64)tf->hob_lbal << 24;
708 } else
709 block |= (tf->device & 0xf) << 24;
710
711 block |= tf->lbah << 16;
712 block |= tf->lbam << 8;
713 block |= tf->lbal;
714 } else {
715 u32 cyl, head, sect;
716
717 cyl = tf->lbam | (tf->lbah << 8);
718 head = tf->device & 0xf;
719 sect = tf->lbal;
720
721 if (!sect) {
722 ata_dev_warn(dev,
723 "device reported invalid CHS sector 0\n");
724 return U64_MAX;
725 }
726
727 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
728 }
729
730 return block;
731 }
732
733 /**
734 * ata_build_rw_tf - Build ATA taskfile for given read/write request
735 * @tf: Target ATA taskfile
736 * @dev: ATA device @tf belongs to
737 * @block: Block address
738 * @n_block: Number of blocks
739 * @tf_flags: RW/FUA etc...
740 * @tag: tag
741 * @class: IO priority class
742 *
743 * LOCKING:
744 * None.
745 *
746 * Build ATA taskfile @tf for read/write request described by
747 * @block, @n_block, @tf_flags and @tag on @dev.
748 *
749 * RETURNS:
750 *
751 * 0 on success, -ERANGE if the request is too large for @dev,
752 * -EINVAL if the request is invalid.
753 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag,int class)754 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
755 u64 block, u32 n_block, unsigned int tf_flags,
756 unsigned int tag, int class)
757 {
758 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
759 tf->flags |= tf_flags;
760
761 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
762 /* yay, NCQ */
763 if (!lba_48_ok(block, n_block))
764 return -ERANGE;
765
766 tf->protocol = ATA_PROT_NCQ;
767 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
768
769 if (tf->flags & ATA_TFLAG_WRITE)
770 tf->command = ATA_CMD_FPDMA_WRITE;
771 else
772 tf->command = ATA_CMD_FPDMA_READ;
773
774 tf->nsect = tag << 3;
775 tf->hob_feature = (n_block >> 8) & 0xff;
776 tf->feature = n_block & 0xff;
777
778 tf->hob_lbah = (block >> 40) & 0xff;
779 tf->hob_lbam = (block >> 32) & 0xff;
780 tf->hob_lbal = (block >> 24) & 0xff;
781 tf->lbah = (block >> 16) & 0xff;
782 tf->lbam = (block >> 8) & 0xff;
783 tf->lbal = block & 0xff;
784
785 tf->device = ATA_LBA;
786 if (tf->flags & ATA_TFLAG_FUA)
787 tf->device |= 1 << 7;
788
789 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
790 if (class == IOPRIO_CLASS_RT)
791 tf->hob_nsect |= ATA_PRIO_HIGH <<
792 ATA_SHIFT_PRIO;
793 }
794 } else if (dev->flags & ATA_DFLAG_LBA) {
795 tf->flags |= ATA_TFLAG_LBA;
796
797 if (lba_28_ok(block, n_block)) {
798 /* use LBA28 */
799 tf->device |= (block >> 24) & 0xf;
800 } else if (lba_48_ok(block, n_block)) {
801 if (!(dev->flags & ATA_DFLAG_LBA48))
802 return -ERANGE;
803
804 /* use LBA48 */
805 tf->flags |= ATA_TFLAG_LBA48;
806
807 tf->hob_nsect = (n_block >> 8) & 0xff;
808
809 tf->hob_lbah = (block >> 40) & 0xff;
810 tf->hob_lbam = (block >> 32) & 0xff;
811 tf->hob_lbal = (block >> 24) & 0xff;
812 } else
813 /* request too large even for LBA48 */
814 return -ERANGE;
815
816 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
817 return -EINVAL;
818
819 tf->nsect = n_block & 0xff;
820
821 tf->lbah = (block >> 16) & 0xff;
822 tf->lbam = (block >> 8) & 0xff;
823 tf->lbal = block & 0xff;
824
825 tf->device |= ATA_LBA;
826 } else {
827 /* CHS */
828 u32 sect, head, cyl, track;
829
830 /* The request -may- be too large for CHS addressing. */
831 if (!lba_28_ok(block, n_block))
832 return -ERANGE;
833
834 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
835 return -EINVAL;
836
837 /* Convert LBA to CHS */
838 track = (u32)block / dev->sectors;
839 cyl = track / dev->heads;
840 head = track % dev->heads;
841 sect = (u32)block % dev->sectors + 1;
842
843 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
844 (u32)block, track, cyl, head, sect);
845
846 /* Check whether the converted CHS can fit.
847 Cylinder: 0-65535
848 Head: 0-15
849 Sector: 1-255*/
850 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
851 return -ERANGE;
852
853 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
854 tf->lbal = sect;
855 tf->lbam = cyl;
856 tf->lbah = cyl >> 8;
857 tf->device |= head;
858 }
859
860 return 0;
861 }
862
863 /**
864 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
865 * @pio_mask: pio_mask
866 * @mwdma_mask: mwdma_mask
867 * @udma_mask: udma_mask
868 *
869 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
870 * unsigned int xfer_mask.
871 *
872 * LOCKING:
873 * None.
874 *
875 * RETURNS:
876 * Packed xfer_mask.
877 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)878 unsigned long ata_pack_xfermask(unsigned long pio_mask,
879 unsigned long mwdma_mask,
880 unsigned long udma_mask)
881 {
882 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
883 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
884 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
885 }
886
887 /**
888 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
889 * @xfer_mask: xfer_mask to unpack
890 * @pio_mask: resulting pio_mask
891 * @mwdma_mask: resulting mwdma_mask
892 * @udma_mask: resulting udma_mask
893 *
894 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
895 * Any NULL destination masks will be ignored.
896 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)897 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
898 unsigned long *mwdma_mask, unsigned long *udma_mask)
899 {
900 if (pio_mask)
901 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
902 if (mwdma_mask)
903 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
904 if (udma_mask)
905 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
906 }
907
908 static const struct ata_xfer_ent {
909 int shift, bits;
910 u8 base;
911 } ata_xfer_tbl[] = {
912 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
913 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
914 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
915 { -1, },
916 };
917
918 /**
919 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
920 * @xfer_mask: xfer_mask of interest
921 *
922 * Return matching XFER_* value for @xfer_mask. Only the highest
923 * bit of @xfer_mask is considered.
924 *
925 * LOCKING:
926 * None.
927 *
928 * RETURNS:
929 * Matching XFER_* value, 0xff if no match found.
930 */
ata_xfer_mask2mode(unsigned long xfer_mask)931 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
932 {
933 int highbit = fls(xfer_mask) - 1;
934 const struct ata_xfer_ent *ent;
935
936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
938 return ent->base + highbit - ent->shift;
939 return 0xff;
940 }
941
942 /**
943 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
944 * @xfer_mode: XFER_* of interest
945 *
946 * Return matching xfer_mask for @xfer_mode.
947 *
948 * LOCKING:
949 * None.
950 *
951 * RETURNS:
952 * Matching xfer_mask, 0 if no match found.
953 */
ata_xfer_mode2mask(u8 xfer_mode)954 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
955 {
956 const struct ata_xfer_ent *ent;
957
958 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
959 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
960 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
961 & ~((1 << ent->shift) - 1);
962 return 0;
963 }
964
965 /**
966 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
967 * @xfer_mode: XFER_* of interest
968 *
969 * Return matching xfer_shift for @xfer_mode.
970 *
971 * LOCKING:
972 * None.
973 *
974 * RETURNS:
975 * Matching xfer_shift, -1 if no match found.
976 */
ata_xfer_mode2shift(unsigned long xfer_mode)977 int ata_xfer_mode2shift(unsigned long xfer_mode)
978 {
979 const struct ata_xfer_ent *ent;
980
981 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
982 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
983 return ent->shift;
984 return -1;
985 }
986
987 /**
988 * ata_mode_string - convert xfer_mask to string
989 * @xfer_mask: mask of bits supported; only highest bit counts.
990 *
991 * Determine string which represents the highest speed
992 * (highest bit in @modemask).
993 *
994 * LOCKING:
995 * None.
996 *
997 * RETURNS:
998 * Constant C string representing highest speed listed in
999 * @mode_mask, or the constant C string "<n/a>".
1000 */
ata_mode_string(unsigned long xfer_mask)1001 const char *ata_mode_string(unsigned long xfer_mask)
1002 {
1003 static const char * const xfer_mode_str[] = {
1004 "PIO0",
1005 "PIO1",
1006 "PIO2",
1007 "PIO3",
1008 "PIO4",
1009 "PIO5",
1010 "PIO6",
1011 "MWDMA0",
1012 "MWDMA1",
1013 "MWDMA2",
1014 "MWDMA3",
1015 "MWDMA4",
1016 "UDMA/16",
1017 "UDMA/25",
1018 "UDMA/33",
1019 "UDMA/44",
1020 "UDMA/66",
1021 "UDMA/100",
1022 "UDMA/133",
1023 "UDMA7",
1024 };
1025 int highbit;
1026
1027 highbit = fls(xfer_mask) - 1;
1028 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1029 return xfer_mode_str[highbit];
1030 return "<n/a>";
1031 }
1032
sata_spd_string(unsigned int spd)1033 const char *sata_spd_string(unsigned int spd)
1034 {
1035 static const char * const spd_str[] = {
1036 "1.5 Gbps",
1037 "3.0 Gbps",
1038 "6.0 Gbps",
1039 };
1040
1041 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1042 return "<unknown>";
1043 return spd_str[spd - 1];
1044 }
1045
1046 /**
1047 * ata_dev_classify - determine device type based on ATA-spec signature
1048 * @tf: ATA taskfile register set for device to be identified
1049 *
1050 * Determine from taskfile register contents whether a device is
1051 * ATA or ATAPI, as per "Signature and persistence" section
1052 * of ATA/PI spec (volume 1, sect 5.14).
1053 *
1054 * LOCKING:
1055 * None.
1056 *
1057 * RETURNS:
1058 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1059 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1060 */
ata_dev_classify(const struct ata_taskfile * tf)1061 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1062 {
1063 /* Apple's open source Darwin code hints that some devices only
1064 * put a proper signature into the LBA mid/high registers,
1065 * So, we only check those. It's sufficient for uniqueness.
1066 *
1067 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1068 * signatures for ATA and ATAPI devices attached on SerialATA,
1069 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1070 * spec has never mentioned about using different signatures
1071 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1072 * Multiplier specification began to use 0x69/0x96 to identify
1073 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1074 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1075 * 0x69/0x96 shortly and described them as reserved for
1076 * SerialATA.
1077 *
1078 * We follow the current spec and consider that 0x69/0x96
1079 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1080 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1081 * SEMB signature. This is worked around in
1082 * ata_dev_read_id().
1083 */
1084 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1085 DPRINTK("found ATA device by sig\n");
1086 return ATA_DEV_ATA;
1087 }
1088
1089 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1090 DPRINTK("found ATAPI device by sig\n");
1091 return ATA_DEV_ATAPI;
1092 }
1093
1094 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1095 DPRINTK("found PMP device by sig\n");
1096 return ATA_DEV_PMP;
1097 }
1098
1099 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1100 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1101 return ATA_DEV_SEMB;
1102 }
1103
1104 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1105 DPRINTK("found ZAC device by sig\n");
1106 return ATA_DEV_ZAC;
1107 }
1108
1109 DPRINTK("unknown device\n");
1110 return ATA_DEV_UNKNOWN;
1111 }
1112
1113 /**
1114 * ata_id_string - Convert IDENTIFY DEVICE page into string
1115 * @id: IDENTIFY DEVICE results we will examine
1116 * @s: string into which data is output
1117 * @ofs: offset into identify device page
1118 * @len: length of string to return. must be an even number.
1119 *
1120 * The strings in the IDENTIFY DEVICE page are broken up into
1121 * 16-bit chunks. Run through the string, and output each
1122 * 8-bit chunk linearly, regardless of platform.
1123 *
1124 * LOCKING:
1125 * caller.
1126 */
1127
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1128 void ata_id_string(const u16 *id, unsigned char *s,
1129 unsigned int ofs, unsigned int len)
1130 {
1131 unsigned int c;
1132
1133 BUG_ON(len & 1);
1134
1135 while (len > 0) {
1136 c = id[ofs] >> 8;
1137 *s = c;
1138 s++;
1139
1140 c = id[ofs] & 0xff;
1141 *s = c;
1142 s++;
1143
1144 ofs++;
1145 len -= 2;
1146 }
1147 }
1148
1149 /**
1150 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1151 * @id: IDENTIFY DEVICE results we will examine
1152 * @s: string into which data is output
1153 * @ofs: offset into identify device page
1154 * @len: length of string to return. must be an odd number.
1155 *
1156 * This function is identical to ata_id_string except that it
1157 * trims trailing spaces and terminates the resulting string with
1158 * null. @len must be actual maximum length (even number) + 1.
1159 *
1160 * LOCKING:
1161 * caller.
1162 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1163 void ata_id_c_string(const u16 *id, unsigned char *s,
1164 unsigned int ofs, unsigned int len)
1165 {
1166 unsigned char *p;
1167
1168 ata_id_string(id, s, ofs, len - 1);
1169
1170 p = s + strnlen(s, len - 1);
1171 while (p > s && p[-1] == ' ')
1172 p--;
1173 *p = '\0';
1174 }
1175
ata_id_n_sectors(const u16 * id)1176 static u64 ata_id_n_sectors(const u16 *id)
1177 {
1178 if (ata_id_has_lba(id)) {
1179 if (ata_id_has_lba48(id))
1180 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1181 else
1182 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1183 } else {
1184 if (ata_id_current_chs_valid(id))
1185 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1186 id[ATA_ID_CUR_SECTORS];
1187 else
1188 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1189 id[ATA_ID_SECTORS];
1190 }
1191 }
1192
ata_tf_to_lba48(const struct ata_taskfile * tf)1193 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1194 {
1195 u64 sectors = 0;
1196
1197 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1198 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1199 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1200 sectors |= (tf->lbah & 0xff) << 16;
1201 sectors |= (tf->lbam & 0xff) << 8;
1202 sectors |= (tf->lbal & 0xff);
1203
1204 return sectors;
1205 }
1206
ata_tf_to_lba(const struct ata_taskfile * tf)1207 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1208 {
1209 u64 sectors = 0;
1210
1211 sectors |= (tf->device & 0x0f) << 24;
1212 sectors |= (tf->lbah & 0xff) << 16;
1213 sectors |= (tf->lbam & 0xff) << 8;
1214 sectors |= (tf->lbal & 0xff);
1215
1216 return sectors;
1217 }
1218
1219 /**
1220 * ata_read_native_max_address - Read native max address
1221 * @dev: target device
1222 * @max_sectors: out parameter for the result native max address
1223 *
1224 * Perform an LBA48 or LBA28 native size query upon the device in
1225 * question.
1226 *
1227 * RETURNS:
1228 * 0 on success, -EACCES if command is aborted by the drive.
1229 * -EIO on other errors.
1230 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1231 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1232 {
1233 unsigned int err_mask;
1234 struct ata_taskfile tf;
1235 int lba48 = ata_id_has_lba48(dev->id);
1236
1237 ata_tf_init(dev, &tf);
1238
1239 /* always clear all address registers */
1240 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1241
1242 if (lba48) {
1243 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1244 tf.flags |= ATA_TFLAG_LBA48;
1245 } else
1246 tf.command = ATA_CMD_READ_NATIVE_MAX;
1247
1248 tf.protocol = ATA_PROT_NODATA;
1249 tf.device |= ATA_LBA;
1250
1251 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1252 if (err_mask) {
1253 ata_dev_warn(dev,
1254 "failed to read native max address (err_mask=0x%x)\n",
1255 err_mask);
1256 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1257 return -EACCES;
1258 return -EIO;
1259 }
1260
1261 if (lba48)
1262 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1263 else
1264 *max_sectors = ata_tf_to_lba(&tf) + 1;
1265 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1266 (*max_sectors)--;
1267 return 0;
1268 }
1269
1270 /**
1271 * ata_set_max_sectors - Set max sectors
1272 * @dev: target device
1273 * @new_sectors: new max sectors value to set for the device
1274 *
1275 * Set max sectors of @dev to @new_sectors.
1276 *
1277 * RETURNS:
1278 * 0 on success, -EACCES if command is aborted or denied (due to
1279 * previous non-volatile SET_MAX) by the drive. -EIO on other
1280 * errors.
1281 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1282 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1283 {
1284 unsigned int err_mask;
1285 struct ata_taskfile tf;
1286 int lba48 = ata_id_has_lba48(dev->id);
1287
1288 new_sectors--;
1289
1290 ata_tf_init(dev, &tf);
1291
1292 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1293
1294 if (lba48) {
1295 tf.command = ATA_CMD_SET_MAX_EXT;
1296 tf.flags |= ATA_TFLAG_LBA48;
1297
1298 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1299 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1300 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1301 } else {
1302 tf.command = ATA_CMD_SET_MAX;
1303
1304 tf.device |= (new_sectors >> 24) & 0xf;
1305 }
1306
1307 tf.protocol = ATA_PROT_NODATA;
1308 tf.device |= ATA_LBA;
1309
1310 tf.lbal = (new_sectors >> 0) & 0xff;
1311 tf.lbam = (new_sectors >> 8) & 0xff;
1312 tf.lbah = (new_sectors >> 16) & 0xff;
1313
1314 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1315 if (err_mask) {
1316 ata_dev_warn(dev,
1317 "failed to set max address (err_mask=0x%x)\n",
1318 err_mask);
1319 if (err_mask == AC_ERR_DEV &&
1320 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1321 return -EACCES;
1322 return -EIO;
1323 }
1324
1325 return 0;
1326 }
1327
1328 /**
1329 * ata_hpa_resize - Resize a device with an HPA set
1330 * @dev: Device to resize
1331 *
1332 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1333 * it if required to the full size of the media. The caller must check
1334 * the drive has the HPA feature set enabled.
1335 *
1336 * RETURNS:
1337 * 0 on success, -errno on failure.
1338 */
ata_hpa_resize(struct ata_device * dev)1339 static int ata_hpa_resize(struct ata_device *dev)
1340 {
1341 struct ata_eh_context *ehc = &dev->link->eh_context;
1342 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1343 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1344 u64 sectors = ata_id_n_sectors(dev->id);
1345 u64 native_sectors;
1346 int rc;
1347
1348 /* do we need to do it? */
1349 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1350 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1351 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1352 return 0;
1353
1354 /* read native max address */
1355 rc = ata_read_native_max_address(dev, &native_sectors);
1356 if (rc) {
1357 /* If device aborted the command or HPA isn't going to
1358 * be unlocked, skip HPA resizing.
1359 */
1360 if (rc == -EACCES || !unlock_hpa) {
1361 ata_dev_warn(dev,
1362 "HPA support seems broken, skipping HPA handling\n");
1363 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1364
1365 /* we can continue if device aborted the command */
1366 if (rc == -EACCES)
1367 rc = 0;
1368 }
1369
1370 return rc;
1371 }
1372 dev->n_native_sectors = native_sectors;
1373
1374 /* nothing to do? */
1375 if (native_sectors <= sectors || !unlock_hpa) {
1376 if (!print_info || native_sectors == sectors)
1377 return 0;
1378
1379 if (native_sectors > sectors)
1380 ata_dev_info(dev,
1381 "HPA detected: current %llu, native %llu\n",
1382 (unsigned long long)sectors,
1383 (unsigned long long)native_sectors);
1384 else if (native_sectors < sectors)
1385 ata_dev_warn(dev,
1386 "native sectors (%llu) is smaller than sectors (%llu)\n",
1387 (unsigned long long)native_sectors,
1388 (unsigned long long)sectors);
1389 return 0;
1390 }
1391
1392 /* let's unlock HPA */
1393 rc = ata_set_max_sectors(dev, native_sectors);
1394 if (rc == -EACCES) {
1395 /* if device aborted the command, skip HPA resizing */
1396 ata_dev_warn(dev,
1397 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1398 (unsigned long long)sectors,
1399 (unsigned long long)native_sectors);
1400 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1401 return 0;
1402 } else if (rc)
1403 return rc;
1404
1405 /* re-read IDENTIFY data */
1406 rc = ata_dev_reread_id(dev, 0);
1407 if (rc) {
1408 ata_dev_err(dev,
1409 "failed to re-read IDENTIFY data after HPA resizing\n");
1410 return rc;
1411 }
1412
1413 if (print_info) {
1414 u64 new_sectors = ata_id_n_sectors(dev->id);
1415 ata_dev_info(dev,
1416 "HPA unlocked: %llu -> %llu, native %llu\n",
1417 (unsigned long long)sectors,
1418 (unsigned long long)new_sectors,
1419 (unsigned long long)native_sectors);
1420 }
1421
1422 return 0;
1423 }
1424
1425 /**
1426 * ata_dump_id - IDENTIFY DEVICE info debugging output
1427 * @id: IDENTIFY DEVICE page to dump
1428 *
1429 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1430 * page.
1431 *
1432 * LOCKING:
1433 * caller.
1434 */
1435
ata_dump_id(const u16 * id)1436 static inline void ata_dump_id(const u16 *id)
1437 {
1438 DPRINTK("49==0x%04x "
1439 "53==0x%04x "
1440 "63==0x%04x "
1441 "64==0x%04x "
1442 "75==0x%04x \n",
1443 id[49],
1444 id[53],
1445 id[63],
1446 id[64],
1447 id[75]);
1448 DPRINTK("80==0x%04x "
1449 "81==0x%04x "
1450 "82==0x%04x "
1451 "83==0x%04x "
1452 "84==0x%04x \n",
1453 id[80],
1454 id[81],
1455 id[82],
1456 id[83],
1457 id[84]);
1458 DPRINTK("88==0x%04x "
1459 "93==0x%04x\n",
1460 id[88],
1461 id[93]);
1462 }
1463
1464 /**
1465 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1466 * @id: IDENTIFY data to compute xfer mask from
1467 *
1468 * Compute the xfermask for this device. This is not as trivial
1469 * as it seems if we must consider early devices correctly.
1470 *
1471 * FIXME: pre IDE drive timing (do we care ?).
1472 *
1473 * LOCKING:
1474 * None.
1475 *
1476 * RETURNS:
1477 * Computed xfermask
1478 */
ata_id_xfermask(const u16 * id)1479 unsigned long ata_id_xfermask(const u16 *id)
1480 {
1481 unsigned long pio_mask, mwdma_mask, udma_mask;
1482
1483 /* Usual case. Word 53 indicates word 64 is valid */
1484 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1485 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1486 pio_mask <<= 3;
1487 pio_mask |= 0x7;
1488 } else {
1489 /* If word 64 isn't valid then Word 51 high byte holds
1490 * the PIO timing number for the maximum. Turn it into
1491 * a mask.
1492 */
1493 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1494 if (mode < 5) /* Valid PIO range */
1495 pio_mask = (2 << mode) - 1;
1496 else
1497 pio_mask = 1;
1498
1499 /* But wait.. there's more. Design your standards by
1500 * committee and you too can get a free iordy field to
1501 * process. However its the speeds not the modes that
1502 * are supported... Note drivers using the timing API
1503 * will get this right anyway
1504 */
1505 }
1506
1507 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1508
1509 if (ata_id_is_cfa(id)) {
1510 /*
1511 * Process compact flash extended modes
1512 */
1513 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1514 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1515
1516 if (pio)
1517 pio_mask |= (1 << 5);
1518 if (pio > 1)
1519 pio_mask |= (1 << 6);
1520 if (dma)
1521 mwdma_mask |= (1 << 3);
1522 if (dma > 1)
1523 mwdma_mask |= (1 << 4);
1524 }
1525
1526 udma_mask = 0;
1527 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1528 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1529
1530 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1531 }
1532
ata_qc_complete_internal(struct ata_queued_cmd * qc)1533 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1534 {
1535 struct completion *waiting = qc->private_data;
1536
1537 complete(waiting);
1538 }
1539
1540 /**
1541 * ata_exec_internal_sg - execute libata internal command
1542 * @dev: Device to which the command is sent
1543 * @tf: Taskfile registers for the command and the result
1544 * @cdb: CDB for packet command
1545 * @dma_dir: Data transfer direction of the command
1546 * @sgl: sg list for the data buffer of the command
1547 * @n_elem: Number of sg entries
1548 * @timeout: Timeout in msecs (0 for default)
1549 *
1550 * Executes libata internal command with timeout. @tf contains
1551 * command on entry and result on return. Timeout and error
1552 * conditions are reported via return value. No recovery action
1553 * is taken after a command times out. It's caller's duty to
1554 * clean up after timeout.
1555 *
1556 * LOCKING:
1557 * None. Should be called with kernel context, might sleep.
1558 *
1559 * RETURNS:
1560 * Zero on success, AC_ERR_* mask on failure
1561 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1562 unsigned ata_exec_internal_sg(struct ata_device *dev,
1563 struct ata_taskfile *tf, const u8 *cdb,
1564 int dma_dir, struct scatterlist *sgl,
1565 unsigned int n_elem, unsigned long timeout)
1566 {
1567 struct ata_link *link = dev->link;
1568 struct ata_port *ap = link->ap;
1569 u8 command = tf->command;
1570 int auto_timeout = 0;
1571 struct ata_queued_cmd *qc;
1572 unsigned int preempted_tag;
1573 u32 preempted_sactive;
1574 u64 preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1591
1592 qc->tag = ATA_TAG_INTERNAL;
1593 qc->hw_tag = 0;
1594 qc->scsicmd = NULL;
1595 qc->ap = ap;
1596 qc->dev = dev;
1597 ata_qc_reinit(qc);
1598
1599 preempted_tag = link->active_tag;
1600 preempted_sactive = link->sactive;
1601 preempted_qc_active = ap->qc_active;
1602 preempted_nr_active_links = ap->nr_active_links;
1603 link->active_tag = ATA_TAG_POISON;
1604 link->sactive = 0;
1605 ap->qc_active = 0;
1606 ap->nr_active_links = 0;
1607
1608 /* prepare & issue qc */
1609 qc->tf = *tf;
1610 if (cdb)
1611 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1612
1613 /* some SATA bridges need us to indicate data xfer direction */
1614 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1615 dma_dir == DMA_FROM_DEVICE)
1616 qc->tf.feature |= ATAPI_DMADIR;
1617
1618 qc->flags |= ATA_QCFLAG_RESULT_TF;
1619 qc->dma_dir = dma_dir;
1620 if (dma_dir != DMA_NONE) {
1621 unsigned int i, buflen = 0;
1622 struct scatterlist *sg;
1623
1624 for_each_sg(sgl, sg, n_elem, i)
1625 buflen += sg->length;
1626
1627 ata_sg_init(qc, sgl, n_elem);
1628 qc->nbytes = buflen;
1629 }
1630
1631 qc->private_data = &wait;
1632 qc->complete_fn = ata_qc_complete_internal;
1633
1634 ata_qc_issue(qc);
1635
1636 spin_unlock_irqrestore(ap->lock, flags);
1637
1638 if (!timeout) {
1639 if (ata_probe_timeout)
1640 timeout = ata_probe_timeout * 1000;
1641 else {
1642 timeout = ata_internal_cmd_timeout(dev, command);
1643 auto_timeout = 1;
1644 }
1645 }
1646
1647 if (ap->ops->error_handler)
1648 ata_eh_release(ap);
1649
1650 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1651
1652 if (ap->ops->error_handler)
1653 ata_eh_acquire(ap);
1654
1655 ata_sff_flush_pio_task(ap);
1656
1657 if (!rc) {
1658 spin_lock_irqsave(ap->lock, flags);
1659
1660 /* We're racing with irq here. If we lose, the
1661 * following test prevents us from completing the qc
1662 * twice. If we win, the port is frozen and will be
1663 * cleaned up by ->post_internal_cmd().
1664 */
1665 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1666 qc->err_mask |= AC_ERR_TIMEOUT;
1667
1668 if (ap->ops->error_handler)
1669 ata_port_freeze(ap);
1670 else
1671 ata_qc_complete(qc);
1672
1673 if (ata_msg_warn(ap))
1674 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1675 command);
1676 }
1677
1678 spin_unlock_irqrestore(ap->lock, flags);
1679 }
1680
1681 /* do post_internal_cmd */
1682 if (ap->ops->post_internal_cmd)
1683 ap->ops->post_internal_cmd(qc);
1684
1685 /* perform minimal error analysis */
1686 if (qc->flags & ATA_QCFLAG_FAILED) {
1687 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1688 qc->err_mask |= AC_ERR_DEV;
1689
1690 if (!qc->err_mask)
1691 qc->err_mask |= AC_ERR_OTHER;
1692
1693 if (qc->err_mask & ~AC_ERR_OTHER)
1694 qc->err_mask &= ~AC_ERR_OTHER;
1695 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1696 qc->result_tf.command |= ATA_SENSE;
1697 }
1698
1699 /* finish up */
1700 spin_lock_irqsave(ap->lock, flags);
1701
1702 *tf = qc->result_tf;
1703 err_mask = qc->err_mask;
1704
1705 ata_qc_free(qc);
1706 link->active_tag = preempted_tag;
1707 link->sactive = preempted_sactive;
1708 ap->qc_active = preempted_qc_active;
1709 ap->nr_active_links = preempted_nr_active_links;
1710
1711 spin_unlock_irqrestore(ap->lock, flags);
1712
1713 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1714 ata_internal_cmd_timed_out(dev, command);
1715
1716 return err_mask;
1717 }
1718
1719 /**
1720 * ata_exec_internal - execute libata internal command
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
1724 * @dma_dir: Data transfer direction of the command
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
1727 * @timeout: Timeout in msecs (0 for default)
1728 *
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1731 *
1732 * LOCKING:
1733 * None. Should be called with kernel context, might sleep.
1734 *
1735 * RETURNS:
1736 * Zero on success, AC_ERR_* mask on failure
1737 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1738 unsigned ata_exec_internal(struct ata_device *dev,
1739 struct ata_taskfile *tf, const u8 *cdb,
1740 int dma_dir, void *buf, unsigned int buflen,
1741 unsigned long timeout)
1742 {
1743 struct scatterlist *psg = NULL, sg;
1744 unsigned int n_elem = 0;
1745
1746 if (dma_dir != DMA_NONE) {
1747 WARN_ON(!buf);
1748 sg_init_one(&sg, buf, buflen);
1749 psg = &sg;
1750 n_elem++;
1751 }
1752
1753 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 timeout);
1755 }
1756
1757 /**
1758 * ata_pio_need_iordy - check if iordy needed
1759 * @adev: ATA device
1760 *
1761 * Check if the current speed of the device requires IORDY. Used
1762 * by various controllers for chip configuration.
1763 */
ata_pio_need_iordy(const struct ata_device * adev)1764 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1765 {
1766 /* Don't set IORDY if we're preparing for reset. IORDY may
1767 * lead to controller lock up on certain controllers if the
1768 * port is not occupied. See bko#11703 for details.
1769 */
1770 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1771 return 0;
1772 /* Controller doesn't support IORDY. Probably a pointless
1773 * check as the caller should know this.
1774 */
1775 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1776 return 0;
1777 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1778 if (ata_id_is_cfa(adev->id)
1779 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1780 return 0;
1781 /* PIO3 and higher it is mandatory */
1782 if (adev->pio_mode > XFER_PIO_2)
1783 return 1;
1784 /* We turn it on when possible */
1785 if (ata_id_has_iordy(adev->id))
1786 return 1;
1787 return 0;
1788 }
1789
1790 /**
1791 * ata_pio_mask_no_iordy - Return the non IORDY mask
1792 * @adev: ATA device
1793 *
1794 * Compute the highest mode possible if we are not using iordy. Return
1795 * -1 if no iordy mode is available.
1796 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1797 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1798 {
1799 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1800 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1801 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1802 /* Is the speed faster than the drive allows non IORDY ? */
1803 if (pio) {
1804 /* This is cycle times not frequency - watch the logic! */
1805 if (pio > 240) /* PIO2 is 240nS per cycle */
1806 return 3 << ATA_SHIFT_PIO;
1807 return 7 << ATA_SHIFT_PIO;
1808 }
1809 }
1810 return 3 << ATA_SHIFT_PIO;
1811 }
1812
1813 /**
1814 * ata_do_dev_read_id - default ID read method
1815 * @dev: device
1816 * @tf: proposed taskfile
1817 * @id: data buffer
1818 *
1819 * Issue the identify taskfile and hand back the buffer containing
1820 * identify data. For some RAID controllers and for pre ATA devices
1821 * this function is wrapped or replaced by the driver
1822 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1823 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1824 struct ata_taskfile *tf, u16 *id)
1825 {
1826 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1827 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1828 }
1829
1830 /**
1831 * ata_dev_read_id - Read ID data from the specified device
1832 * @dev: target device
1833 * @p_class: pointer to class of the target device (may be changed)
1834 * @flags: ATA_READID_* flags
1835 * @id: buffer to read IDENTIFY data into
1836 *
1837 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1838 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1839 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1840 * for pre-ATA4 drives.
1841 *
1842 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1843 * now we abort if we hit that case.
1844 *
1845 * LOCKING:
1846 * Kernel thread context (may sleep)
1847 *
1848 * RETURNS:
1849 * 0 on success, -errno otherwise.
1850 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1851 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1852 unsigned int flags, u16 *id)
1853 {
1854 struct ata_port *ap = dev->link->ap;
1855 unsigned int class = *p_class;
1856 struct ata_taskfile tf;
1857 unsigned int err_mask = 0;
1858 const char *reason;
1859 bool is_semb = class == ATA_DEV_SEMB;
1860 int may_fallback = 1, tried_spinup = 0;
1861 int rc;
1862
1863 if (ata_msg_ctl(ap))
1864 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1865
1866 retry:
1867 ata_tf_init(dev, &tf);
1868
1869 switch (class) {
1870 case ATA_DEV_SEMB:
1871 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1872 /* fall through */
1873 case ATA_DEV_ATA:
1874 case ATA_DEV_ZAC:
1875 tf.command = ATA_CMD_ID_ATA;
1876 break;
1877 case ATA_DEV_ATAPI:
1878 tf.command = ATA_CMD_ID_ATAPI;
1879 break;
1880 default:
1881 rc = -ENODEV;
1882 reason = "unsupported class";
1883 goto err_out;
1884 }
1885
1886 tf.protocol = ATA_PROT_PIO;
1887
1888 /* Some devices choke if TF registers contain garbage. Make
1889 * sure those are properly initialized.
1890 */
1891 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1892
1893 /* Device presence detection is unreliable on some
1894 * controllers. Always poll IDENTIFY if available.
1895 */
1896 tf.flags |= ATA_TFLAG_POLLING;
1897
1898 if (ap->ops->read_id)
1899 err_mask = ap->ops->read_id(dev, &tf, id);
1900 else
1901 err_mask = ata_do_dev_read_id(dev, &tf, id);
1902
1903 if (err_mask) {
1904 if (err_mask & AC_ERR_NODEV_HINT) {
1905 ata_dev_dbg(dev, "NODEV after polling detection\n");
1906 return -ENOENT;
1907 }
1908
1909 if (is_semb) {
1910 ata_dev_info(dev,
1911 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1912 /* SEMB is not supported yet */
1913 *p_class = ATA_DEV_SEMB_UNSUP;
1914 return 0;
1915 }
1916
1917 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1918 /* Device or controller might have reported
1919 * the wrong device class. Give a shot at the
1920 * other IDENTIFY if the current one is
1921 * aborted by the device.
1922 */
1923 if (may_fallback) {
1924 may_fallback = 0;
1925
1926 if (class == ATA_DEV_ATA)
1927 class = ATA_DEV_ATAPI;
1928 else
1929 class = ATA_DEV_ATA;
1930 goto retry;
1931 }
1932
1933 /* Control reaches here iff the device aborted
1934 * both flavors of IDENTIFYs which happens
1935 * sometimes with phantom devices.
1936 */
1937 ata_dev_dbg(dev,
1938 "both IDENTIFYs aborted, assuming NODEV\n");
1939 return -ENOENT;
1940 }
1941
1942 rc = -EIO;
1943 reason = "I/O error";
1944 goto err_out;
1945 }
1946
1947 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1948 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1949 "class=%d may_fallback=%d tried_spinup=%d\n",
1950 class, may_fallback, tried_spinup);
1951 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1952 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1953 }
1954
1955 /* Falling back doesn't make sense if ID data was read
1956 * successfully at least once.
1957 */
1958 may_fallback = 0;
1959
1960 swap_buf_le16(id, ATA_ID_WORDS);
1961
1962 /* sanity check */
1963 rc = -EINVAL;
1964 reason = "device reports invalid type";
1965
1966 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1967 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1968 goto err_out;
1969 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1970 ata_id_is_ata(id)) {
1971 ata_dev_dbg(dev,
1972 "host indicates ignore ATA devices, ignored\n");
1973 return -ENOENT;
1974 }
1975 } else {
1976 if (ata_id_is_ata(id))
1977 goto err_out;
1978 }
1979
1980 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1981 tried_spinup = 1;
1982 /*
1983 * Drive powered-up in standby mode, and requires a specific
1984 * SET_FEATURES spin-up subcommand before it will accept
1985 * anything other than the original IDENTIFY command.
1986 */
1987 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1988 if (err_mask && id[2] != 0x738c) {
1989 rc = -EIO;
1990 reason = "SPINUP failed";
1991 goto err_out;
1992 }
1993 /*
1994 * If the drive initially returned incomplete IDENTIFY info,
1995 * we now must reissue the IDENTIFY command.
1996 */
1997 if (id[2] == 0x37c8)
1998 goto retry;
1999 }
2000
2001 if ((flags & ATA_READID_POSTRESET) &&
2002 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2003 /*
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2005 * SRST RESET
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2008 * anything else..
2009 * Some drives were very specific about that exact sequence.
2010 *
2011 * Note that ATA4 says lba is mandatory so the second check
2012 * should never trigger.
2013 */
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2016 if (err_mask) {
2017 rc = -EIO;
2018 reason = "INIT_DEV_PARAMS failed";
2019 goto err_out;
2020 }
2021
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2024 */
2025 flags &= ~ATA_READID_POSTRESET;
2026 goto retry;
2027 }
2028 }
2029
2030 *p_class = class;
2031
2032 return 0;
2033
2034 err_out:
2035 if (ata_msg_warn(ap))
2036 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2037 reason, err_mask);
2038 return rc;
2039 }
2040
2041 /**
2042 * ata_read_log_page - read a specific log page
2043 * @dev: target device
2044 * @log: log to read
2045 * @page: page to read
2046 * @buf: buffer to store read page
2047 * @sectors: number of sectors to read
2048 *
2049 * Read log page using READ_LOG_EXT command.
2050 *
2051 * LOCKING:
2052 * Kernel thread context (may sleep).
2053 *
2054 * RETURNS:
2055 * 0 on success, AC_ERR_* mask otherwise.
2056 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2057 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2058 u8 page, void *buf, unsigned int sectors)
2059 {
2060 unsigned long ap_flags = dev->link->ap->flags;
2061 struct ata_taskfile tf;
2062 unsigned int err_mask;
2063 bool dma = false;
2064
2065 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2066
2067 /*
2068 * Return error without actually issuing the command on controllers
2069 * which e.g. lockup on a read log page.
2070 */
2071 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2072 return AC_ERR_DEV;
2073
2074 retry:
2075 ata_tf_init(dev, &tf);
2076 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2077 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2078 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2079 tf.protocol = ATA_PROT_DMA;
2080 dma = true;
2081 } else {
2082 tf.command = ATA_CMD_READ_LOG_EXT;
2083 tf.protocol = ATA_PROT_PIO;
2084 dma = false;
2085 }
2086 tf.lbal = log;
2087 tf.lbam = page;
2088 tf.nsect = sectors;
2089 tf.hob_nsect = sectors >> 8;
2090 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2091
2092 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2093 buf, sectors * ATA_SECT_SIZE, 0);
2094
2095 if (err_mask && dma) {
2096 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2097 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2098 goto retry;
2099 }
2100
2101 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2102 return err_mask;
2103 }
2104
ata_log_supported(struct ata_device * dev,u8 log)2105 static bool ata_log_supported(struct ata_device *dev, u8 log)
2106 {
2107 struct ata_port *ap = dev->link->ap;
2108
2109 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2110 return false;
2111 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2112 }
2113
ata_identify_page_supported(struct ata_device * dev,u8 page)2114 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2115 {
2116 struct ata_port *ap = dev->link->ap;
2117 unsigned int err, i;
2118
2119 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2120 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2121 return false;
2122 }
2123
2124 /*
2125 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2126 * supported.
2127 */
2128 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2129 1);
2130 if (err) {
2131 ata_dev_info(dev,
2132 "failed to get Device Identify Log Emask 0x%x\n",
2133 err);
2134 return false;
2135 }
2136
2137 for (i = 0; i < ap->sector_buf[8]; i++) {
2138 if (ap->sector_buf[9 + i] == page)
2139 return true;
2140 }
2141
2142 return false;
2143 }
2144
ata_do_link_spd_horkage(struct ata_device * dev)2145 static int ata_do_link_spd_horkage(struct ata_device *dev)
2146 {
2147 struct ata_link *plink = ata_dev_phys_link(dev);
2148 u32 target, target_limit;
2149
2150 if (!sata_scr_valid(plink))
2151 return 0;
2152
2153 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2154 target = 1;
2155 else
2156 return 0;
2157
2158 target_limit = (1 << target) - 1;
2159
2160 /* if already on stricter limit, no need to push further */
2161 if (plink->sata_spd_limit <= target_limit)
2162 return 0;
2163
2164 plink->sata_spd_limit = target_limit;
2165
2166 /* Request another EH round by returning -EAGAIN if link is
2167 * going faster than the target speed. Forward progress is
2168 * guaranteed by setting sata_spd_limit to target_limit above.
2169 */
2170 if (plink->sata_spd > target) {
2171 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2172 sata_spd_string(target));
2173 return -EAGAIN;
2174 }
2175 return 0;
2176 }
2177
ata_dev_knobble(struct ata_device * dev)2178 static inline u8 ata_dev_knobble(struct ata_device *dev)
2179 {
2180 struct ata_port *ap = dev->link->ap;
2181
2182 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2183 return 0;
2184
2185 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2186 }
2187
ata_dev_config_ncq_send_recv(struct ata_device * dev)2188 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2189 {
2190 struct ata_port *ap = dev->link->ap;
2191 unsigned int err_mask;
2192
2193 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2194 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2195 return;
2196 }
2197 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2198 0, ap->sector_buf, 1);
2199 if (err_mask) {
2200 ata_dev_dbg(dev,
2201 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2202 err_mask);
2203 } else {
2204 u8 *cmds = dev->ncq_send_recv_cmds;
2205
2206 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2207 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2208
2209 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2210 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2211 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2212 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2213 }
2214 }
2215 }
2216
ata_dev_config_ncq_non_data(struct ata_device * dev)2217 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2218 {
2219 struct ata_port *ap = dev->link->ap;
2220 unsigned int err_mask;
2221
2222 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2223 ata_dev_warn(dev,
2224 "NCQ Send/Recv Log not supported\n");
2225 return;
2226 }
2227 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2228 0, ap->sector_buf, 1);
2229 if (err_mask) {
2230 ata_dev_dbg(dev,
2231 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2232 err_mask);
2233 } else {
2234 u8 *cmds = dev->ncq_non_data_cmds;
2235
2236 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2237 }
2238 }
2239
ata_dev_config_ncq_prio(struct ata_device * dev)2240 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2241 {
2242 struct ata_port *ap = dev->link->ap;
2243 unsigned int err_mask;
2244
2245 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2246 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2247 return;
2248 }
2249
2250 err_mask = ata_read_log_page(dev,
2251 ATA_LOG_IDENTIFY_DEVICE,
2252 ATA_LOG_SATA_SETTINGS,
2253 ap->sector_buf,
2254 1);
2255 if (err_mask) {
2256 ata_dev_dbg(dev,
2257 "failed to get Identify Device data, Emask 0x%x\n",
2258 err_mask);
2259 return;
2260 }
2261
2262 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2263 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2264 } else {
2265 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2266 ata_dev_dbg(dev, "SATA page does not support priority\n");
2267 }
2268
2269 }
2270
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2271 static int ata_dev_config_ncq(struct ata_device *dev,
2272 char *desc, size_t desc_sz)
2273 {
2274 struct ata_port *ap = dev->link->ap;
2275 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2276 unsigned int err_mask;
2277 char *aa_desc = "";
2278
2279 if (!ata_id_has_ncq(dev->id)) {
2280 desc[0] = '\0';
2281 return 0;
2282 }
2283 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2284 snprintf(desc, desc_sz, "NCQ (not used)");
2285 return 0;
2286 }
2287 if (ap->flags & ATA_FLAG_NCQ) {
2288 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2289 dev->flags |= ATA_DFLAG_NCQ;
2290 }
2291
2292 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2293 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2294 ata_id_has_fpdma_aa(dev->id)) {
2295 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2296 SATA_FPDMA_AA);
2297 if (err_mask) {
2298 ata_dev_err(dev,
2299 "failed to enable AA (error_mask=0x%x)\n",
2300 err_mask);
2301 if (err_mask != AC_ERR_DEV) {
2302 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2303 return -EIO;
2304 }
2305 } else
2306 aa_desc = ", AA";
2307 }
2308
2309 if (hdepth >= ddepth)
2310 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2311 else
2312 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2313 ddepth, aa_desc);
2314
2315 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2316 if (ata_id_has_ncq_send_and_recv(dev->id))
2317 ata_dev_config_ncq_send_recv(dev);
2318 if (ata_id_has_ncq_non_data(dev->id))
2319 ata_dev_config_ncq_non_data(dev);
2320 if (ata_id_has_ncq_prio(dev->id))
2321 ata_dev_config_ncq_prio(dev);
2322 }
2323
2324 return 0;
2325 }
2326
ata_dev_config_sense_reporting(struct ata_device * dev)2327 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2328 {
2329 unsigned int err_mask;
2330
2331 if (!ata_id_has_sense_reporting(dev->id))
2332 return;
2333
2334 if (ata_id_sense_reporting_enabled(dev->id))
2335 return;
2336
2337 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2338 if (err_mask) {
2339 ata_dev_dbg(dev,
2340 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2341 err_mask);
2342 }
2343 }
2344
ata_dev_config_zac(struct ata_device * dev)2345 static void ata_dev_config_zac(struct ata_device *dev)
2346 {
2347 struct ata_port *ap = dev->link->ap;
2348 unsigned int err_mask;
2349 u8 *identify_buf = ap->sector_buf;
2350
2351 dev->zac_zones_optimal_open = U32_MAX;
2352 dev->zac_zones_optimal_nonseq = U32_MAX;
2353 dev->zac_zones_max_open = U32_MAX;
2354
2355 /*
2356 * Always set the 'ZAC' flag for Host-managed devices.
2357 */
2358 if (dev->class == ATA_DEV_ZAC)
2359 dev->flags |= ATA_DFLAG_ZAC;
2360 else if (ata_id_zoned_cap(dev->id) == 0x01)
2361 /*
2362 * Check for host-aware devices.
2363 */
2364 dev->flags |= ATA_DFLAG_ZAC;
2365
2366 if (!(dev->flags & ATA_DFLAG_ZAC))
2367 return;
2368
2369 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2370 ata_dev_warn(dev,
2371 "ATA Zoned Information Log not supported\n");
2372 return;
2373 }
2374
2375 /*
2376 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2377 */
2378 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2379 ATA_LOG_ZONED_INFORMATION,
2380 identify_buf, 1);
2381 if (!err_mask) {
2382 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2383
2384 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2385 if ((zoned_cap >> 63))
2386 dev->zac_zoned_cap = (zoned_cap & 1);
2387 opt_open = get_unaligned_le64(&identify_buf[24]);
2388 if ((opt_open >> 63))
2389 dev->zac_zones_optimal_open = (u32)opt_open;
2390 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2391 if ((opt_nonseq >> 63))
2392 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2393 max_open = get_unaligned_le64(&identify_buf[40]);
2394 if ((max_open >> 63))
2395 dev->zac_zones_max_open = (u32)max_open;
2396 }
2397 }
2398
ata_dev_config_trusted(struct ata_device * dev)2399 static void ata_dev_config_trusted(struct ata_device *dev)
2400 {
2401 struct ata_port *ap = dev->link->ap;
2402 u64 trusted_cap;
2403 unsigned int err;
2404
2405 if (!ata_id_has_trusted(dev->id))
2406 return;
2407
2408 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2409 ata_dev_warn(dev,
2410 "Security Log not supported\n");
2411 return;
2412 }
2413
2414 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2415 ap->sector_buf, 1);
2416 if (err) {
2417 ata_dev_dbg(dev,
2418 "failed to read Security Log, Emask 0x%x\n", err);
2419 return;
2420 }
2421
2422 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2423 if (!(trusted_cap & (1ULL << 63))) {
2424 ata_dev_dbg(dev,
2425 "Trusted Computing capability qword not valid!\n");
2426 return;
2427 }
2428
2429 if (trusted_cap & (1 << 0))
2430 dev->flags |= ATA_DFLAG_TRUSTED;
2431 }
2432
2433 /**
2434 * ata_dev_configure - Configure the specified ATA/ATAPI device
2435 * @dev: Target device to configure
2436 *
2437 * Configure @dev according to @dev->id. Generic and low-level
2438 * driver specific fixups are also applied.
2439 *
2440 * LOCKING:
2441 * Kernel thread context (may sleep)
2442 *
2443 * RETURNS:
2444 * 0 on success, -errno otherwise
2445 */
ata_dev_configure(struct ata_device * dev)2446 int ata_dev_configure(struct ata_device *dev)
2447 {
2448 struct ata_port *ap = dev->link->ap;
2449 struct ata_eh_context *ehc = &dev->link->eh_context;
2450 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2451 const u16 *id = dev->id;
2452 unsigned long xfer_mask;
2453 unsigned int err_mask;
2454 char revbuf[7]; /* XYZ-99\0 */
2455 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2456 char modelbuf[ATA_ID_PROD_LEN+1];
2457 int rc;
2458
2459 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2460 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2461 return 0;
2462 }
2463
2464 if (ata_msg_probe(ap))
2465 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2466
2467 /* set horkage */
2468 dev->horkage |= ata_dev_blacklisted(dev);
2469 ata_force_horkage(dev);
2470
2471 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2472 ata_dev_info(dev, "unsupported device, disabling\n");
2473 ata_dev_disable(dev);
2474 return 0;
2475 }
2476
2477 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2478 dev->class == ATA_DEV_ATAPI) {
2479 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2480 atapi_enabled ? "not supported with this driver"
2481 : "disabled");
2482 ata_dev_disable(dev);
2483 return 0;
2484 }
2485
2486 rc = ata_do_link_spd_horkage(dev);
2487 if (rc)
2488 return rc;
2489
2490 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2491 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2492 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2493 dev->horkage |= ATA_HORKAGE_NOLPM;
2494
2495 if (ap->flags & ATA_FLAG_NO_LPM)
2496 dev->horkage |= ATA_HORKAGE_NOLPM;
2497
2498 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2499 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2500 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2501 }
2502
2503 /* let ACPI work its magic */
2504 rc = ata_acpi_on_devcfg(dev);
2505 if (rc)
2506 return rc;
2507
2508 /* massage HPA, do it early as it might change IDENTIFY data */
2509 rc = ata_hpa_resize(dev);
2510 if (rc)
2511 return rc;
2512
2513 /* print device capabilities */
2514 if (ata_msg_probe(ap))
2515 ata_dev_dbg(dev,
2516 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2517 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2518 __func__,
2519 id[49], id[82], id[83], id[84],
2520 id[85], id[86], id[87], id[88]);
2521
2522 /* initialize to-be-configured parameters */
2523 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2524 dev->max_sectors = 0;
2525 dev->cdb_len = 0;
2526 dev->n_sectors = 0;
2527 dev->cylinders = 0;
2528 dev->heads = 0;
2529 dev->sectors = 0;
2530 dev->multi_count = 0;
2531
2532 /*
2533 * common ATA, ATAPI feature tests
2534 */
2535
2536 /* find max transfer mode; for printk only */
2537 xfer_mask = ata_id_xfermask(id);
2538
2539 if (ata_msg_probe(ap))
2540 ata_dump_id(id);
2541
2542 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2543 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2544 sizeof(fwrevbuf));
2545
2546 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2547 sizeof(modelbuf));
2548
2549 /* ATA-specific feature tests */
2550 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2551 if (ata_id_is_cfa(id)) {
2552 /* CPRM may make this media unusable */
2553 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2554 ata_dev_warn(dev,
2555 "supports DRM functions and may not be fully accessible\n");
2556 snprintf(revbuf, 7, "CFA");
2557 } else {
2558 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2559 /* Warn the user if the device has TPM extensions */
2560 if (ata_id_has_tpm(id))
2561 ata_dev_warn(dev,
2562 "supports DRM functions and may not be fully accessible\n");
2563 }
2564
2565 dev->n_sectors = ata_id_n_sectors(id);
2566
2567 /* get current R/W Multiple count setting */
2568 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2569 unsigned int max = dev->id[47] & 0xff;
2570 unsigned int cnt = dev->id[59] & 0xff;
2571 /* only recognize/allow powers of two here */
2572 if (is_power_of_2(max) && is_power_of_2(cnt))
2573 if (cnt <= max)
2574 dev->multi_count = cnt;
2575 }
2576
2577 if (ata_id_has_lba(id)) {
2578 const char *lba_desc;
2579 char ncq_desc[24];
2580
2581 lba_desc = "LBA";
2582 dev->flags |= ATA_DFLAG_LBA;
2583 if (ata_id_has_lba48(id)) {
2584 dev->flags |= ATA_DFLAG_LBA48;
2585 lba_desc = "LBA48";
2586
2587 if (dev->n_sectors >= (1UL << 28) &&
2588 ata_id_has_flush_ext(id))
2589 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2590 }
2591
2592 /* config NCQ */
2593 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2594 if (rc)
2595 return rc;
2596
2597 /* print device info to dmesg */
2598 if (ata_msg_drv(ap) && print_info) {
2599 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2600 revbuf, modelbuf, fwrevbuf,
2601 ata_mode_string(xfer_mask));
2602 ata_dev_info(dev,
2603 "%llu sectors, multi %u: %s %s\n",
2604 (unsigned long long)dev->n_sectors,
2605 dev->multi_count, lba_desc, ncq_desc);
2606 }
2607 } else {
2608 /* CHS */
2609
2610 /* Default translation */
2611 dev->cylinders = id[1];
2612 dev->heads = id[3];
2613 dev->sectors = id[6];
2614
2615 if (ata_id_current_chs_valid(id)) {
2616 /* Current CHS translation is valid. */
2617 dev->cylinders = id[54];
2618 dev->heads = id[55];
2619 dev->sectors = id[56];
2620 }
2621
2622 /* print device info to dmesg */
2623 if (ata_msg_drv(ap) && print_info) {
2624 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2625 revbuf, modelbuf, fwrevbuf,
2626 ata_mode_string(xfer_mask));
2627 ata_dev_info(dev,
2628 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2629 (unsigned long long)dev->n_sectors,
2630 dev->multi_count, dev->cylinders,
2631 dev->heads, dev->sectors);
2632 }
2633 }
2634
2635 /* Check and mark DevSlp capability. Get DevSlp timing variables
2636 * from SATA Settings page of Identify Device Data Log.
2637 */
2638 if (ata_id_has_devslp(dev->id)) {
2639 u8 *sata_setting = ap->sector_buf;
2640 int i, j;
2641
2642 dev->flags |= ATA_DFLAG_DEVSLP;
2643 err_mask = ata_read_log_page(dev,
2644 ATA_LOG_IDENTIFY_DEVICE,
2645 ATA_LOG_SATA_SETTINGS,
2646 sata_setting,
2647 1);
2648 if (err_mask)
2649 ata_dev_dbg(dev,
2650 "failed to get Identify Device Data, Emask 0x%x\n",
2651 err_mask);
2652 else
2653 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2654 j = ATA_LOG_DEVSLP_OFFSET + i;
2655 dev->devslp_timing[i] = sata_setting[j];
2656 }
2657 }
2658 ata_dev_config_sense_reporting(dev);
2659 ata_dev_config_zac(dev);
2660 ata_dev_config_trusted(dev);
2661 dev->cdb_len = 32;
2662 }
2663
2664 /* ATAPI-specific feature tests */
2665 else if (dev->class == ATA_DEV_ATAPI) {
2666 const char *cdb_intr_string = "";
2667 const char *atapi_an_string = "";
2668 const char *dma_dir_string = "";
2669 u32 sntf;
2670
2671 rc = atapi_cdb_len(id);
2672 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2673 if (ata_msg_warn(ap))
2674 ata_dev_warn(dev, "unsupported CDB len\n");
2675 rc = -EINVAL;
2676 goto err_out_nosup;
2677 }
2678 dev->cdb_len = (unsigned int) rc;
2679
2680 /* Enable ATAPI AN if both the host and device have
2681 * the support. If PMP is attached, SNTF is required
2682 * to enable ATAPI AN to discern between PHY status
2683 * changed notifications and ATAPI ANs.
2684 */
2685 if (atapi_an &&
2686 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2687 (!sata_pmp_attached(ap) ||
2688 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2689 /* issue SET feature command to turn this on */
2690 err_mask = ata_dev_set_feature(dev,
2691 SETFEATURES_SATA_ENABLE, SATA_AN);
2692 if (err_mask)
2693 ata_dev_err(dev,
2694 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2695 err_mask);
2696 else {
2697 dev->flags |= ATA_DFLAG_AN;
2698 atapi_an_string = ", ATAPI AN";
2699 }
2700 }
2701
2702 if (ata_id_cdb_intr(dev->id)) {
2703 dev->flags |= ATA_DFLAG_CDB_INTR;
2704 cdb_intr_string = ", CDB intr";
2705 }
2706
2707 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2708 dev->flags |= ATA_DFLAG_DMADIR;
2709 dma_dir_string = ", DMADIR";
2710 }
2711
2712 if (ata_id_has_da(dev->id)) {
2713 dev->flags |= ATA_DFLAG_DA;
2714 zpodd_init(dev);
2715 }
2716
2717 /* print device info to dmesg */
2718 if (ata_msg_drv(ap) && print_info)
2719 ata_dev_info(dev,
2720 "ATAPI: %s, %s, max %s%s%s%s\n",
2721 modelbuf, fwrevbuf,
2722 ata_mode_string(xfer_mask),
2723 cdb_intr_string, atapi_an_string,
2724 dma_dir_string);
2725 }
2726
2727 /* determine max_sectors */
2728 dev->max_sectors = ATA_MAX_SECTORS;
2729 if (dev->flags & ATA_DFLAG_LBA48)
2730 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2731
2732 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2733 200 sectors */
2734 if (ata_dev_knobble(dev)) {
2735 if (ata_msg_drv(ap) && print_info)
2736 ata_dev_info(dev, "applying bridge limits\n");
2737 dev->udma_mask &= ATA_UDMA5;
2738 dev->max_sectors = ATA_MAX_SECTORS;
2739 }
2740
2741 if ((dev->class == ATA_DEV_ATAPI) &&
2742 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2743 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2744 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2745 }
2746
2747 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2748 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2749 dev->max_sectors);
2750
2751 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2752 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2753 dev->max_sectors);
2754
2755 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2756 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2757
2758 if (ap->ops->dev_config)
2759 ap->ops->dev_config(dev);
2760
2761 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2762 /* Let the user know. We don't want to disallow opens for
2763 rescue purposes, or in case the vendor is just a blithering
2764 idiot. Do this after the dev_config call as some controllers
2765 with buggy firmware may want to avoid reporting false device
2766 bugs */
2767
2768 if (print_info) {
2769 ata_dev_warn(dev,
2770 "Drive reports diagnostics failure. This may indicate a drive\n");
2771 ata_dev_warn(dev,
2772 "fault or invalid emulation. Contact drive vendor for information.\n");
2773 }
2774 }
2775
2776 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2777 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2778 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2779 }
2780
2781 return 0;
2782
2783 err_out_nosup:
2784 if (ata_msg_probe(ap))
2785 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2786 return rc;
2787 }
2788
2789 /**
2790 * ata_cable_40wire - return 40 wire cable type
2791 * @ap: port
2792 *
2793 * Helper method for drivers which want to hardwire 40 wire cable
2794 * detection.
2795 */
2796
ata_cable_40wire(struct ata_port * ap)2797 int ata_cable_40wire(struct ata_port *ap)
2798 {
2799 return ATA_CBL_PATA40;
2800 }
2801
2802 /**
2803 * ata_cable_80wire - return 80 wire cable type
2804 * @ap: port
2805 *
2806 * Helper method for drivers which want to hardwire 80 wire cable
2807 * detection.
2808 */
2809
ata_cable_80wire(struct ata_port * ap)2810 int ata_cable_80wire(struct ata_port *ap)
2811 {
2812 return ATA_CBL_PATA80;
2813 }
2814
2815 /**
2816 * ata_cable_unknown - return unknown PATA cable.
2817 * @ap: port
2818 *
2819 * Helper method for drivers which have no PATA cable detection.
2820 */
2821
ata_cable_unknown(struct ata_port * ap)2822 int ata_cable_unknown(struct ata_port *ap)
2823 {
2824 return ATA_CBL_PATA_UNK;
2825 }
2826
2827 /**
2828 * ata_cable_ignore - return ignored PATA cable.
2829 * @ap: port
2830 *
2831 * Helper method for drivers which don't use cable type to limit
2832 * transfer mode.
2833 */
ata_cable_ignore(struct ata_port * ap)2834 int ata_cable_ignore(struct ata_port *ap)
2835 {
2836 return ATA_CBL_PATA_IGN;
2837 }
2838
2839 /**
2840 * ata_cable_sata - return SATA cable type
2841 * @ap: port
2842 *
2843 * Helper method for drivers which have SATA cables
2844 */
2845
ata_cable_sata(struct ata_port * ap)2846 int ata_cable_sata(struct ata_port *ap)
2847 {
2848 return ATA_CBL_SATA;
2849 }
2850
2851 /**
2852 * ata_bus_probe - Reset and probe ATA bus
2853 * @ap: Bus to probe
2854 *
2855 * Master ATA bus probing function. Initiates a hardware-dependent
2856 * bus reset, then attempts to identify any devices found on
2857 * the bus.
2858 *
2859 * LOCKING:
2860 * PCI/etc. bus probe sem.
2861 *
2862 * RETURNS:
2863 * Zero on success, negative errno otherwise.
2864 */
2865
ata_bus_probe(struct ata_port * ap)2866 int ata_bus_probe(struct ata_port *ap)
2867 {
2868 unsigned int classes[ATA_MAX_DEVICES];
2869 int tries[ATA_MAX_DEVICES];
2870 int rc;
2871 struct ata_device *dev;
2872
2873 ata_for_each_dev(dev, &ap->link, ALL)
2874 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2875
2876 retry:
2877 ata_for_each_dev(dev, &ap->link, ALL) {
2878 /* If we issue an SRST then an ATA drive (not ATAPI)
2879 * may change configuration and be in PIO0 timing. If
2880 * we do a hard reset (or are coming from power on)
2881 * this is true for ATA or ATAPI. Until we've set a
2882 * suitable controller mode we should not touch the
2883 * bus as we may be talking too fast.
2884 */
2885 dev->pio_mode = XFER_PIO_0;
2886 dev->dma_mode = 0xff;
2887
2888 /* If the controller has a pio mode setup function
2889 * then use it to set the chipset to rights. Don't
2890 * touch the DMA setup as that will be dealt with when
2891 * configuring devices.
2892 */
2893 if (ap->ops->set_piomode)
2894 ap->ops->set_piomode(ap, dev);
2895 }
2896
2897 /* reset and determine device classes */
2898 ap->ops->phy_reset(ap);
2899
2900 ata_for_each_dev(dev, &ap->link, ALL) {
2901 if (dev->class != ATA_DEV_UNKNOWN)
2902 classes[dev->devno] = dev->class;
2903 else
2904 classes[dev->devno] = ATA_DEV_NONE;
2905
2906 dev->class = ATA_DEV_UNKNOWN;
2907 }
2908
2909 /* read IDENTIFY page and configure devices. We have to do the identify
2910 specific sequence bass-ackwards so that PDIAG- is released by
2911 the slave device */
2912
2913 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2914 if (tries[dev->devno])
2915 dev->class = classes[dev->devno];
2916
2917 if (!ata_dev_enabled(dev))
2918 continue;
2919
2920 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2921 dev->id);
2922 if (rc)
2923 goto fail;
2924 }
2925
2926 /* Now ask for the cable type as PDIAG- should have been released */
2927 if (ap->ops->cable_detect)
2928 ap->cbl = ap->ops->cable_detect(ap);
2929
2930 /* We may have SATA bridge glue hiding here irrespective of
2931 * the reported cable types and sensed types. When SATA
2932 * drives indicate we have a bridge, we don't know which end
2933 * of the link the bridge is which is a problem.
2934 */
2935 ata_for_each_dev(dev, &ap->link, ENABLED)
2936 if (ata_id_is_sata(dev->id))
2937 ap->cbl = ATA_CBL_SATA;
2938
2939 /* After the identify sequence we can now set up the devices. We do
2940 this in the normal order so that the user doesn't get confused */
2941
2942 ata_for_each_dev(dev, &ap->link, ENABLED) {
2943 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2944 rc = ata_dev_configure(dev);
2945 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2946 if (rc)
2947 goto fail;
2948 }
2949
2950 /* configure transfer mode */
2951 rc = ata_set_mode(&ap->link, &dev);
2952 if (rc)
2953 goto fail;
2954
2955 ata_for_each_dev(dev, &ap->link, ENABLED)
2956 return 0;
2957
2958 return -ENODEV;
2959
2960 fail:
2961 tries[dev->devno]--;
2962
2963 switch (rc) {
2964 case -EINVAL:
2965 /* eeek, something went very wrong, give up */
2966 tries[dev->devno] = 0;
2967 break;
2968
2969 case -ENODEV:
2970 /* give it just one more chance */
2971 tries[dev->devno] = min(tries[dev->devno], 1);
2972 /* fall through */
2973 case -EIO:
2974 if (tries[dev->devno] == 1) {
2975 /* This is the last chance, better to slow
2976 * down than lose it.
2977 */
2978 sata_down_spd_limit(&ap->link, 0);
2979 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2980 }
2981 }
2982
2983 if (!tries[dev->devno])
2984 ata_dev_disable(dev);
2985
2986 goto retry;
2987 }
2988
2989 /**
2990 * sata_print_link_status - Print SATA link status
2991 * @link: SATA link to printk link status about
2992 *
2993 * This function prints link speed and status of a SATA link.
2994 *
2995 * LOCKING:
2996 * None.
2997 */
sata_print_link_status(struct ata_link * link)2998 static void sata_print_link_status(struct ata_link *link)
2999 {
3000 u32 sstatus, scontrol, tmp;
3001
3002 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3003 return;
3004 sata_scr_read(link, SCR_CONTROL, &scontrol);
3005
3006 if (ata_phys_link_online(link)) {
3007 tmp = (sstatus >> 4) & 0xf;
3008 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3009 sata_spd_string(tmp), sstatus, scontrol);
3010 } else {
3011 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3012 sstatus, scontrol);
3013 }
3014 }
3015
3016 /**
3017 * ata_dev_pair - return other device on cable
3018 * @adev: device
3019 *
3020 * Obtain the other device on the same cable, or if none is
3021 * present NULL is returned
3022 */
3023
ata_dev_pair(struct ata_device * adev)3024 struct ata_device *ata_dev_pair(struct ata_device *adev)
3025 {
3026 struct ata_link *link = adev->link;
3027 struct ata_device *pair = &link->device[1 - adev->devno];
3028 if (!ata_dev_enabled(pair))
3029 return NULL;
3030 return pair;
3031 }
3032
3033 /**
3034 * sata_down_spd_limit - adjust SATA spd limit downward
3035 * @link: Link to adjust SATA spd limit for
3036 * @spd_limit: Additional limit
3037 *
3038 * Adjust SATA spd limit of @link downward. Note that this
3039 * function only adjusts the limit. The change must be applied
3040 * using sata_set_spd().
3041 *
3042 * If @spd_limit is non-zero, the speed is limited to equal to or
3043 * lower than @spd_limit if such speed is supported. If
3044 * @spd_limit is slower than any supported speed, only the lowest
3045 * supported speed is allowed.
3046 *
3047 * LOCKING:
3048 * Inherited from caller.
3049 *
3050 * RETURNS:
3051 * 0 on success, negative errno on failure
3052 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3053 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3054 {
3055 u32 sstatus, spd, mask;
3056 int rc, bit;
3057
3058 if (!sata_scr_valid(link))
3059 return -EOPNOTSUPP;
3060
3061 /* If SCR can be read, use it to determine the current SPD.
3062 * If not, use cached value in link->sata_spd.
3063 */
3064 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3065 if (rc == 0 && ata_sstatus_online(sstatus))
3066 spd = (sstatus >> 4) & 0xf;
3067 else
3068 spd = link->sata_spd;
3069
3070 mask = link->sata_spd_limit;
3071 if (mask <= 1)
3072 return -EINVAL;
3073
3074 /* unconditionally mask off the highest bit */
3075 bit = fls(mask) - 1;
3076 mask &= ~(1 << bit);
3077
3078 /*
3079 * Mask off all speeds higher than or equal to the current one. At
3080 * this point, if current SPD is not available and we previously
3081 * recorded the link speed from SStatus, the driver has already
3082 * masked off the highest bit so mask should already be 1 or 0.
3083 * Otherwise, we should not force 1.5Gbps on a link where we have
3084 * not previously recorded speed from SStatus. Just return in this
3085 * case.
3086 */
3087 if (spd > 1)
3088 mask &= (1 << (spd - 1)) - 1;
3089 else
3090 return -EINVAL;
3091
3092 /* were we already at the bottom? */
3093 if (!mask)
3094 return -EINVAL;
3095
3096 if (spd_limit) {
3097 if (mask & ((1 << spd_limit) - 1))
3098 mask &= (1 << spd_limit) - 1;
3099 else {
3100 bit = ffs(mask) - 1;
3101 mask = 1 << bit;
3102 }
3103 }
3104
3105 link->sata_spd_limit = mask;
3106
3107 ata_link_warn(link, "limiting SATA link speed to %s\n",
3108 sata_spd_string(fls(mask)));
3109
3110 return 0;
3111 }
3112
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)3113 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3114 {
3115 struct ata_link *host_link = &link->ap->link;
3116 u32 limit, target, spd;
3117
3118 limit = link->sata_spd_limit;
3119
3120 /* Don't configure downstream link faster than upstream link.
3121 * It doesn't speed up anything and some PMPs choke on such
3122 * configuration.
3123 */
3124 if (!ata_is_host_link(link) && host_link->sata_spd)
3125 limit &= (1 << host_link->sata_spd) - 1;
3126
3127 if (limit == UINT_MAX)
3128 target = 0;
3129 else
3130 target = fls(limit);
3131
3132 spd = (*scontrol >> 4) & 0xf;
3133 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3134
3135 return spd != target;
3136 }
3137
3138 /**
3139 * sata_set_spd_needed - is SATA spd configuration needed
3140 * @link: Link in question
3141 *
3142 * Test whether the spd limit in SControl matches
3143 * @link->sata_spd_limit. This function is used to determine
3144 * whether hardreset is necessary to apply SATA spd
3145 * configuration.
3146 *
3147 * LOCKING:
3148 * Inherited from caller.
3149 *
3150 * RETURNS:
3151 * 1 if SATA spd configuration is needed, 0 otherwise.
3152 */
sata_set_spd_needed(struct ata_link * link)3153 static int sata_set_spd_needed(struct ata_link *link)
3154 {
3155 u32 scontrol;
3156
3157 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3158 return 1;
3159
3160 return __sata_set_spd_needed(link, &scontrol);
3161 }
3162
3163 /**
3164 * sata_set_spd - set SATA spd according to spd limit
3165 * @link: Link to set SATA spd for
3166 *
3167 * Set SATA spd of @link according to sata_spd_limit.
3168 *
3169 * LOCKING:
3170 * Inherited from caller.
3171 *
3172 * RETURNS:
3173 * 0 if spd doesn't need to be changed, 1 if spd has been
3174 * changed. Negative errno if SCR registers are inaccessible.
3175 */
sata_set_spd(struct ata_link * link)3176 int sata_set_spd(struct ata_link *link)
3177 {
3178 u32 scontrol;
3179 int rc;
3180
3181 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3182 return rc;
3183
3184 if (!__sata_set_spd_needed(link, &scontrol))
3185 return 0;
3186
3187 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3188 return rc;
3189
3190 return 1;
3191 }
3192
3193 /*
3194 * This mode timing computation functionality is ported over from
3195 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3196 */
3197 /*
3198 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3199 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3200 * for UDMA6, which is currently supported only by Maxtor drives.
3201 *
3202 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3203 */
3204
3205 static const struct ata_timing ata_timing[] = {
3206 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3207 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3208 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3209 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3210 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3211 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3212 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3213 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3214
3215 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3216 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3217 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3218
3219 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3220 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3221 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3222 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3223 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3224
3225 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3226 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3227 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3228 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3229 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3230 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3231 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3232 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3233
3234 { 0xFF }
3235 };
3236
3237 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3238 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3239
ata_timing_quantize(const struct ata_timing * t,struct ata_timing * q,int T,int UT)3240 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3241 {
3242 q->setup = EZ(t->setup, T);
3243 q->act8b = EZ(t->act8b, T);
3244 q->rec8b = EZ(t->rec8b, T);
3245 q->cyc8b = EZ(t->cyc8b, T);
3246 q->active = EZ(t->active, T);
3247 q->recover = EZ(t->recover, T);
3248 q->dmack_hold = EZ(t->dmack_hold, T);
3249 q->cycle = EZ(t->cycle, T);
3250 q->udma = EZ(t->udma, UT);
3251 }
3252
ata_timing_merge(const struct ata_timing * a,const struct ata_timing * b,struct ata_timing * m,unsigned int what)3253 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3254 struct ata_timing *m, unsigned int what)
3255 {
3256 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3257 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3258 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3259 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3260 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3261 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3262 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3263 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3264 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3265 }
3266
ata_timing_find_mode(u8 xfer_mode)3267 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3268 {
3269 const struct ata_timing *t = ata_timing;
3270
3271 while (xfer_mode > t->mode)
3272 t++;
3273
3274 if (xfer_mode == t->mode)
3275 return t;
3276
3277 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3278 __func__, xfer_mode);
3279
3280 return NULL;
3281 }
3282
ata_timing_compute(struct ata_device * adev,unsigned short speed,struct ata_timing * t,int T,int UT)3283 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3284 struct ata_timing *t, int T, int UT)
3285 {
3286 const u16 *id = adev->id;
3287 const struct ata_timing *s;
3288 struct ata_timing p;
3289
3290 /*
3291 * Find the mode.
3292 */
3293
3294 if (!(s = ata_timing_find_mode(speed)))
3295 return -EINVAL;
3296
3297 memcpy(t, s, sizeof(*s));
3298
3299 /*
3300 * If the drive is an EIDE drive, it can tell us it needs extended
3301 * PIO/MW_DMA cycle timing.
3302 */
3303
3304 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3305 memset(&p, 0, sizeof(p));
3306
3307 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3308 if (speed <= XFER_PIO_2)
3309 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3310 else if ((speed <= XFER_PIO_4) ||
3311 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3312 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3313 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3314 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3315
3316 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3317 }
3318
3319 /*
3320 * Convert the timing to bus clock counts.
3321 */
3322
3323 ata_timing_quantize(t, t, T, UT);
3324
3325 /*
3326 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3327 * S.M.A.R.T * and some other commands. We have to ensure that the
3328 * DMA cycle timing is slower/equal than the fastest PIO timing.
3329 */
3330
3331 if (speed > XFER_PIO_6) {
3332 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3333 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3334 }
3335
3336 /*
3337 * Lengthen active & recovery time so that cycle time is correct.
3338 */
3339
3340 if (t->act8b + t->rec8b < t->cyc8b) {
3341 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3342 t->rec8b = t->cyc8b - t->act8b;
3343 }
3344
3345 if (t->active + t->recover < t->cycle) {
3346 t->active += (t->cycle - (t->active + t->recover)) / 2;
3347 t->recover = t->cycle - t->active;
3348 }
3349
3350 /* In a few cases quantisation may produce enough errors to
3351 leave t->cycle too low for the sum of active and recovery
3352 if so we must correct this */
3353 if (t->active + t->recover > t->cycle)
3354 t->cycle = t->active + t->recover;
3355
3356 return 0;
3357 }
3358
3359 /**
3360 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3361 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3362 * @cycle: cycle duration in ns
3363 *
3364 * Return matching xfer mode for @cycle. The returned mode is of
3365 * the transfer type specified by @xfer_shift. If @cycle is too
3366 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3367 * than the fastest known mode, the fasted mode is returned.
3368 *
3369 * LOCKING:
3370 * None.
3371 *
3372 * RETURNS:
3373 * Matching xfer_mode, 0xff if no match found.
3374 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3375 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3376 {
3377 u8 base_mode = 0xff, last_mode = 0xff;
3378 const struct ata_xfer_ent *ent;
3379 const struct ata_timing *t;
3380
3381 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3382 if (ent->shift == xfer_shift)
3383 base_mode = ent->base;
3384
3385 for (t = ata_timing_find_mode(base_mode);
3386 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3387 unsigned short this_cycle;
3388
3389 switch (xfer_shift) {
3390 case ATA_SHIFT_PIO:
3391 case ATA_SHIFT_MWDMA:
3392 this_cycle = t->cycle;
3393 break;
3394 case ATA_SHIFT_UDMA:
3395 this_cycle = t->udma;
3396 break;
3397 default:
3398 return 0xff;
3399 }
3400
3401 if (cycle > this_cycle)
3402 break;
3403
3404 last_mode = t->mode;
3405 }
3406
3407 return last_mode;
3408 }
3409
3410 /**
3411 * ata_down_xfermask_limit - adjust dev xfer masks downward
3412 * @dev: Device to adjust xfer masks
3413 * @sel: ATA_DNXFER_* selector
3414 *
3415 * Adjust xfer masks of @dev downward. Note that this function
3416 * does not apply the change. Invoking ata_set_mode() afterwards
3417 * will apply the limit.
3418 *
3419 * LOCKING:
3420 * Inherited from caller.
3421 *
3422 * RETURNS:
3423 * 0 on success, negative errno on failure
3424 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3425 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3426 {
3427 char buf[32];
3428 unsigned long orig_mask, xfer_mask;
3429 unsigned long pio_mask, mwdma_mask, udma_mask;
3430 int quiet, highbit;
3431
3432 quiet = !!(sel & ATA_DNXFER_QUIET);
3433 sel &= ~ATA_DNXFER_QUIET;
3434
3435 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3436 dev->mwdma_mask,
3437 dev->udma_mask);
3438 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3439
3440 switch (sel) {
3441 case ATA_DNXFER_PIO:
3442 highbit = fls(pio_mask) - 1;
3443 pio_mask &= ~(1 << highbit);
3444 break;
3445
3446 case ATA_DNXFER_DMA:
3447 if (udma_mask) {
3448 highbit = fls(udma_mask) - 1;
3449 udma_mask &= ~(1 << highbit);
3450 if (!udma_mask)
3451 return -ENOENT;
3452 } else if (mwdma_mask) {
3453 highbit = fls(mwdma_mask) - 1;
3454 mwdma_mask &= ~(1 << highbit);
3455 if (!mwdma_mask)
3456 return -ENOENT;
3457 }
3458 break;
3459
3460 case ATA_DNXFER_40C:
3461 udma_mask &= ATA_UDMA_MASK_40C;
3462 break;
3463
3464 case ATA_DNXFER_FORCE_PIO0:
3465 pio_mask &= 1;
3466 /* fall through */
3467 case ATA_DNXFER_FORCE_PIO:
3468 mwdma_mask = 0;
3469 udma_mask = 0;
3470 break;
3471
3472 default:
3473 BUG();
3474 }
3475
3476 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3477
3478 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3479 return -ENOENT;
3480
3481 if (!quiet) {
3482 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3483 snprintf(buf, sizeof(buf), "%s:%s",
3484 ata_mode_string(xfer_mask),
3485 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3486 else
3487 snprintf(buf, sizeof(buf), "%s",
3488 ata_mode_string(xfer_mask));
3489
3490 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3491 }
3492
3493 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3494 &dev->udma_mask);
3495
3496 return 0;
3497 }
3498
ata_dev_set_mode(struct ata_device * dev)3499 static int ata_dev_set_mode(struct ata_device *dev)
3500 {
3501 struct ata_port *ap = dev->link->ap;
3502 struct ata_eh_context *ehc = &dev->link->eh_context;
3503 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3504 const char *dev_err_whine = "";
3505 int ign_dev_err = 0;
3506 unsigned int err_mask = 0;
3507 int rc;
3508
3509 dev->flags &= ~ATA_DFLAG_PIO;
3510 if (dev->xfer_shift == ATA_SHIFT_PIO)
3511 dev->flags |= ATA_DFLAG_PIO;
3512
3513 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3514 dev_err_whine = " (SET_XFERMODE skipped)";
3515 else {
3516 if (nosetxfer)
3517 ata_dev_warn(dev,
3518 "NOSETXFER but PATA detected - can't "
3519 "skip SETXFER, might malfunction\n");
3520 err_mask = ata_dev_set_xfermode(dev);
3521 }
3522
3523 if (err_mask & ~AC_ERR_DEV)
3524 goto fail;
3525
3526 /* revalidate */
3527 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3528 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3529 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3530 if (rc)
3531 return rc;
3532
3533 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3534 /* Old CFA may refuse this command, which is just fine */
3535 if (ata_id_is_cfa(dev->id))
3536 ign_dev_err = 1;
3537 /* Catch several broken garbage emulations plus some pre
3538 ATA devices */
3539 if (ata_id_major_version(dev->id) == 0 &&
3540 dev->pio_mode <= XFER_PIO_2)
3541 ign_dev_err = 1;
3542 /* Some very old devices and some bad newer ones fail
3543 any kind of SET_XFERMODE request but support PIO0-2
3544 timings and no IORDY */
3545 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3546 ign_dev_err = 1;
3547 }
3548 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3549 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3550 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3551 dev->dma_mode == XFER_MW_DMA_0 &&
3552 (dev->id[63] >> 8) & 1)
3553 ign_dev_err = 1;
3554
3555 /* if the device is actually configured correctly, ignore dev err */
3556 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3557 ign_dev_err = 1;
3558
3559 if (err_mask & AC_ERR_DEV) {
3560 if (!ign_dev_err)
3561 goto fail;
3562 else
3563 dev_err_whine = " (device error ignored)";
3564 }
3565
3566 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3567 dev->xfer_shift, (int)dev->xfer_mode);
3568
3569 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3570 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3571 ata_dev_info(dev, "configured for %s%s\n",
3572 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3573 dev_err_whine);
3574
3575 return 0;
3576
3577 fail:
3578 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3579 return -EIO;
3580 }
3581
3582 /**
3583 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3584 * @link: link on which timings will be programmed
3585 * @r_failed_dev: out parameter for failed device
3586 *
3587 * Standard implementation of the function used to tune and set
3588 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3589 * ata_dev_set_mode() fails, pointer to the failing device is
3590 * returned in @r_failed_dev.
3591 *
3592 * LOCKING:
3593 * PCI/etc. bus probe sem.
3594 *
3595 * RETURNS:
3596 * 0 on success, negative errno otherwise
3597 */
3598
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3599 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3600 {
3601 struct ata_port *ap = link->ap;
3602 struct ata_device *dev;
3603 int rc = 0, used_dma = 0, found = 0;
3604
3605 /* step 1: calculate xfer_mask */
3606 ata_for_each_dev(dev, link, ENABLED) {
3607 unsigned long pio_mask, dma_mask;
3608 unsigned int mode_mask;
3609
3610 mode_mask = ATA_DMA_MASK_ATA;
3611 if (dev->class == ATA_DEV_ATAPI)
3612 mode_mask = ATA_DMA_MASK_ATAPI;
3613 else if (ata_id_is_cfa(dev->id))
3614 mode_mask = ATA_DMA_MASK_CFA;
3615
3616 ata_dev_xfermask(dev);
3617 ata_force_xfermask(dev);
3618
3619 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3620
3621 if (libata_dma_mask & mode_mask)
3622 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3623 dev->udma_mask);
3624 else
3625 dma_mask = 0;
3626
3627 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3628 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3629
3630 found = 1;
3631 if (ata_dma_enabled(dev))
3632 used_dma = 1;
3633 }
3634 if (!found)
3635 goto out;
3636
3637 /* step 2: always set host PIO timings */
3638 ata_for_each_dev(dev, link, ENABLED) {
3639 if (dev->pio_mode == 0xff) {
3640 ata_dev_warn(dev, "no PIO support\n");
3641 rc = -EINVAL;
3642 goto out;
3643 }
3644
3645 dev->xfer_mode = dev->pio_mode;
3646 dev->xfer_shift = ATA_SHIFT_PIO;
3647 if (ap->ops->set_piomode)
3648 ap->ops->set_piomode(ap, dev);
3649 }
3650
3651 /* step 3: set host DMA timings */
3652 ata_for_each_dev(dev, link, ENABLED) {
3653 if (!ata_dma_enabled(dev))
3654 continue;
3655
3656 dev->xfer_mode = dev->dma_mode;
3657 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3658 if (ap->ops->set_dmamode)
3659 ap->ops->set_dmamode(ap, dev);
3660 }
3661
3662 /* step 4: update devices' xfer mode */
3663 ata_for_each_dev(dev, link, ENABLED) {
3664 rc = ata_dev_set_mode(dev);
3665 if (rc)
3666 goto out;
3667 }
3668
3669 /* Record simplex status. If we selected DMA then the other
3670 * host channels are not permitted to do so.
3671 */
3672 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3673 ap->host->simplex_claimed = ap;
3674
3675 out:
3676 if (rc)
3677 *r_failed_dev = dev;
3678 return rc;
3679 }
3680
3681 /**
3682 * ata_wait_ready - wait for link to become ready
3683 * @link: link to be waited on
3684 * @deadline: deadline jiffies for the operation
3685 * @check_ready: callback to check link readiness
3686 *
3687 * Wait for @link to become ready. @check_ready should return
3688 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3689 * link doesn't seem to be occupied, other errno for other error
3690 * conditions.
3691 *
3692 * Transient -ENODEV conditions are allowed for
3693 * ATA_TMOUT_FF_WAIT.
3694 *
3695 * LOCKING:
3696 * EH context.
3697 *
3698 * RETURNS:
3699 * 0 if @link is ready before @deadline; otherwise, -errno.
3700 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3701 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3702 int (*check_ready)(struct ata_link *link))
3703 {
3704 unsigned long start = jiffies;
3705 unsigned long nodev_deadline;
3706 int warned = 0;
3707
3708 /* choose which 0xff timeout to use, read comment in libata.h */
3709 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3710 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3711 else
3712 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3713
3714 /* Slave readiness can't be tested separately from master. On
3715 * M/S emulation configuration, this function should be called
3716 * only on the master and it will handle both master and slave.
3717 */
3718 WARN_ON(link == link->ap->slave_link);
3719
3720 if (time_after(nodev_deadline, deadline))
3721 nodev_deadline = deadline;
3722
3723 while (1) {
3724 unsigned long now = jiffies;
3725 int ready, tmp;
3726
3727 ready = tmp = check_ready(link);
3728 if (ready > 0)
3729 return 0;
3730
3731 /*
3732 * -ENODEV could be transient. Ignore -ENODEV if link
3733 * is online. Also, some SATA devices take a long
3734 * time to clear 0xff after reset. Wait for
3735 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3736 * offline.
3737 *
3738 * Note that some PATA controllers (pata_ali) explode
3739 * if status register is read more than once when
3740 * there's no device attached.
3741 */
3742 if (ready == -ENODEV) {
3743 if (ata_link_online(link))
3744 ready = 0;
3745 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3746 !ata_link_offline(link) &&
3747 time_before(now, nodev_deadline))
3748 ready = 0;
3749 }
3750
3751 if (ready)
3752 return ready;
3753 if (time_after(now, deadline))
3754 return -EBUSY;
3755
3756 if (!warned && time_after(now, start + 5 * HZ) &&
3757 (deadline - now > 3 * HZ)) {
3758 ata_link_warn(link,
3759 "link is slow to respond, please be patient "
3760 "(ready=%d)\n", tmp);
3761 warned = 1;
3762 }
3763
3764 ata_msleep(link->ap, 50);
3765 }
3766 }
3767
3768 /**
3769 * ata_wait_after_reset - wait for link to become ready after reset
3770 * @link: link to be waited on
3771 * @deadline: deadline jiffies for the operation
3772 * @check_ready: callback to check link readiness
3773 *
3774 * Wait for @link to become ready after reset.
3775 *
3776 * LOCKING:
3777 * EH context.
3778 *
3779 * RETURNS:
3780 * 0 if @link is ready before @deadline; otherwise, -errno.
3781 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3782 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3783 int (*check_ready)(struct ata_link *link))
3784 {
3785 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3786
3787 return ata_wait_ready(link, deadline, check_ready);
3788 }
3789
3790 /**
3791 * sata_link_debounce - debounce SATA phy status
3792 * @link: ATA link to debounce SATA phy status for
3793 * @params: timing parameters { interval, duration, timeout } in msec
3794 * @deadline: deadline jiffies for the operation
3795 *
3796 * Make sure SStatus of @link reaches stable state, determined by
3797 * holding the same value where DET is not 1 for @duration polled
3798 * every @interval, before @timeout. Timeout constraints the
3799 * beginning of the stable state. Because DET gets stuck at 1 on
3800 * some controllers after hot unplugging, this functions waits
3801 * until timeout then returns 0 if DET is stable at 1.
3802 *
3803 * @timeout is further limited by @deadline. The sooner of the
3804 * two is used.
3805 *
3806 * LOCKING:
3807 * Kernel thread context (may sleep)
3808 *
3809 * RETURNS:
3810 * 0 on success, -errno on failure.
3811 */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)3812 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3813 unsigned long deadline)
3814 {
3815 unsigned long interval = params[0];
3816 unsigned long duration = params[1];
3817 unsigned long last_jiffies, t;
3818 u32 last, cur;
3819 int rc;
3820
3821 t = ata_deadline(jiffies, params[2]);
3822 if (time_before(t, deadline))
3823 deadline = t;
3824
3825 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3826 return rc;
3827 cur &= 0xf;
3828
3829 last = cur;
3830 last_jiffies = jiffies;
3831
3832 while (1) {
3833 ata_msleep(link->ap, interval);
3834 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3835 return rc;
3836 cur &= 0xf;
3837
3838 /* DET stable? */
3839 if (cur == last) {
3840 if (cur == 1 && time_before(jiffies, deadline))
3841 continue;
3842 if (time_after(jiffies,
3843 ata_deadline(last_jiffies, duration)))
3844 return 0;
3845 continue;
3846 }
3847
3848 /* unstable, start over */
3849 last = cur;
3850 last_jiffies = jiffies;
3851
3852 /* Check deadline. If debouncing failed, return
3853 * -EPIPE to tell upper layer to lower link speed.
3854 */
3855 if (time_after(jiffies, deadline))
3856 return -EPIPE;
3857 }
3858 }
3859
3860 /**
3861 * sata_link_resume - resume SATA link
3862 * @link: ATA link to resume SATA
3863 * @params: timing parameters { interval, duration, timeout } in msec
3864 * @deadline: deadline jiffies for the operation
3865 *
3866 * Resume SATA phy @link and debounce it.
3867 *
3868 * LOCKING:
3869 * Kernel thread context (may sleep)
3870 *
3871 * RETURNS:
3872 * 0 on success, -errno on failure.
3873 */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)3874 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3875 unsigned long deadline)
3876 {
3877 int tries = ATA_LINK_RESUME_TRIES;
3878 u32 scontrol, serror;
3879 int rc;
3880
3881 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3882 return rc;
3883
3884 /*
3885 * Writes to SControl sometimes get ignored under certain
3886 * controllers (ata_piix SIDPR). Make sure DET actually is
3887 * cleared.
3888 */
3889 do {
3890 scontrol = (scontrol & 0x0f0) | 0x300;
3891 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3892 return rc;
3893 /*
3894 * Some PHYs react badly if SStatus is pounded
3895 * immediately after resuming. Delay 200ms before
3896 * debouncing.
3897 */
3898 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3899 ata_msleep(link->ap, 200);
3900
3901 /* is SControl restored correctly? */
3902 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3903 return rc;
3904 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3905
3906 if ((scontrol & 0xf0f) != 0x300) {
3907 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3908 scontrol);
3909 return 0;
3910 }
3911
3912 if (tries < ATA_LINK_RESUME_TRIES)
3913 ata_link_warn(link, "link resume succeeded after %d retries\n",
3914 ATA_LINK_RESUME_TRIES - tries);
3915
3916 if ((rc = sata_link_debounce(link, params, deadline)))
3917 return rc;
3918
3919 /* clear SError, some PHYs require this even for SRST to work */
3920 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3921 rc = sata_scr_write(link, SCR_ERROR, serror);
3922
3923 return rc != -EINVAL ? rc : 0;
3924 }
3925
3926 /**
3927 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3928 * @link: ATA link to manipulate SControl for
3929 * @policy: LPM policy to configure
3930 * @spm_wakeup: initiate LPM transition to active state
3931 *
3932 * Manipulate the IPM field of the SControl register of @link
3933 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3934 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3935 * the link. This function also clears PHYRDY_CHG before
3936 * returning.
3937 *
3938 * LOCKING:
3939 * EH context.
3940 *
3941 * RETURNS:
3942 * 0 on success, -errno otherwise.
3943 */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)3944 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3945 bool spm_wakeup)
3946 {
3947 struct ata_eh_context *ehc = &link->eh_context;
3948 bool woken_up = false;
3949 u32 scontrol;
3950 int rc;
3951
3952 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3953 if (rc)
3954 return rc;
3955
3956 switch (policy) {
3957 case ATA_LPM_MAX_POWER:
3958 /* disable all LPM transitions */
3959 scontrol |= (0x7 << 8);
3960 /* initiate transition to active state */
3961 if (spm_wakeup) {
3962 scontrol |= (0x4 << 12);
3963 woken_up = true;
3964 }
3965 break;
3966 case ATA_LPM_MED_POWER:
3967 /* allow LPM to PARTIAL */
3968 scontrol &= ~(0x1 << 8);
3969 scontrol |= (0x6 << 8);
3970 break;
3971 case ATA_LPM_MED_POWER_WITH_DIPM:
3972 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
3973 case ATA_LPM_MIN_POWER:
3974 if (ata_link_nr_enabled(link) > 0)
3975 /* no restrictions on LPM transitions */
3976 scontrol &= ~(0x7 << 8);
3977 else {
3978 /* empty port, power off */
3979 scontrol &= ~0xf;
3980 scontrol |= (0x1 << 2);
3981 }
3982 break;
3983 default:
3984 WARN_ON(1);
3985 }
3986
3987 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3988 if (rc)
3989 return rc;
3990
3991 /* give the link time to transit out of LPM state */
3992 if (woken_up)
3993 msleep(10);
3994
3995 /* clear PHYRDY_CHG from SError */
3996 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3997 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3998 }
3999
4000 /**
4001 * ata_std_prereset - prepare for reset
4002 * @link: ATA link to be reset
4003 * @deadline: deadline jiffies for the operation
4004 *
4005 * @link is about to be reset. Initialize it. Failure from
4006 * prereset makes libata abort whole reset sequence and give up
4007 * that port, so prereset should be best-effort. It does its
4008 * best to prepare for reset sequence but if things go wrong, it
4009 * should just whine, not fail.
4010 *
4011 * LOCKING:
4012 * Kernel thread context (may sleep)
4013 *
4014 * RETURNS:
4015 * 0 on success, -errno otherwise.
4016 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)4017 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4018 {
4019 struct ata_port *ap = link->ap;
4020 struct ata_eh_context *ehc = &link->eh_context;
4021 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4022 int rc;
4023
4024 /* if we're about to do hardreset, nothing more to do */
4025 if (ehc->i.action & ATA_EH_HARDRESET)
4026 return 0;
4027
4028 /* if SATA, resume link */
4029 if (ap->flags & ATA_FLAG_SATA) {
4030 rc = sata_link_resume(link, timing, deadline);
4031 /* whine about phy resume failure but proceed */
4032 if (rc && rc != -EOPNOTSUPP)
4033 ata_link_warn(link,
4034 "failed to resume link for reset (errno=%d)\n",
4035 rc);
4036 }
4037
4038 /* no point in trying softreset on offline link */
4039 if (ata_phys_link_offline(link))
4040 ehc->i.action &= ~ATA_EH_SOFTRESET;
4041
4042 return 0;
4043 }
4044
4045 /**
4046 * sata_link_hardreset - reset link via SATA phy reset
4047 * @link: link to reset
4048 * @timing: timing parameters { interval, duration, timeout } in msec
4049 * @deadline: deadline jiffies for the operation
4050 * @online: optional out parameter indicating link onlineness
4051 * @check_ready: optional callback to check link readiness
4052 *
4053 * SATA phy-reset @link using DET bits of SControl register.
4054 * After hardreset, link readiness is waited upon using
4055 * ata_wait_ready() if @check_ready is specified. LLDs are
4056 * allowed to not specify @check_ready and wait itself after this
4057 * function returns. Device classification is LLD's
4058 * responsibility.
4059 *
4060 * *@online is set to one iff reset succeeded and @link is online
4061 * after reset.
4062 *
4063 * LOCKING:
4064 * Kernel thread context (may sleep)
4065 *
4066 * RETURNS:
4067 * 0 on success, -errno otherwise.
4068 */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))4069 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4070 unsigned long deadline,
4071 bool *online, int (*check_ready)(struct ata_link *))
4072 {
4073 u32 scontrol;
4074 int rc;
4075
4076 DPRINTK("ENTER\n");
4077
4078 if (online)
4079 *online = false;
4080
4081 if (sata_set_spd_needed(link)) {
4082 /* SATA spec says nothing about how to reconfigure
4083 * spd. To be on the safe side, turn off phy during
4084 * reconfiguration. This works for at least ICH7 AHCI
4085 * and Sil3124.
4086 */
4087 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4088 goto out;
4089
4090 scontrol = (scontrol & 0x0f0) | 0x304;
4091
4092 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4093 goto out;
4094
4095 sata_set_spd(link);
4096 }
4097
4098 /* issue phy wake/reset */
4099 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4100 goto out;
4101
4102 scontrol = (scontrol & 0x0f0) | 0x301;
4103
4104 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4105 goto out;
4106
4107 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4108 * 10.4.2 says at least 1 ms.
4109 */
4110 ata_msleep(link->ap, 1);
4111
4112 /* bring link back */
4113 rc = sata_link_resume(link, timing, deadline);
4114 if (rc)
4115 goto out;
4116 /* if link is offline nothing more to do */
4117 if (ata_phys_link_offline(link))
4118 goto out;
4119
4120 /* Link is online. From this point, -ENODEV too is an error. */
4121 if (online)
4122 *online = true;
4123
4124 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4125 /* If PMP is supported, we have to do follow-up SRST.
4126 * Some PMPs don't send D2H Reg FIS after hardreset if
4127 * the first port is empty. Wait only for
4128 * ATA_TMOUT_PMP_SRST_WAIT.
4129 */
4130 if (check_ready) {
4131 unsigned long pmp_deadline;
4132
4133 pmp_deadline = ata_deadline(jiffies,
4134 ATA_TMOUT_PMP_SRST_WAIT);
4135 if (time_after(pmp_deadline, deadline))
4136 pmp_deadline = deadline;
4137 ata_wait_ready(link, pmp_deadline, check_ready);
4138 }
4139 rc = -EAGAIN;
4140 goto out;
4141 }
4142
4143 rc = 0;
4144 if (check_ready)
4145 rc = ata_wait_ready(link, deadline, check_ready);
4146 out:
4147 if (rc && rc != -EAGAIN) {
4148 /* online is set iff link is online && reset succeeded */
4149 if (online)
4150 *online = false;
4151 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4152 }
4153 DPRINTK("EXIT, rc=%d\n", rc);
4154 return rc;
4155 }
4156
4157 /**
4158 * sata_std_hardreset - COMRESET w/o waiting or classification
4159 * @link: link to reset
4160 * @class: resulting class of attached device
4161 * @deadline: deadline jiffies for the operation
4162 *
4163 * Standard SATA COMRESET w/o waiting or classification.
4164 *
4165 * LOCKING:
4166 * Kernel thread context (may sleep)
4167 *
4168 * RETURNS:
4169 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4170 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)4171 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4172 unsigned long deadline)
4173 {
4174 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4175 bool online;
4176 int rc;
4177
4178 /* do hardreset */
4179 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4180 return online ? -EAGAIN : rc;
4181 }
4182
4183 /**
4184 * ata_std_postreset - standard postreset callback
4185 * @link: the target ata_link
4186 * @classes: classes of attached devices
4187 *
4188 * This function is invoked after a successful reset. Note that
4189 * the device might have been reset more than once using
4190 * different reset methods before postreset is invoked.
4191 *
4192 * LOCKING:
4193 * Kernel thread context (may sleep)
4194 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)4195 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4196 {
4197 u32 serror;
4198
4199 DPRINTK("ENTER\n");
4200
4201 /* reset complete, clear SError */
4202 if (!sata_scr_read(link, SCR_ERROR, &serror))
4203 sata_scr_write(link, SCR_ERROR, serror);
4204
4205 /* print link status */
4206 sata_print_link_status(link);
4207
4208 DPRINTK("EXIT\n");
4209 }
4210
4211 /**
4212 * ata_dev_same_device - Determine whether new ID matches configured device
4213 * @dev: device to compare against
4214 * @new_class: class of the new device
4215 * @new_id: IDENTIFY page of the new device
4216 *
4217 * Compare @new_class and @new_id against @dev and determine
4218 * whether @dev is the device indicated by @new_class and
4219 * @new_id.
4220 *
4221 * LOCKING:
4222 * None.
4223 *
4224 * RETURNS:
4225 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4226 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)4227 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4228 const u16 *new_id)
4229 {
4230 const u16 *old_id = dev->id;
4231 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4232 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4233
4234 if (dev->class != new_class) {
4235 ata_dev_info(dev, "class mismatch %d != %d\n",
4236 dev->class, new_class);
4237 return 0;
4238 }
4239
4240 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4241 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4242 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4243 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4244
4245 if (strcmp(model[0], model[1])) {
4246 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4247 model[0], model[1]);
4248 return 0;
4249 }
4250
4251 if (strcmp(serial[0], serial[1])) {
4252 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4253 serial[0], serial[1]);
4254 return 0;
4255 }
4256
4257 return 1;
4258 }
4259
4260 /**
4261 * ata_dev_reread_id - Re-read IDENTIFY data
4262 * @dev: target ATA device
4263 * @readid_flags: read ID flags
4264 *
4265 * Re-read IDENTIFY page and make sure @dev is still attached to
4266 * the port.
4267 *
4268 * LOCKING:
4269 * Kernel thread context (may sleep)
4270 *
4271 * RETURNS:
4272 * 0 on success, negative errno otherwise
4273 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)4274 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4275 {
4276 unsigned int class = dev->class;
4277 u16 *id = (void *)dev->link->ap->sector_buf;
4278 int rc;
4279
4280 /* read ID data */
4281 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4282 if (rc)
4283 return rc;
4284
4285 /* is the device still there? */
4286 if (!ata_dev_same_device(dev, class, id))
4287 return -ENODEV;
4288
4289 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4290 return 0;
4291 }
4292
4293 /**
4294 * ata_dev_revalidate - Revalidate ATA device
4295 * @dev: device to revalidate
4296 * @new_class: new class code
4297 * @readid_flags: read ID flags
4298 *
4299 * Re-read IDENTIFY page, make sure @dev is still attached to the
4300 * port and reconfigure it according to the new IDENTIFY page.
4301 *
4302 * LOCKING:
4303 * Kernel thread context (may sleep)
4304 *
4305 * RETURNS:
4306 * 0 on success, negative errno otherwise
4307 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)4308 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4309 unsigned int readid_flags)
4310 {
4311 u64 n_sectors = dev->n_sectors;
4312 u64 n_native_sectors = dev->n_native_sectors;
4313 int rc;
4314
4315 if (!ata_dev_enabled(dev))
4316 return -ENODEV;
4317
4318 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4319 if (ata_class_enabled(new_class) &&
4320 new_class != ATA_DEV_ATA &&
4321 new_class != ATA_DEV_ATAPI &&
4322 new_class != ATA_DEV_ZAC &&
4323 new_class != ATA_DEV_SEMB) {
4324 ata_dev_info(dev, "class mismatch %u != %u\n",
4325 dev->class, new_class);
4326 rc = -ENODEV;
4327 goto fail;
4328 }
4329
4330 /* re-read ID */
4331 rc = ata_dev_reread_id(dev, readid_flags);
4332 if (rc)
4333 goto fail;
4334
4335 /* configure device according to the new ID */
4336 rc = ata_dev_configure(dev);
4337 if (rc)
4338 goto fail;
4339
4340 /* verify n_sectors hasn't changed */
4341 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4342 dev->n_sectors == n_sectors)
4343 return 0;
4344
4345 /* n_sectors has changed */
4346 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4347 (unsigned long long)n_sectors,
4348 (unsigned long long)dev->n_sectors);
4349
4350 /*
4351 * Something could have caused HPA to be unlocked
4352 * involuntarily. If n_native_sectors hasn't changed and the
4353 * new size matches it, keep the device.
4354 */
4355 if (dev->n_native_sectors == n_native_sectors &&
4356 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4357 ata_dev_warn(dev,
4358 "new n_sectors matches native, probably "
4359 "late HPA unlock, n_sectors updated\n");
4360 /* use the larger n_sectors */
4361 return 0;
4362 }
4363
4364 /*
4365 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4366 * unlocking HPA in those cases.
4367 *
4368 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4369 */
4370 if (dev->n_native_sectors == n_native_sectors &&
4371 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4372 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4373 ata_dev_warn(dev,
4374 "old n_sectors matches native, probably "
4375 "late HPA lock, will try to unlock HPA\n");
4376 /* try unlocking HPA */
4377 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4378 rc = -EIO;
4379 } else
4380 rc = -ENODEV;
4381
4382 /* restore original n_[native_]sectors and fail */
4383 dev->n_native_sectors = n_native_sectors;
4384 dev->n_sectors = n_sectors;
4385 fail:
4386 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4387 return rc;
4388 }
4389
4390 struct ata_blacklist_entry {
4391 const char *model_num;
4392 const char *model_rev;
4393 unsigned long horkage;
4394 };
4395
4396 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4397 /* Devices with DMA related problems under Linux */
4398 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4399 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4400 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4401 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4402 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4403 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4404 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4405 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4406 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4407 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4408 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4409 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4410 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4411 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4412 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4413 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4414 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4415 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4416 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4417 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4418 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4419 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4420 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4421 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4422 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4423 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4424 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4425 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4426 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4427 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4428 /* Odd clown on sil3726/4726 PMPs */
4429 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4430
4431 /* Weird ATAPI devices */
4432 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4433 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4434 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4435 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4436
4437 /*
4438 * Causes silent data corruption with higher max sects.
4439 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4440 */
4441 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4442
4443 /*
4444 * These devices time out with higher max sects.
4445 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4446 */
4447 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4448 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4449
4450 /* Devices we expect to fail diagnostics */
4451
4452 /* Devices where NCQ should be avoided */
4453 /* NCQ is slow */
4454 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4455 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4456 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4457 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4458 /* NCQ is broken */
4459 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4460 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4461 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4462 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4463 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4464
4465 /* Seagate NCQ + FLUSH CACHE firmware bug */
4466 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4467 ATA_HORKAGE_FIRMWARE_WARN },
4468
4469 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4470 ATA_HORKAGE_FIRMWARE_WARN },
4471
4472 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4473 ATA_HORKAGE_FIRMWARE_WARN },
4474
4475 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4476 ATA_HORKAGE_FIRMWARE_WARN },
4477
4478 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4479 the ST disks also have LPM issues */
4480 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA |
4481 ATA_HORKAGE_NOLPM, },
4482 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA |
4483 ATA_HORKAGE_NOLPM, },
4484 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4485
4486 /* Blacklist entries taken from Silicon Image 3124/3132
4487 Windows driver .inf file - also several Linux problem reports */
4488 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4489 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4490 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4491
4492 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4493 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4494
4495 /* Sandisk SD7/8/9s lock up hard on large trims */
4496 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, },
4497
4498 /* devices which puke on READ_NATIVE_MAX */
4499 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4500 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4501 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4502 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4503
4504 /* this one allows HPA unlocking but fails IOs on the area */
4505 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4506
4507 /* Devices which report 1 sector over size HPA */
4508 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4509 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4510 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4511
4512 /* Devices which get the IVB wrong */
4513 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4514 /* Maybe we should just blacklist TSSTcorp... */
4515 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4516
4517 /* Devices that do not need bridging limits applied */
4518 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4519 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4520
4521 /* Devices which aren't very happy with higher link speeds */
4522 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4523 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4524
4525 /*
4526 * Devices which choke on SETXFER. Applies only if both the
4527 * device and controller are SATA.
4528 */
4529 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4530 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4531 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4532 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4533 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4534
4535 /* Crucial BX100 SSD 500GB has broken LPM support */
4536 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4537
4538 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4539 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4540 ATA_HORKAGE_ZERO_AFTER_TRIM |
4541 ATA_HORKAGE_NOLPM, },
4542 /* 512GB MX100 with newer firmware has only LPM issues */
4543 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4544 ATA_HORKAGE_NOLPM, },
4545
4546 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4547 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4548 ATA_HORKAGE_ZERO_AFTER_TRIM |
4549 ATA_HORKAGE_NOLPM, },
4550 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4551 ATA_HORKAGE_ZERO_AFTER_TRIM |
4552 ATA_HORKAGE_NOLPM, },
4553
4554 /* These specific Samsung models/firmware-revs do not handle LPM well */
4555 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4556 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4557 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
4558 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4559
4560 /* devices that don't properly handle queued TRIM commands */
4561 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4564 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4566 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4567 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4568 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4569 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4570 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4571 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4572 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4573 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4574 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4575 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4576 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4577 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4578 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4579
4580 /* devices that don't properly handle TRIM commands */
4581 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4582
4583 /*
4584 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4585 * (Return Zero After Trim) flags in the ATA Command Set are
4586 * unreliable in the sense that they only define what happens if
4587 * the device successfully executed the DSM TRIM command. TRIM
4588 * is only advisory, however, and the device is free to silently
4589 * ignore all or parts of the request.
4590 *
4591 * Whitelist drives that are known to reliably return zeroes
4592 * after TRIM.
4593 */
4594
4595 /*
4596 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4597 * that model before whitelisting all other intel SSDs.
4598 */
4599 { "INTEL*SSDSC2MH*", NULL, 0, },
4600
4601 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4602 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4603 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4604 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4605 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4606 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4607 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4608 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4609
4610 /*
4611 * Some WD SATA-I drives spin up and down erratically when the link
4612 * is put into the slumber mode. We don't have full list of the
4613 * affected devices. Disable LPM if the device matches one of the
4614 * known prefixes and is SATA-1. As a side effect LPM partial is
4615 * lost too.
4616 *
4617 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4618 */
4619 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4620 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4621 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4622 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4623 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4624 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4625 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4626
4627 /* End Marker */
4628 { }
4629 };
4630
ata_dev_blacklisted(const struct ata_device * dev)4631 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4632 {
4633 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4634 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4635 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4636
4637 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4638 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4639
4640 while (ad->model_num) {
4641 if (glob_match(ad->model_num, model_num)) {
4642 if (ad->model_rev == NULL)
4643 return ad->horkage;
4644 if (glob_match(ad->model_rev, model_rev))
4645 return ad->horkage;
4646 }
4647 ad++;
4648 }
4649 return 0;
4650 }
4651
ata_dma_blacklisted(const struct ata_device * dev)4652 static int ata_dma_blacklisted(const struct ata_device *dev)
4653 {
4654 /* We don't support polling DMA.
4655 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4656 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4657 */
4658 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4659 (dev->flags & ATA_DFLAG_CDB_INTR))
4660 return 1;
4661 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4662 }
4663
4664 /**
4665 * ata_is_40wire - check drive side detection
4666 * @dev: device
4667 *
4668 * Perform drive side detection decoding, allowing for device vendors
4669 * who can't follow the documentation.
4670 */
4671
ata_is_40wire(struct ata_device * dev)4672 static int ata_is_40wire(struct ata_device *dev)
4673 {
4674 if (dev->horkage & ATA_HORKAGE_IVB)
4675 return ata_drive_40wire_relaxed(dev->id);
4676 return ata_drive_40wire(dev->id);
4677 }
4678
4679 /**
4680 * cable_is_40wire - 40/80/SATA decider
4681 * @ap: port to consider
4682 *
4683 * This function encapsulates the policy for speed management
4684 * in one place. At the moment we don't cache the result but
4685 * there is a good case for setting ap->cbl to the result when
4686 * we are called with unknown cables (and figuring out if it
4687 * impacts hotplug at all).
4688 *
4689 * Return 1 if the cable appears to be 40 wire.
4690 */
4691
cable_is_40wire(struct ata_port * ap)4692 static int cable_is_40wire(struct ata_port *ap)
4693 {
4694 struct ata_link *link;
4695 struct ata_device *dev;
4696
4697 /* If the controller thinks we are 40 wire, we are. */
4698 if (ap->cbl == ATA_CBL_PATA40)
4699 return 1;
4700
4701 /* If the controller thinks we are 80 wire, we are. */
4702 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4703 return 0;
4704
4705 /* If the system is known to be 40 wire short cable (eg
4706 * laptop), then we allow 80 wire modes even if the drive
4707 * isn't sure.
4708 */
4709 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4710 return 0;
4711
4712 /* If the controller doesn't know, we scan.
4713 *
4714 * Note: We look for all 40 wire detects at this point. Any
4715 * 80 wire detect is taken to be 80 wire cable because
4716 * - in many setups only the one drive (slave if present) will
4717 * give a valid detect
4718 * - if you have a non detect capable drive you don't want it
4719 * to colour the choice
4720 */
4721 ata_for_each_link(link, ap, EDGE) {
4722 ata_for_each_dev(dev, link, ENABLED) {
4723 if (!ata_is_40wire(dev))
4724 return 0;
4725 }
4726 }
4727 return 1;
4728 }
4729
4730 /**
4731 * ata_dev_xfermask - Compute supported xfermask of the given device
4732 * @dev: Device to compute xfermask for
4733 *
4734 * Compute supported xfermask of @dev and store it in
4735 * dev->*_mask. This function is responsible for applying all
4736 * known limits including host controller limits, device
4737 * blacklist, etc...
4738 *
4739 * LOCKING:
4740 * None.
4741 */
ata_dev_xfermask(struct ata_device * dev)4742 static void ata_dev_xfermask(struct ata_device *dev)
4743 {
4744 struct ata_link *link = dev->link;
4745 struct ata_port *ap = link->ap;
4746 struct ata_host *host = ap->host;
4747 unsigned long xfer_mask;
4748
4749 /* controller modes available */
4750 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4751 ap->mwdma_mask, ap->udma_mask);
4752
4753 /* drive modes available */
4754 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4755 dev->mwdma_mask, dev->udma_mask);
4756 xfer_mask &= ata_id_xfermask(dev->id);
4757
4758 /*
4759 * CFA Advanced TrueIDE timings are not allowed on a shared
4760 * cable
4761 */
4762 if (ata_dev_pair(dev)) {
4763 /* No PIO5 or PIO6 */
4764 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4765 /* No MWDMA3 or MWDMA 4 */
4766 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4767 }
4768
4769 if (ata_dma_blacklisted(dev)) {
4770 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4771 ata_dev_warn(dev,
4772 "device is on DMA blacklist, disabling DMA\n");
4773 }
4774
4775 if ((host->flags & ATA_HOST_SIMPLEX) &&
4776 host->simplex_claimed && host->simplex_claimed != ap) {
4777 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4778 ata_dev_warn(dev,
4779 "simplex DMA is claimed by other device, disabling DMA\n");
4780 }
4781
4782 if (ap->flags & ATA_FLAG_NO_IORDY)
4783 xfer_mask &= ata_pio_mask_no_iordy(dev);
4784
4785 if (ap->ops->mode_filter)
4786 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4787
4788 /* Apply cable rule here. Don't apply it early because when
4789 * we handle hot plug the cable type can itself change.
4790 * Check this last so that we know if the transfer rate was
4791 * solely limited by the cable.
4792 * Unknown or 80 wire cables reported host side are checked
4793 * drive side as well. Cases where we know a 40wire cable
4794 * is used safely for 80 are not checked here.
4795 */
4796 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4797 /* UDMA/44 or higher would be available */
4798 if (cable_is_40wire(ap)) {
4799 ata_dev_warn(dev,
4800 "limited to UDMA/33 due to 40-wire cable\n");
4801 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4802 }
4803
4804 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4805 &dev->mwdma_mask, &dev->udma_mask);
4806 }
4807
4808 /**
4809 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4810 * @dev: Device to which command will be sent
4811 *
4812 * Issue SET FEATURES - XFER MODE command to device @dev
4813 * on port @ap.
4814 *
4815 * LOCKING:
4816 * PCI/etc. bus probe sem.
4817 *
4818 * RETURNS:
4819 * 0 on success, AC_ERR_* mask otherwise.
4820 */
4821
ata_dev_set_xfermode(struct ata_device * dev)4822 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4823 {
4824 struct ata_taskfile tf;
4825 unsigned int err_mask;
4826
4827 /* set up set-features taskfile */
4828 DPRINTK("set features - xfer mode\n");
4829
4830 /* Some controllers and ATAPI devices show flaky interrupt
4831 * behavior after setting xfer mode. Use polling instead.
4832 */
4833 ata_tf_init(dev, &tf);
4834 tf.command = ATA_CMD_SET_FEATURES;
4835 tf.feature = SETFEATURES_XFER;
4836 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4837 tf.protocol = ATA_PROT_NODATA;
4838 /* If we are using IORDY we must send the mode setting command */
4839 if (ata_pio_need_iordy(dev))
4840 tf.nsect = dev->xfer_mode;
4841 /* If the device has IORDY and the controller does not - turn it off */
4842 else if (ata_id_has_iordy(dev->id))
4843 tf.nsect = 0x01;
4844 else /* In the ancient relic department - skip all of this */
4845 return 0;
4846
4847 /* On some disks, this command causes spin-up, so we need longer timeout */
4848 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4849
4850 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4851 return err_mask;
4852 }
4853
4854 /**
4855 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4856 * @dev: Device to which command will be sent
4857 * @enable: Whether to enable or disable the feature
4858 * @feature: The sector count represents the feature to set
4859 *
4860 * Issue SET FEATURES - SATA FEATURES command to device @dev
4861 * on port @ap with sector count
4862 *
4863 * LOCKING:
4864 * PCI/etc. bus probe sem.
4865 *
4866 * RETURNS:
4867 * 0 on success, AC_ERR_* mask otherwise.
4868 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4869 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4870 {
4871 struct ata_taskfile tf;
4872 unsigned int err_mask;
4873 unsigned long timeout = 0;
4874
4875 /* set up set-features taskfile */
4876 DPRINTK("set features - SATA features\n");
4877
4878 ata_tf_init(dev, &tf);
4879 tf.command = ATA_CMD_SET_FEATURES;
4880 tf.feature = enable;
4881 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4882 tf.protocol = ATA_PROT_NODATA;
4883 tf.nsect = feature;
4884
4885 if (enable == SETFEATURES_SPINUP)
4886 timeout = ata_probe_timeout ?
4887 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4888 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4889
4890 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4891 return err_mask;
4892 }
4893 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4894
4895 /**
4896 * ata_dev_init_params - Issue INIT DEV PARAMS command
4897 * @dev: Device to which command will be sent
4898 * @heads: Number of heads (taskfile parameter)
4899 * @sectors: Number of sectors (taskfile parameter)
4900 *
4901 * LOCKING:
4902 * Kernel thread context (may sleep)
4903 *
4904 * RETURNS:
4905 * 0 on success, AC_ERR_* mask otherwise.
4906 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4907 static unsigned int ata_dev_init_params(struct ata_device *dev,
4908 u16 heads, u16 sectors)
4909 {
4910 struct ata_taskfile tf;
4911 unsigned int err_mask;
4912
4913 /* Number of sectors per track 1-255. Number of heads 1-16 */
4914 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4915 return AC_ERR_INVALID;
4916
4917 /* set up init dev params taskfile */
4918 DPRINTK("init dev params \n");
4919
4920 ata_tf_init(dev, &tf);
4921 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4922 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4923 tf.protocol = ATA_PROT_NODATA;
4924 tf.nsect = sectors;
4925 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4926
4927 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4928 /* A clean abort indicates an original or just out of spec drive
4929 and we should continue as we issue the setup based on the
4930 drive reported working geometry */
4931 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4932 err_mask = 0;
4933
4934 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4935 return err_mask;
4936 }
4937
4938 /**
4939 * atapi_check_dma - Check whether ATAPI DMA can be supported
4940 * @qc: Metadata associated with taskfile to check
4941 *
4942 * Allow low-level driver to filter ATA PACKET commands, returning
4943 * a status indicating whether or not it is OK to use DMA for the
4944 * supplied PACKET command.
4945 *
4946 * LOCKING:
4947 * spin_lock_irqsave(host lock)
4948 *
4949 * RETURNS: 0 when ATAPI DMA can be used
4950 * nonzero otherwise
4951 */
atapi_check_dma(struct ata_queued_cmd * qc)4952 int atapi_check_dma(struct ata_queued_cmd *qc)
4953 {
4954 struct ata_port *ap = qc->ap;
4955
4956 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4957 * few ATAPI devices choke on such DMA requests.
4958 */
4959 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4960 unlikely(qc->nbytes & 15))
4961 return 1;
4962
4963 if (ap->ops->check_atapi_dma)
4964 return ap->ops->check_atapi_dma(qc);
4965
4966 return 0;
4967 }
4968
4969 /**
4970 * ata_std_qc_defer - Check whether a qc needs to be deferred
4971 * @qc: ATA command in question
4972 *
4973 * Non-NCQ commands cannot run with any other command, NCQ or
4974 * not. As upper layer only knows the queue depth, we are
4975 * responsible for maintaining exclusion. This function checks
4976 * whether a new command @qc can be issued.
4977 *
4978 * LOCKING:
4979 * spin_lock_irqsave(host lock)
4980 *
4981 * RETURNS:
4982 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4983 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4984 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4985 {
4986 struct ata_link *link = qc->dev->link;
4987
4988 if (ata_is_ncq(qc->tf.protocol)) {
4989 if (!ata_tag_valid(link->active_tag))
4990 return 0;
4991 } else {
4992 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4993 return 0;
4994 }
4995
4996 return ATA_DEFER_LINK;
4997 }
4998
ata_noop_qc_prep(struct ata_queued_cmd * qc)4999 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
5000 {
5001 return AC_ERR_OK;
5002 }
5003
5004 /**
5005 * ata_sg_init - Associate command with scatter-gather table.
5006 * @qc: Command to be associated
5007 * @sg: Scatter-gather table.
5008 * @n_elem: Number of elements in s/g table.
5009 *
5010 * Initialize the data-related elements of queued_cmd @qc
5011 * to point to a scatter-gather table @sg, containing @n_elem
5012 * elements.
5013 *
5014 * LOCKING:
5015 * spin_lock_irqsave(host lock)
5016 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)5017 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5018 unsigned int n_elem)
5019 {
5020 qc->sg = sg;
5021 qc->n_elem = n_elem;
5022 qc->cursg = qc->sg;
5023 }
5024
5025 #ifdef CONFIG_HAS_DMA
5026
5027 /**
5028 * ata_sg_clean - Unmap DMA memory associated with command
5029 * @qc: Command containing DMA memory to be released
5030 *
5031 * Unmap all mapped DMA memory associated with this command.
5032 *
5033 * LOCKING:
5034 * spin_lock_irqsave(host lock)
5035 */
ata_sg_clean(struct ata_queued_cmd * qc)5036 static void ata_sg_clean(struct ata_queued_cmd *qc)
5037 {
5038 struct ata_port *ap = qc->ap;
5039 struct scatterlist *sg = qc->sg;
5040 int dir = qc->dma_dir;
5041
5042 WARN_ON_ONCE(sg == NULL);
5043
5044 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5045
5046 if (qc->n_elem)
5047 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5048
5049 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5050 qc->sg = NULL;
5051 }
5052
5053 /**
5054 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5055 * @qc: Command with scatter-gather table to be mapped.
5056 *
5057 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5058 *
5059 * LOCKING:
5060 * spin_lock_irqsave(host lock)
5061 *
5062 * RETURNS:
5063 * Zero on success, negative on error.
5064 *
5065 */
ata_sg_setup(struct ata_queued_cmd * qc)5066 static int ata_sg_setup(struct ata_queued_cmd *qc)
5067 {
5068 struct ata_port *ap = qc->ap;
5069 unsigned int n_elem;
5070
5071 VPRINTK("ENTER, ata%u\n", ap->print_id);
5072
5073 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5074 if (n_elem < 1)
5075 return -1;
5076
5077 VPRINTK("%d sg elements mapped\n", n_elem);
5078 qc->orig_n_elem = qc->n_elem;
5079 qc->n_elem = n_elem;
5080 qc->flags |= ATA_QCFLAG_DMAMAP;
5081
5082 return 0;
5083 }
5084
5085 #else /* !CONFIG_HAS_DMA */
5086
ata_sg_clean(struct ata_queued_cmd * qc)5087 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)5088 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5089
5090 #endif /* !CONFIG_HAS_DMA */
5091
5092 /**
5093 * swap_buf_le16 - swap halves of 16-bit words in place
5094 * @buf: Buffer to swap
5095 * @buf_words: Number of 16-bit words in buffer.
5096 *
5097 * Swap halves of 16-bit words if needed to convert from
5098 * little-endian byte order to native cpu byte order, or
5099 * vice-versa.
5100 *
5101 * LOCKING:
5102 * Inherited from caller.
5103 */
swap_buf_le16(u16 * buf,unsigned int buf_words)5104 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5105 {
5106 #ifdef __BIG_ENDIAN
5107 unsigned int i;
5108
5109 for (i = 0; i < buf_words; i++)
5110 buf[i] = le16_to_cpu(buf[i]);
5111 #endif /* __BIG_ENDIAN */
5112 }
5113
5114 /**
5115 * ata_qc_new_init - Request an available ATA command, and initialize it
5116 * @dev: Device from whom we request an available command structure
5117 * @tag: tag
5118 *
5119 * LOCKING:
5120 * None.
5121 */
5122
ata_qc_new_init(struct ata_device * dev,int tag)5123 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5124 {
5125 struct ata_port *ap = dev->link->ap;
5126 struct ata_queued_cmd *qc;
5127
5128 /* no command while frozen */
5129 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5130 return NULL;
5131
5132 /* libsas case */
5133 if (ap->flags & ATA_FLAG_SAS_HOST) {
5134 tag = ata_sas_allocate_tag(ap);
5135 if (tag < 0)
5136 return NULL;
5137 }
5138
5139 qc = __ata_qc_from_tag(ap, tag);
5140 qc->tag = qc->hw_tag = tag;
5141 qc->scsicmd = NULL;
5142 qc->ap = ap;
5143 qc->dev = dev;
5144
5145 ata_qc_reinit(qc);
5146
5147 return qc;
5148 }
5149
5150 /**
5151 * ata_qc_free - free unused ata_queued_cmd
5152 * @qc: Command to complete
5153 *
5154 * Designed to free unused ata_queued_cmd object
5155 * in case something prevents using it.
5156 *
5157 * LOCKING:
5158 * spin_lock_irqsave(host lock)
5159 */
ata_qc_free(struct ata_queued_cmd * qc)5160 void ata_qc_free(struct ata_queued_cmd *qc)
5161 {
5162 struct ata_port *ap;
5163 unsigned int tag;
5164
5165 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5166 ap = qc->ap;
5167
5168 qc->flags = 0;
5169 tag = qc->tag;
5170 if (ata_tag_valid(tag)) {
5171 qc->tag = ATA_TAG_POISON;
5172 if (ap->flags & ATA_FLAG_SAS_HOST)
5173 ata_sas_free_tag(tag, ap);
5174 }
5175 }
5176
__ata_qc_complete(struct ata_queued_cmd * qc)5177 void __ata_qc_complete(struct ata_queued_cmd *qc)
5178 {
5179 struct ata_port *ap;
5180 struct ata_link *link;
5181
5182 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5183 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5184 ap = qc->ap;
5185 link = qc->dev->link;
5186
5187 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5188 ata_sg_clean(qc);
5189
5190 /* command should be marked inactive atomically with qc completion */
5191 if (ata_is_ncq(qc->tf.protocol)) {
5192 link->sactive &= ~(1 << qc->hw_tag);
5193 if (!link->sactive)
5194 ap->nr_active_links--;
5195 } else {
5196 link->active_tag = ATA_TAG_POISON;
5197 ap->nr_active_links--;
5198 }
5199
5200 /* clear exclusive status */
5201 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5202 ap->excl_link == link))
5203 ap->excl_link = NULL;
5204
5205 /* atapi: mark qc as inactive to prevent the interrupt handler
5206 * from completing the command twice later, before the error handler
5207 * is called. (when rc != 0 and atapi request sense is needed)
5208 */
5209 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5210 ap->qc_active &= ~(1ULL << qc->tag);
5211
5212 /* call completion callback */
5213 qc->complete_fn(qc);
5214 }
5215
fill_result_tf(struct ata_queued_cmd * qc)5216 static void fill_result_tf(struct ata_queued_cmd *qc)
5217 {
5218 struct ata_port *ap = qc->ap;
5219
5220 qc->result_tf.flags = qc->tf.flags;
5221 ap->ops->qc_fill_rtf(qc);
5222 }
5223
ata_verify_xfer(struct ata_queued_cmd * qc)5224 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5225 {
5226 struct ata_device *dev = qc->dev;
5227
5228 if (!ata_is_data(qc->tf.protocol))
5229 return;
5230
5231 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5232 return;
5233
5234 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5235 }
5236
5237 /**
5238 * ata_qc_complete - Complete an active ATA command
5239 * @qc: Command to complete
5240 *
5241 * Indicate to the mid and upper layers that an ATA command has
5242 * completed, with either an ok or not-ok status.
5243 *
5244 * Refrain from calling this function multiple times when
5245 * successfully completing multiple NCQ commands.
5246 * ata_qc_complete_multiple() should be used instead, which will
5247 * properly update IRQ expect state.
5248 *
5249 * LOCKING:
5250 * spin_lock_irqsave(host lock)
5251 */
ata_qc_complete(struct ata_queued_cmd * qc)5252 void ata_qc_complete(struct ata_queued_cmd *qc)
5253 {
5254 struct ata_port *ap = qc->ap;
5255
5256 /* Trigger the LED (if available) */
5257 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5258
5259 /* XXX: New EH and old EH use different mechanisms to
5260 * synchronize EH with regular execution path.
5261 *
5262 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5263 * Normal execution path is responsible for not accessing a
5264 * failed qc. libata core enforces the rule by returning NULL
5265 * from ata_qc_from_tag() for failed qcs.
5266 *
5267 * Old EH depends on ata_qc_complete() nullifying completion
5268 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5269 * not synchronize with interrupt handler. Only PIO task is
5270 * taken care of.
5271 */
5272 if (ap->ops->error_handler) {
5273 struct ata_device *dev = qc->dev;
5274 struct ata_eh_info *ehi = &dev->link->eh_info;
5275
5276 if (unlikely(qc->err_mask))
5277 qc->flags |= ATA_QCFLAG_FAILED;
5278
5279 /*
5280 * Finish internal commands without any further processing
5281 * and always with the result TF filled.
5282 */
5283 if (unlikely(ata_tag_internal(qc->tag))) {
5284 fill_result_tf(qc);
5285 trace_ata_qc_complete_internal(qc);
5286 __ata_qc_complete(qc);
5287 return;
5288 }
5289
5290 /*
5291 * Non-internal qc has failed. Fill the result TF and
5292 * summon EH.
5293 */
5294 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5295 fill_result_tf(qc);
5296 trace_ata_qc_complete_failed(qc);
5297 ata_qc_schedule_eh(qc);
5298 return;
5299 }
5300
5301 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5302
5303 /* read result TF if requested */
5304 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5305 fill_result_tf(qc);
5306
5307 trace_ata_qc_complete_done(qc);
5308 /* Some commands need post-processing after successful
5309 * completion.
5310 */
5311 switch (qc->tf.command) {
5312 case ATA_CMD_SET_FEATURES:
5313 if (qc->tf.feature != SETFEATURES_WC_ON &&
5314 qc->tf.feature != SETFEATURES_WC_OFF &&
5315 qc->tf.feature != SETFEATURES_RA_ON &&
5316 qc->tf.feature != SETFEATURES_RA_OFF)
5317 break;
5318 /* fall through */
5319 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5320 case ATA_CMD_SET_MULTI: /* multi_count changed */
5321 /* revalidate device */
5322 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5323 ata_port_schedule_eh(ap);
5324 break;
5325
5326 case ATA_CMD_SLEEP:
5327 dev->flags |= ATA_DFLAG_SLEEPING;
5328 break;
5329 }
5330
5331 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5332 ata_verify_xfer(qc);
5333
5334 __ata_qc_complete(qc);
5335 } else {
5336 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5337 return;
5338
5339 /* read result TF if failed or requested */
5340 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5341 fill_result_tf(qc);
5342
5343 __ata_qc_complete(qc);
5344 }
5345 }
5346
5347 /**
5348 * ata_qc_get_active - get bitmask of active qcs
5349 * @ap: port in question
5350 *
5351 * LOCKING:
5352 * spin_lock_irqsave(host lock)
5353 *
5354 * RETURNS:
5355 * Bitmask of active qcs
5356 */
ata_qc_get_active(struct ata_port * ap)5357 u64 ata_qc_get_active(struct ata_port *ap)
5358 {
5359 u64 qc_active = ap->qc_active;
5360
5361 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5362 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5363 qc_active |= (1 << 0);
5364 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5365 }
5366
5367 return qc_active;
5368 }
5369 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5370
5371 /**
5372 * ata_qc_complete_multiple - Complete multiple qcs successfully
5373 * @ap: port in question
5374 * @qc_active: new qc_active mask
5375 *
5376 * Complete in-flight commands. This functions is meant to be
5377 * called from low-level driver's interrupt routine to complete
5378 * requests normally. ap->qc_active and @qc_active is compared
5379 * and commands are completed accordingly.
5380 *
5381 * Always use this function when completing multiple NCQ commands
5382 * from IRQ handlers instead of calling ata_qc_complete()
5383 * multiple times to keep IRQ expect status properly in sync.
5384 *
5385 * LOCKING:
5386 * spin_lock_irqsave(host lock)
5387 *
5388 * RETURNS:
5389 * Number of completed commands on success, -errno otherwise.
5390 */
ata_qc_complete_multiple(struct ata_port * ap,u64 qc_active)5391 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
5392 {
5393 u64 done_mask, ap_qc_active = ap->qc_active;
5394 int nr_done = 0;
5395
5396 /*
5397 * If the internal tag is set on ap->qc_active, then we care about
5398 * bit0 on the passed in qc_active mask. Move that bit up to match
5399 * the internal tag.
5400 */
5401 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5402 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
5403 qc_active ^= qc_active & 0x01;
5404 }
5405
5406 done_mask = ap_qc_active ^ qc_active;
5407
5408 if (unlikely(done_mask & qc_active)) {
5409 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
5410 ap->qc_active, qc_active);
5411 return -EINVAL;
5412 }
5413
5414 while (done_mask) {
5415 struct ata_queued_cmd *qc;
5416 unsigned int tag = __ffs64(done_mask);
5417
5418 qc = ata_qc_from_tag(ap, tag);
5419 if (qc) {
5420 ata_qc_complete(qc);
5421 nr_done++;
5422 }
5423 done_mask &= ~(1ULL << tag);
5424 }
5425
5426 return nr_done;
5427 }
5428
5429 /**
5430 * ata_qc_issue - issue taskfile to device
5431 * @qc: command to issue to device
5432 *
5433 * Prepare an ATA command to submission to device.
5434 * This includes mapping the data into a DMA-able
5435 * area, filling in the S/G table, and finally
5436 * writing the taskfile to hardware, starting the command.
5437 *
5438 * LOCKING:
5439 * spin_lock_irqsave(host lock)
5440 */
ata_qc_issue(struct ata_queued_cmd * qc)5441 void ata_qc_issue(struct ata_queued_cmd *qc)
5442 {
5443 struct ata_port *ap = qc->ap;
5444 struct ata_link *link = qc->dev->link;
5445 u8 prot = qc->tf.protocol;
5446
5447 /* Make sure only one non-NCQ command is outstanding. The
5448 * check is skipped for old EH because it reuses active qc to
5449 * request ATAPI sense.
5450 */
5451 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5452
5453 if (ata_is_ncq(prot)) {
5454 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5455
5456 if (!link->sactive)
5457 ap->nr_active_links++;
5458 link->sactive |= 1 << qc->hw_tag;
5459 } else {
5460 WARN_ON_ONCE(link->sactive);
5461
5462 ap->nr_active_links++;
5463 link->active_tag = qc->tag;
5464 }
5465
5466 qc->flags |= ATA_QCFLAG_ACTIVE;
5467 ap->qc_active |= 1ULL << qc->tag;
5468
5469 /*
5470 * We guarantee to LLDs that they will have at least one
5471 * non-zero sg if the command is a data command.
5472 */
5473 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5474 goto sys_err;
5475
5476 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5477 (ap->flags & ATA_FLAG_PIO_DMA)))
5478 if (ata_sg_setup(qc))
5479 goto sys_err;
5480
5481 /* if device is sleeping, schedule reset and abort the link */
5482 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5483 link->eh_info.action |= ATA_EH_RESET;
5484 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5485 ata_link_abort(link);
5486 return;
5487 }
5488
5489 qc->err_mask |= ap->ops->qc_prep(qc);
5490 if (unlikely(qc->err_mask))
5491 goto err;
5492 trace_ata_qc_issue(qc);
5493 qc->err_mask |= ap->ops->qc_issue(qc);
5494 if (unlikely(qc->err_mask))
5495 goto err;
5496 return;
5497
5498 sys_err:
5499 qc->err_mask |= AC_ERR_SYSTEM;
5500 err:
5501 ata_qc_complete(qc);
5502 }
5503
5504 /**
5505 * sata_scr_valid - test whether SCRs are accessible
5506 * @link: ATA link to test SCR accessibility for
5507 *
5508 * Test whether SCRs are accessible for @link.
5509 *
5510 * LOCKING:
5511 * None.
5512 *
5513 * RETURNS:
5514 * 1 if SCRs are accessible, 0 otherwise.
5515 */
sata_scr_valid(struct ata_link * link)5516 int sata_scr_valid(struct ata_link *link)
5517 {
5518 struct ata_port *ap = link->ap;
5519
5520 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5521 }
5522
5523 /**
5524 * sata_scr_read - read SCR register of the specified port
5525 * @link: ATA link to read SCR for
5526 * @reg: SCR to read
5527 * @val: Place to store read value
5528 *
5529 * Read SCR register @reg of @link into *@val. This function is
5530 * guaranteed to succeed if @link is ap->link, the cable type of
5531 * the port is SATA and the port implements ->scr_read.
5532 *
5533 * LOCKING:
5534 * None if @link is ap->link. Kernel thread context otherwise.
5535 *
5536 * RETURNS:
5537 * 0 on success, negative errno on failure.
5538 */
sata_scr_read(struct ata_link * link,int reg,u32 * val)5539 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5540 {
5541 if (ata_is_host_link(link)) {
5542 if (sata_scr_valid(link))
5543 return link->ap->ops->scr_read(link, reg, val);
5544 return -EOPNOTSUPP;
5545 }
5546
5547 return sata_pmp_scr_read(link, reg, val);
5548 }
5549
5550 /**
5551 * sata_scr_write - write SCR register of the specified port
5552 * @link: ATA link to write SCR for
5553 * @reg: SCR to write
5554 * @val: value to write
5555 *
5556 * Write @val to SCR register @reg of @link. This function is
5557 * guaranteed to succeed if @link is ap->link, the cable type of
5558 * the port is SATA and the port implements ->scr_read.
5559 *
5560 * LOCKING:
5561 * None if @link is ap->link. Kernel thread context otherwise.
5562 *
5563 * RETURNS:
5564 * 0 on success, negative errno on failure.
5565 */
sata_scr_write(struct ata_link * link,int reg,u32 val)5566 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5567 {
5568 if (ata_is_host_link(link)) {
5569 if (sata_scr_valid(link))
5570 return link->ap->ops->scr_write(link, reg, val);
5571 return -EOPNOTSUPP;
5572 }
5573
5574 return sata_pmp_scr_write(link, reg, val);
5575 }
5576
5577 /**
5578 * sata_scr_write_flush - write SCR register of the specified port and flush
5579 * @link: ATA link to write SCR for
5580 * @reg: SCR to write
5581 * @val: value to write
5582 *
5583 * This function is identical to sata_scr_write() except that this
5584 * function performs flush after writing to the register.
5585 *
5586 * LOCKING:
5587 * None if @link is ap->link. Kernel thread context otherwise.
5588 *
5589 * RETURNS:
5590 * 0 on success, negative errno on failure.
5591 */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)5592 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5593 {
5594 if (ata_is_host_link(link)) {
5595 int rc;
5596
5597 if (sata_scr_valid(link)) {
5598 rc = link->ap->ops->scr_write(link, reg, val);
5599 if (rc == 0)
5600 rc = link->ap->ops->scr_read(link, reg, &val);
5601 return rc;
5602 }
5603 return -EOPNOTSUPP;
5604 }
5605
5606 return sata_pmp_scr_write(link, reg, val);
5607 }
5608
5609 /**
5610 * ata_phys_link_online - test whether the given link is online
5611 * @link: ATA link to test
5612 *
5613 * Test whether @link is online. Note that this function returns
5614 * 0 if online status of @link cannot be obtained, so
5615 * ata_link_online(link) != !ata_link_offline(link).
5616 *
5617 * LOCKING:
5618 * None.
5619 *
5620 * RETURNS:
5621 * True if the port online status is available and online.
5622 */
ata_phys_link_online(struct ata_link * link)5623 bool ata_phys_link_online(struct ata_link *link)
5624 {
5625 u32 sstatus;
5626
5627 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5628 ata_sstatus_online(sstatus))
5629 return true;
5630 return false;
5631 }
5632
5633 /**
5634 * ata_phys_link_offline - test whether the given link is offline
5635 * @link: ATA link to test
5636 *
5637 * Test whether @link is offline. Note that this function
5638 * returns 0 if offline status of @link cannot be obtained, so
5639 * ata_link_online(link) != !ata_link_offline(link).
5640 *
5641 * LOCKING:
5642 * None.
5643 *
5644 * RETURNS:
5645 * True if the port offline status is available and offline.
5646 */
ata_phys_link_offline(struct ata_link * link)5647 bool ata_phys_link_offline(struct ata_link *link)
5648 {
5649 u32 sstatus;
5650
5651 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5652 !ata_sstatus_online(sstatus))
5653 return true;
5654 return false;
5655 }
5656
5657 /**
5658 * ata_link_online - test whether the given link is online
5659 * @link: ATA link to test
5660 *
5661 * Test whether @link is online. This is identical to
5662 * ata_phys_link_online() when there's no slave link. When
5663 * there's a slave link, this function should only be called on
5664 * the master link and will return true if any of M/S links is
5665 * online.
5666 *
5667 * LOCKING:
5668 * None.
5669 *
5670 * RETURNS:
5671 * True if the port online status is available and online.
5672 */
ata_link_online(struct ata_link * link)5673 bool ata_link_online(struct ata_link *link)
5674 {
5675 struct ata_link *slave = link->ap->slave_link;
5676
5677 WARN_ON(link == slave); /* shouldn't be called on slave link */
5678
5679 return ata_phys_link_online(link) ||
5680 (slave && ata_phys_link_online(slave));
5681 }
5682
5683 /**
5684 * ata_link_offline - test whether the given link is offline
5685 * @link: ATA link to test
5686 *
5687 * Test whether @link is offline. This is identical to
5688 * ata_phys_link_offline() when there's no slave link. When
5689 * there's a slave link, this function should only be called on
5690 * the master link and will return true if both M/S links are
5691 * offline.
5692 *
5693 * LOCKING:
5694 * None.
5695 *
5696 * RETURNS:
5697 * True if the port offline status is available and offline.
5698 */
ata_link_offline(struct ata_link * link)5699 bool ata_link_offline(struct ata_link *link)
5700 {
5701 struct ata_link *slave = link->ap->slave_link;
5702
5703 WARN_ON(link == slave); /* shouldn't be called on slave link */
5704
5705 return ata_phys_link_offline(link) &&
5706 (!slave || ata_phys_link_offline(slave));
5707 }
5708
5709 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5710 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5711 unsigned int action, unsigned int ehi_flags,
5712 bool async)
5713 {
5714 struct ata_link *link;
5715 unsigned long flags;
5716
5717 /* Previous resume operation might still be in
5718 * progress. Wait for PM_PENDING to clear.
5719 */
5720 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5721 ata_port_wait_eh(ap);
5722 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5723 }
5724
5725 /* request PM ops to EH */
5726 spin_lock_irqsave(ap->lock, flags);
5727
5728 ap->pm_mesg = mesg;
5729 ap->pflags |= ATA_PFLAG_PM_PENDING;
5730 ata_for_each_link(link, ap, HOST_FIRST) {
5731 link->eh_info.action |= action;
5732 link->eh_info.flags |= ehi_flags;
5733 }
5734
5735 ata_port_schedule_eh(ap);
5736
5737 spin_unlock_irqrestore(ap->lock, flags);
5738
5739 if (!async) {
5740 ata_port_wait_eh(ap);
5741 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5742 }
5743 }
5744
5745 /*
5746 * On some hardware, device fails to respond after spun down for suspend. As
5747 * the device won't be used before being resumed, we don't need to touch the
5748 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5749 *
5750 * http://thread.gmane.org/gmane.linux.ide/46764
5751 */
5752 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5753 | ATA_EHI_NO_AUTOPSY
5754 | ATA_EHI_NO_RECOVERY;
5755
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5756 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5757 {
5758 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5759 }
5760
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5761 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5762 {
5763 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5764 }
5765
ata_port_pm_suspend(struct device * dev)5766 static int ata_port_pm_suspend(struct device *dev)
5767 {
5768 struct ata_port *ap = to_ata_port(dev);
5769
5770 if (pm_runtime_suspended(dev))
5771 return 0;
5772
5773 ata_port_suspend(ap, PMSG_SUSPEND);
5774 return 0;
5775 }
5776
ata_port_pm_freeze(struct device * dev)5777 static int ata_port_pm_freeze(struct device *dev)
5778 {
5779 struct ata_port *ap = to_ata_port(dev);
5780
5781 if (pm_runtime_suspended(dev))
5782 return 0;
5783
5784 ata_port_suspend(ap, PMSG_FREEZE);
5785 return 0;
5786 }
5787
ata_port_pm_poweroff(struct device * dev)5788 static int ata_port_pm_poweroff(struct device *dev)
5789 {
5790 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5791 return 0;
5792 }
5793
5794 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5795 | ATA_EHI_QUIET;
5796
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5797 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5798 {
5799 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5800 }
5801
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5802 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5803 {
5804 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5805 }
5806
ata_port_pm_resume(struct device * dev)5807 static int ata_port_pm_resume(struct device *dev)
5808 {
5809 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5810 pm_runtime_disable(dev);
5811 pm_runtime_set_active(dev);
5812 pm_runtime_enable(dev);
5813 return 0;
5814 }
5815
5816 /*
5817 * For ODDs, the upper layer will poll for media change every few seconds,
5818 * which will make it enter and leave suspend state every few seconds. And
5819 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5820 * is very little and the ODD may malfunction after constantly being reset.
5821 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5822 * ODD is attached to the port.
5823 */
ata_port_runtime_idle(struct device * dev)5824 static int ata_port_runtime_idle(struct device *dev)
5825 {
5826 struct ata_port *ap = to_ata_port(dev);
5827 struct ata_link *link;
5828 struct ata_device *adev;
5829
5830 ata_for_each_link(link, ap, HOST_FIRST) {
5831 ata_for_each_dev(adev, link, ENABLED)
5832 if (adev->class == ATA_DEV_ATAPI &&
5833 !zpodd_dev_enabled(adev))
5834 return -EBUSY;
5835 }
5836
5837 return 0;
5838 }
5839
ata_port_runtime_suspend(struct device * dev)5840 static int ata_port_runtime_suspend(struct device *dev)
5841 {
5842 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5843 return 0;
5844 }
5845
ata_port_runtime_resume(struct device * dev)5846 static int ata_port_runtime_resume(struct device *dev)
5847 {
5848 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5849 return 0;
5850 }
5851
5852 static const struct dev_pm_ops ata_port_pm_ops = {
5853 .suspend = ata_port_pm_suspend,
5854 .resume = ata_port_pm_resume,
5855 .freeze = ata_port_pm_freeze,
5856 .thaw = ata_port_pm_resume,
5857 .poweroff = ata_port_pm_poweroff,
5858 .restore = ata_port_pm_resume,
5859
5860 .runtime_suspend = ata_port_runtime_suspend,
5861 .runtime_resume = ata_port_runtime_resume,
5862 .runtime_idle = ata_port_runtime_idle,
5863 };
5864
5865 /* sas ports don't participate in pm runtime management of ata_ports,
5866 * and need to resume ata devices at the domain level, not the per-port
5867 * level. sas suspend/resume is async to allow parallel port recovery
5868 * since sas has multiple ata_port instances per Scsi_Host.
5869 */
ata_sas_port_suspend(struct ata_port * ap)5870 void ata_sas_port_suspend(struct ata_port *ap)
5871 {
5872 ata_port_suspend_async(ap, PMSG_SUSPEND);
5873 }
5874 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5875
ata_sas_port_resume(struct ata_port * ap)5876 void ata_sas_port_resume(struct ata_port *ap)
5877 {
5878 ata_port_resume_async(ap, PMSG_RESUME);
5879 }
5880 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5881
5882 /**
5883 * ata_host_suspend - suspend host
5884 * @host: host to suspend
5885 * @mesg: PM message
5886 *
5887 * Suspend @host. Actual operation is performed by port suspend.
5888 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5889 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5890 {
5891 host->dev->power.power_state = mesg;
5892 return 0;
5893 }
5894
5895 /**
5896 * ata_host_resume - resume host
5897 * @host: host to resume
5898 *
5899 * Resume @host. Actual operation is performed by port resume.
5900 */
ata_host_resume(struct ata_host * host)5901 void ata_host_resume(struct ata_host *host)
5902 {
5903 host->dev->power.power_state = PMSG_ON;
5904 }
5905 #endif
5906
5907 const struct device_type ata_port_type = {
5908 .name = "ata_port",
5909 #ifdef CONFIG_PM
5910 .pm = &ata_port_pm_ops,
5911 #endif
5912 };
5913
5914 /**
5915 * ata_dev_init - Initialize an ata_device structure
5916 * @dev: Device structure to initialize
5917 *
5918 * Initialize @dev in preparation for probing.
5919 *
5920 * LOCKING:
5921 * Inherited from caller.
5922 */
ata_dev_init(struct ata_device * dev)5923 void ata_dev_init(struct ata_device *dev)
5924 {
5925 struct ata_link *link = ata_dev_phys_link(dev);
5926 struct ata_port *ap = link->ap;
5927 unsigned long flags;
5928
5929 /* SATA spd limit is bound to the attached device, reset together */
5930 link->sata_spd_limit = link->hw_sata_spd_limit;
5931 link->sata_spd = 0;
5932
5933 /* High bits of dev->flags are used to record warm plug
5934 * requests which occur asynchronously. Synchronize using
5935 * host lock.
5936 */
5937 spin_lock_irqsave(ap->lock, flags);
5938 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5939 dev->horkage = 0;
5940 spin_unlock_irqrestore(ap->lock, flags);
5941
5942 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5943 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5944 dev->pio_mask = UINT_MAX;
5945 dev->mwdma_mask = UINT_MAX;
5946 dev->udma_mask = UINT_MAX;
5947 }
5948
5949 /**
5950 * ata_link_init - Initialize an ata_link structure
5951 * @ap: ATA port link is attached to
5952 * @link: Link structure to initialize
5953 * @pmp: Port multiplier port number
5954 *
5955 * Initialize @link.
5956 *
5957 * LOCKING:
5958 * Kernel thread context (may sleep)
5959 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5960 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5961 {
5962 int i;
5963
5964 /* clear everything except for devices */
5965 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5966 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5967
5968 link->ap = ap;
5969 link->pmp = pmp;
5970 link->active_tag = ATA_TAG_POISON;
5971 link->hw_sata_spd_limit = UINT_MAX;
5972
5973 /* can't use iterator, ap isn't initialized yet */
5974 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5975 struct ata_device *dev = &link->device[i];
5976
5977 dev->link = link;
5978 dev->devno = dev - link->device;
5979 #ifdef CONFIG_ATA_ACPI
5980 dev->gtf_filter = ata_acpi_gtf_filter;
5981 #endif
5982 ata_dev_init(dev);
5983 }
5984 }
5985
5986 /**
5987 * sata_link_init_spd - Initialize link->sata_spd_limit
5988 * @link: Link to configure sata_spd_limit for
5989 *
5990 * Initialize @link->[hw_]sata_spd_limit to the currently
5991 * configured value.
5992 *
5993 * LOCKING:
5994 * Kernel thread context (may sleep).
5995 *
5996 * RETURNS:
5997 * 0 on success, -errno on failure.
5998 */
sata_link_init_spd(struct ata_link * link)5999 int sata_link_init_spd(struct ata_link *link)
6000 {
6001 u8 spd;
6002 int rc;
6003
6004 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
6005 if (rc)
6006 return rc;
6007
6008 spd = (link->saved_scontrol >> 4) & 0xf;
6009 if (spd)
6010 link->hw_sata_spd_limit &= (1 << spd) - 1;
6011
6012 ata_force_link_limits(link);
6013
6014 link->sata_spd_limit = link->hw_sata_spd_limit;
6015
6016 return 0;
6017 }
6018
6019 /**
6020 * ata_port_alloc - allocate and initialize basic ATA port resources
6021 * @host: ATA host this allocated port belongs to
6022 *
6023 * Allocate and initialize basic ATA port resources.
6024 *
6025 * RETURNS:
6026 * Allocate ATA port on success, NULL on failure.
6027 *
6028 * LOCKING:
6029 * Inherited from calling layer (may sleep).
6030 */
ata_port_alloc(struct ata_host * host)6031 struct ata_port *ata_port_alloc(struct ata_host *host)
6032 {
6033 struct ata_port *ap;
6034
6035 DPRINTK("ENTER\n");
6036
6037 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6038 if (!ap)
6039 return NULL;
6040
6041 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6042 ap->lock = &host->lock;
6043 ap->print_id = -1;
6044 ap->local_port_no = -1;
6045 ap->host = host;
6046 ap->dev = host->dev;
6047
6048 #if defined(ATA_VERBOSE_DEBUG)
6049 /* turn on all debugging levels */
6050 ap->msg_enable = 0x00FF;
6051 #elif defined(ATA_DEBUG)
6052 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6053 #else
6054 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6055 #endif
6056
6057 mutex_init(&ap->scsi_scan_mutex);
6058 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6059 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6060 INIT_LIST_HEAD(&ap->eh_done_q);
6061 init_waitqueue_head(&ap->eh_wait_q);
6062 init_completion(&ap->park_req_pending);
6063 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6064 TIMER_DEFERRABLE);
6065
6066 ap->cbl = ATA_CBL_NONE;
6067
6068 ata_link_init(ap, &ap->link, 0);
6069
6070 #ifdef ATA_IRQ_TRAP
6071 ap->stats.unhandled_irq = 1;
6072 ap->stats.idle_irq = 1;
6073 #endif
6074 ata_sff_port_init(ap);
6075
6076 return ap;
6077 }
6078
ata_devres_release(struct device * gendev,void * res)6079 static void ata_devres_release(struct device *gendev, void *res)
6080 {
6081 struct ata_host *host = dev_get_drvdata(gendev);
6082 int i;
6083
6084 for (i = 0; i < host->n_ports; i++) {
6085 struct ata_port *ap = host->ports[i];
6086
6087 if (!ap)
6088 continue;
6089
6090 if (ap->scsi_host)
6091 scsi_host_put(ap->scsi_host);
6092
6093 }
6094
6095 dev_set_drvdata(gendev, NULL);
6096 ata_host_put(host);
6097 }
6098
ata_host_release(struct kref * kref)6099 static void ata_host_release(struct kref *kref)
6100 {
6101 struct ata_host *host = container_of(kref, struct ata_host, kref);
6102 int i;
6103
6104 for (i = 0; i < host->n_ports; i++) {
6105 struct ata_port *ap = host->ports[i];
6106
6107 kfree(ap->pmp_link);
6108 kfree(ap->slave_link);
6109 kfree(ap);
6110 host->ports[i] = NULL;
6111 }
6112 kfree(host);
6113 }
6114
ata_host_get(struct ata_host * host)6115 void ata_host_get(struct ata_host *host)
6116 {
6117 kref_get(&host->kref);
6118 }
6119
ata_host_put(struct ata_host * host)6120 void ata_host_put(struct ata_host *host)
6121 {
6122 kref_put(&host->kref, ata_host_release);
6123 }
6124
6125 /**
6126 * ata_host_alloc - allocate and init basic ATA host resources
6127 * @dev: generic device this host is associated with
6128 * @max_ports: maximum number of ATA ports associated with this host
6129 *
6130 * Allocate and initialize basic ATA host resources. LLD calls
6131 * this function to allocate a host, initializes it fully and
6132 * attaches it using ata_host_register().
6133 *
6134 * @max_ports ports are allocated and host->n_ports is
6135 * initialized to @max_ports. The caller is allowed to decrease
6136 * host->n_ports before calling ata_host_register(). The unused
6137 * ports will be automatically freed on registration.
6138 *
6139 * RETURNS:
6140 * Allocate ATA host on success, NULL on failure.
6141 *
6142 * LOCKING:
6143 * Inherited from calling layer (may sleep).
6144 */
ata_host_alloc(struct device * dev,int max_ports)6145 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6146 {
6147 struct ata_host *host;
6148 size_t sz;
6149 int i;
6150 void *dr;
6151
6152 DPRINTK("ENTER\n");
6153
6154 /* alloc a container for our list of ATA ports (buses) */
6155 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6156 host = kzalloc(sz, GFP_KERNEL);
6157 if (!host)
6158 return NULL;
6159
6160 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6161 goto err_free;
6162
6163 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6164 if (!dr)
6165 goto err_out;
6166
6167 devres_add(dev, dr);
6168 dev_set_drvdata(dev, host);
6169
6170 spin_lock_init(&host->lock);
6171 mutex_init(&host->eh_mutex);
6172 host->dev = dev;
6173 host->n_ports = max_ports;
6174 kref_init(&host->kref);
6175
6176 /* allocate ports bound to this host */
6177 for (i = 0; i < max_ports; i++) {
6178 struct ata_port *ap;
6179
6180 ap = ata_port_alloc(host);
6181 if (!ap)
6182 goto err_out;
6183
6184 ap->port_no = i;
6185 host->ports[i] = ap;
6186 }
6187
6188 devres_remove_group(dev, NULL);
6189 return host;
6190
6191 err_out:
6192 devres_release_group(dev, NULL);
6193 err_free:
6194 kfree(host);
6195 return NULL;
6196 }
6197
6198 /**
6199 * ata_host_alloc_pinfo - alloc host and init with port_info array
6200 * @dev: generic device this host is associated with
6201 * @ppi: array of ATA port_info to initialize host with
6202 * @n_ports: number of ATA ports attached to this host
6203 *
6204 * Allocate ATA host and initialize with info from @ppi. If NULL
6205 * terminated, @ppi may contain fewer entries than @n_ports. The
6206 * last entry will be used for the remaining ports.
6207 *
6208 * RETURNS:
6209 * Allocate ATA host on success, NULL on failure.
6210 *
6211 * LOCKING:
6212 * Inherited from calling layer (may sleep).
6213 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)6214 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6215 const struct ata_port_info * const * ppi,
6216 int n_ports)
6217 {
6218 const struct ata_port_info *pi;
6219 struct ata_host *host;
6220 int i, j;
6221
6222 host = ata_host_alloc(dev, n_ports);
6223 if (!host)
6224 return NULL;
6225
6226 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6227 struct ata_port *ap = host->ports[i];
6228
6229 if (ppi[j])
6230 pi = ppi[j++];
6231
6232 ap->pio_mask = pi->pio_mask;
6233 ap->mwdma_mask = pi->mwdma_mask;
6234 ap->udma_mask = pi->udma_mask;
6235 ap->flags |= pi->flags;
6236 ap->link.flags |= pi->link_flags;
6237 ap->ops = pi->port_ops;
6238
6239 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6240 host->ops = pi->port_ops;
6241 }
6242
6243 return host;
6244 }
6245
6246 /**
6247 * ata_slave_link_init - initialize slave link
6248 * @ap: port to initialize slave link for
6249 *
6250 * Create and initialize slave link for @ap. This enables slave
6251 * link handling on the port.
6252 *
6253 * In libata, a port contains links and a link contains devices.
6254 * There is single host link but if a PMP is attached to it,
6255 * there can be multiple fan-out links. On SATA, there's usually
6256 * a single device connected to a link but PATA and SATA
6257 * controllers emulating TF based interface can have two - master
6258 * and slave.
6259 *
6260 * However, there are a few controllers which don't fit into this
6261 * abstraction too well - SATA controllers which emulate TF
6262 * interface with both master and slave devices but also have
6263 * separate SCR register sets for each device. These controllers
6264 * need separate links for physical link handling
6265 * (e.g. onlineness, link speed) but should be treated like a
6266 * traditional M/S controller for everything else (e.g. command
6267 * issue, softreset).
6268 *
6269 * slave_link is libata's way of handling this class of
6270 * controllers without impacting core layer too much. For
6271 * anything other than physical link handling, the default host
6272 * link is used for both master and slave. For physical link
6273 * handling, separate @ap->slave_link is used. All dirty details
6274 * are implemented inside libata core layer. From LLD's POV, the
6275 * only difference is that prereset, hardreset and postreset are
6276 * called once more for the slave link, so the reset sequence
6277 * looks like the following.
6278 *
6279 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6280 * softreset(M) -> postreset(M) -> postreset(S)
6281 *
6282 * Note that softreset is called only for the master. Softreset
6283 * resets both M/S by definition, so SRST on master should handle
6284 * both (the standard method will work just fine).
6285 *
6286 * LOCKING:
6287 * Should be called before host is registered.
6288 *
6289 * RETURNS:
6290 * 0 on success, -errno on failure.
6291 */
ata_slave_link_init(struct ata_port * ap)6292 int ata_slave_link_init(struct ata_port *ap)
6293 {
6294 struct ata_link *link;
6295
6296 WARN_ON(ap->slave_link);
6297 WARN_ON(ap->flags & ATA_FLAG_PMP);
6298
6299 link = kzalloc(sizeof(*link), GFP_KERNEL);
6300 if (!link)
6301 return -ENOMEM;
6302
6303 ata_link_init(ap, link, 1);
6304 ap->slave_link = link;
6305 return 0;
6306 }
6307
ata_host_stop(struct device * gendev,void * res)6308 static void ata_host_stop(struct device *gendev, void *res)
6309 {
6310 struct ata_host *host = dev_get_drvdata(gendev);
6311 int i;
6312
6313 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6314
6315 for (i = 0; i < host->n_ports; i++) {
6316 struct ata_port *ap = host->ports[i];
6317
6318 if (ap->ops->port_stop)
6319 ap->ops->port_stop(ap);
6320 }
6321
6322 if (host->ops->host_stop)
6323 host->ops->host_stop(host);
6324 }
6325
6326 /**
6327 * ata_finalize_port_ops - finalize ata_port_operations
6328 * @ops: ata_port_operations to finalize
6329 *
6330 * An ata_port_operations can inherit from another ops and that
6331 * ops can again inherit from another. This can go on as many
6332 * times as necessary as long as there is no loop in the
6333 * inheritance chain.
6334 *
6335 * Ops tables are finalized when the host is started. NULL or
6336 * unspecified entries are inherited from the closet ancestor
6337 * which has the method and the entry is populated with it.
6338 * After finalization, the ops table directly points to all the
6339 * methods and ->inherits is no longer necessary and cleared.
6340 *
6341 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6342 *
6343 * LOCKING:
6344 * None.
6345 */
ata_finalize_port_ops(struct ata_port_operations * ops)6346 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6347 {
6348 static DEFINE_SPINLOCK(lock);
6349 const struct ata_port_operations *cur;
6350 void **begin = (void **)ops;
6351 void **end = (void **)&ops->inherits;
6352 void **pp;
6353
6354 if (!ops || !ops->inherits)
6355 return;
6356
6357 spin_lock(&lock);
6358
6359 for (cur = ops->inherits; cur; cur = cur->inherits) {
6360 void **inherit = (void **)cur;
6361
6362 for (pp = begin; pp < end; pp++, inherit++)
6363 if (!*pp)
6364 *pp = *inherit;
6365 }
6366
6367 for (pp = begin; pp < end; pp++)
6368 if (IS_ERR(*pp))
6369 *pp = NULL;
6370
6371 ops->inherits = NULL;
6372
6373 spin_unlock(&lock);
6374 }
6375
6376 /**
6377 * ata_host_start - start and freeze ports of an ATA host
6378 * @host: ATA host to start ports for
6379 *
6380 * Start and then freeze ports of @host. Started status is
6381 * recorded in host->flags, so this function can be called
6382 * multiple times. Ports are guaranteed to get started only
6383 * once. If host->ops isn't initialized yet, its set to the
6384 * first non-dummy port ops.
6385 *
6386 * LOCKING:
6387 * Inherited from calling layer (may sleep).
6388 *
6389 * RETURNS:
6390 * 0 if all ports are started successfully, -errno otherwise.
6391 */
ata_host_start(struct ata_host * host)6392 int ata_host_start(struct ata_host *host)
6393 {
6394 int have_stop = 0;
6395 void *start_dr = NULL;
6396 int i, rc;
6397
6398 if (host->flags & ATA_HOST_STARTED)
6399 return 0;
6400
6401 ata_finalize_port_ops(host->ops);
6402
6403 for (i = 0; i < host->n_ports; i++) {
6404 struct ata_port *ap = host->ports[i];
6405
6406 ata_finalize_port_ops(ap->ops);
6407
6408 if (!host->ops && !ata_port_is_dummy(ap))
6409 host->ops = ap->ops;
6410
6411 if (ap->ops->port_stop)
6412 have_stop = 1;
6413 }
6414
6415 if (host->ops->host_stop)
6416 have_stop = 1;
6417
6418 if (have_stop) {
6419 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6420 if (!start_dr)
6421 return -ENOMEM;
6422 }
6423
6424 for (i = 0; i < host->n_ports; i++) {
6425 struct ata_port *ap = host->ports[i];
6426
6427 if (ap->ops->port_start) {
6428 rc = ap->ops->port_start(ap);
6429 if (rc) {
6430 if (rc != -ENODEV)
6431 dev_err(host->dev,
6432 "failed to start port %d (errno=%d)\n",
6433 i, rc);
6434 goto err_out;
6435 }
6436 }
6437 ata_eh_freeze_port(ap);
6438 }
6439
6440 if (start_dr)
6441 devres_add(host->dev, start_dr);
6442 host->flags |= ATA_HOST_STARTED;
6443 return 0;
6444
6445 err_out:
6446 while (--i >= 0) {
6447 struct ata_port *ap = host->ports[i];
6448
6449 if (ap->ops->port_stop)
6450 ap->ops->port_stop(ap);
6451 }
6452 devres_free(start_dr);
6453 return rc;
6454 }
6455
6456 /**
6457 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6458 * @host: host to initialize
6459 * @dev: device host is attached to
6460 * @ops: port_ops
6461 *
6462 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)6463 void ata_host_init(struct ata_host *host, struct device *dev,
6464 struct ata_port_operations *ops)
6465 {
6466 spin_lock_init(&host->lock);
6467 mutex_init(&host->eh_mutex);
6468 host->n_tags = ATA_MAX_QUEUE;
6469 host->dev = dev;
6470 host->ops = ops;
6471 kref_init(&host->kref);
6472 }
6473
__ata_port_probe(struct ata_port * ap)6474 void __ata_port_probe(struct ata_port *ap)
6475 {
6476 struct ata_eh_info *ehi = &ap->link.eh_info;
6477 unsigned long flags;
6478
6479 /* kick EH for boot probing */
6480 spin_lock_irqsave(ap->lock, flags);
6481
6482 ehi->probe_mask |= ATA_ALL_DEVICES;
6483 ehi->action |= ATA_EH_RESET;
6484 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6485
6486 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6487 ap->pflags |= ATA_PFLAG_LOADING;
6488 ata_port_schedule_eh(ap);
6489
6490 spin_unlock_irqrestore(ap->lock, flags);
6491 }
6492
ata_port_probe(struct ata_port * ap)6493 int ata_port_probe(struct ata_port *ap)
6494 {
6495 int rc = 0;
6496
6497 if (ap->ops->error_handler) {
6498 __ata_port_probe(ap);
6499 ata_port_wait_eh(ap);
6500 } else {
6501 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6502 rc = ata_bus_probe(ap);
6503 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6504 }
6505 return rc;
6506 }
6507
6508
async_port_probe(void * data,async_cookie_t cookie)6509 static void async_port_probe(void *data, async_cookie_t cookie)
6510 {
6511 struct ata_port *ap = data;
6512
6513 /*
6514 * If we're not allowed to scan this host in parallel,
6515 * we need to wait until all previous scans have completed
6516 * before going further.
6517 * Jeff Garzik says this is only within a controller, so we
6518 * don't need to wait for port 0, only for later ports.
6519 */
6520 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6521 async_synchronize_cookie(cookie);
6522
6523 (void)ata_port_probe(ap);
6524
6525 /* in order to keep device order, we need to synchronize at this point */
6526 async_synchronize_cookie(cookie);
6527
6528 ata_scsi_scan_host(ap, 1);
6529 }
6530
6531 /**
6532 * ata_host_register - register initialized ATA host
6533 * @host: ATA host to register
6534 * @sht: template for SCSI host
6535 *
6536 * Register initialized ATA host. @host is allocated using
6537 * ata_host_alloc() and fully initialized by LLD. This function
6538 * starts ports, registers @host with ATA and SCSI layers and
6539 * probe registered devices.
6540 *
6541 * LOCKING:
6542 * Inherited from calling layer (may sleep).
6543 *
6544 * RETURNS:
6545 * 0 on success, -errno otherwise.
6546 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)6547 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6548 {
6549 int i, rc;
6550
6551 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6552
6553 /* host must have been started */
6554 if (!(host->flags & ATA_HOST_STARTED)) {
6555 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6556 WARN_ON(1);
6557 return -EINVAL;
6558 }
6559
6560 /* Blow away unused ports. This happens when LLD can't
6561 * determine the exact number of ports to allocate at
6562 * allocation time.
6563 */
6564 for (i = host->n_ports; host->ports[i]; i++)
6565 kfree(host->ports[i]);
6566
6567 /* give ports names and add SCSI hosts */
6568 for (i = 0; i < host->n_ports; i++) {
6569 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6570 host->ports[i]->local_port_no = i + 1;
6571 }
6572
6573 /* Create associated sysfs transport objects */
6574 for (i = 0; i < host->n_ports; i++) {
6575 rc = ata_tport_add(host->dev,host->ports[i]);
6576 if (rc) {
6577 goto err_tadd;
6578 }
6579 }
6580
6581 rc = ata_scsi_add_hosts(host, sht);
6582 if (rc)
6583 goto err_tadd;
6584
6585 /* set cable, sata_spd_limit and report */
6586 for (i = 0; i < host->n_ports; i++) {
6587 struct ata_port *ap = host->ports[i];
6588 unsigned long xfer_mask;
6589
6590 /* set SATA cable type if still unset */
6591 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6592 ap->cbl = ATA_CBL_SATA;
6593
6594 /* init sata_spd_limit to the current value */
6595 sata_link_init_spd(&ap->link);
6596 if (ap->slave_link)
6597 sata_link_init_spd(ap->slave_link);
6598
6599 /* print per-port info to dmesg */
6600 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6601 ap->udma_mask);
6602
6603 if (!ata_port_is_dummy(ap)) {
6604 ata_port_info(ap, "%cATA max %s %s\n",
6605 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6606 ata_mode_string(xfer_mask),
6607 ap->link.eh_info.desc);
6608 ata_ehi_clear_desc(&ap->link.eh_info);
6609 } else
6610 ata_port_info(ap, "DUMMY\n");
6611 }
6612
6613 /* perform each probe asynchronously */
6614 for (i = 0; i < host->n_ports; i++) {
6615 struct ata_port *ap = host->ports[i];
6616 ap->cookie = async_schedule(async_port_probe, ap);
6617 }
6618
6619 return 0;
6620
6621 err_tadd:
6622 while (--i >= 0) {
6623 ata_tport_delete(host->ports[i]);
6624 }
6625 return rc;
6626
6627 }
6628
6629 /**
6630 * ata_host_activate - start host, request IRQ and register it
6631 * @host: target ATA host
6632 * @irq: IRQ to request
6633 * @irq_handler: irq_handler used when requesting IRQ
6634 * @irq_flags: irq_flags used when requesting IRQ
6635 * @sht: scsi_host_template to use when registering the host
6636 *
6637 * After allocating an ATA host and initializing it, most libata
6638 * LLDs perform three steps to activate the host - start host,
6639 * request IRQ and register it. This helper takes necessary
6640 * arguments and performs the three steps in one go.
6641 *
6642 * An invalid IRQ skips the IRQ registration and expects the host to
6643 * have set polling mode on the port. In this case, @irq_handler
6644 * should be NULL.
6645 *
6646 * LOCKING:
6647 * Inherited from calling layer (may sleep).
6648 *
6649 * RETURNS:
6650 * 0 on success, -errno otherwise.
6651 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)6652 int ata_host_activate(struct ata_host *host, int irq,
6653 irq_handler_t irq_handler, unsigned long irq_flags,
6654 struct scsi_host_template *sht)
6655 {
6656 int i, rc;
6657 char *irq_desc;
6658
6659 rc = ata_host_start(host);
6660 if (rc)
6661 return rc;
6662
6663 /* Special case for polling mode */
6664 if (!irq) {
6665 WARN_ON(irq_handler);
6666 return ata_host_register(host, sht);
6667 }
6668
6669 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6670 dev_driver_string(host->dev),
6671 dev_name(host->dev));
6672 if (!irq_desc)
6673 return -ENOMEM;
6674
6675 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6676 irq_desc, host);
6677 if (rc)
6678 return rc;
6679
6680 for (i = 0; i < host->n_ports; i++)
6681 ata_port_desc(host->ports[i], "irq %d", irq);
6682
6683 rc = ata_host_register(host, sht);
6684 /* if failed, just free the IRQ and leave ports alone */
6685 if (rc)
6686 devm_free_irq(host->dev, irq, host);
6687
6688 return rc;
6689 }
6690
6691 /**
6692 * ata_port_detach - Detach ATA port in preparation of device removal
6693 * @ap: ATA port to be detached
6694 *
6695 * Detach all ATA devices and the associated SCSI devices of @ap;
6696 * then, remove the associated SCSI host. @ap is guaranteed to
6697 * be quiescent on return from this function.
6698 *
6699 * LOCKING:
6700 * Kernel thread context (may sleep).
6701 */
ata_port_detach(struct ata_port * ap)6702 static void ata_port_detach(struct ata_port *ap)
6703 {
6704 unsigned long flags;
6705 struct ata_link *link;
6706 struct ata_device *dev;
6707
6708 if (!ap->ops->error_handler)
6709 goto skip_eh;
6710
6711 /* tell EH we're leaving & flush EH */
6712 spin_lock_irqsave(ap->lock, flags);
6713 ap->pflags |= ATA_PFLAG_UNLOADING;
6714 ata_port_schedule_eh(ap);
6715 spin_unlock_irqrestore(ap->lock, flags);
6716
6717 /* wait till EH commits suicide */
6718 ata_port_wait_eh(ap);
6719
6720 /* it better be dead now */
6721 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6722
6723 cancel_delayed_work_sync(&ap->hotplug_task);
6724
6725 skip_eh:
6726 /* clean up zpodd on port removal */
6727 ata_for_each_link(link, ap, HOST_FIRST) {
6728 ata_for_each_dev(dev, link, ALL) {
6729 if (zpodd_dev_enabled(dev))
6730 zpodd_exit(dev);
6731 }
6732 }
6733 if (ap->pmp_link) {
6734 int i;
6735 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6736 ata_tlink_delete(&ap->pmp_link[i]);
6737 }
6738 /* remove the associated SCSI host */
6739 scsi_remove_host(ap->scsi_host);
6740 ata_tport_delete(ap);
6741 }
6742
6743 /**
6744 * ata_host_detach - Detach all ports of an ATA host
6745 * @host: Host to detach
6746 *
6747 * Detach all ports of @host.
6748 *
6749 * LOCKING:
6750 * Kernel thread context (may sleep).
6751 */
ata_host_detach(struct ata_host * host)6752 void ata_host_detach(struct ata_host *host)
6753 {
6754 int i;
6755
6756 for (i = 0; i < host->n_ports; i++) {
6757 /* Ensure ata_port probe has completed */
6758 async_synchronize_cookie(host->ports[i]->cookie + 1);
6759 ata_port_detach(host->ports[i]);
6760 }
6761
6762 /* the host is dead now, dissociate ACPI */
6763 ata_acpi_dissociate(host);
6764 }
6765
6766 #ifdef CONFIG_PCI
6767
6768 /**
6769 * ata_pci_remove_one - PCI layer callback for device removal
6770 * @pdev: PCI device that was removed
6771 *
6772 * PCI layer indicates to libata via this hook that hot-unplug or
6773 * module unload event has occurred. Detach all ports. Resource
6774 * release is handled via devres.
6775 *
6776 * LOCKING:
6777 * Inherited from PCI layer (may sleep).
6778 */
ata_pci_remove_one(struct pci_dev * pdev)6779 void ata_pci_remove_one(struct pci_dev *pdev)
6780 {
6781 struct ata_host *host = pci_get_drvdata(pdev);
6782
6783 ata_host_detach(host);
6784 }
6785
ata_pci_shutdown_one(struct pci_dev * pdev)6786 void ata_pci_shutdown_one(struct pci_dev *pdev)
6787 {
6788 struct ata_host *host = pci_get_drvdata(pdev);
6789 int i;
6790
6791 for (i = 0; i < host->n_ports; i++) {
6792 struct ata_port *ap = host->ports[i];
6793
6794 ap->pflags |= ATA_PFLAG_FROZEN;
6795
6796 /* Disable port interrupts */
6797 if (ap->ops->freeze)
6798 ap->ops->freeze(ap);
6799
6800 /* Stop the port DMA engines */
6801 if (ap->ops->port_stop)
6802 ap->ops->port_stop(ap);
6803 }
6804 }
6805
6806 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6807 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6808 {
6809 unsigned long tmp = 0;
6810
6811 switch (bits->width) {
6812 case 1: {
6813 u8 tmp8 = 0;
6814 pci_read_config_byte(pdev, bits->reg, &tmp8);
6815 tmp = tmp8;
6816 break;
6817 }
6818 case 2: {
6819 u16 tmp16 = 0;
6820 pci_read_config_word(pdev, bits->reg, &tmp16);
6821 tmp = tmp16;
6822 break;
6823 }
6824 case 4: {
6825 u32 tmp32 = 0;
6826 pci_read_config_dword(pdev, bits->reg, &tmp32);
6827 tmp = tmp32;
6828 break;
6829 }
6830
6831 default:
6832 return -EINVAL;
6833 }
6834
6835 tmp &= bits->mask;
6836
6837 return (tmp == bits->val) ? 1 : 0;
6838 }
6839
6840 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6841 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6842 {
6843 pci_save_state(pdev);
6844 pci_disable_device(pdev);
6845
6846 if (mesg.event & PM_EVENT_SLEEP)
6847 pci_set_power_state(pdev, PCI_D3hot);
6848 }
6849
ata_pci_device_do_resume(struct pci_dev * pdev)6850 int ata_pci_device_do_resume(struct pci_dev *pdev)
6851 {
6852 int rc;
6853
6854 pci_set_power_state(pdev, PCI_D0);
6855 pci_restore_state(pdev);
6856
6857 rc = pcim_enable_device(pdev);
6858 if (rc) {
6859 dev_err(&pdev->dev,
6860 "failed to enable device after resume (%d)\n", rc);
6861 return rc;
6862 }
6863
6864 pci_set_master(pdev);
6865 return 0;
6866 }
6867
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6868 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6869 {
6870 struct ata_host *host = pci_get_drvdata(pdev);
6871 int rc = 0;
6872
6873 rc = ata_host_suspend(host, mesg);
6874 if (rc)
6875 return rc;
6876
6877 ata_pci_device_do_suspend(pdev, mesg);
6878
6879 return 0;
6880 }
6881
ata_pci_device_resume(struct pci_dev * pdev)6882 int ata_pci_device_resume(struct pci_dev *pdev)
6883 {
6884 struct ata_host *host = pci_get_drvdata(pdev);
6885 int rc;
6886
6887 rc = ata_pci_device_do_resume(pdev);
6888 if (rc == 0)
6889 ata_host_resume(host);
6890 return rc;
6891 }
6892 #endif /* CONFIG_PM */
6893
6894 #endif /* CONFIG_PCI */
6895
6896 /**
6897 * ata_platform_remove_one - Platform layer callback for device removal
6898 * @pdev: Platform device that was removed
6899 *
6900 * Platform layer indicates to libata via this hook that hot-unplug or
6901 * module unload event has occurred. Detach all ports. Resource
6902 * release is handled via devres.
6903 *
6904 * LOCKING:
6905 * Inherited from platform layer (may sleep).
6906 */
ata_platform_remove_one(struct platform_device * pdev)6907 int ata_platform_remove_one(struct platform_device *pdev)
6908 {
6909 struct ata_host *host = platform_get_drvdata(pdev);
6910
6911 ata_host_detach(host);
6912
6913 return 0;
6914 }
6915
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6916 static int __init ata_parse_force_one(char **cur,
6917 struct ata_force_ent *force_ent,
6918 const char **reason)
6919 {
6920 static const struct ata_force_param force_tbl[] __initconst = {
6921 { "40c", .cbl = ATA_CBL_PATA40 },
6922 { "80c", .cbl = ATA_CBL_PATA80 },
6923 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6924 { "unk", .cbl = ATA_CBL_PATA_UNK },
6925 { "ign", .cbl = ATA_CBL_PATA_IGN },
6926 { "sata", .cbl = ATA_CBL_SATA },
6927 { "1.5Gbps", .spd_limit = 1 },
6928 { "3.0Gbps", .spd_limit = 2 },
6929 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6930 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6931 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6932 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6933 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6934 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6935 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6936 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6937 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6938 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6939 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6940 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6941 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6942 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6943 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6944 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6945 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6946 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6947 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6948 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6949 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6950 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6951 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6952 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6953 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6954 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6955 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6956 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6957 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6958 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6959 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6960 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6961 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6962 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6963 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6964 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6965 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6966 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6967 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6968 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6969 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6970 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6971 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6972 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6973 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6974 };
6975 char *start = *cur, *p = *cur;
6976 char *id, *val, *endp;
6977 const struct ata_force_param *match_fp = NULL;
6978 int nr_matches = 0, i;
6979
6980 /* find where this param ends and update *cur */
6981 while (*p != '\0' && *p != ',')
6982 p++;
6983
6984 if (*p == '\0')
6985 *cur = p;
6986 else
6987 *cur = p + 1;
6988
6989 *p = '\0';
6990
6991 /* parse */
6992 p = strchr(start, ':');
6993 if (!p) {
6994 val = strstrip(start);
6995 goto parse_val;
6996 }
6997 *p = '\0';
6998
6999 id = strstrip(start);
7000 val = strstrip(p + 1);
7001
7002 /* parse id */
7003 p = strchr(id, '.');
7004 if (p) {
7005 *p++ = '\0';
7006 force_ent->device = simple_strtoul(p, &endp, 10);
7007 if (p == endp || *endp != '\0') {
7008 *reason = "invalid device";
7009 return -EINVAL;
7010 }
7011 }
7012
7013 force_ent->port = simple_strtoul(id, &endp, 10);
7014 if (id == endp || *endp != '\0') {
7015 *reason = "invalid port/link";
7016 return -EINVAL;
7017 }
7018
7019 parse_val:
7020 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7021 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7022 const struct ata_force_param *fp = &force_tbl[i];
7023
7024 if (strncasecmp(val, fp->name, strlen(val)))
7025 continue;
7026
7027 nr_matches++;
7028 match_fp = fp;
7029
7030 if (strcasecmp(val, fp->name) == 0) {
7031 nr_matches = 1;
7032 break;
7033 }
7034 }
7035
7036 if (!nr_matches) {
7037 *reason = "unknown value";
7038 return -EINVAL;
7039 }
7040 if (nr_matches > 1) {
7041 *reason = "ambiguous value";
7042 return -EINVAL;
7043 }
7044
7045 force_ent->param = *match_fp;
7046
7047 return 0;
7048 }
7049
ata_parse_force_param(void)7050 static void __init ata_parse_force_param(void)
7051 {
7052 int idx = 0, size = 1;
7053 int last_port = -1, last_device = -1;
7054 char *p, *cur, *next;
7055
7056 /* calculate maximum number of params and allocate force_tbl */
7057 for (p = ata_force_param_buf; *p; p++)
7058 if (*p == ',')
7059 size++;
7060
7061 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
7062 if (!ata_force_tbl) {
7063 printk(KERN_WARNING "ata: failed to extend force table, "
7064 "libata.force ignored\n");
7065 return;
7066 }
7067
7068 /* parse and populate the table */
7069 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7070 const char *reason = "";
7071 struct ata_force_ent te = { .port = -1, .device = -1 };
7072
7073 next = cur;
7074 if (ata_parse_force_one(&next, &te, &reason)) {
7075 printk(KERN_WARNING "ata: failed to parse force "
7076 "parameter \"%s\" (%s)\n",
7077 cur, reason);
7078 continue;
7079 }
7080
7081 if (te.port == -1) {
7082 te.port = last_port;
7083 te.device = last_device;
7084 }
7085
7086 ata_force_tbl[idx++] = te;
7087
7088 last_port = te.port;
7089 last_device = te.device;
7090 }
7091
7092 ata_force_tbl_size = idx;
7093 }
7094
ata_init(void)7095 static int __init ata_init(void)
7096 {
7097 int rc;
7098
7099 ata_parse_force_param();
7100
7101 rc = ata_sff_init();
7102 if (rc) {
7103 kfree(ata_force_tbl);
7104 return rc;
7105 }
7106
7107 libata_transport_init();
7108 ata_scsi_transport_template = ata_attach_transport();
7109 if (!ata_scsi_transport_template) {
7110 ata_sff_exit();
7111 rc = -ENOMEM;
7112 goto err_out;
7113 }
7114
7115 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7116 return 0;
7117
7118 err_out:
7119 return rc;
7120 }
7121
ata_exit(void)7122 static void __exit ata_exit(void)
7123 {
7124 ata_release_transport(ata_scsi_transport_template);
7125 libata_transport_exit();
7126 ata_sff_exit();
7127 kfree(ata_force_tbl);
7128 }
7129
7130 subsys_initcall(ata_init);
7131 module_exit(ata_exit);
7132
7133 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7134
ata_ratelimit(void)7135 int ata_ratelimit(void)
7136 {
7137 return __ratelimit(&ratelimit);
7138 }
7139
7140 /**
7141 * ata_msleep - ATA EH owner aware msleep
7142 * @ap: ATA port to attribute the sleep to
7143 * @msecs: duration to sleep in milliseconds
7144 *
7145 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7146 * ownership is released before going to sleep and reacquired
7147 * after the sleep is complete. IOW, other ports sharing the
7148 * @ap->host will be allowed to own the EH while this task is
7149 * sleeping.
7150 *
7151 * LOCKING:
7152 * Might sleep.
7153 */
ata_msleep(struct ata_port * ap,unsigned int msecs)7154 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7155 {
7156 bool owns_eh = ap && ap->host->eh_owner == current;
7157
7158 if (owns_eh)
7159 ata_eh_release(ap);
7160
7161 if (msecs < 20) {
7162 unsigned long usecs = msecs * USEC_PER_MSEC;
7163 usleep_range(usecs, usecs + 50);
7164 } else {
7165 msleep(msecs);
7166 }
7167
7168 if (owns_eh)
7169 ata_eh_acquire(ap);
7170 }
7171
7172 /**
7173 * ata_wait_register - wait until register value changes
7174 * @ap: ATA port to wait register for, can be NULL
7175 * @reg: IO-mapped register
7176 * @mask: Mask to apply to read register value
7177 * @val: Wait condition
7178 * @interval: polling interval in milliseconds
7179 * @timeout: timeout in milliseconds
7180 *
7181 * Waiting for some bits of register to change is a common
7182 * operation for ATA controllers. This function reads 32bit LE
7183 * IO-mapped register @reg and tests for the following condition.
7184 *
7185 * (*@reg & mask) != val
7186 *
7187 * If the condition is met, it returns; otherwise, the process is
7188 * repeated after @interval_msec until timeout.
7189 *
7190 * LOCKING:
7191 * Kernel thread context (may sleep)
7192 *
7193 * RETURNS:
7194 * The final register value.
7195 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)7196 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7197 unsigned long interval, unsigned long timeout)
7198 {
7199 unsigned long deadline;
7200 u32 tmp;
7201
7202 tmp = ioread32(reg);
7203
7204 /* Calculate timeout _after_ the first read to make sure
7205 * preceding writes reach the controller before starting to
7206 * eat away the timeout.
7207 */
7208 deadline = ata_deadline(jiffies, timeout);
7209
7210 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7211 ata_msleep(ap, interval);
7212 tmp = ioread32(reg);
7213 }
7214
7215 return tmp;
7216 }
7217
7218 /**
7219 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7220 * @link: Link receiving the event
7221 *
7222 * Test whether the received PHY event has to be ignored or not.
7223 *
7224 * LOCKING:
7225 * None:
7226 *
7227 * RETURNS:
7228 * True if the event has to be ignored.
7229 */
sata_lpm_ignore_phy_events(struct ata_link * link)7230 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7231 {
7232 unsigned long lpm_timeout = link->last_lpm_change +
7233 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7234
7235 /* if LPM is enabled, PHYRDY doesn't mean anything */
7236 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7237 return true;
7238
7239 /* ignore the first PHY event after the LPM policy changed
7240 * as it is might be spurious
7241 */
7242 if ((link->flags & ATA_LFLAG_CHANGED) &&
7243 time_before(jiffies, lpm_timeout))
7244 return true;
7245
7246 return false;
7247 }
7248 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7249
7250 /*
7251 * Dummy port_ops
7252 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)7253 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7254 {
7255 return AC_ERR_SYSTEM;
7256 }
7257
ata_dummy_error_handler(struct ata_port * ap)7258 static void ata_dummy_error_handler(struct ata_port *ap)
7259 {
7260 /* truly dummy */
7261 }
7262
7263 struct ata_port_operations ata_dummy_port_ops = {
7264 .qc_prep = ata_noop_qc_prep,
7265 .qc_issue = ata_dummy_qc_issue,
7266 .error_handler = ata_dummy_error_handler,
7267 .sched_eh = ata_std_sched_eh,
7268 .end_eh = ata_std_end_eh,
7269 };
7270
7271 const struct ata_port_info ata_dummy_port_info = {
7272 .port_ops = &ata_dummy_port_ops,
7273 };
7274
7275 /*
7276 * Utility print functions
7277 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)7278 void ata_port_printk(const struct ata_port *ap, const char *level,
7279 const char *fmt, ...)
7280 {
7281 struct va_format vaf;
7282 va_list args;
7283
7284 va_start(args, fmt);
7285
7286 vaf.fmt = fmt;
7287 vaf.va = &args;
7288
7289 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7290
7291 va_end(args);
7292 }
7293 EXPORT_SYMBOL(ata_port_printk);
7294
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)7295 void ata_link_printk(const struct ata_link *link, const char *level,
7296 const char *fmt, ...)
7297 {
7298 struct va_format vaf;
7299 va_list args;
7300
7301 va_start(args, fmt);
7302
7303 vaf.fmt = fmt;
7304 vaf.va = &args;
7305
7306 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7307 printk("%sata%u.%02u: %pV",
7308 level, link->ap->print_id, link->pmp, &vaf);
7309 else
7310 printk("%sata%u: %pV",
7311 level, link->ap->print_id, &vaf);
7312
7313 va_end(args);
7314 }
7315 EXPORT_SYMBOL(ata_link_printk);
7316
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)7317 void ata_dev_printk(const struct ata_device *dev, const char *level,
7318 const char *fmt, ...)
7319 {
7320 struct va_format vaf;
7321 va_list args;
7322
7323 va_start(args, fmt);
7324
7325 vaf.fmt = fmt;
7326 vaf.va = &args;
7327
7328 printk("%sata%u.%02u: %pV",
7329 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7330 &vaf);
7331
7332 va_end(args);
7333 }
7334 EXPORT_SYMBOL(ata_dev_printk);
7335
ata_print_version(const struct device * dev,const char * version)7336 void ata_print_version(const struct device *dev, const char *version)
7337 {
7338 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7339 }
7340 EXPORT_SYMBOL(ata_print_version);
7341
7342 /*
7343 * libata is essentially a library of internal helper functions for
7344 * low-level ATA host controller drivers. As such, the API/ABI is
7345 * likely to change as new drivers are added and updated.
7346 * Do not depend on ABI/API stability.
7347 */
7348 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7349 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7350 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7351 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7352 EXPORT_SYMBOL_GPL(sata_port_ops);
7353 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7354 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7355 EXPORT_SYMBOL_GPL(ata_link_next);
7356 EXPORT_SYMBOL_GPL(ata_dev_next);
7357 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7358 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7359 EXPORT_SYMBOL_GPL(ata_host_init);
7360 EXPORT_SYMBOL_GPL(ata_host_alloc);
7361 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7362 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7363 EXPORT_SYMBOL_GPL(ata_host_start);
7364 EXPORT_SYMBOL_GPL(ata_host_register);
7365 EXPORT_SYMBOL_GPL(ata_host_activate);
7366 EXPORT_SYMBOL_GPL(ata_host_detach);
7367 EXPORT_SYMBOL_GPL(ata_sg_init);
7368 EXPORT_SYMBOL_GPL(ata_qc_complete);
7369 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7370 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7371 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7372 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7373 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7374 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7375 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7376 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7377 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7378 EXPORT_SYMBOL_GPL(ata_mode_string);
7379 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7380 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7381 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7382 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7383 EXPORT_SYMBOL_GPL(ata_dev_disable);
7384 EXPORT_SYMBOL_GPL(sata_set_spd);
7385 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7386 EXPORT_SYMBOL_GPL(sata_link_debounce);
7387 EXPORT_SYMBOL_GPL(sata_link_resume);
7388 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7389 EXPORT_SYMBOL_GPL(ata_std_prereset);
7390 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7391 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7392 EXPORT_SYMBOL_GPL(ata_std_postreset);
7393 EXPORT_SYMBOL_GPL(ata_dev_classify);
7394 EXPORT_SYMBOL_GPL(ata_dev_pair);
7395 EXPORT_SYMBOL_GPL(ata_ratelimit);
7396 EXPORT_SYMBOL_GPL(ata_msleep);
7397 EXPORT_SYMBOL_GPL(ata_wait_register);
7398 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7399 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7400 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7401 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7402 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7403 EXPORT_SYMBOL_GPL(sata_scr_valid);
7404 EXPORT_SYMBOL_GPL(sata_scr_read);
7405 EXPORT_SYMBOL_GPL(sata_scr_write);
7406 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7407 EXPORT_SYMBOL_GPL(ata_link_online);
7408 EXPORT_SYMBOL_GPL(ata_link_offline);
7409 #ifdef CONFIG_PM
7410 EXPORT_SYMBOL_GPL(ata_host_suspend);
7411 EXPORT_SYMBOL_GPL(ata_host_resume);
7412 #endif /* CONFIG_PM */
7413 EXPORT_SYMBOL_GPL(ata_id_string);
7414 EXPORT_SYMBOL_GPL(ata_id_c_string);
7415 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7416 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7417
7418 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7419 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7420 EXPORT_SYMBOL_GPL(ata_timing_compute);
7421 EXPORT_SYMBOL_GPL(ata_timing_merge);
7422 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7423
7424 #ifdef CONFIG_PCI
7425 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7426 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
7427 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7428 #ifdef CONFIG_PM
7429 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7430 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7431 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7432 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7433 #endif /* CONFIG_PM */
7434 #endif /* CONFIG_PCI */
7435
7436 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7437
7438 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7439 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7440 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7441 EXPORT_SYMBOL_GPL(ata_port_desc);
7442 #ifdef CONFIG_PCI
7443 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7444 #endif /* CONFIG_PCI */
7445 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7446 EXPORT_SYMBOL_GPL(ata_link_abort);
7447 EXPORT_SYMBOL_GPL(ata_port_abort);
7448 EXPORT_SYMBOL_GPL(ata_port_freeze);
7449 EXPORT_SYMBOL_GPL(sata_async_notification);
7450 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7451 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7452 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7453 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7454 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7455 EXPORT_SYMBOL_GPL(ata_do_eh);
7456 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7457
7458 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7459 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7460 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7461 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7462 EXPORT_SYMBOL_GPL(ata_cable_sata);
7463 EXPORT_SYMBOL_GPL(ata_host_get);
7464 EXPORT_SYMBOL_GPL(ata_host_put);
7465