• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/driver-api/libata.rst
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41 
42 #include "libata.h"
43 
44 static struct workqueue_struct *ata_sff_wq;
45 
46 const struct ata_port_operations ata_sff_port_ops = {
47 	.inherits		= &ata_base_port_ops,
48 
49 	.qc_prep		= ata_noop_qc_prep,
50 	.qc_issue		= ata_sff_qc_issue,
51 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52 
53 	.freeze			= ata_sff_freeze,
54 	.thaw			= ata_sff_thaw,
55 	.prereset		= ata_sff_prereset,
56 	.softreset		= ata_sff_softreset,
57 	.hardreset		= sata_sff_hardreset,
58 	.postreset		= ata_sff_postreset,
59 	.error_handler		= ata_sff_error_handler,
60 
61 	.sff_dev_select		= ata_sff_dev_select,
62 	.sff_check_status	= ata_sff_check_status,
63 	.sff_tf_load		= ata_sff_tf_load,
64 	.sff_tf_read		= ata_sff_tf_read,
65 	.sff_exec_command	= ata_sff_exec_command,
66 	.sff_data_xfer		= ata_sff_data_xfer,
67 	.sff_drain_fifo		= ata_sff_drain_fifo,
68 
69 	.lost_interrupt		= ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 
73 /**
74  *	ata_sff_check_status - Read device status reg & clear interrupt
75  *	@ap: port where the device is
76  *
77  *	Reads ATA taskfile status register for currently-selected device
78  *	and return its value. This also clears pending interrupts
79  *      from this device
80  *
81  *	LOCKING:
82  *	Inherited from caller.
83  */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 	return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 
90 /**
91  *	ata_sff_altstatus - Read device alternate status reg
92  *	@ap: port where the device is
93  *
94  *	Reads ATA taskfile alternate status register for
95  *	currently-selected device and return its value.
96  *
97  *	Note: may NOT be used as the check_altstatus() entry in
98  *	ata_port_operations.
99  *
100  *	LOCKING:
101  *	Inherited from caller.
102  */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 	if (ap->ops->sff_check_altstatus)
106 		return ap->ops->sff_check_altstatus(ap);
107 
108 	return ioread8(ap->ioaddr.altstatus_addr);
109 }
110 
111 /**
112  *	ata_sff_irq_status - Check if the device is busy
113  *	@ap: port where the device is
114  *
115  *	Determine if the port is currently busy. Uses altstatus
116  *	if available in order to avoid clearing shared IRQ status
117  *	when finding an IRQ source. Non ctl capable devices don't
118  *	share interrupt lines fortunately for us.
119  *
120  *	LOCKING:
121  *	Inherited from caller.
122  */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 	u8 status;
126 
127 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 		status = ata_sff_altstatus(ap);
129 		/* Not us: We are busy */
130 		if (status & ATA_BUSY)
131 			return status;
132 	}
133 	/* Clear INTRQ latch */
134 	status = ap->ops->sff_check_status(ap);
135 	return status;
136 }
137 
138 /**
139  *	ata_sff_sync - Flush writes
140  *	@ap: Port to wait for.
141  *
142  *	CAUTION:
143  *	If we have an mmio device with no ctl and no altstatus
144  *	method this will fail. No such devices are known to exist.
145  *
146  *	LOCKING:
147  *	Inherited from caller.
148  */
149 
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 	if (ap->ops->sff_check_altstatus)
153 		ap->ops->sff_check_altstatus(ap);
154 	else if (ap->ioaddr.altstatus_addr)
155 		ioread8(ap->ioaddr.altstatus_addr);
156 }
157 
158 /**
159  *	ata_sff_pause		-	Flush writes and wait 400nS
160  *	@ap: Port to pause for.
161  *
162  *	CAUTION:
163  *	If we have an mmio device with no ctl and no altstatus
164  *	method this will fail. No such devices are known to exist.
165  *
166  *	LOCKING:
167  *	Inherited from caller.
168  */
169 
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 	ata_sff_sync(ap);
173 	ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176 
177 /**
178  *	ata_sff_dma_pause	-	Pause before commencing DMA
179  *	@ap: Port to pause for.
180  *
181  *	Perform I/O fencing and ensure sufficient cycle delays occur
182  *	for the HDMA1:0 transition
183  */
184 
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 		/* An altstatus read will cause the needed delay without
189 		   messing up the IRQ status */
190 		ata_sff_altstatus(ap);
191 		return;
192 	}
193 	/* There are no DMA controllers without ctl. BUG here to ensure
194 	   we never violate the HDMA1:0 transition timing and risk
195 	   corruption. */
196 	BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199 
200 /**
201  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202  *	@ap: port containing status register to be polled
203  *	@tmout_pat: impatience timeout in msecs
204  *	@tmout: overall timeout in msecs
205  *
206  *	Sleep until ATA Status register bit BSY clears,
207  *	or a timeout occurs.
208  *
209  *	LOCKING:
210  *	Kernel thread context (may sleep).
211  *
212  *	RETURNS:
213  *	0 on success, -errno otherwise.
214  */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 		       unsigned long tmout_pat, unsigned long tmout)
217 {
218 	unsigned long timer_start, timeout;
219 	u8 status;
220 
221 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 	timer_start = jiffies;
223 	timeout = ata_deadline(timer_start, tmout_pat);
224 	while (status != 0xff && (status & ATA_BUSY) &&
225 	       time_before(jiffies, timeout)) {
226 		ata_msleep(ap, 50);
227 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 	}
229 
230 	if (status != 0xff && (status & ATA_BUSY))
231 		ata_port_warn(ap,
232 			      "port is slow to respond, please be patient (Status 0x%x)\n",
233 			      status);
234 
235 	timeout = ata_deadline(timer_start, tmout);
236 	while (status != 0xff && (status & ATA_BUSY) &&
237 	       time_before(jiffies, timeout)) {
238 		ata_msleep(ap, 50);
239 		status = ap->ops->sff_check_status(ap);
240 	}
241 
242 	if (status == 0xff)
243 		return -ENODEV;
244 
245 	if (status & ATA_BUSY) {
246 		ata_port_err(ap,
247 			     "port failed to respond (%lu secs, Status 0x%x)\n",
248 			     DIV_ROUND_UP(tmout, 1000), status);
249 		return -EBUSY;
250 	}
251 
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 	u8 status = link->ap->ops->sff_check_status(link->ap);
259 
260 	return ata_check_ready(status);
261 }
262 
263 /**
264  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265  *	@link: SFF link to wait ready status for
266  *	@deadline: deadline jiffies for the operation
267  *
268  *	Sleep until ATA Status register bit BSY clears, or timeout
269  *	occurs.
270  *
271  *	LOCKING:
272  *	Kernel thread context (may sleep).
273  *
274  *	RETURNS:
275  *	0 on success, -errno otherwise.
276  */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282 
283 /**
284  *	ata_sff_set_devctl - Write device control reg
285  *	@ap: port where the device is
286  *	@ctl: value to write
287  *
288  *	Writes ATA taskfile device control register.
289  *
290  *	Note: may NOT be used as the sff_set_devctl() entry in
291  *	ata_port_operations.
292  *
293  *	LOCKING:
294  *	Inherited from caller.
295  */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 	if (ap->ops->sff_set_devctl)
299 		ap->ops->sff_set_devctl(ap, ctl);
300 	else
301 		iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303 
304 /**
305  *	ata_sff_dev_select - Select device 0/1 on ATA bus
306  *	@ap: ATA channel to manipulate
307  *	@device: ATA device (numbered from zero) to select
308  *
309  *	Use the method defined in the ATA specification to
310  *	make either device 0, or device 1, active on the
311  *	ATA channel.  Works with both PIO and MMIO.
312  *
313  *	May be used as the dev_select() entry in ata_port_operations.
314  *
315  *	LOCKING:
316  *	caller.
317  */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 	u8 tmp;
321 
322 	if (device == 0)
323 		tmp = ATA_DEVICE_OBS;
324 	else
325 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 
327 	iowrite8(tmp, ap->ioaddr.device_addr);
328 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331 
332 /**
333  *	ata_dev_select - Select device 0/1 on ATA bus
334  *	@ap: ATA channel to manipulate
335  *	@device: ATA device (numbered from zero) to select
336  *	@wait: non-zero to wait for Status register BSY bit to clear
337  *	@can_sleep: non-zero if context allows sleeping
338  *
339  *	Use the method defined in the ATA specification to
340  *	make either device 0, or device 1, active on the
341  *	ATA channel.
342  *
343  *	This is a high-level version of ata_sff_dev_select(), which
344  *	additionally provides the services of inserting the proper
345  *	pauses and status polling, where needed.
346  *
347  *	LOCKING:
348  *	caller.
349  */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 			   unsigned int wait, unsigned int can_sleep)
352 {
353 	if (ata_msg_probe(ap))
354 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 			      device, wait);
356 
357 	if (wait)
358 		ata_wait_idle(ap);
359 
360 	ap->ops->sff_dev_select(ap, device);
361 
362 	if (wait) {
363 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 			ata_msleep(ap, 150);
365 		ata_wait_idle(ap);
366 	}
367 }
368 
369 /**
370  *	ata_sff_irq_on - Enable interrupts on a port.
371  *	@ap: Port on which interrupts are enabled.
372  *
373  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374  *	wait for idle, clear any pending interrupts.
375  *
376  *	Note: may NOT be used as the sff_irq_on() entry in
377  *	ata_port_operations.
378  *
379  *	LOCKING:
380  *	Inherited from caller.
381  */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 	struct ata_ioports *ioaddr = &ap->ioaddr;
385 
386 	if (ap->ops->sff_irq_on) {
387 		ap->ops->sff_irq_on(ap);
388 		return;
389 	}
390 
391 	ap->ctl &= ~ATA_NIEN;
392 	ap->last_ctl = ap->ctl;
393 
394 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 		ata_sff_set_devctl(ap, ap->ctl);
396 	ata_wait_idle(ap);
397 
398 	if (ap->ops->sff_irq_clear)
399 		ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402 
403 /**
404  *	ata_sff_tf_load - send taskfile registers to host controller
405  *	@ap: Port to which output is sent
406  *	@tf: ATA taskfile register set
407  *
408  *	Outputs ATA taskfile to standard ATA host controller.
409  *
410  *	LOCKING:
411  *	Inherited from caller.
412  */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 	struct ata_ioports *ioaddr = &ap->ioaddr;
416 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 
418 	if (tf->ctl != ap->last_ctl) {
419 		if (ioaddr->ctl_addr)
420 			iowrite8(tf->ctl, ioaddr->ctl_addr);
421 		ap->last_ctl = tf->ctl;
422 		ata_wait_idle(ap);
423 	}
424 
425 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 		WARN_ON_ONCE(!ioaddr->ctl_addr);
427 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 			tf->hob_feature,
434 			tf->hob_nsect,
435 			tf->hob_lbal,
436 			tf->hob_lbam,
437 			tf->hob_lbah);
438 	}
439 
440 	if (is_addr) {
441 		iowrite8(tf->feature, ioaddr->feature_addr);
442 		iowrite8(tf->nsect, ioaddr->nsect_addr);
443 		iowrite8(tf->lbal, ioaddr->lbal_addr);
444 		iowrite8(tf->lbam, ioaddr->lbam_addr);
445 		iowrite8(tf->lbah, ioaddr->lbah_addr);
446 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 			tf->feature,
448 			tf->nsect,
449 			tf->lbal,
450 			tf->lbam,
451 			tf->lbah);
452 	}
453 
454 	if (tf->flags & ATA_TFLAG_DEVICE) {
455 		iowrite8(tf->device, ioaddr->device_addr);
456 		VPRINTK("device 0x%X\n", tf->device);
457 	}
458 
459 	ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462 
463 /**
464  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465  *	@ap: Port from which input is read
466  *	@tf: ATA taskfile register set for storing input
467  *
468  *	Reads ATA taskfile registers for currently-selected device
469  *	into @tf. Assumes the device has a fully SFF compliant task file
470  *	layout and behaviour. If you device does not (eg has a different
471  *	status method) then you will need to provide a replacement tf_read
472  *
473  *	LOCKING:
474  *	Inherited from caller.
475  */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 	struct ata_ioports *ioaddr = &ap->ioaddr;
479 
480 	tf->command = ata_sff_check_status(ap);
481 	tf->feature = ioread8(ioaddr->error_addr);
482 	tf->nsect = ioread8(ioaddr->nsect_addr);
483 	tf->lbal = ioread8(ioaddr->lbal_addr);
484 	tf->lbam = ioread8(ioaddr->lbam_addr);
485 	tf->lbah = ioread8(ioaddr->lbah_addr);
486 	tf->device = ioread8(ioaddr->device_addr);
487 
488 	if (tf->flags & ATA_TFLAG_LBA48) {
489 		if (likely(ioaddr->ctl_addr)) {
490 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 			tf->hob_feature = ioread8(ioaddr->error_addr);
492 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 			iowrite8(tf->ctl, ioaddr->ctl_addr);
497 			ap->last_ctl = tf->ctl;
498 		} else
499 			WARN_ON_ONCE(1);
500 	}
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503 
504 /**
505  *	ata_sff_exec_command - issue ATA command to host controller
506  *	@ap: port to which command is being issued
507  *	@tf: ATA taskfile register set
508  *
509  *	Issues ATA command, with proper synchronization with interrupt
510  *	handler / other threads.
511  *
512  *	LOCKING:
513  *	spin_lock_irqsave(host lock)
514  */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 
519 	iowrite8(tf->command, ap->ioaddr.command_addr);
520 	ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523 
524 /**
525  *	ata_tf_to_host - issue ATA taskfile to host controller
526  *	@ap: port to which command is being issued
527  *	@tf: ATA taskfile register set
528  *
529  *	Issues ATA taskfile register set to ATA host controller,
530  *	with proper synchronization with interrupt handler and
531  *	other threads.
532  *
533  *	LOCKING:
534  *	spin_lock_irqsave(host lock)
535  */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 				  const struct ata_taskfile *tf)
538 {
539 	ap->ops->sff_tf_load(ap, tf);
540 	ap->ops->sff_exec_command(ap, tf);
541 }
542 
543 /**
544  *	ata_sff_data_xfer - Transfer data by PIO
545  *	@qc: queued command
546  *	@buf: data buffer
547  *	@buflen: buffer length
548  *	@rw: read/write
549  *
550  *	Transfer data from/to the device data register by PIO.
551  *
552  *	LOCKING:
553  *	Inherited from caller.
554  *
555  *	RETURNS:
556  *	Bytes consumed.
557  */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
559 			       unsigned int buflen, int rw)
560 {
561 	struct ata_port *ap = qc->dev->link->ap;
562 	void __iomem *data_addr = ap->ioaddr.data_addr;
563 	unsigned int words = buflen >> 1;
564 
565 	/* Transfer multiple of 2 bytes */
566 	if (rw == READ)
567 		ioread16_rep(data_addr, buf, words);
568 	else
569 		iowrite16_rep(data_addr, buf, words);
570 
571 	/* Transfer trailing byte, if any. */
572 	if (unlikely(buflen & 0x01)) {
573 		unsigned char pad[2] = { };
574 
575 		/* Point buf to the tail of buffer */
576 		buf += buflen - 1;
577 
578 		/*
579 		 * Use io*16_rep() accessors here as well to avoid pointlessly
580 		 * swapping bytes to and from on the big endian machines...
581 		 */
582 		if (rw == READ) {
583 			ioread16_rep(data_addr, pad, 1);
584 			*buf = pad[0];
585 		} else {
586 			pad[0] = *buf;
587 			iowrite16_rep(data_addr, pad, 1);
588 		}
589 		words++;
590 	}
591 
592 	return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595 
596 /**
597  *	ata_sff_data_xfer32 - Transfer data by PIO
598  *	@qc: queued command
599  *	@buf: data buffer
600  *	@buflen: buffer length
601  *	@rw: read/write
602  *
603  *	Transfer data from/to the device data register by PIO using 32bit
604  *	I/O operations.
605  *
606  *	LOCKING:
607  *	Inherited from caller.
608  *
609  *	RETURNS:
610  *	Bytes consumed.
611  */
612 
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
614 			       unsigned int buflen, int rw)
615 {
616 	struct ata_device *dev = qc->dev;
617 	struct ata_port *ap = dev->link->ap;
618 	void __iomem *data_addr = ap->ioaddr.data_addr;
619 	unsigned int words = buflen >> 2;
620 	int slop = buflen & 3;
621 
622 	if (!(ap->pflags & ATA_PFLAG_PIO32))
623 		return ata_sff_data_xfer(qc, buf, buflen, rw);
624 
625 	/* Transfer multiple of 4 bytes */
626 	if (rw == READ)
627 		ioread32_rep(data_addr, buf, words);
628 	else
629 		iowrite32_rep(data_addr, buf, words);
630 
631 	/* Transfer trailing bytes, if any */
632 	if (unlikely(slop)) {
633 		unsigned char pad[4] = { };
634 
635 		/* Point buf to the tail of buffer */
636 		buf += buflen - slop;
637 
638 		/*
639 		 * Use io*_rep() accessors here as well to avoid pointlessly
640 		 * swapping bytes to and from on the big endian machines...
641 		 */
642 		if (rw == READ) {
643 			if (slop < 3)
644 				ioread16_rep(data_addr, pad, 1);
645 			else
646 				ioread32_rep(data_addr, pad, 1);
647 			memcpy(buf, pad, slop);
648 		} else {
649 			memcpy(pad, buf, slop);
650 			if (slop < 3)
651 				iowrite16_rep(data_addr, pad, 1);
652 			else
653 				iowrite32_rep(data_addr, pad, 1);
654 		}
655 	}
656 	return (buflen + 1) & ~1;
657 }
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659 
660 /**
661  *	ata_pio_sector - Transfer a sector of data.
662  *	@qc: Command on going
663  *
664  *	Transfer qc->sect_size bytes of data from/to the ATA device.
665  *
666  *	LOCKING:
667  *	Inherited from caller.
668  */
ata_pio_sector(struct ata_queued_cmd * qc)669 static void ata_pio_sector(struct ata_queued_cmd *qc)
670 {
671 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
672 	struct ata_port *ap = qc->ap;
673 	struct page *page;
674 	unsigned int offset;
675 	unsigned char *buf;
676 
677 	if (!qc->cursg) {
678 		qc->curbytes = qc->nbytes;
679 		return;
680 	}
681 	if (qc->curbytes == qc->nbytes - qc->sect_size)
682 		ap->hsm_task_state = HSM_ST_LAST;
683 
684 	page = sg_page(qc->cursg);
685 	offset = qc->cursg->offset + qc->cursg_ofs;
686 
687 	/* get the current page and offset */
688 	page = nth_page(page, (offset >> PAGE_SHIFT));
689 	offset %= PAGE_SIZE;
690 
691 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
692 
693 	/* do the actual data transfer */
694 	buf = kmap_atomic(page);
695 	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
696 	kunmap_atomic(buf);
697 
698 	if (!do_write && !PageSlab(page))
699 		flush_dcache_page(page);
700 
701 	qc->curbytes += qc->sect_size;
702 	qc->cursg_ofs += qc->sect_size;
703 
704 	if (qc->cursg_ofs == qc->cursg->length) {
705 		qc->cursg = sg_next(qc->cursg);
706 		if (!qc->cursg)
707 			ap->hsm_task_state = HSM_ST_LAST;
708 		qc->cursg_ofs = 0;
709 	}
710 }
711 
712 /**
713  *	ata_pio_sectors - Transfer one or many sectors.
714  *	@qc: Command on going
715  *
716  *	Transfer one or many sectors of data from/to the
717  *	ATA device for the DRQ request.
718  *
719  *	LOCKING:
720  *	Inherited from caller.
721  */
ata_pio_sectors(struct ata_queued_cmd * qc)722 static void ata_pio_sectors(struct ata_queued_cmd *qc)
723 {
724 	if (is_multi_taskfile(&qc->tf)) {
725 		/* READ/WRITE MULTIPLE */
726 		unsigned int nsect;
727 
728 		WARN_ON_ONCE(qc->dev->multi_count == 0);
729 
730 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
731 			    qc->dev->multi_count);
732 		while (nsect--)
733 			ata_pio_sector(qc);
734 	} else
735 		ata_pio_sector(qc);
736 
737 	ata_sff_sync(qc->ap); /* flush */
738 }
739 
740 /**
741  *	atapi_send_cdb - Write CDB bytes to hardware
742  *	@ap: Port to which ATAPI device is attached.
743  *	@qc: Taskfile currently active
744  *
745  *	When device has indicated its readiness to accept
746  *	a CDB, this function is called.  Send the CDB.
747  *
748  *	LOCKING:
749  *	caller.
750  */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)751 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
752 {
753 	/* send SCSI cdb */
754 	DPRINTK("send cdb\n");
755 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
756 
757 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
758 	ata_sff_sync(ap);
759 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
760 	   or is bmdma_start guaranteed to do it ? */
761 	switch (qc->tf.protocol) {
762 	case ATAPI_PROT_PIO:
763 		ap->hsm_task_state = HSM_ST;
764 		break;
765 	case ATAPI_PROT_NODATA:
766 		ap->hsm_task_state = HSM_ST_LAST;
767 		break;
768 #ifdef CONFIG_ATA_BMDMA
769 	case ATAPI_PROT_DMA:
770 		ap->hsm_task_state = HSM_ST_LAST;
771 		/* initiate bmdma */
772 		ap->ops->bmdma_start(qc);
773 		break;
774 #endif /* CONFIG_ATA_BMDMA */
775 	default:
776 		BUG();
777 	}
778 }
779 
780 /**
781  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
782  *	@qc: Command on going
783  *	@bytes: number of bytes
784  *
785  *	Transfer Transfer data from/to the ATAPI device.
786  *
787  *	LOCKING:
788  *	Inherited from caller.
789  *
790  */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)791 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
792 {
793 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
794 	struct ata_port *ap = qc->ap;
795 	struct ata_device *dev = qc->dev;
796 	struct ata_eh_info *ehi = &dev->link->eh_info;
797 	struct scatterlist *sg;
798 	struct page *page;
799 	unsigned char *buf;
800 	unsigned int offset, count, consumed;
801 
802 next_sg:
803 	sg = qc->cursg;
804 	if (unlikely(!sg)) {
805 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
806 				  "buf=%u cur=%u bytes=%u",
807 				  qc->nbytes, qc->curbytes, bytes);
808 		return -1;
809 	}
810 
811 	page = sg_page(sg);
812 	offset = sg->offset + qc->cursg_ofs;
813 
814 	/* get the current page and offset */
815 	page = nth_page(page, (offset >> PAGE_SHIFT));
816 	offset %= PAGE_SIZE;
817 
818 	/* don't overrun current sg */
819 	count = min(sg->length - qc->cursg_ofs, bytes);
820 
821 	/* don't cross page boundaries */
822 	count = min(count, (unsigned int)PAGE_SIZE - offset);
823 
824 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
825 
826 	/* do the actual data transfer */
827 	buf = kmap_atomic(page);
828 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
829 	kunmap_atomic(buf);
830 
831 	bytes -= min(bytes, consumed);
832 	qc->curbytes += count;
833 	qc->cursg_ofs += count;
834 
835 	if (qc->cursg_ofs == sg->length) {
836 		qc->cursg = sg_next(qc->cursg);
837 		qc->cursg_ofs = 0;
838 	}
839 
840 	/*
841 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
842 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
843 	 * check correctly as it doesn't know if it is the last request being
844 	 * made. Somebody should implement a proper sanity check.
845 	 */
846 	if (bytes)
847 		goto next_sg;
848 	return 0;
849 }
850 
851 /**
852  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
853  *	@qc: Command on going
854  *
855  *	Transfer Transfer data from/to the ATAPI device.
856  *
857  *	LOCKING:
858  *	Inherited from caller.
859  */
atapi_pio_bytes(struct ata_queued_cmd * qc)860 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
861 {
862 	struct ata_port *ap = qc->ap;
863 	struct ata_device *dev = qc->dev;
864 	struct ata_eh_info *ehi = &dev->link->eh_info;
865 	unsigned int ireason, bc_lo, bc_hi, bytes;
866 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
867 
868 	/* Abuse qc->result_tf for temp storage of intermediate TF
869 	 * here to save some kernel stack usage.
870 	 * For normal completion, qc->result_tf is not relevant. For
871 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
872 	 * So, the correctness of qc->result_tf is not affected.
873 	 */
874 	ap->ops->sff_tf_read(ap, &qc->result_tf);
875 	ireason = qc->result_tf.nsect;
876 	bc_lo = qc->result_tf.lbam;
877 	bc_hi = qc->result_tf.lbah;
878 	bytes = (bc_hi << 8) | bc_lo;
879 
880 	/* shall be cleared to zero, indicating xfer of data */
881 	if (unlikely(ireason & ATAPI_COD))
882 		goto atapi_check;
883 
884 	/* make sure transfer direction matches expected */
885 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
886 	if (unlikely(do_write != i_write))
887 		goto atapi_check;
888 
889 	if (unlikely(!bytes))
890 		goto atapi_check;
891 
892 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
893 
894 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
895 		goto err_out;
896 	ata_sff_sync(ap); /* flush */
897 
898 	return;
899 
900  atapi_check:
901 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
902 			  ireason, bytes);
903  err_out:
904 	qc->err_mask |= AC_ERR_HSM;
905 	ap->hsm_task_state = HSM_ST_ERR;
906 }
907 
908 /**
909  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
910  *	@ap: the target ata_port
911  *	@qc: qc on going
912  *
913  *	RETURNS:
914  *	1 if ok in workqueue, 0 otherwise.
915  */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)916 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
917 						struct ata_queued_cmd *qc)
918 {
919 	if (qc->tf.flags & ATA_TFLAG_POLLING)
920 		return 1;
921 
922 	if (ap->hsm_task_state == HSM_ST_FIRST) {
923 		if (qc->tf.protocol == ATA_PROT_PIO &&
924 		   (qc->tf.flags & ATA_TFLAG_WRITE))
925 		    return 1;
926 
927 		if (ata_is_atapi(qc->tf.protocol) &&
928 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
929 			return 1;
930 	}
931 
932 	return 0;
933 }
934 
935 /**
936  *	ata_hsm_qc_complete - finish a qc running on standard HSM
937  *	@qc: Command to complete
938  *	@in_wq: 1 if called from workqueue, 0 otherwise
939  *
940  *	Finish @qc which is running on standard HSM.
941  *
942  *	LOCKING:
943  *	If @in_wq is zero, spin_lock_irqsave(host lock).
944  *	Otherwise, none on entry and grabs host lock.
945  */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)946 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
947 {
948 	struct ata_port *ap = qc->ap;
949 
950 	if (ap->ops->error_handler) {
951 		if (in_wq) {
952 			/* EH might have kicked in while host lock is
953 			 * released.
954 			 */
955 			qc = ata_qc_from_tag(ap, qc->tag);
956 			if (qc) {
957 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
958 					ata_sff_irq_on(ap);
959 					ata_qc_complete(qc);
960 				} else
961 					ata_port_freeze(ap);
962 			}
963 		} else {
964 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
965 				ata_qc_complete(qc);
966 			else
967 				ata_port_freeze(ap);
968 		}
969 	} else {
970 		if (in_wq) {
971 			ata_sff_irq_on(ap);
972 			ata_qc_complete(qc);
973 		} else
974 			ata_qc_complete(qc);
975 	}
976 }
977 
978 /**
979  *	ata_sff_hsm_move - move the HSM to the next state.
980  *	@ap: the target ata_port
981  *	@qc: qc on going
982  *	@status: current device status
983  *	@in_wq: 1 if called from workqueue, 0 otherwise
984  *
985  *	RETURNS:
986  *	1 when poll next status needed, 0 otherwise.
987  */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)988 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
989 		     u8 status, int in_wq)
990 {
991 	struct ata_link *link = qc->dev->link;
992 	struct ata_eh_info *ehi = &link->eh_info;
993 	int poll_next;
994 
995 	lockdep_assert_held(ap->lock);
996 
997 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
998 
999 	/* Make sure ata_sff_qc_issue() does not throw things
1000 	 * like DMA polling into the workqueue. Notice that
1001 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1002 	 */
1003 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1004 
1005 fsm_start:
1006 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1007 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1008 
1009 	switch (ap->hsm_task_state) {
1010 	case HSM_ST_FIRST:
1011 		/* Send first data block or PACKET CDB */
1012 
1013 		/* If polling, we will stay in the work queue after
1014 		 * sending the data. Otherwise, interrupt handler
1015 		 * takes over after sending the data.
1016 		 */
1017 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1018 
1019 		/* check device status */
1020 		if (unlikely((status & ATA_DRQ) == 0)) {
1021 			/* handle BSY=0, DRQ=0 as error */
1022 			if (likely(status & (ATA_ERR | ATA_DF)))
1023 				/* device stops HSM for abort/error */
1024 				qc->err_mask |= AC_ERR_DEV;
1025 			else {
1026 				/* HSM violation. Let EH handle this */
1027 				ata_ehi_push_desc(ehi,
1028 					"ST_FIRST: !(DRQ|ERR|DF)");
1029 				qc->err_mask |= AC_ERR_HSM;
1030 			}
1031 
1032 			ap->hsm_task_state = HSM_ST_ERR;
1033 			goto fsm_start;
1034 		}
1035 
1036 		/* Device should not ask for data transfer (DRQ=1)
1037 		 * when it finds something wrong.
1038 		 * We ignore DRQ here and stop the HSM by
1039 		 * changing hsm_task_state to HSM_ST_ERR and
1040 		 * let the EH abort the command or reset the device.
1041 		 */
1042 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1043 			/* Some ATAPI tape drives forget to clear the ERR bit
1044 			 * when doing the next command (mostly request sense).
1045 			 * We ignore ERR here to workaround and proceed sending
1046 			 * the CDB.
1047 			 */
1048 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1049 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1050 					"DRQ=1 with device error, "
1051 					"dev_stat 0x%X", status);
1052 				qc->err_mask |= AC_ERR_HSM;
1053 				ap->hsm_task_state = HSM_ST_ERR;
1054 				goto fsm_start;
1055 			}
1056 		}
1057 
1058 		if (qc->tf.protocol == ATA_PROT_PIO) {
1059 			/* PIO data out protocol.
1060 			 * send first data block.
1061 			 */
1062 
1063 			/* ata_pio_sectors() might change the state
1064 			 * to HSM_ST_LAST. so, the state is changed here
1065 			 * before ata_pio_sectors().
1066 			 */
1067 			ap->hsm_task_state = HSM_ST;
1068 			ata_pio_sectors(qc);
1069 		} else
1070 			/* send CDB */
1071 			atapi_send_cdb(ap, qc);
1072 
1073 		/* if polling, ata_sff_pio_task() handles the rest.
1074 		 * otherwise, interrupt handler takes over from here.
1075 		 */
1076 		break;
1077 
1078 	case HSM_ST:
1079 		/* complete command or read/write the data register */
1080 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1081 			/* ATAPI PIO protocol */
1082 			if ((status & ATA_DRQ) == 0) {
1083 				/* No more data to transfer or device error.
1084 				 * Device error will be tagged in HSM_ST_LAST.
1085 				 */
1086 				ap->hsm_task_state = HSM_ST_LAST;
1087 				goto fsm_start;
1088 			}
1089 
1090 			/* Device should not ask for data transfer (DRQ=1)
1091 			 * when it finds something wrong.
1092 			 * We ignore DRQ here and stop the HSM by
1093 			 * changing hsm_task_state to HSM_ST_ERR and
1094 			 * let the EH abort the command or reset the device.
1095 			 */
1096 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1097 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1098 					"DRQ=1 with device error, "
1099 					"dev_stat 0x%X", status);
1100 				qc->err_mask |= AC_ERR_HSM;
1101 				ap->hsm_task_state = HSM_ST_ERR;
1102 				goto fsm_start;
1103 			}
1104 
1105 			atapi_pio_bytes(qc);
1106 
1107 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1108 				/* bad ireason reported by device */
1109 				goto fsm_start;
1110 
1111 		} else {
1112 			/* ATA PIO protocol */
1113 			if (unlikely((status & ATA_DRQ) == 0)) {
1114 				/* handle BSY=0, DRQ=0 as error */
1115 				if (likely(status & (ATA_ERR | ATA_DF))) {
1116 					/* device stops HSM for abort/error */
1117 					qc->err_mask |= AC_ERR_DEV;
1118 
1119 					/* If diagnostic failed and this is
1120 					 * IDENTIFY, it's likely a phantom
1121 					 * device.  Mark hint.
1122 					 */
1123 					if (qc->dev->horkage &
1124 					    ATA_HORKAGE_DIAGNOSTIC)
1125 						qc->err_mask |=
1126 							AC_ERR_NODEV_HINT;
1127 				} else {
1128 					/* HSM violation. Let EH handle this.
1129 					 * Phantom devices also trigger this
1130 					 * condition.  Mark hint.
1131 					 */
1132 					ata_ehi_push_desc(ehi, "ST-ATA: "
1133 						"DRQ=0 without device error, "
1134 						"dev_stat 0x%X", status);
1135 					qc->err_mask |= AC_ERR_HSM |
1136 							AC_ERR_NODEV_HINT;
1137 				}
1138 
1139 				ap->hsm_task_state = HSM_ST_ERR;
1140 				goto fsm_start;
1141 			}
1142 
1143 			/* For PIO reads, some devices may ask for
1144 			 * data transfer (DRQ=1) alone with ERR=1.
1145 			 * We respect DRQ here and transfer one
1146 			 * block of junk data before changing the
1147 			 * hsm_task_state to HSM_ST_ERR.
1148 			 *
1149 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1150 			 * sense since the data block has been
1151 			 * transferred to the device.
1152 			 */
1153 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1154 				/* data might be corrputed */
1155 				qc->err_mask |= AC_ERR_DEV;
1156 
1157 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1158 					ata_pio_sectors(qc);
1159 					status = ata_wait_idle(ap);
1160 				}
1161 
1162 				if (status & (ATA_BUSY | ATA_DRQ)) {
1163 					ata_ehi_push_desc(ehi, "ST-ATA: "
1164 						"BUSY|DRQ persists on ERR|DF, "
1165 						"dev_stat 0x%X", status);
1166 					qc->err_mask |= AC_ERR_HSM;
1167 				}
1168 
1169 				/* There are oddball controllers with
1170 				 * status register stuck at 0x7f and
1171 				 * lbal/m/h at zero which makes it
1172 				 * pass all other presence detection
1173 				 * mechanisms we have.  Set NODEV_HINT
1174 				 * for it.  Kernel bz#7241.
1175 				 */
1176 				if (status == 0x7f)
1177 					qc->err_mask |= AC_ERR_NODEV_HINT;
1178 
1179 				/* ata_pio_sectors() might change the
1180 				 * state to HSM_ST_LAST. so, the state
1181 				 * is changed after ata_pio_sectors().
1182 				 */
1183 				ap->hsm_task_state = HSM_ST_ERR;
1184 				goto fsm_start;
1185 			}
1186 
1187 			ata_pio_sectors(qc);
1188 
1189 			if (ap->hsm_task_state == HSM_ST_LAST &&
1190 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1191 				/* all data read */
1192 				status = ata_wait_idle(ap);
1193 				goto fsm_start;
1194 			}
1195 		}
1196 
1197 		poll_next = 1;
1198 		break;
1199 
1200 	case HSM_ST_LAST:
1201 		if (unlikely(!ata_ok(status))) {
1202 			qc->err_mask |= __ac_err_mask(status);
1203 			ap->hsm_task_state = HSM_ST_ERR;
1204 			goto fsm_start;
1205 		}
1206 
1207 		/* no more data to transfer */
1208 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1209 			ap->print_id, qc->dev->devno, status);
1210 
1211 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1212 
1213 		ap->hsm_task_state = HSM_ST_IDLE;
1214 
1215 		/* complete taskfile transaction */
1216 		ata_hsm_qc_complete(qc, in_wq);
1217 
1218 		poll_next = 0;
1219 		break;
1220 
1221 	case HSM_ST_ERR:
1222 		ap->hsm_task_state = HSM_ST_IDLE;
1223 
1224 		/* complete taskfile transaction */
1225 		ata_hsm_qc_complete(qc, in_wq);
1226 
1227 		poll_next = 0;
1228 		break;
1229 	default:
1230 		poll_next = 0;
1231 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1232 		     ap->print_id, ap->hsm_task_state);
1233 	}
1234 
1235 	return poll_next;
1236 }
1237 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1238 
ata_sff_queue_work(struct work_struct * work)1239 void ata_sff_queue_work(struct work_struct *work)
1240 {
1241 	queue_work(ata_sff_wq, work);
1242 }
1243 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1244 
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1245 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1246 {
1247 	queue_delayed_work(ata_sff_wq, dwork, delay);
1248 }
1249 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1250 
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1251 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1252 {
1253 	struct ata_port *ap = link->ap;
1254 
1255 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1256 		(ap->sff_pio_task_link != link));
1257 	ap->sff_pio_task_link = link;
1258 
1259 	/* may fail if ata_sff_flush_pio_task() in progress */
1260 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1261 }
1262 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1263 
ata_sff_flush_pio_task(struct ata_port * ap)1264 void ata_sff_flush_pio_task(struct ata_port *ap)
1265 {
1266 	DPRINTK("ENTER\n");
1267 
1268 	cancel_delayed_work_sync(&ap->sff_pio_task);
1269 
1270 	/*
1271 	 * We wanna reset the HSM state to IDLE.  If we do so without
1272 	 * grabbing the port lock, critical sections protected by it which
1273 	 * expect the HSM state to stay stable may get surprised.  For
1274 	 * example, we may set IDLE in between the time
1275 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1276 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1277 	 */
1278 	spin_lock_irq(ap->lock);
1279 	ap->hsm_task_state = HSM_ST_IDLE;
1280 	spin_unlock_irq(ap->lock);
1281 
1282 	ap->sff_pio_task_link = NULL;
1283 
1284 	if (ata_msg_ctl(ap))
1285 		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1286 }
1287 
ata_sff_pio_task(struct work_struct * work)1288 static void ata_sff_pio_task(struct work_struct *work)
1289 {
1290 	struct ata_port *ap =
1291 		container_of(work, struct ata_port, sff_pio_task.work);
1292 	struct ata_link *link = ap->sff_pio_task_link;
1293 	struct ata_queued_cmd *qc;
1294 	u8 status;
1295 	int poll_next;
1296 
1297 	spin_lock_irq(ap->lock);
1298 
1299 	BUG_ON(ap->sff_pio_task_link == NULL);
1300 	/* qc can be NULL if timeout occurred */
1301 	qc = ata_qc_from_tag(ap, link->active_tag);
1302 	if (!qc) {
1303 		ap->sff_pio_task_link = NULL;
1304 		goto out_unlock;
1305 	}
1306 
1307 fsm_start:
1308 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1309 
1310 	/*
1311 	 * This is purely heuristic.  This is a fast path.
1312 	 * Sometimes when we enter, BSY will be cleared in
1313 	 * a chk-status or two.  If not, the drive is probably seeking
1314 	 * or something.  Snooze for a couple msecs, then
1315 	 * chk-status again.  If still busy, queue delayed work.
1316 	 */
1317 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1318 	if (status & ATA_BUSY) {
1319 		spin_unlock_irq(ap->lock);
1320 		ata_msleep(ap, 2);
1321 		spin_lock_irq(ap->lock);
1322 
1323 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1324 		if (status & ATA_BUSY) {
1325 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1326 			goto out_unlock;
1327 		}
1328 	}
1329 
1330 	/*
1331 	 * hsm_move() may trigger another command to be processed.
1332 	 * clean the link beforehand.
1333 	 */
1334 	ap->sff_pio_task_link = NULL;
1335 	/* move the HSM */
1336 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1337 
1338 	/* another command or interrupt handler
1339 	 * may be running at this point.
1340 	 */
1341 	if (poll_next)
1342 		goto fsm_start;
1343 out_unlock:
1344 	spin_unlock_irq(ap->lock);
1345 }
1346 
1347 /**
1348  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1349  *	@qc: command to issue to device
1350  *
1351  *	This function issues a PIO or NODATA command to a SFF
1352  *	controller.
1353  *
1354  *	LOCKING:
1355  *	spin_lock_irqsave(host lock)
1356  *
1357  *	RETURNS:
1358  *	Zero on success, AC_ERR_* mask on failure
1359  */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1360 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1361 {
1362 	struct ata_port *ap = qc->ap;
1363 	struct ata_link *link = qc->dev->link;
1364 
1365 	/* Use polling pio if the LLD doesn't handle
1366 	 * interrupt driven pio and atapi CDB interrupt.
1367 	 */
1368 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1369 		qc->tf.flags |= ATA_TFLAG_POLLING;
1370 
1371 	/* select the device */
1372 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1373 
1374 	/* start the command */
1375 	switch (qc->tf.protocol) {
1376 	case ATA_PROT_NODATA:
1377 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1378 			ata_qc_set_polling(qc);
1379 
1380 		ata_tf_to_host(ap, &qc->tf);
1381 		ap->hsm_task_state = HSM_ST_LAST;
1382 
1383 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1384 			ata_sff_queue_pio_task(link, 0);
1385 
1386 		break;
1387 
1388 	case ATA_PROT_PIO:
1389 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1390 			ata_qc_set_polling(qc);
1391 
1392 		ata_tf_to_host(ap, &qc->tf);
1393 
1394 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1395 			/* PIO data out protocol */
1396 			ap->hsm_task_state = HSM_ST_FIRST;
1397 			ata_sff_queue_pio_task(link, 0);
1398 
1399 			/* always send first data block using the
1400 			 * ata_sff_pio_task() codepath.
1401 			 */
1402 		} else {
1403 			/* PIO data in protocol */
1404 			ap->hsm_task_state = HSM_ST;
1405 
1406 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1407 				ata_sff_queue_pio_task(link, 0);
1408 
1409 			/* if polling, ata_sff_pio_task() handles the
1410 			 * rest.  otherwise, interrupt handler takes
1411 			 * over from here.
1412 			 */
1413 		}
1414 
1415 		break;
1416 
1417 	case ATAPI_PROT_PIO:
1418 	case ATAPI_PROT_NODATA:
1419 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1420 			ata_qc_set_polling(qc);
1421 
1422 		ata_tf_to_host(ap, &qc->tf);
1423 
1424 		ap->hsm_task_state = HSM_ST_FIRST;
1425 
1426 		/* send cdb by polling if no cdb interrupt */
1427 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1428 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1429 			ata_sff_queue_pio_task(link, 0);
1430 		break;
1431 
1432 	default:
1433 		return AC_ERR_SYSTEM;
1434 	}
1435 
1436 	return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1439 
1440 /**
1441  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1442  *	@qc: qc to fill result TF for
1443  *
1444  *	@qc is finished and result TF needs to be filled.  Fill it
1445  *	using ->sff_tf_read.
1446  *
1447  *	LOCKING:
1448  *	spin_lock_irqsave(host lock)
1449  *
1450  *	RETURNS:
1451  *	true indicating that result TF is successfully filled.
1452  */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1453 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1454 {
1455 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1456 	return true;
1457 }
1458 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1459 
ata_sff_idle_irq(struct ata_port * ap)1460 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1461 {
1462 	ap->stats.idle_irq++;
1463 
1464 #ifdef ATA_IRQ_TRAP
1465 	if ((ap->stats.idle_irq % 1000) == 0) {
1466 		ap->ops->sff_check_status(ap);
1467 		if (ap->ops->sff_irq_clear)
1468 			ap->ops->sff_irq_clear(ap);
1469 		ata_port_warn(ap, "irq trap\n");
1470 		return 1;
1471 	}
1472 #endif
1473 	return 0;	/* irq not handled */
1474 }
1475 
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1476 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1477 					struct ata_queued_cmd *qc,
1478 					bool hsmv_on_idle)
1479 {
1480 	u8 status;
1481 
1482 	VPRINTK("ata%u: protocol %d task_state %d\n",
1483 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1484 
1485 	/* Check whether we are expecting interrupt in this state */
1486 	switch (ap->hsm_task_state) {
1487 	case HSM_ST_FIRST:
1488 		/* Some pre-ATAPI-4 devices assert INTRQ
1489 		 * at this state when ready to receive CDB.
1490 		 */
1491 
1492 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1493 		 * The flag was turned on only for atapi devices.  No
1494 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1495 		 */
1496 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1497 			return ata_sff_idle_irq(ap);
1498 		break;
1499 	case HSM_ST_IDLE:
1500 		return ata_sff_idle_irq(ap);
1501 	default:
1502 		break;
1503 	}
1504 
1505 	/* check main status, clearing INTRQ if needed */
1506 	status = ata_sff_irq_status(ap);
1507 	if (status & ATA_BUSY) {
1508 		if (hsmv_on_idle) {
1509 			/* BMDMA engine is already stopped, we're screwed */
1510 			qc->err_mask |= AC_ERR_HSM;
1511 			ap->hsm_task_state = HSM_ST_ERR;
1512 		} else
1513 			return ata_sff_idle_irq(ap);
1514 	}
1515 
1516 	/* clear irq events */
1517 	if (ap->ops->sff_irq_clear)
1518 		ap->ops->sff_irq_clear(ap);
1519 
1520 	ata_sff_hsm_move(ap, qc, status, 0);
1521 
1522 	return 1;	/* irq handled */
1523 }
1524 
1525 /**
1526  *	ata_sff_port_intr - Handle SFF port interrupt
1527  *	@ap: Port on which interrupt arrived (possibly...)
1528  *	@qc: Taskfile currently active in engine
1529  *
1530  *	Handle port interrupt for given queued command.
1531  *
1532  *	LOCKING:
1533  *	spin_lock_irqsave(host lock)
1534  *
1535  *	RETURNS:
1536  *	One if interrupt was handled, zero if not (shared irq).
1537  */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1538 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1539 {
1540 	return __ata_sff_port_intr(ap, qc, false);
1541 }
1542 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1543 
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1544 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1545 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1546 {
1547 	struct ata_host *host = dev_instance;
1548 	bool retried = false;
1549 	unsigned int i;
1550 	unsigned int handled, idle, polling;
1551 	unsigned long flags;
1552 
1553 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1554 	spin_lock_irqsave(&host->lock, flags);
1555 
1556 retry:
1557 	handled = idle = polling = 0;
1558 	for (i = 0; i < host->n_ports; i++) {
1559 		struct ata_port *ap = host->ports[i];
1560 		struct ata_queued_cmd *qc;
1561 
1562 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1563 		if (qc) {
1564 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1565 				handled |= port_intr(ap, qc);
1566 			else
1567 				polling |= 1 << i;
1568 		} else
1569 			idle |= 1 << i;
1570 	}
1571 
1572 	/*
1573 	 * If no port was expecting IRQ but the controller is actually
1574 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1575 	 * pending status if available and clear spurious IRQ.
1576 	 */
1577 	if (!handled && !retried) {
1578 		bool retry = false;
1579 
1580 		for (i = 0; i < host->n_ports; i++) {
1581 			struct ata_port *ap = host->ports[i];
1582 
1583 			if (polling & (1 << i))
1584 				continue;
1585 
1586 			if (!ap->ops->sff_irq_check ||
1587 			    !ap->ops->sff_irq_check(ap))
1588 				continue;
1589 
1590 			if (idle & (1 << i)) {
1591 				ap->ops->sff_check_status(ap);
1592 				if (ap->ops->sff_irq_clear)
1593 					ap->ops->sff_irq_clear(ap);
1594 			} else {
1595 				/* clear INTRQ and check if BUSY cleared */
1596 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1597 					retry |= true;
1598 				/*
1599 				 * With command in flight, we can't do
1600 				 * sff_irq_clear() w/o racing with completion.
1601 				 */
1602 			}
1603 		}
1604 
1605 		if (retry) {
1606 			retried = true;
1607 			goto retry;
1608 		}
1609 	}
1610 
1611 	spin_unlock_irqrestore(&host->lock, flags);
1612 
1613 	return IRQ_RETVAL(handled);
1614 }
1615 
1616 /**
1617  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1618  *	@irq: irq line (unused)
1619  *	@dev_instance: pointer to our ata_host information structure
1620  *
1621  *	Default interrupt handler for PCI IDE devices.  Calls
1622  *	ata_sff_port_intr() for each port that is not disabled.
1623  *
1624  *	LOCKING:
1625  *	Obtains host lock during operation.
1626  *
1627  *	RETURNS:
1628  *	IRQ_NONE or IRQ_HANDLED.
1629  */
ata_sff_interrupt(int irq,void * dev_instance)1630 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1631 {
1632 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1633 }
1634 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1635 
1636 /**
1637  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1638  *	@ap: port that appears to have timed out
1639  *
1640  *	Called from the libata error handlers when the core code suspects
1641  *	an interrupt has been lost. If it has complete anything we can and
1642  *	then return. Interface must support altstatus for this faster
1643  *	recovery to occur.
1644  *
1645  *	Locking:
1646  *	Caller holds host lock
1647  */
1648 
ata_sff_lost_interrupt(struct ata_port * ap)1649 void ata_sff_lost_interrupt(struct ata_port *ap)
1650 {
1651 	u8 status;
1652 	struct ata_queued_cmd *qc;
1653 
1654 	/* Only one outstanding command per SFF channel */
1655 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1656 	/* We cannot lose an interrupt on a non-existent or polled command */
1657 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1658 		return;
1659 	/* See if the controller thinks it is still busy - if so the command
1660 	   isn't a lost IRQ but is still in progress */
1661 	status = ata_sff_altstatus(ap);
1662 	if (status & ATA_BUSY)
1663 		return;
1664 
1665 	/* There was a command running, we are no longer busy and we have
1666 	   no interrupt. */
1667 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1668 								status);
1669 	/* Run the host interrupt logic as if the interrupt had not been
1670 	   lost */
1671 	ata_sff_port_intr(ap, qc);
1672 }
1673 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1674 
1675 /**
1676  *	ata_sff_freeze - Freeze SFF controller port
1677  *	@ap: port to freeze
1678  *
1679  *	Freeze SFF controller port.
1680  *
1681  *	LOCKING:
1682  *	Inherited from caller.
1683  */
ata_sff_freeze(struct ata_port * ap)1684 void ata_sff_freeze(struct ata_port *ap)
1685 {
1686 	ap->ctl |= ATA_NIEN;
1687 	ap->last_ctl = ap->ctl;
1688 
1689 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1690 		ata_sff_set_devctl(ap, ap->ctl);
1691 
1692 	/* Under certain circumstances, some controllers raise IRQ on
1693 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1694 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1695 	 */
1696 	ap->ops->sff_check_status(ap);
1697 
1698 	if (ap->ops->sff_irq_clear)
1699 		ap->ops->sff_irq_clear(ap);
1700 }
1701 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1702 
1703 /**
1704  *	ata_sff_thaw - Thaw SFF controller port
1705  *	@ap: port to thaw
1706  *
1707  *	Thaw SFF controller port.
1708  *
1709  *	LOCKING:
1710  *	Inherited from caller.
1711  */
ata_sff_thaw(struct ata_port * ap)1712 void ata_sff_thaw(struct ata_port *ap)
1713 {
1714 	/* clear & re-enable interrupts */
1715 	ap->ops->sff_check_status(ap);
1716 	if (ap->ops->sff_irq_clear)
1717 		ap->ops->sff_irq_clear(ap);
1718 	ata_sff_irq_on(ap);
1719 }
1720 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1721 
1722 /**
1723  *	ata_sff_prereset - prepare SFF link for reset
1724  *	@link: SFF link to be reset
1725  *	@deadline: deadline jiffies for the operation
1726  *
1727  *	SFF link @link is about to be reset.  Initialize it.  It first
1728  *	calls ata_std_prereset() and wait for !BSY if the port is
1729  *	being softreset.
1730  *
1731  *	LOCKING:
1732  *	Kernel thread context (may sleep)
1733  *
1734  *	RETURNS:
1735  *	0 on success, -errno otherwise.
1736  */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1737 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1738 {
1739 	struct ata_eh_context *ehc = &link->eh_context;
1740 	int rc;
1741 
1742 	rc = ata_std_prereset(link, deadline);
1743 	if (rc)
1744 		return rc;
1745 
1746 	/* if we're about to do hardreset, nothing more to do */
1747 	if (ehc->i.action & ATA_EH_HARDRESET)
1748 		return 0;
1749 
1750 	/* wait for !BSY if we don't know that no device is attached */
1751 	if (!ata_link_offline(link)) {
1752 		rc = ata_sff_wait_ready(link, deadline);
1753 		if (rc && rc != -ENODEV) {
1754 			ata_link_warn(link,
1755 				      "device not ready (errno=%d), forcing hardreset\n",
1756 				      rc);
1757 			ehc->i.action |= ATA_EH_HARDRESET;
1758 		}
1759 	}
1760 
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1764 
1765 /**
1766  *	ata_devchk - PATA device presence detection
1767  *	@ap: ATA channel to examine
1768  *	@device: Device to examine (starting at zero)
1769  *
1770  *	This technique was originally described in
1771  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1772  *	later found its way into the ATA/ATAPI spec.
1773  *
1774  *	Write a pattern to the ATA shadow registers,
1775  *	and if a device is present, it will respond by
1776  *	correctly storing and echoing back the
1777  *	ATA shadow register contents.
1778  *
1779  *	LOCKING:
1780  *	caller.
1781  */
ata_devchk(struct ata_port * ap,unsigned int device)1782 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1783 {
1784 	struct ata_ioports *ioaddr = &ap->ioaddr;
1785 	u8 nsect, lbal;
1786 
1787 	ap->ops->sff_dev_select(ap, device);
1788 
1789 	iowrite8(0x55, ioaddr->nsect_addr);
1790 	iowrite8(0xaa, ioaddr->lbal_addr);
1791 
1792 	iowrite8(0xaa, ioaddr->nsect_addr);
1793 	iowrite8(0x55, ioaddr->lbal_addr);
1794 
1795 	iowrite8(0x55, ioaddr->nsect_addr);
1796 	iowrite8(0xaa, ioaddr->lbal_addr);
1797 
1798 	nsect = ioread8(ioaddr->nsect_addr);
1799 	lbal = ioread8(ioaddr->lbal_addr);
1800 
1801 	if ((nsect == 0x55) && (lbal == 0xaa))
1802 		return 1;	/* we found a device */
1803 
1804 	return 0;		/* nothing found */
1805 }
1806 
1807 /**
1808  *	ata_sff_dev_classify - Parse returned ATA device signature
1809  *	@dev: ATA device to classify (starting at zero)
1810  *	@present: device seems present
1811  *	@r_err: Value of error register on completion
1812  *
1813  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1814  *	an ATA/ATAPI-defined set of values is placed in the ATA
1815  *	shadow registers, indicating the results of device detection
1816  *	and diagnostics.
1817  *
1818  *	Select the ATA device, and read the values from the ATA shadow
1819  *	registers.  Then parse according to the Error register value,
1820  *	and the spec-defined values examined by ata_dev_classify().
1821  *
1822  *	LOCKING:
1823  *	caller.
1824  *
1825  *	RETURNS:
1826  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1827  */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1828 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1829 				  u8 *r_err)
1830 {
1831 	struct ata_port *ap = dev->link->ap;
1832 	struct ata_taskfile tf;
1833 	unsigned int class;
1834 	u8 err;
1835 
1836 	ap->ops->sff_dev_select(ap, dev->devno);
1837 
1838 	memset(&tf, 0, sizeof(tf));
1839 
1840 	ap->ops->sff_tf_read(ap, &tf);
1841 	err = tf.feature;
1842 	if (r_err)
1843 		*r_err = err;
1844 
1845 	/* see if device passed diags: continue and warn later */
1846 	if (err == 0)
1847 		/* diagnostic fail : do nothing _YET_ */
1848 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1849 	else if (err == 1)
1850 		/* do nothing */ ;
1851 	else if ((dev->devno == 0) && (err == 0x81))
1852 		/* do nothing */ ;
1853 	else
1854 		return ATA_DEV_NONE;
1855 
1856 	/* determine if device is ATA or ATAPI */
1857 	class = ata_dev_classify(&tf);
1858 
1859 	if (class == ATA_DEV_UNKNOWN) {
1860 		/* If the device failed diagnostic, it's likely to
1861 		 * have reported incorrect device signature too.
1862 		 * Assume ATA device if the device seems present but
1863 		 * device signature is invalid with diagnostic
1864 		 * failure.
1865 		 */
1866 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1867 			class = ATA_DEV_ATA;
1868 		else
1869 			class = ATA_DEV_NONE;
1870 	} else if ((class == ATA_DEV_ATA) &&
1871 		   (ap->ops->sff_check_status(ap) == 0))
1872 		class = ATA_DEV_NONE;
1873 
1874 	return class;
1875 }
1876 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1877 
1878 /**
1879  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1880  *	@link: SFF link which is just reset
1881  *	@devmask: mask of present devices
1882  *	@deadline: deadline jiffies for the operation
1883  *
1884  *	Wait devices attached to SFF @link to become ready after
1885  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1886  *	status register too early.
1887  *
1888  *	LOCKING:
1889  *	Kernel thread context (may sleep).
1890  *
1891  *	RETURNS:
1892  *	0 on success, -ENODEV if some or all of devices in @devmask
1893  *	don't seem to exist.  -errno on other errors.
1894  */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1895 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1896 			     unsigned long deadline)
1897 {
1898 	struct ata_port *ap = link->ap;
1899 	struct ata_ioports *ioaddr = &ap->ioaddr;
1900 	unsigned int dev0 = devmask & (1 << 0);
1901 	unsigned int dev1 = devmask & (1 << 1);
1902 	int rc, ret = 0;
1903 
1904 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1905 
1906 	/* always check readiness of the master device */
1907 	rc = ata_sff_wait_ready(link, deadline);
1908 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1909 	 * and TF status is 0xff, bail out on it too.
1910 	 */
1911 	if (rc)
1912 		return rc;
1913 
1914 	/* if device 1 was found in ata_devchk, wait for register
1915 	 * access briefly, then wait for BSY to clear.
1916 	 */
1917 	if (dev1) {
1918 		int i;
1919 
1920 		ap->ops->sff_dev_select(ap, 1);
1921 
1922 		/* Wait for register access.  Some ATAPI devices fail
1923 		 * to set nsect/lbal after reset, so don't waste too
1924 		 * much time on it.  We're gonna wait for !BSY anyway.
1925 		 */
1926 		for (i = 0; i < 2; i++) {
1927 			u8 nsect, lbal;
1928 
1929 			nsect = ioread8(ioaddr->nsect_addr);
1930 			lbal = ioread8(ioaddr->lbal_addr);
1931 			if ((nsect == 1) && (lbal == 1))
1932 				break;
1933 			ata_msleep(ap, 50);	/* give drive a breather */
1934 		}
1935 
1936 		rc = ata_sff_wait_ready(link, deadline);
1937 		if (rc) {
1938 			if (rc != -ENODEV)
1939 				return rc;
1940 			ret = rc;
1941 		}
1942 	}
1943 
1944 	/* is all this really necessary? */
1945 	ap->ops->sff_dev_select(ap, 0);
1946 	if (dev1)
1947 		ap->ops->sff_dev_select(ap, 1);
1948 	if (dev0)
1949 		ap->ops->sff_dev_select(ap, 0);
1950 
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1954 
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1955 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1956 			     unsigned long deadline)
1957 {
1958 	struct ata_ioports *ioaddr = &ap->ioaddr;
1959 
1960 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1961 
1962 	if (ap->ioaddr.ctl_addr) {
1963 		/* software reset.  causes dev0 to be selected */
1964 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1965 		udelay(20);	/* FIXME: flush */
1966 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1967 		udelay(20);	/* FIXME: flush */
1968 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1969 		ap->last_ctl = ap->ctl;
1970 	}
1971 
1972 	/* wait the port to become ready */
1973 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1974 }
1975 
1976 /**
1977  *	ata_sff_softreset - reset host port via ATA SRST
1978  *	@link: ATA link to reset
1979  *	@classes: resulting classes of attached devices
1980  *	@deadline: deadline jiffies for the operation
1981  *
1982  *	Reset host port using ATA SRST.
1983  *
1984  *	LOCKING:
1985  *	Kernel thread context (may sleep)
1986  *
1987  *	RETURNS:
1988  *	0 on success, -errno otherwise.
1989  */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1990 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1991 		      unsigned long deadline)
1992 {
1993 	struct ata_port *ap = link->ap;
1994 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1995 	unsigned int devmask = 0;
1996 	int rc;
1997 	u8 err;
1998 
1999 	DPRINTK("ENTER\n");
2000 
2001 	/* determine if device 0/1 are present */
2002 	if (ata_devchk(ap, 0))
2003 		devmask |= (1 << 0);
2004 	if (slave_possible && ata_devchk(ap, 1))
2005 		devmask |= (1 << 1);
2006 
2007 	/* select device 0 again */
2008 	ap->ops->sff_dev_select(ap, 0);
2009 
2010 	/* issue bus reset */
2011 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2012 	rc = ata_bus_softreset(ap, devmask, deadline);
2013 	/* if link is occupied, -ENODEV too is an error */
2014 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2015 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2016 		return rc;
2017 	}
2018 
2019 	/* determine by signature whether we have ATA or ATAPI devices */
2020 	classes[0] = ata_sff_dev_classify(&link->device[0],
2021 					  devmask & (1 << 0), &err);
2022 	if (slave_possible && err != 0x81)
2023 		classes[1] = ata_sff_dev_classify(&link->device[1],
2024 						  devmask & (1 << 1), &err);
2025 
2026 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2030 
2031 /**
2032  *	sata_sff_hardreset - reset host port via SATA phy reset
2033  *	@link: link to reset
2034  *	@class: resulting class of attached device
2035  *	@deadline: deadline jiffies for the operation
2036  *
2037  *	SATA phy-reset host port using DET bits of SControl register,
2038  *	wait for !BSY and classify the attached device.
2039  *
2040  *	LOCKING:
2041  *	Kernel thread context (may sleep)
2042  *
2043  *	RETURNS:
2044  *	0 on success, -errno otherwise.
2045  */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2046 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2047 		       unsigned long deadline)
2048 {
2049 	struct ata_eh_context *ehc = &link->eh_context;
2050 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2051 	bool online;
2052 	int rc;
2053 
2054 	rc = sata_link_hardreset(link, timing, deadline, &online,
2055 				 ata_sff_check_ready);
2056 	if (online)
2057 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2058 
2059 	DPRINTK("EXIT, class=%u\n", *class);
2060 	return rc;
2061 }
2062 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2063 
2064 /**
2065  *	ata_sff_postreset - SFF postreset callback
2066  *	@link: the target SFF ata_link
2067  *	@classes: classes of attached devices
2068  *
2069  *	This function is invoked after a successful reset.  It first
2070  *	calls ata_std_postreset() and performs SFF specific postreset
2071  *	processing.
2072  *
2073  *	LOCKING:
2074  *	Kernel thread context (may sleep)
2075  */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2076 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2077 {
2078 	struct ata_port *ap = link->ap;
2079 
2080 	ata_std_postreset(link, classes);
2081 
2082 	/* is double-select really necessary? */
2083 	if (classes[0] != ATA_DEV_NONE)
2084 		ap->ops->sff_dev_select(ap, 1);
2085 	if (classes[1] != ATA_DEV_NONE)
2086 		ap->ops->sff_dev_select(ap, 0);
2087 
2088 	/* bail out if no device is present */
2089 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2090 		DPRINTK("EXIT, no device\n");
2091 		return;
2092 	}
2093 
2094 	/* set up device control */
2095 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2096 		ata_sff_set_devctl(ap, ap->ctl);
2097 		ap->last_ctl = ap->ctl;
2098 	}
2099 }
2100 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2101 
2102 /**
2103  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2104  *	@qc: command
2105  *
2106  *	Drain the FIFO and device of any stuck data following a command
2107  *	failing to complete. In some cases this is necessary before a
2108  *	reset will recover the device.
2109  *
2110  */
2111 
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2112 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2113 {
2114 	int count;
2115 	struct ata_port *ap;
2116 
2117 	/* We only need to flush incoming data when a command was running */
2118 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2119 		return;
2120 
2121 	ap = qc->ap;
2122 	/* Drain up to 64K of data before we give up this recovery method */
2123 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2124 						&& count < 65536; count += 2)
2125 		ioread16(ap->ioaddr.data_addr);
2126 
2127 	/* Can become DEBUG later */
2128 	if (count)
2129 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2130 
2131 }
2132 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2133 
2134 /**
2135  *	ata_sff_error_handler - Stock error handler for SFF controller
2136  *	@ap: port to handle error for
2137  *
2138  *	Stock error handler for SFF controller.  It can handle both
2139  *	PATA and SATA controllers.  Many controllers should be able to
2140  *	use this EH as-is or with some added handling before and
2141  *	after.
2142  *
2143  *	LOCKING:
2144  *	Kernel thread context (may sleep)
2145  */
ata_sff_error_handler(struct ata_port * ap)2146 void ata_sff_error_handler(struct ata_port *ap)
2147 {
2148 	ata_reset_fn_t softreset = ap->ops->softreset;
2149 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2150 	struct ata_queued_cmd *qc;
2151 	unsigned long flags;
2152 
2153 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2154 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2155 		qc = NULL;
2156 
2157 	spin_lock_irqsave(ap->lock, flags);
2158 
2159 	/*
2160 	 * We *MUST* do FIFO draining before we issue a reset as
2161 	 * several devices helpfully clear their internal state and
2162 	 * will lock solid if we touch the data port post reset. Pass
2163 	 * qc in case anyone wants to do different PIO/DMA recovery or
2164 	 * has per command fixups
2165 	 */
2166 	if (ap->ops->sff_drain_fifo)
2167 		ap->ops->sff_drain_fifo(qc);
2168 
2169 	spin_unlock_irqrestore(ap->lock, flags);
2170 
2171 	/* ignore built-in hardresets if SCR access is not available */
2172 	if ((hardreset == sata_std_hardreset ||
2173 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2174 		hardreset = NULL;
2175 
2176 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2177 		  ap->ops->postreset);
2178 }
2179 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2180 
2181 /**
2182  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2183  *	@ioaddr: IO address structure to be initialized
2184  *
2185  *	Utility function which initializes data_addr, error_addr,
2186  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2187  *	device_addr, status_addr, and command_addr to standard offsets
2188  *	relative to cmd_addr.
2189  *
2190  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2191  */
ata_sff_std_ports(struct ata_ioports * ioaddr)2192 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2193 {
2194 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2195 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2196 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2197 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2198 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2199 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2200 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2201 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2202 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2203 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2204 }
2205 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2206 
2207 #ifdef CONFIG_PCI
2208 
ata_resources_present(struct pci_dev * pdev,int port)2209 static int ata_resources_present(struct pci_dev *pdev, int port)
2210 {
2211 	int i;
2212 
2213 	/* Check the PCI resources for this channel are enabled */
2214 	port = port * 2;
2215 	for (i = 0; i < 2; i++) {
2216 		if (pci_resource_start(pdev, port + i) == 0 ||
2217 		    pci_resource_len(pdev, port + i) == 0)
2218 			return 0;
2219 	}
2220 	return 1;
2221 }
2222 
2223 /**
2224  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2225  *	@host: target ATA host
2226  *
2227  *	Acquire native PCI ATA resources for @host and initialize the
2228  *	first two ports of @host accordingly.  Ports marked dummy are
2229  *	skipped and allocation failure makes the port dummy.
2230  *
2231  *	Note that native PCI resources are valid even for legacy hosts
2232  *	as we fix up pdev resources array early in boot, so this
2233  *	function can be used for both native and legacy SFF hosts.
2234  *
2235  *	LOCKING:
2236  *	Inherited from calling layer (may sleep).
2237  *
2238  *	RETURNS:
2239  *	0 if at least one port is initialized, -ENODEV if no port is
2240  *	available.
2241  */
ata_pci_sff_init_host(struct ata_host * host)2242 int ata_pci_sff_init_host(struct ata_host *host)
2243 {
2244 	struct device *gdev = host->dev;
2245 	struct pci_dev *pdev = to_pci_dev(gdev);
2246 	unsigned int mask = 0;
2247 	int i, rc;
2248 
2249 	/* request, iomap BARs and init port addresses accordingly */
2250 	for (i = 0; i < 2; i++) {
2251 		struct ata_port *ap = host->ports[i];
2252 		int base = i * 2;
2253 		void __iomem * const *iomap;
2254 
2255 		if (ata_port_is_dummy(ap))
2256 			continue;
2257 
2258 		/* Discard disabled ports.  Some controllers show
2259 		 * their unused channels this way.  Disabled ports are
2260 		 * made dummy.
2261 		 */
2262 		if (!ata_resources_present(pdev, i)) {
2263 			ap->ops = &ata_dummy_port_ops;
2264 			continue;
2265 		}
2266 
2267 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2268 					dev_driver_string(gdev));
2269 		if (rc) {
2270 			dev_warn(gdev,
2271 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2272 				 i, rc);
2273 			if (rc == -EBUSY)
2274 				pcim_pin_device(pdev);
2275 			ap->ops = &ata_dummy_port_ops;
2276 			continue;
2277 		}
2278 		host->iomap = iomap = pcim_iomap_table(pdev);
2279 
2280 		ap->ioaddr.cmd_addr = iomap[base];
2281 		ap->ioaddr.altstatus_addr =
2282 		ap->ioaddr.ctl_addr = (void __iomem *)
2283 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2284 		ata_sff_std_ports(&ap->ioaddr);
2285 
2286 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2287 			(unsigned long long)pci_resource_start(pdev, base),
2288 			(unsigned long long)pci_resource_start(pdev, base + 1));
2289 
2290 		mask |= 1 << i;
2291 	}
2292 
2293 	if (!mask) {
2294 		dev_err(gdev, "no available native port\n");
2295 		return -ENODEV;
2296 	}
2297 
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2301 
2302 /**
2303  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2304  *	@pdev: target PCI device
2305  *	@ppi: array of port_info, must be enough for two ports
2306  *	@r_host: out argument for the initialized ATA host
2307  *
2308  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2309  *	all PCI resources and initialize it accordingly in one go.
2310  *
2311  *	LOCKING:
2312  *	Inherited from calling layer (may sleep).
2313  *
2314  *	RETURNS:
2315  *	0 on success, -errno otherwise.
2316  */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2317 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2318 			     const struct ata_port_info * const *ppi,
2319 			     struct ata_host **r_host)
2320 {
2321 	struct ata_host *host;
2322 	int rc;
2323 
2324 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2325 		return -ENOMEM;
2326 
2327 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2328 	if (!host) {
2329 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2330 		rc = -ENOMEM;
2331 		goto err_out;
2332 	}
2333 
2334 	rc = ata_pci_sff_init_host(host);
2335 	if (rc)
2336 		goto err_out;
2337 
2338 	devres_remove_group(&pdev->dev, NULL);
2339 	*r_host = host;
2340 	return 0;
2341 
2342 err_out:
2343 	devres_release_group(&pdev->dev, NULL);
2344 	return rc;
2345 }
2346 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2347 
2348 /**
2349  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2350  *	@host: target SFF ATA host
2351  *	@irq_handler: irq_handler used when requesting IRQ(s)
2352  *	@sht: scsi_host_template to use when registering the host
2353  *
2354  *	This is the counterpart of ata_host_activate() for SFF ATA
2355  *	hosts.  This separate helper is necessary because SFF hosts
2356  *	use two separate interrupts in legacy mode.
2357  *
2358  *	LOCKING:
2359  *	Inherited from calling layer (may sleep).
2360  *
2361  *	RETURNS:
2362  *	0 on success, -errno otherwise.
2363  */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2364 int ata_pci_sff_activate_host(struct ata_host *host,
2365 			      irq_handler_t irq_handler,
2366 			      struct scsi_host_template *sht)
2367 {
2368 	struct device *dev = host->dev;
2369 	struct pci_dev *pdev = to_pci_dev(dev);
2370 	const char *drv_name = dev_driver_string(host->dev);
2371 	int legacy_mode = 0, rc;
2372 
2373 	rc = ata_host_start(host);
2374 	if (rc)
2375 		return rc;
2376 
2377 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2378 		u8 tmp8, mask = 0;
2379 
2380 		/*
2381 		 * ATA spec says we should use legacy mode when one
2382 		 * port is in legacy mode, but disabled ports on some
2383 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2384 		 * on which the secondary port is not wired, so
2385 		 * ignore ports that are marked as 'dummy' during
2386 		 * this check
2387 		 */
2388 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2389 		if (!ata_port_is_dummy(host->ports[0]))
2390 			mask |= (1 << 0);
2391 		if (!ata_port_is_dummy(host->ports[1]))
2392 			mask |= (1 << 2);
2393 		if ((tmp8 & mask) != mask)
2394 			legacy_mode = 1;
2395 	}
2396 
2397 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2398 		return -ENOMEM;
2399 
2400 	if (!legacy_mode && pdev->irq) {
2401 		int i;
2402 
2403 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2404 				      IRQF_SHARED, drv_name, host);
2405 		if (rc)
2406 			goto out;
2407 
2408 		for (i = 0; i < 2; i++) {
2409 			if (ata_port_is_dummy(host->ports[i]))
2410 				continue;
2411 			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2412 		}
2413 	} else if (legacy_mode) {
2414 		if (!ata_port_is_dummy(host->ports[0])) {
2415 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2416 					      irq_handler, IRQF_SHARED,
2417 					      drv_name, host);
2418 			if (rc)
2419 				goto out;
2420 
2421 			ata_port_desc(host->ports[0], "irq %d",
2422 				      ATA_PRIMARY_IRQ(pdev));
2423 		}
2424 
2425 		if (!ata_port_is_dummy(host->ports[1])) {
2426 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2427 					      irq_handler, IRQF_SHARED,
2428 					      drv_name, host);
2429 			if (rc)
2430 				goto out;
2431 
2432 			ata_port_desc(host->ports[1], "irq %d",
2433 				      ATA_SECONDARY_IRQ(pdev));
2434 		}
2435 	}
2436 
2437 	rc = ata_host_register(host, sht);
2438 out:
2439 	if (rc == 0)
2440 		devres_remove_group(dev, NULL);
2441 	else
2442 		devres_release_group(dev, NULL);
2443 
2444 	return rc;
2445 }
2446 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2447 
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2448 static const struct ata_port_info *ata_sff_find_valid_pi(
2449 					const struct ata_port_info * const *ppi)
2450 {
2451 	int i;
2452 
2453 	/* look up the first valid port_info */
2454 	for (i = 0; i < 2 && ppi[i]; i++)
2455 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2456 			return ppi[i];
2457 
2458 	return NULL;
2459 }
2460 
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2461 static int ata_pci_init_one(struct pci_dev *pdev,
2462 		const struct ata_port_info * const *ppi,
2463 		struct scsi_host_template *sht, void *host_priv,
2464 		int hflags, bool bmdma)
2465 {
2466 	struct device *dev = &pdev->dev;
2467 	const struct ata_port_info *pi;
2468 	struct ata_host *host = NULL;
2469 	int rc;
2470 
2471 	DPRINTK("ENTER\n");
2472 
2473 	pi = ata_sff_find_valid_pi(ppi);
2474 	if (!pi) {
2475 		dev_err(&pdev->dev, "no valid port_info specified\n");
2476 		return -EINVAL;
2477 	}
2478 
2479 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2480 		return -ENOMEM;
2481 
2482 	rc = pcim_enable_device(pdev);
2483 	if (rc)
2484 		goto out;
2485 
2486 #ifdef CONFIG_ATA_BMDMA
2487 	if (bmdma)
2488 		/* prepare and activate BMDMA host */
2489 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2490 	else
2491 #endif
2492 		/* prepare and activate SFF host */
2493 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2494 	if (rc)
2495 		goto out;
2496 	host->private_data = host_priv;
2497 	host->flags |= hflags;
2498 
2499 #ifdef CONFIG_ATA_BMDMA
2500 	if (bmdma) {
2501 		pci_set_master(pdev);
2502 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2503 	} else
2504 #endif
2505 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2506 out:
2507 	if (rc == 0)
2508 		devres_remove_group(&pdev->dev, NULL);
2509 	else
2510 		devres_release_group(&pdev->dev, NULL);
2511 
2512 	return rc;
2513 }
2514 
2515 /**
2516  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2517  *	@pdev: Controller to be initialized
2518  *	@ppi: array of port_info, must be enough for two ports
2519  *	@sht: scsi_host_template to use when registering the host
2520  *	@host_priv: host private_data
2521  *	@hflag: host flags
2522  *
2523  *	This is a helper function which can be called from a driver's
2524  *	xxx_init_one() probe function if the hardware uses traditional
2525  *	IDE taskfile registers and is PIO only.
2526  *
2527  *	ASSUMPTION:
2528  *	Nobody makes a single channel controller that appears solely as
2529  *	the secondary legacy port on PCI.
2530  *
2531  *	LOCKING:
2532  *	Inherited from PCI layer (may sleep).
2533  *
2534  *	RETURNS:
2535  *	Zero on success, negative on errno-based value on error.
2536  */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2537 int ata_pci_sff_init_one(struct pci_dev *pdev,
2538 		 const struct ata_port_info * const *ppi,
2539 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2540 {
2541 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2542 }
2543 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2544 
2545 #endif /* CONFIG_PCI */
2546 
2547 /*
2548  *	BMDMA support
2549  */
2550 
2551 #ifdef CONFIG_ATA_BMDMA
2552 
2553 const struct ata_port_operations ata_bmdma_port_ops = {
2554 	.inherits		= &ata_sff_port_ops,
2555 
2556 	.error_handler		= ata_bmdma_error_handler,
2557 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2558 
2559 	.qc_prep		= ata_bmdma_qc_prep,
2560 	.qc_issue		= ata_bmdma_qc_issue,
2561 
2562 	.sff_irq_clear		= ata_bmdma_irq_clear,
2563 	.bmdma_setup		= ata_bmdma_setup,
2564 	.bmdma_start		= ata_bmdma_start,
2565 	.bmdma_stop		= ata_bmdma_stop,
2566 	.bmdma_status		= ata_bmdma_status,
2567 
2568 	.port_start		= ata_bmdma_port_start,
2569 };
2570 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2571 
2572 const struct ata_port_operations ata_bmdma32_port_ops = {
2573 	.inherits		= &ata_bmdma_port_ops,
2574 
2575 	.sff_data_xfer		= ata_sff_data_xfer32,
2576 	.port_start		= ata_bmdma_port_start32,
2577 };
2578 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2579 
2580 /**
2581  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2582  *	@qc: Metadata associated with taskfile to be transferred
2583  *
2584  *	Fill PCI IDE PRD (scatter-gather) table with segments
2585  *	associated with the current disk command.
2586  *
2587  *	LOCKING:
2588  *	spin_lock_irqsave(host lock)
2589  *
2590  */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2591 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2592 {
2593 	struct ata_port *ap = qc->ap;
2594 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2595 	struct scatterlist *sg;
2596 	unsigned int si, pi;
2597 
2598 	pi = 0;
2599 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2600 		u32 addr, offset;
2601 		u32 sg_len, len;
2602 
2603 		/* determine if physical DMA addr spans 64K boundary.
2604 		 * Note h/w doesn't support 64-bit, so we unconditionally
2605 		 * truncate dma_addr_t to u32.
2606 		 */
2607 		addr = (u32) sg_dma_address(sg);
2608 		sg_len = sg_dma_len(sg);
2609 
2610 		while (sg_len) {
2611 			offset = addr & 0xffff;
2612 			len = sg_len;
2613 			if ((offset + sg_len) > 0x10000)
2614 				len = 0x10000 - offset;
2615 
2616 			prd[pi].addr = cpu_to_le32(addr);
2617 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2618 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2619 
2620 			pi++;
2621 			sg_len -= len;
2622 			addr += len;
2623 		}
2624 	}
2625 
2626 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2627 }
2628 
2629 /**
2630  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2631  *	@qc: Metadata associated with taskfile to be transferred
2632  *
2633  *	Fill PCI IDE PRD (scatter-gather) table with segments
2634  *	associated with the current disk command. Perform the fill
2635  *	so that we avoid writing any length 64K records for
2636  *	controllers that don't follow the spec.
2637  *
2638  *	LOCKING:
2639  *	spin_lock_irqsave(host lock)
2640  *
2641  */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2642 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2643 {
2644 	struct ata_port *ap = qc->ap;
2645 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2646 	struct scatterlist *sg;
2647 	unsigned int si, pi;
2648 
2649 	pi = 0;
2650 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2651 		u32 addr, offset;
2652 		u32 sg_len, len, blen;
2653 
2654 		/* determine if physical DMA addr spans 64K boundary.
2655 		 * Note h/w doesn't support 64-bit, so we unconditionally
2656 		 * truncate dma_addr_t to u32.
2657 		 */
2658 		addr = (u32) sg_dma_address(sg);
2659 		sg_len = sg_dma_len(sg);
2660 
2661 		while (sg_len) {
2662 			offset = addr & 0xffff;
2663 			len = sg_len;
2664 			if ((offset + sg_len) > 0x10000)
2665 				len = 0x10000 - offset;
2666 
2667 			blen = len & 0xffff;
2668 			prd[pi].addr = cpu_to_le32(addr);
2669 			if (blen == 0) {
2670 				/* Some PATA chipsets like the CS5530 can't
2671 				   cope with 0x0000 meaning 64K as the spec
2672 				   says */
2673 				prd[pi].flags_len = cpu_to_le32(0x8000);
2674 				blen = 0x8000;
2675 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2676 			}
2677 			prd[pi].flags_len = cpu_to_le32(blen);
2678 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2679 
2680 			pi++;
2681 			sg_len -= len;
2682 			addr += len;
2683 		}
2684 	}
2685 
2686 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2687 }
2688 
2689 /**
2690  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2691  *	@qc: Metadata associated with taskfile to be prepared
2692  *
2693  *	Prepare ATA taskfile for submission.
2694  *
2695  *	LOCKING:
2696  *	spin_lock_irqsave(host lock)
2697  */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2698 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2699 {
2700 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2701 		return AC_ERR_OK;
2702 
2703 	ata_bmdma_fill_sg(qc);
2704 
2705 	return AC_ERR_OK;
2706 }
2707 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2708 
2709 /**
2710  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2711  *	@qc: Metadata associated with taskfile to be prepared
2712  *
2713  *	Prepare ATA taskfile for submission.
2714  *
2715  *	LOCKING:
2716  *	spin_lock_irqsave(host lock)
2717  */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2718 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2719 {
2720 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2721 		return AC_ERR_OK;
2722 
2723 	ata_bmdma_fill_sg_dumb(qc);
2724 
2725 	return AC_ERR_OK;
2726 }
2727 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2728 
2729 /**
2730  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2731  *	@qc: command to issue to device
2732  *
2733  *	This function issues a PIO, NODATA or DMA command to a
2734  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2735  *	ata_sff_qc_issue().
2736  *
2737  *	LOCKING:
2738  *	spin_lock_irqsave(host lock)
2739  *
2740  *	RETURNS:
2741  *	Zero on success, AC_ERR_* mask on failure
2742  */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2743 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2744 {
2745 	struct ata_port *ap = qc->ap;
2746 	struct ata_link *link = qc->dev->link;
2747 
2748 	/* defer PIO handling to sff_qc_issue */
2749 	if (!ata_is_dma(qc->tf.protocol))
2750 		return ata_sff_qc_issue(qc);
2751 
2752 	/* select the device */
2753 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2754 
2755 	/* start the command */
2756 	switch (qc->tf.protocol) {
2757 	case ATA_PROT_DMA:
2758 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2759 
2760 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2761 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2762 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2763 		ap->hsm_task_state = HSM_ST_LAST;
2764 		break;
2765 
2766 	case ATAPI_PROT_DMA:
2767 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2768 
2769 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2770 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2771 		ap->hsm_task_state = HSM_ST_FIRST;
2772 
2773 		/* send cdb by polling if no cdb interrupt */
2774 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2775 			ata_sff_queue_pio_task(link, 0);
2776 		break;
2777 
2778 	default:
2779 		WARN_ON(1);
2780 		return AC_ERR_SYSTEM;
2781 	}
2782 
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2786 
2787 /**
2788  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2789  *	@ap: Port on which interrupt arrived (possibly...)
2790  *	@qc: Taskfile currently active in engine
2791  *
2792  *	Handle port interrupt for given queued command.
2793  *
2794  *	LOCKING:
2795  *	spin_lock_irqsave(host lock)
2796  *
2797  *	RETURNS:
2798  *	One if interrupt was handled, zero if not (shared irq).
2799  */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2800 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2801 {
2802 	struct ata_eh_info *ehi = &ap->link.eh_info;
2803 	u8 host_stat = 0;
2804 	bool bmdma_stopped = false;
2805 	unsigned int handled;
2806 
2807 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2808 		/* check status of DMA engine */
2809 		host_stat = ap->ops->bmdma_status(ap);
2810 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2811 
2812 		/* if it's not our irq... */
2813 		if (!(host_stat & ATA_DMA_INTR))
2814 			return ata_sff_idle_irq(ap);
2815 
2816 		/* before we do anything else, clear DMA-Start bit */
2817 		ap->ops->bmdma_stop(qc);
2818 		bmdma_stopped = true;
2819 
2820 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2821 			/* error when transferring data to/from memory */
2822 			qc->err_mask |= AC_ERR_HOST_BUS;
2823 			ap->hsm_task_state = HSM_ST_ERR;
2824 		}
2825 	}
2826 
2827 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2828 
2829 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2830 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2831 
2832 	return handled;
2833 }
2834 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2835 
2836 /**
2837  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2838  *	@irq: irq line (unused)
2839  *	@dev_instance: pointer to our ata_host information structure
2840  *
2841  *	Default interrupt handler for PCI IDE devices.  Calls
2842  *	ata_bmdma_port_intr() for each port that is not disabled.
2843  *
2844  *	LOCKING:
2845  *	Obtains host lock during operation.
2846  *
2847  *	RETURNS:
2848  *	IRQ_NONE or IRQ_HANDLED.
2849  */
ata_bmdma_interrupt(int irq,void * dev_instance)2850 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2851 {
2852 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2853 }
2854 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2855 
2856 /**
2857  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2858  *	@ap: port to handle error for
2859  *
2860  *	Stock error handler for BMDMA controller.  It can handle both
2861  *	PATA and SATA controllers.  Most BMDMA controllers should be
2862  *	able to use this EH as-is or with some added handling before
2863  *	and after.
2864  *
2865  *	LOCKING:
2866  *	Kernel thread context (may sleep)
2867  */
ata_bmdma_error_handler(struct ata_port * ap)2868 void ata_bmdma_error_handler(struct ata_port *ap)
2869 {
2870 	struct ata_queued_cmd *qc;
2871 	unsigned long flags;
2872 	bool thaw = false;
2873 
2874 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2875 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2876 		qc = NULL;
2877 
2878 	/* reset PIO HSM and stop DMA engine */
2879 	spin_lock_irqsave(ap->lock, flags);
2880 
2881 	if (qc && ata_is_dma(qc->tf.protocol)) {
2882 		u8 host_stat;
2883 
2884 		host_stat = ap->ops->bmdma_status(ap);
2885 
2886 		/* BMDMA controllers indicate host bus error by
2887 		 * setting DMA_ERR bit and timing out.  As it wasn't
2888 		 * really a timeout event, adjust error mask and
2889 		 * cancel frozen state.
2890 		 */
2891 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2892 			qc->err_mask = AC_ERR_HOST_BUS;
2893 			thaw = true;
2894 		}
2895 
2896 		ap->ops->bmdma_stop(qc);
2897 
2898 		/* if we're gonna thaw, make sure IRQ is clear */
2899 		if (thaw) {
2900 			ap->ops->sff_check_status(ap);
2901 			if (ap->ops->sff_irq_clear)
2902 				ap->ops->sff_irq_clear(ap);
2903 		}
2904 	}
2905 
2906 	spin_unlock_irqrestore(ap->lock, flags);
2907 
2908 	if (thaw)
2909 		ata_eh_thaw_port(ap);
2910 
2911 	ata_sff_error_handler(ap);
2912 }
2913 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2914 
2915 /**
2916  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2917  *	@qc: internal command to clean up
2918  *
2919  *	LOCKING:
2920  *	Kernel thread context (may sleep)
2921  */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2922 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2923 {
2924 	struct ata_port *ap = qc->ap;
2925 	unsigned long flags;
2926 
2927 	if (ata_is_dma(qc->tf.protocol)) {
2928 		spin_lock_irqsave(ap->lock, flags);
2929 		ap->ops->bmdma_stop(qc);
2930 		spin_unlock_irqrestore(ap->lock, flags);
2931 	}
2932 }
2933 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2934 
2935 /**
2936  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2937  *	@ap: Port associated with this ATA transaction.
2938  *
2939  *	Clear interrupt and error flags in DMA status register.
2940  *
2941  *	May be used as the irq_clear() entry in ata_port_operations.
2942  *
2943  *	LOCKING:
2944  *	spin_lock_irqsave(host lock)
2945  */
ata_bmdma_irq_clear(struct ata_port * ap)2946 void ata_bmdma_irq_clear(struct ata_port *ap)
2947 {
2948 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2949 
2950 	if (!mmio)
2951 		return;
2952 
2953 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2954 }
2955 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2956 
2957 /**
2958  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2959  *	@qc: Info associated with this ATA transaction.
2960  *
2961  *	LOCKING:
2962  *	spin_lock_irqsave(host lock)
2963  */
ata_bmdma_setup(struct ata_queued_cmd * qc)2964 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2965 {
2966 	struct ata_port *ap = qc->ap;
2967 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2968 	u8 dmactl;
2969 
2970 	/* load PRD table addr. */
2971 	mb();	/* make sure PRD table writes are visible to controller */
2972 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2973 
2974 	/* specify data direction, triple-check start bit is clear */
2975 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2976 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2977 	if (!rw)
2978 		dmactl |= ATA_DMA_WR;
2979 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2980 
2981 	/* issue r/w command */
2982 	ap->ops->sff_exec_command(ap, &qc->tf);
2983 }
2984 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2985 
2986 /**
2987  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2988  *	@qc: Info associated with this ATA transaction.
2989  *
2990  *	LOCKING:
2991  *	spin_lock_irqsave(host lock)
2992  */
ata_bmdma_start(struct ata_queued_cmd * qc)2993 void ata_bmdma_start(struct ata_queued_cmd *qc)
2994 {
2995 	struct ata_port *ap = qc->ap;
2996 	u8 dmactl;
2997 
2998 	/* start host DMA transaction */
2999 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3000 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3001 
3002 	/* Strictly, one may wish to issue an ioread8() here, to
3003 	 * flush the mmio write.  However, control also passes
3004 	 * to the hardware at this point, and it will interrupt
3005 	 * us when we are to resume control.  So, in effect,
3006 	 * we don't care when the mmio write flushes.
3007 	 * Further, a read of the DMA status register _immediately_
3008 	 * following the write may not be what certain flaky hardware
3009 	 * is expected, so I think it is best to not add a readb()
3010 	 * without first all the MMIO ATA cards/mobos.
3011 	 * Or maybe I'm just being paranoid.
3012 	 *
3013 	 * FIXME: The posting of this write means I/O starts are
3014 	 * unnecessarily delayed for MMIO
3015 	 */
3016 }
3017 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3018 
3019 /**
3020  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3021  *	@qc: Command we are ending DMA for
3022  *
3023  *	Clears the ATA_DMA_START flag in the dma control register
3024  *
3025  *	May be used as the bmdma_stop() entry in ata_port_operations.
3026  *
3027  *	LOCKING:
3028  *	spin_lock_irqsave(host lock)
3029  */
ata_bmdma_stop(struct ata_queued_cmd * qc)3030 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3031 {
3032 	struct ata_port *ap = qc->ap;
3033 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3034 
3035 	/* clear start/stop bit */
3036 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3037 		 mmio + ATA_DMA_CMD);
3038 
3039 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3040 	ata_sff_dma_pause(ap);
3041 }
3042 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3043 
3044 /**
3045  *	ata_bmdma_status - Read PCI IDE BMDMA status
3046  *	@ap: Port associated with this ATA transaction.
3047  *
3048  *	Read and return BMDMA status register.
3049  *
3050  *	May be used as the bmdma_status() entry in ata_port_operations.
3051  *
3052  *	LOCKING:
3053  *	spin_lock_irqsave(host lock)
3054  */
ata_bmdma_status(struct ata_port * ap)3055 u8 ata_bmdma_status(struct ata_port *ap)
3056 {
3057 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3058 }
3059 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3060 
3061 
3062 /**
3063  *	ata_bmdma_port_start - Set port up for bmdma.
3064  *	@ap: Port to initialize
3065  *
3066  *	Called just after data structures for each port are
3067  *	initialized.  Allocates space for PRD table.
3068  *
3069  *	May be used as the port_start() entry in ata_port_operations.
3070  *
3071  *	LOCKING:
3072  *	Inherited from caller.
3073  */
ata_bmdma_port_start(struct ata_port * ap)3074 int ata_bmdma_port_start(struct ata_port *ap)
3075 {
3076 	if (ap->mwdma_mask || ap->udma_mask) {
3077 		ap->bmdma_prd =
3078 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3079 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3080 		if (!ap->bmdma_prd)
3081 			return -ENOMEM;
3082 	}
3083 
3084 	return 0;
3085 }
3086 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3087 
3088 /**
3089  *	ata_bmdma_port_start32 - Set port up for dma.
3090  *	@ap: Port to initialize
3091  *
3092  *	Called just after data structures for each port are
3093  *	initialized.  Enables 32bit PIO and allocates space for PRD
3094  *	table.
3095  *
3096  *	May be used as the port_start() entry in ata_port_operations for
3097  *	devices that are capable of 32bit PIO.
3098  *
3099  *	LOCKING:
3100  *	Inherited from caller.
3101  */
ata_bmdma_port_start32(struct ata_port * ap)3102 int ata_bmdma_port_start32(struct ata_port *ap)
3103 {
3104 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3105 	return ata_bmdma_port_start(ap);
3106 }
3107 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3108 
3109 #ifdef CONFIG_PCI
3110 
3111 /**
3112  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3113  *	@pdev: PCI device
3114  *
3115  *	Some PCI ATA devices report simplex mode but in fact can be told to
3116  *	enter non simplex mode. This implements the necessary logic to
3117  *	perform the task on such devices. Calling it on other devices will
3118  *	have -undefined- behaviour.
3119  */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3120 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3121 {
3122 	unsigned long bmdma = pci_resource_start(pdev, 4);
3123 	u8 simplex;
3124 
3125 	if (bmdma == 0)
3126 		return -ENOENT;
3127 
3128 	simplex = inb(bmdma + 0x02);
3129 	outb(simplex & 0x60, bmdma + 0x02);
3130 	simplex = inb(bmdma + 0x02);
3131 	if (simplex & 0x80)
3132 		return -EOPNOTSUPP;
3133 	return 0;
3134 }
3135 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3136 
ata_bmdma_nodma(struct ata_host * host,const char * reason)3137 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3138 {
3139 	int i;
3140 
3141 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3142 
3143 	for (i = 0; i < 2; i++) {
3144 		host->ports[i]->mwdma_mask = 0;
3145 		host->ports[i]->udma_mask = 0;
3146 	}
3147 }
3148 
3149 /**
3150  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3151  *	@host: target ATA host
3152  *
3153  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3154  *
3155  *	LOCKING:
3156  *	Inherited from calling layer (may sleep).
3157  */
ata_pci_bmdma_init(struct ata_host * host)3158 void ata_pci_bmdma_init(struct ata_host *host)
3159 {
3160 	struct device *gdev = host->dev;
3161 	struct pci_dev *pdev = to_pci_dev(gdev);
3162 	int i, rc;
3163 
3164 	/* No BAR4 allocation: No DMA */
3165 	if (pci_resource_start(pdev, 4) == 0) {
3166 		ata_bmdma_nodma(host, "BAR4 is zero");
3167 		return;
3168 	}
3169 
3170 	/*
3171 	 * Some controllers require BMDMA region to be initialized
3172 	 * even if DMA is not in use to clear IRQ status via
3173 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3174 	 * regardless of dma masks.
3175 	 */
3176 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3177 	if (rc)
3178 		ata_bmdma_nodma(host, "failed to set dma mask");
3179 	if (!rc) {
3180 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3181 		if (rc)
3182 			ata_bmdma_nodma(host,
3183 					"failed to set consistent dma mask");
3184 	}
3185 
3186 	/* request and iomap DMA region */
3187 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3188 	if (rc) {
3189 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3190 		return;
3191 	}
3192 	host->iomap = pcim_iomap_table(pdev);
3193 
3194 	for (i = 0; i < 2; i++) {
3195 		struct ata_port *ap = host->ports[i];
3196 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3197 
3198 		if (ata_port_is_dummy(ap))
3199 			continue;
3200 
3201 		ap->ioaddr.bmdma_addr = bmdma;
3202 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3203 		    (ioread8(bmdma + 2) & 0x80))
3204 			host->flags |= ATA_HOST_SIMPLEX;
3205 
3206 		ata_port_desc(ap, "bmdma 0x%llx",
3207 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3208 	}
3209 }
3210 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3211 
3212 /**
3213  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3214  *	@pdev: target PCI device
3215  *	@ppi: array of port_info, must be enough for two ports
3216  *	@r_host: out argument for the initialized ATA host
3217  *
3218  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3219  *	resources and initialize it accordingly in one go.
3220  *
3221  *	LOCKING:
3222  *	Inherited from calling layer (may sleep).
3223  *
3224  *	RETURNS:
3225  *	0 on success, -errno otherwise.
3226  */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3227 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3228 			       const struct ata_port_info * const * ppi,
3229 			       struct ata_host **r_host)
3230 {
3231 	int rc;
3232 
3233 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3234 	if (rc)
3235 		return rc;
3236 
3237 	ata_pci_bmdma_init(*r_host);
3238 	return 0;
3239 }
3240 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3241 
3242 /**
3243  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3244  *	@pdev: Controller to be initialized
3245  *	@ppi: array of port_info, must be enough for two ports
3246  *	@sht: scsi_host_template to use when registering the host
3247  *	@host_priv: host private_data
3248  *	@hflags: host flags
3249  *
3250  *	This function is similar to ata_pci_sff_init_one() but also
3251  *	takes care of BMDMA initialization.
3252  *
3253  *	LOCKING:
3254  *	Inherited from PCI layer (may sleep).
3255  *
3256  *	RETURNS:
3257  *	Zero on success, negative on errno-based value on error.
3258  */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3259 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3260 			   const struct ata_port_info * const * ppi,
3261 			   struct scsi_host_template *sht, void *host_priv,
3262 			   int hflags)
3263 {
3264 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3265 }
3266 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3267 
3268 #endif /* CONFIG_PCI */
3269 #endif /* CONFIG_ATA_BMDMA */
3270 
3271 /**
3272  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3273  *	@ap: Port to initialize
3274  *
3275  *	Called on port allocation to initialize SFF/BMDMA specific
3276  *	fields.
3277  *
3278  *	LOCKING:
3279  *	None.
3280  */
ata_sff_port_init(struct ata_port * ap)3281 void ata_sff_port_init(struct ata_port *ap)
3282 {
3283 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3284 	ap->ctl = ATA_DEVCTL_OBS;
3285 	ap->last_ctl = 0xFF;
3286 }
3287 
ata_sff_init(void)3288 int __init ata_sff_init(void)
3289 {
3290 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3291 	if (!ata_sff_wq)
3292 		return -ENOMEM;
3293 
3294 	return 0;
3295 }
3296 
ata_sff_exit(void)3297 void ata_sff_exit(void)
3298 {
3299 	destroy_workqueue(ata_sff_wq);
3300 }
3301