1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2009-2012 Cavium, Inc
7 */
8
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/capability.h>
13 #include <linux/net_tstamp.h>
14 #include <linux/interrupt.h>
15 #include <linux/netdevice.h>
16 #include <linux/spinlock.h>
17 #include <linux/if_vlan.h>
18 #include <linux/of_mdio.h>
19 #include <linux/module.h>
20 #include <linux/of_net.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/phy.h>
24 #include <linux/io.h>
25
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-mixx-defs.h>
28 #include <asm/octeon/cvmx-agl-defs.h>
29
30 #define DRV_NAME "octeon_mgmt"
31 #define DRV_VERSION "2.0"
32 #define DRV_DESCRIPTION \
33 "Cavium Networks Octeon MII (management) port Network Driver"
34
35 #define OCTEON_MGMT_NAPI_WEIGHT 16
36
37 /* Ring sizes that are powers of two allow for more efficient modulo
38 * opertions.
39 */
40 #define OCTEON_MGMT_RX_RING_SIZE 512
41 #define OCTEON_MGMT_TX_RING_SIZE 128
42
43 /* Allow 8 bytes for vlan and FCS. */
44 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN)
45
46 union mgmt_port_ring_entry {
47 u64 d64;
48 struct {
49 #define RING_ENTRY_CODE_DONE 0xf
50 #define RING_ENTRY_CODE_MORE 0x10
51 #ifdef __BIG_ENDIAN_BITFIELD
52 u64 reserved_62_63:2;
53 /* Length of the buffer/packet in bytes */
54 u64 len:14;
55 /* For TX, signals that the packet should be timestamped */
56 u64 tstamp:1;
57 /* The RX error code */
58 u64 code:7;
59 /* Physical address of the buffer */
60 u64 addr:40;
61 #else
62 u64 addr:40;
63 u64 code:7;
64 u64 tstamp:1;
65 u64 len:14;
66 u64 reserved_62_63:2;
67 #endif
68 } s;
69 };
70
71 #define MIX_ORING1 0x0
72 #define MIX_ORING2 0x8
73 #define MIX_IRING1 0x10
74 #define MIX_IRING2 0x18
75 #define MIX_CTL 0x20
76 #define MIX_IRHWM 0x28
77 #define MIX_IRCNT 0x30
78 #define MIX_ORHWM 0x38
79 #define MIX_ORCNT 0x40
80 #define MIX_ISR 0x48
81 #define MIX_INTENA 0x50
82 #define MIX_REMCNT 0x58
83 #define MIX_BIST 0x78
84
85 #define AGL_GMX_PRT_CFG 0x10
86 #define AGL_GMX_RX_FRM_CTL 0x18
87 #define AGL_GMX_RX_FRM_MAX 0x30
88 #define AGL_GMX_RX_JABBER 0x38
89 #define AGL_GMX_RX_STATS_CTL 0x50
90
91 #define AGL_GMX_RX_STATS_PKTS_DRP 0xb0
92 #define AGL_GMX_RX_STATS_OCTS_DRP 0xb8
93 #define AGL_GMX_RX_STATS_PKTS_BAD 0xc0
94
95 #define AGL_GMX_RX_ADR_CTL 0x100
96 #define AGL_GMX_RX_ADR_CAM_EN 0x108
97 #define AGL_GMX_RX_ADR_CAM0 0x180
98 #define AGL_GMX_RX_ADR_CAM1 0x188
99 #define AGL_GMX_RX_ADR_CAM2 0x190
100 #define AGL_GMX_RX_ADR_CAM3 0x198
101 #define AGL_GMX_RX_ADR_CAM4 0x1a0
102 #define AGL_GMX_RX_ADR_CAM5 0x1a8
103
104 #define AGL_GMX_TX_CLK 0x208
105 #define AGL_GMX_TX_STATS_CTL 0x268
106 #define AGL_GMX_TX_CTL 0x270
107 #define AGL_GMX_TX_STAT0 0x280
108 #define AGL_GMX_TX_STAT1 0x288
109 #define AGL_GMX_TX_STAT2 0x290
110 #define AGL_GMX_TX_STAT3 0x298
111 #define AGL_GMX_TX_STAT4 0x2a0
112 #define AGL_GMX_TX_STAT5 0x2a8
113 #define AGL_GMX_TX_STAT6 0x2b0
114 #define AGL_GMX_TX_STAT7 0x2b8
115 #define AGL_GMX_TX_STAT8 0x2c0
116 #define AGL_GMX_TX_STAT9 0x2c8
117
118 struct octeon_mgmt {
119 struct net_device *netdev;
120 u64 mix;
121 u64 agl;
122 u64 agl_prt_ctl;
123 int port;
124 int irq;
125 bool has_rx_tstamp;
126 u64 *tx_ring;
127 dma_addr_t tx_ring_handle;
128 unsigned int tx_next;
129 unsigned int tx_next_clean;
130 unsigned int tx_current_fill;
131 /* The tx_list lock also protects the ring related variables */
132 struct sk_buff_head tx_list;
133
134 /* RX variables only touched in napi_poll. No locking necessary. */
135 u64 *rx_ring;
136 dma_addr_t rx_ring_handle;
137 unsigned int rx_next;
138 unsigned int rx_next_fill;
139 unsigned int rx_current_fill;
140 struct sk_buff_head rx_list;
141
142 spinlock_t lock;
143 unsigned int last_duplex;
144 unsigned int last_link;
145 unsigned int last_speed;
146 struct device *dev;
147 struct napi_struct napi;
148 struct tasklet_struct tx_clean_tasklet;
149 struct device_node *phy_np;
150 resource_size_t mix_phys;
151 resource_size_t mix_size;
152 resource_size_t agl_phys;
153 resource_size_t agl_size;
154 resource_size_t agl_prt_ctl_phys;
155 resource_size_t agl_prt_ctl_size;
156 };
157
octeon_mgmt_set_rx_irq(struct octeon_mgmt * p,int enable)158 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable)
159 {
160 union cvmx_mixx_intena mix_intena;
161 unsigned long flags;
162
163 spin_lock_irqsave(&p->lock, flags);
164 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
165 mix_intena.s.ithena = enable ? 1 : 0;
166 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
167 spin_unlock_irqrestore(&p->lock, flags);
168 }
169
octeon_mgmt_set_tx_irq(struct octeon_mgmt * p,int enable)170 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable)
171 {
172 union cvmx_mixx_intena mix_intena;
173 unsigned long flags;
174
175 spin_lock_irqsave(&p->lock, flags);
176 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
177 mix_intena.s.othena = enable ? 1 : 0;
178 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
179 spin_unlock_irqrestore(&p->lock, flags);
180 }
181
octeon_mgmt_enable_rx_irq(struct octeon_mgmt * p)182 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p)
183 {
184 octeon_mgmt_set_rx_irq(p, 1);
185 }
186
octeon_mgmt_disable_rx_irq(struct octeon_mgmt * p)187 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p)
188 {
189 octeon_mgmt_set_rx_irq(p, 0);
190 }
191
octeon_mgmt_enable_tx_irq(struct octeon_mgmt * p)192 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p)
193 {
194 octeon_mgmt_set_tx_irq(p, 1);
195 }
196
octeon_mgmt_disable_tx_irq(struct octeon_mgmt * p)197 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p)
198 {
199 octeon_mgmt_set_tx_irq(p, 0);
200 }
201
ring_max_fill(unsigned int ring_size)202 static unsigned int ring_max_fill(unsigned int ring_size)
203 {
204 return ring_size - 8;
205 }
206
ring_size_to_bytes(unsigned int ring_size)207 static unsigned int ring_size_to_bytes(unsigned int ring_size)
208 {
209 return ring_size * sizeof(union mgmt_port_ring_entry);
210 }
211
octeon_mgmt_rx_fill_ring(struct net_device * netdev)212 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev)
213 {
214 struct octeon_mgmt *p = netdev_priv(netdev);
215
216 while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) {
217 unsigned int size;
218 union mgmt_port_ring_entry re;
219 struct sk_buff *skb;
220
221 /* CN56XX pass 1 needs 8 bytes of padding. */
222 size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN;
223
224 skb = netdev_alloc_skb(netdev, size);
225 if (!skb)
226 break;
227 skb_reserve(skb, NET_IP_ALIGN);
228 __skb_queue_tail(&p->rx_list, skb);
229
230 re.d64 = 0;
231 re.s.len = size;
232 re.s.addr = dma_map_single(p->dev, skb->data,
233 size,
234 DMA_FROM_DEVICE);
235
236 /* Put it in the ring. */
237 p->rx_ring[p->rx_next_fill] = re.d64;
238 /* Make sure there is no reorder of filling the ring and ringing
239 * the bell
240 */
241 wmb();
242
243 dma_sync_single_for_device(p->dev, p->rx_ring_handle,
244 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
245 DMA_BIDIRECTIONAL);
246 p->rx_next_fill =
247 (p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE;
248 p->rx_current_fill++;
249 /* Ring the bell. */
250 cvmx_write_csr(p->mix + MIX_IRING2, 1);
251 }
252 }
253
octeon_mgmt_clean_tx_buffers(struct octeon_mgmt * p)254 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p)
255 {
256 union cvmx_mixx_orcnt mix_orcnt;
257 union mgmt_port_ring_entry re;
258 struct sk_buff *skb;
259 int cleaned = 0;
260 unsigned long flags;
261
262 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
263 while (mix_orcnt.s.orcnt) {
264 spin_lock_irqsave(&p->tx_list.lock, flags);
265
266 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
267
268 if (mix_orcnt.s.orcnt == 0) {
269 spin_unlock_irqrestore(&p->tx_list.lock, flags);
270 break;
271 }
272
273 dma_sync_single_for_cpu(p->dev, p->tx_ring_handle,
274 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
275 DMA_BIDIRECTIONAL);
276
277 re.d64 = p->tx_ring[p->tx_next_clean];
278 p->tx_next_clean =
279 (p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE;
280 skb = __skb_dequeue(&p->tx_list);
281
282 mix_orcnt.u64 = 0;
283 mix_orcnt.s.orcnt = 1;
284
285 /* Acknowledge to hardware that we have the buffer. */
286 cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64);
287 p->tx_current_fill--;
288
289 spin_unlock_irqrestore(&p->tx_list.lock, flags);
290
291 dma_unmap_single(p->dev, re.s.addr, re.s.len,
292 DMA_TO_DEVICE);
293
294 /* Read the hardware TX timestamp if one was recorded */
295 if (unlikely(re.s.tstamp)) {
296 struct skb_shared_hwtstamps ts;
297 u64 ns;
298
299 memset(&ts, 0, sizeof(ts));
300 /* Read the timestamp */
301 ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port));
302 /* Remove the timestamp from the FIFO */
303 cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0);
304 /* Tell the kernel about the timestamp */
305 ts.hwtstamp = ns_to_ktime(ns);
306 skb_tstamp_tx(skb, &ts);
307 }
308
309 dev_kfree_skb_any(skb);
310 cleaned++;
311
312 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
313 }
314
315 if (cleaned && netif_queue_stopped(p->netdev))
316 netif_wake_queue(p->netdev);
317 }
318
octeon_mgmt_clean_tx_tasklet(unsigned long arg)319 static void octeon_mgmt_clean_tx_tasklet(unsigned long arg)
320 {
321 struct octeon_mgmt *p = (struct octeon_mgmt *)arg;
322 octeon_mgmt_clean_tx_buffers(p);
323 octeon_mgmt_enable_tx_irq(p);
324 }
325
octeon_mgmt_update_rx_stats(struct net_device * netdev)326 static void octeon_mgmt_update_rx_stats(struct net_device *netdev)
327 {
328 struct octeon_mgmt *p = netdev_priv(netdev);
329 unsigned long flags;
330 u64 drop, bad;
331
332 /* These reads also clear the count registers. */
333 drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP);
334 bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD);
335
336 if (drop || bad) {
337 /* Do an atomic update. */
338 spin_lock_irqsave(&p->lock, flags);
339 netdev->stats.rx_errors += bad;
340 netdev->stats.rx_dropped += drop;
341 spin_unlock_irqrestore(&p->lock, flags);
342 }
343 }
344
octeon_mgmt_update_tx_stats(struct net_device * netdev)345 static void octeon_mgmt_update_tx_stats(struct net_device *netdev)
346 {
347 struct octeon_mgmt *p = netdev_priv(netdev);
348 unsigned long flags;
349
350 union cvmx_agl_gmx_txx_stat0 s0;
351 union cvmx_agl_gmx_txx_stat1 s1;
352
353 /* These reads also clear the count registers. */
354 s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0);
355 s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1);
356
357 if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) {
358 /* Do an atomic update. */
359 spin_lock_irqsave(&p->lock, flags);
360 netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol;
361 netdev->stats.collisions += s1.s.scol + s1.s.mcol;
362 spin_unlock_irqrestore(&p->lock, flags);
363 }
364 }
365
366 /*
367 * Dequeue a receive skb and its corresponding ring entry. The ring
368 * entry is returned, *pskb is updated to point to the skb.
369 */
octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt * p,struct sk_buff ** pskb)370 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p,
371 struct sk_buff **pskb)
372 {
373 union mgmt_port_ring_entry re;
374
375 dma_sync_single_for_cpu(p->dev, p->rx_ring_handle,
376 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
377 DMA_BIDIRECTIONAL);
378
379 re.d64 = p->rx_ring[p->rx_next];
380 p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE;
381 p->rx_current_fill--;
382 *pskb = __skb_dequeue(&p->rx_list);
383
384 dma_unmap_single(p->dev, re.s.addr,
385 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM,
386 DMA_FROM_DEVICE);
387
388 return re.d64;
389 }
390
391
octeon_mgmt_receive_one(struct octeon_mgmt * p)392 static int octeon_mgmt_receive_one(struct octeon_mgmt *p)
393 {
394 struct net_device *netdev = p->netdev;
395 union cvmx_mixx_ircnt mix_ircnt;
396 union mgmt_port_ring_entry re;
397 struct sk_buff *skb;
398 struct sk_buff *skb2;
399 struct sk_buff *skb_new;
400 union mgmt_port_ring_entry re2;
401 int rc = 1;
402
403
404 re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb);
405 if (likely(re.s.code == RING_ENTRY_CODE_DONE)) {
406 /* A good packet, send it up. */
407 skb_put(skb, re.s.len);
408 good:
409 /* Process the RX timestamp if it was recorded */
410 if (p->has_rx_tstamp) {
411 /* The first 8 bytes are the timestamp */
412 u64 ns = *(u64 *)skb->data;
413 struct skb_shared_hwtstamps *ts;
414 ts = skb_hwtstamps(skb);
415 ts->hwtstamp = ns_to_ktime(ns);
416 __skb_pull(skb, 8);
417 }
418 skb->protocol = eth_type_trans(skb, netdev);
419 netdev->stats.rx_packets++;
420 netdev->stats.rx_bytes += skb->len;
421 netif_receive_skb(skb);
422 rc = 0;
423 } else if (re.s.code == RING_ENTRY_CODE_MORE) {
424 /* Packet split across skbs. This can happen if we
425 * increase the MTU. Buffers that are already in the
426 * rx ring can then end up being too small. As the rx
427 * ring is refilled, buffers sized for the new MTU
428 * will be used and we should go back to the normal
429 * non-split case.
430 */
431 skb_put(skb, re.s.len);
432 do {
433 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
434 if (re2.s.code != RING_ENTRY_CODE_MORE
435 && re2.s.code != RING_ENTRY_CODE_DONE)
436 goto split_error;
437 skb_put(skb2, re2.s.len);
438 skb_new = skb_copy_expand(skb, 0, skb2->len,
439 GFP_ATOMIC);
440 if (!skb_new)
441 goto split_error;
442 if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new),
443 skb2->len))
444 goto split_error;
445 skb_put(skb_new, skb2->len);
446 dev_kfree_skb_any(skb);
447 dev_kfree_skb_any(skb2);
448 skb = skb_new;
449 } while (re2.s.code == RING_ENTRY_CODE_MORE);
450 goto good;
451 } else {
452 /* Some other error, discard it. */
453 dev_kfree_skb_any(skb);
454 /* Error statistics are accumulated in
455 * octeon_mgmt_update_rx_stats.
456 */
457 }
458 goto done;
459 split_error:
460 /* Discard the whole mess. */
461 dev_kfree_skb_any(skb);
462 dev_kfree_skb_any(skb2);
463 while (re2.s.code == RING_ENTRY_CODE_MORE) {
464 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
465 dev_kfree_skb_any(skb2);
466 }
467 netdev->stats.rx_errors++;
468
469 done:
470 /* Tell the hardware we processed a packet. */
471 mix_ircnt.u64 = 0;
472 mix_ircnt.s.ircnt = 1;
473 cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64);
474 return rc;
475 }
476
octeon_mgmt_receive_packets(struct octeon_mgmt * p,int budget)477 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget)
478 {
479 unsigned int work_done = 0;
480 union cvmx_mixx_ircnt mix_ircnt;
481 int rc;
482
483 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
484 while (work_done < budget && mix_ircnt.s.ircnt) {
485
486 rc = octeon_mgmt_receive_one(p);
487 if (!rc)
488 work_done++;
489
490 /* Check for more packets. */
491 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
492 }
493
494 octeon_mgmt_rx_fill_ring(p->netdev);
495
496 return work_done;
497 }
498
octeon_mgmt_napi_poll(struct napi_struct * napi,int budget)499 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget)
500 {
501 struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi);
502 struct net_device *netdev = p->netdev;
503 unsigned int work_done = 0;
504
505 work_done = octeon_mgmt_receive_packets(p, budget);
506
507 if (work_done < budget) {
508 /* We stopped because no more packets were available. */
509 napi_complete_done(napi, work_done);
510 octeon_mgmt_enable_rx_irq(p);
511 }
512 octeon_mgmt_update_rx_stats(netdev);
513
514 return work_done;
515 }
516
517 /* Reset the hardware to clean state. */
octeon_mgmt_reset_hw(struct octeon_mgmt * p)518 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p)
519 {
520 union cvmx_mixx_ctl mix_ctl;
521 union cvmx_mixx_bist mix_bist;
522 union cvmx_agl_gmx_bist agl_gmx_bist;
523
524 mix_ctl.u64 = 0;
525 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
526 do {
527 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
528 } while (mix_ctl.s.busy);
529 mix_ctl.s.reset = 1;
530 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
531 cvmx_read_csr(p->mix + MIX_CTL);
532 octeon_io_clk_delay(64);
533
534 mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST);
535 if (mix_bist.u64)
536 dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n",
537 (unsigned long long)mix_bist.u64);
538
539 agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST);
540 if (agl_gmx_bist.u64)
541 dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n",
542 (unsigned long long)agl_gmx_bist.u64);
543 }
544
545 struct octeon_mgmt_cam_state {
546 u64 cam[6];
547 u64 cam_mask;
548 int cam_index;
549 };
550
octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state * cs,unsigned char * addr)551 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs,
552 unsigned char *addr)
553 {
554 int i;
555
556 for (i = 0; i < 6; i++)
557 cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index));
558 cs->cam_mask |= (1ULL << cs->cam_index);
559 cs->cam_index++;
560 }
561
octeon_mgmt_set_rx_filtering(struct net_device * netdev)562 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev)
563 {
564 struct octeon_mgmt *p = netdev_priv(netdev);
565 union cvmx_agl_gmx_rxx_adr_ctl adr_ctl;
566 union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx;
567 unsigned long flags;
568 unsigned int prev_packet_enable;
569 unsigned int cam_mode = 1; /* 1 - Accept on CAM match */
570 unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */
571 struct octeon_mgmt_cam_state cam_state;
572 struct netdev_hw_addr *ha;
573 int available_cam_entries;
574
575 memset(&cam_state, 0, sizeof(cam_state));
576
577 if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) {
578 cam_mode = 0;
579 available_cam_entries = 8;
580 } else {
581 /* One CAM entry for the primary address, leaves seven
582 * for the secondary addresses.
583 */
584 available_cam_entries = 7 - netdev->uc.count;
585 }
586
587 if (netdev->flags & IFF_MULTICAST) {
588 if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) ||
589 netdev_mc_count(netdev) > available_cam_entries)
590 multicast_mode = 2; /* 2 - Accept all multicast. */
591 else
592 multicast_mode = 0; /* 0 - Use CAM. */
593 }
594
595 if (cam_mode == 1) {
596 /* Add primary address. */
597 octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr);
598 netdev_for_each_uc_addr(ha, netdev)
599 octeon_mgmt_cam_state_add(&cam_state, ha->addr);
600 }
601 if (multicast_mode == 0) {
602 netdev_for_each_mc_addr(ha, netdev)
603 octeon_mgmt_cam_state_add(&cam_state, ha->addr);
604 }
605
606 spin_lock_irqsave(&p->lock, flags);
607
608 /* Disable packet I/O. */
609 agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
610 prev_packet_enable = agl_gmx_prtx.s.en;
611 agl_gmx_prtx.s.en = 0;
612 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
613
614 adr_ctl.u64 = 0;
615 adr_ctl.s.cam_mode = cam_mode;
616 adr_ctl.s.mcst = multicast_mode;
617 adr_ctl.s.bcst = 1; /* Allow broadcast */
618
619 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64);
620
621 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]);
622 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]);
623 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]);
624 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]);
625 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]);
626 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]);
627 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask);
628
629 /* Restore packet I/O. */
630 agl_gmx_prtx.s.en = prev_packet_enable;
631 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
632
633 spin_unlock_irqrestore(&p->lock, flags);
634 }
635
octeon_mgmt_set_mac_address(struct net_device * netdev,void * addr)636 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr)
637 {
638 int r = eth_mac_addr(netdev, addr);
639
640 if (r)
641 return r;
642
643 octeon_mgmt_set_rx_filtering(netdev);
644
645 return 0;
646 }
647
octeon_mgmt_change_mtu(struct net_device * netdev,int new_mtu)648 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu)
649 {
650 struct octeon_mgmt *p = netdev_priv(netdev);
651 int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN;
652
653 netdev->mtu = new_mtu;
654
655 /* HW lifts the limit if the frame is VLAN tagged
656 * (+4 bytes per each tag, up to two tags)
657 */
658 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet);
659 /* Set the hardware to truncate packets larger than the MTU. The jabber
660 * register must be set to a multiple of 8 bytes, so round up. JABBER is
661 * an unconditional limit, so we need to account for two possible VLAN
662 * tags.
663 */
664 cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER,
665 (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8);
666
667 return 0;
668 }
669
octeon_mgmt_interrupt(int cpl,void * dev_id)670 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id)
671 {
672 struct net_device *netdev = dev_id;
673 struct octeon_mgmt *p = netdev_priv(netdev);
674 union cvmx_mixx_isr mixx_isr;
675
676 mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR);
677
678 /* Clear any pending interrupts */
679 cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64);
680 cvmx_read_csr(p->mix + MIX_ISR);
681
682 if (mixx_isr.s.irthresh) {
683 octeon_mgmt_disable_rx_irq(p);
684 napi_schedule(&p->napi);
685 }
686 if (mixx_isr.s.orthresh) {
687 octeon_mgmt_disable_tx_irq(p);
688 tasklet_schedule(&p->tx_clean_tasklet);
689 }
690
691 return IRQ_HANDLED;
692 }
693
octeon_mgmt_ioctl_hwtstamp(struct net_device * netdev,struct ifreq * rq,int cmd)694 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev,
695 struct ifreq *rq, int cmd)
696 {
697 struct octeon_mgmt *p = netdev_priv(netdev);
698 struct hwtstamp_config config;
699 union cvmx_mio_ptp_clock_cfg ptp;
700 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
701 bool have_hw_timestamps = false;
702
703 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
704 return -EFAULT;
705
706 if (config.flags) /* reserved for future extensions */
707 return -EINVAL;
708
709 /* Check the status of hardware for tiemstamps */
710 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
711 /* Get the current state of the PTP clock */
712 ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG);
713 if (!ptp.s.ext_clk_en) {
714 /* The clock has not been configured to use an
715 * external source. Program it to use the main clock
716 * reference.
717 */
718 u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate();
719 if (!ptp.s.ptp_en)
720 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp);
721 netdev_info(netdev,
722 "PTP Clock using sclk reference @ %lldHz\n",
723 (NSEC_PER_SEC << 32) / clock_comp);
724 } else {
725 /* The clock is already programmed to use a GPIO */
726 u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP);
727 netdev_info(netdev,
728 "PTP Clock using GPIO%d @ %lld Hz\n",
729 ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp);
730 }
731
732 /* Enable the clock if it wasn't done already */
733 if (!ptp.s.ptp_en) {
734 ptp.s.ptp_en = 1;
735 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64);
736 }
737 have_hw_timestamps = true;
738 }
739
740 if (!have_hw_timestamps)
741 return -EINVAL;
742
743 switch (config.tx_type) {
744 case HWTSTAMP_TX_OFF:
745 case HWTSTAMP_TX_ON:
746 break;
747 default:
748 return -ERANGE;
749 }
750
751 switch (config.rx_filter) {
752 case HWTSTAMP_FILTER_NONE:
753 p->has_rx_tstamp = false;
754 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
755 rxx_frm_ctl.s.ptp_mode = 0;
756 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
757 break;
758 case HWTSTAMP_FILTER_ALL:
759 case HWTSTAMP_FILTER_SOME:
760 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
761 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
762 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
763 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
764 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
765 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
766 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
767 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
768 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
769 case HWTSTAMP_FILTER_PTP_V2_EVENT:
770 case HWTSTAMP_FILTER_PTP_V2_SYNC:
771 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
772 case HWTSTAMP_FILTER_NTP_ALL:
773 p->has_rx_tstamp = have_hw_timestamps;
774 config.rx_filter = HWTSTAMP_FILTER_ALL;
775 if (p->has_rx_tstamp) {
776 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
777 rxx_frm_ctl.s.ptp_mode = 1;
778 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
779 }
780 break;
781 default:
782 return -ERANGE;
783 }
784
785 if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
786 return -EFAULT;
787
788 return 0;
789 }
790
octeon_mgmt_ioctl(struct net_device * netdev,struct ifreq * rq,int cmd)791 static int octeon_mgmt_ioctl(struct net_device *netdev,
792 struct ifreq *rq, int cmd)
793 {
794 switch (cmd) {
795 case SIOCSHWTSTAMP:
796 return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd);
797 default:
798 if (netdev->phydev)
799 return phy_mii_ioctl(netdev->phydev, rq, cmd);
800 return -EINVAL;
801 }
802 }
803
octeon_mgmt_disable_link(struct octeon_mgmt * p)804 static void octeon_mgmt_disable_link(struct octeon_mgmt *p)
805 {
806 union cvmx_agl_gmx_prtx_cfg prtx_cfg;
807
808 /* Disable GMX before we make any changes. */
809 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
810 prtx_cfg.s.en = 0;
811 prtx_cfg.s.tx_en = 0;
812 prtx_cfg.s.rx_en = 0;
813 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
814
815 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
816 int i;
817 for (i = 0; i < 10; i++) {
818 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
819 if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1)
820 break;
821 mdelay(1);
822 i++;
823 }
824 }
825 }
826
octeon_mgmt_enable_link(struct octeon_mgmt * p)827 static void octeon_mgmt_enable_link(struct octeon_mgmt *p)
828 {
829 union cvmx_agl_gmx_prtx_cfg prtx_cfg;
830
831 /* Restore the GMX enable state only if link is set */
832 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
833 prtx_cfg.s.tx_en = 1;
834 prtx_cfg.s.rx_en = 1;
835 prtx_cfg.s.en = 1;
836 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
837 }
838
octeon_mgmt_update_link(struct octeon_mgmt * p)839 static void octeon_mgmt_update_link(struct octeon_mgmt *p)
840 {
841 struct net_device *ndev = p->netdev;
842 struct phy_device *phydev = ndev->phydev;
843 union cvmx_agl_gmx_prtx_cfg prtx_cfg;
844
845 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
846
847 if (!phydev->link)
848 prtx_cfg.s.duplex = 1;
849 else
850 prtx_cfg.s.duplex = phydev->duplex;
851
852 switch (phydev->speed) {
853 case 10:
854 prtx_cfg.s.speed = 0;
855 prtx_cfg.s.slottime = 0;
856
857 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
858 prtx_cfg.s.burst = 1;
859 prtx_cfg.s.speed_msb = 1;
860 }
861 break;
862 case 100:
863 prtx_cfg.s.speed = 0;
864 prtx_cfg.s.slottime = 0;
865
866 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
867 prtx_cfg.s.burst = 1;
868 prtx_cfg.s.speed_msb = 0;
869 }
870 break;
871 case 1000:
872 /* 1000 MBits is only supported on 6XXX chips */
873 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
874 prtx_cfg.s.speed = 1;
875 prtx_cfg.s.speed_msb = 0;
876 /* Only matters for half-duplex */
877 prtx_cfg.s.slottime = 1;
878 prtx_cfg.s.burst = phydev->duplex;
879 }
880 break;
881 case 0: /* No link */
882 default:
883 break;
884 }
885
886 /* Write the new GMX setting with the port still disabled. */
887 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
888
889 /* Read GMX CFG again to make sure the config is completed. */
890 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
891
892 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
893 union cvmx_agl_gmx_txx_clk agl_clk;
894 union cvmx_agl_prtx_ctl prtx_ctl;
895
896 prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
897 agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK);
898 /* MII (both speeds) and RGMII 1000 speed. */
899 agl_clk.s.clk_cnt = 1;
900 if (prtx_ctl.s.mode == 0) { /* RGMII mode */
901 if (phydev->speed == 10)
902 agl_clk.s.clk_cnt = 50;
903 else if (phydev->speed == 100)
904 agl_clk.s.clk_cnt = 5;
905 }
906 cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64);
907 }
908 }
909
octeon_mgmt_adjust_link(struct net_device * netdev)910 static void octeon_mgmt_adjust_link(struct net_device *netdev)
911 {
912 struct octeon_mgmt *p = netdev_priv(netdev);
913 struct phy_device *phydev = netdev->phydev;
914 unsigned long flags;
915 int link_changed = 0;
916
917 if (!phydev)
918 return;
919
920 spin_lock_irqsave(&p->lock, flags);
921
922
923 if (!phydev->link && p->last_link)
924 link_changed = -1;
925
926 if (phydev->link &&
927 (p->last_duplex != phydev->duplex ||
928 p->last_link != phydev->link ||
929 p->last_speed != phydev->speed)) {
930 octeon_mgmt_disable_link(p);
931 link_changed = 1;
932 octeon_mgmt_update_link(p);
933 octeon_mgmt_enable_link(p);
934 }
935
936 p->last_link = phydev->link;
937 p->last_speed = phydev->speed;
938 p->last_duplex = phydev->duplex;
939
940 spin_unlock_irqrestore(&p->lock, flags);
941
942 if (link_changed != 0) {
943 if (link_changed > 0)
944 netdev_info(netdev, "Link is up - %d/%s\n",
945 phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half");
946 else
947 netdev_info(netdev, "Link is down\n");
948 }
949 }
950
octeon_mgmt_init_phy(struct net_device * netdev)951 static int octeon_mgmt_init_phy(struct net_device *netdev)
952 {
953 struct octeon_mgmt *p = netdev_priv(netdev);
954 struct phy_device *phydev = NULL;
955
956 if (octeon_is_simulation() || p->phy_np == NULL) {
957 /* No PHYs in the simulator. */
958 netif_carrier_on(netdev);
959 return 0;
960 }
961
962 phydev = of_phy_connect(netdev, p->phy_np,
963 octeon_mgmt_adjust_link, 0,
964 PHY_INTERFACE_MODE_MII);
965
966 if (!phydev)
967 return -ENODEV;
968
969 return 0;
970 }
971
octeon_mgmt_open(struct net_device * netdev)972 static int octeon_mgmt_open(struct net_device *netdev)
973 {
974 struct octeon_mgmt *p = netdev_priv(netdev);
975 union cvmx_mixx_ctl mix_ctl;
976 union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode;
977 union cvmx_mixx_oring1 oring1;
978 union cvmx_mixx_iring1 iring1;
979 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
980 union cvmx_mixx_irhwm mix_irhwm;
981 union cvmx_mixx_orhwm mix_orhwm;
982 union cvmx_mixx_intena mix_intena;
983 struct sockaddr sa;
984
985 /* Allocate ring buffers. */
986 p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
987 GFP_KERNEL);
988 if (!p->tx_ring)
989 return -ENOMEM;
990 p->tx_ring_handle =
991 dma_map_single(p->dev, p->tx_ring,
992 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
993 DMA_BIDIRECTIONAL);
994 p->tx_next = 0;
995 p->tx_next_clean = 0;
996 p->tx_current_fill = 0;
997
998
999 p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1000 GFP_KERNEL);
1001 if (!p->rx_ring)
1002 goto err_nomem;
1003 p->rx_ring_handle =
1004 dma_map_single(p->dev, p->rx_ring,
1005 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1006 DMA_BIDIRECTIONAL);
1007
1008 p->rx_next = 0;
1009 p->rx_next_fill = 0;
1010 p->rx_current_fill = 0;
1011
1012 octeon_mgmt_reset_hw(p);
1013
1014 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1015
1016 /* Bring it out of reset if needed. */
1017 if (mix_ctl.s.reset) {
1018 mix_ctl.s.reset = 0;
1019 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1020 do {
1021 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1022 } while (mix_ctl.s.reset);
1023 }
1024
1025 if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
1026 agl_gmx_inf_mode.u64 = 0;
1027 agl_gmx_inf_mode.s.en = 1;
1028 cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64);
1029 }
1030 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)
1031 || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
1032 /* Force compensation values, as they are not
1033 * determined properly by HW
1034 */
1035 union cvmx_agl_gmx_drv_ctl drv_ctl;
1036
1037 drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL);
1038 if (p->port) {
1039 drv_ctl.s.byp_en1 = 1;
1040 drv_ctl.s.nctl1 = 6;
1041 drv_ctl.s.pctl1 = 6;
1042 } else {
1043 drv_ctl.s.byp_en = 1;
1044 drv_ctl.s.nctl = 6;
1045 drv_ctl.s.pctl = 6;
1046 }
1047 cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64);
1048 }
1049
1050 oring1.u64 = 0;
1051 oring1.s.obase = p->tx_ring_handle >> 3;
1052 oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE;
1053 cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64);
1054
1055 iring1.u64 = 0;
1056 iring1.s.ibase = p->rx_ring_handle >> 3;
1057 iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE;
1058 cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64);
1059
1060 memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN);
1061 octeon_mgmt_set_mac_address(netdev, &sa);
1062
1063 octeon_mgmt_change_mtu(netdev, netdev->mtu);
1064
1065 /* Enable the port HW. Packets are not allowed until
1066 * cvmx_mgmt_port_enable() is called.
1067 */
1068 mix_ctl.u64 = 0;
1069 mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */
1070 mix_ctl.s.en = 1; /* Enable the port */
1071 mix_ctl.s.nbtarb = 0; /* Arbitration mode */
1072 /* MII CB-request FIFO programmable high watermark */
1073 mix_ctl.s.mrq_hwm = 1;
1074 #ifdef __LITTLE_ENDIAN
1075 mix_ctl.s.lendian = 1;
1076 #endif
1077 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1078
1079 /* Read the PHY to find the mode of the interface. */
1080 if (octeon_mgmt_init_phy(netdev)) {
1081 dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port);
1082 goto err_noirq;
1083 }
1084
1085 /* Set the mode of the interface, RGMII/MII. */
1086 if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) {
1087 union cvmx_agl_prtx_ctl agl_prtx_ctl;
1088 int rgmii_mode = (netdev->phydev->supported &
1089 (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)) != 0;
1090
1091 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1092 agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1;
1093 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1094
1095 /* MII clocks counts are based on the 125Mhz
1096 * reference, which has an 8nS period. So our delays
1097 * need to be multiplied by this factor.
1098 */
1099 #define NS_PER_PHY_CLK 8
1100
1101 /* Take the DLL and clock tree out of reset */
1102 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1103 agl_prtx_ctl.s.clkrst = 0;
1104 if (rgmii_mode) {
1105 agl_prtx_ctl.s.dllrst = 0;
1106 agl_prtx_ctl.s.clktx_byp = 0;
1107 }
1108 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1109 cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */
1110
1111 /* Wait for the DLL to lock. External 125 MHz
1112 * reference clock must be stable at this point.
1113 */
1114 ndelay(256 * NS_PER_PHY_CLK);
1115
1116 /* Enable the interface */
1117 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1118 agl_prtx_ctl.s.enable = 1;
1119 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1120
1121 /* Read the value back to force the previous write */
1122 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1123
1124 /* Enable the compensation controller */
1125 agl_prtx_ctl.s.comp = 1;
1126 agl_prtx_ctl.s.drv_byp = 0;
1127 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1128 /* Force write out before wait. */
1129 cvmx_read_csr(p->agl_prt_ctl);
1130
1131 /* For compensation state to lock. */
1132 ndelay(1040 * NS_PER_PHY_CLK);
1133
1134 /* Default Interframe Gaps are too small. Recommended
1135 * workaround is.
1136 *
1137 * AGL_GMX_TX_IFG[IFG1]=14
1138 * AGL_GMX_TX_IFG[IFG2]=10
1139 */
1140 cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae);
1141 }
1142
1143 octeon_mgmt_rx_fill_ring(netdev);
1144
1145 /* Clear statistics. */
1146 /* Clear on read. */
1147 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1);
1148 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0);
1149 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0);
1150
1151 cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1);
1152 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0);
1153 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0);
1154
1155 /* Clear any pending interrupts */
1156 cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR));
1157
1158 if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name,
1159 netdev)) {
1160 dev_err(p->dev, "request_irq(%d) failed.\n", p->irq);
1161 goto err_noirq;
1162 }
1163
1164 /* Interrupt every single RX packet */
1165 mix_irhwm.u64 = 0;
1166 mix_irhwm.s.irhwm = 0;
1167 cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64);
1168
1169 /* Interrupt when we have 1 or more packets to clean. */
1170 mix_orhwm.u64 = 0;
1171 mix_orhwm.s.orhwm = 0;
1172 cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64);
1173
1174 /* Enable receive and transmit interrupts */
1175 mix_intena.u64 = 0;
1176 mix_intena.s.ithena = 1;
1177 mix_intena.s.othena = 1;
1178 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
1179
1180 /* Enable packet I/O. */
1181
1182 rxx_frm_ctl.u64 = 0;
1183 rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0;
1184 rxx_frm_ctl.s.pre_align = 1;
1185 /* When set, disables the length check for non-min sized pkts
1186 * with padding in the client data.
1187 */
1188 rxx_frm_ctl.s.pad_len = 1;
1189 /* When set, disables the length check for VLAN pkts */
1190 rxx_frm_ctl.s.vlan_len = 1;
1191 /* When set, PREAMBLE checking is less strict */
1192 rxx_frm_ctl.s.pre_free = 1;
1193 /* Control Pause Frames can match station SMAC */
1194 rxx_frm_ctl.s.ctl_smac = 0;
1195 /* Control Pause Frames can match globally assign Multicast address */
1196 rxx_frm_ctl.s.ctl_mcst = 1;
1197 /* Forward pause information to TX block */
1198 rxx_frm_ctl.s.ctl_bck = 1;
1199 /* Drop Control Pause Frames */
1200 rxx_frm_ctl.s.ctl_drp = 1;
1201 /* Strip off the preamble */
1202 rxx_frm_ctl.s.pre_strp = 1;
1203 /* This port is configured to send PREAMBLE+SFD to begin every
1204 * frame. GMX checks that the PREAMBLE is sent correctly.
1205 */
1206 rxx_frm_ctl.s.pre_chk = 1;
1207 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
1208
1209 /* Configure the port duplex, speed and enables */
1210 octeon_mgmt_disable_link(p);
1211 if (netdev->phydev)
1212 octeon_mgmt_update_link(p);
1213 octeon_mgmt_enable_link(p);
1214
1215 p->last_link = 0;
1216 p->last_speed = 0;
1217 /* PHY is not present in simulator. The carrier is enabled
1218 * while initializing the phy for simulator, leave it enabled.
1219 */
1220 if (netdev->phydev) {
1221 netif_carrier_off(netdev);
1222 phy_start_aneg(netdev->phydev);
1223 }
1224
1225 netif_wake_queue(netdev);
1226 napi_enable(&p->napi);
1227
1228 return 0;
1229 err_noirq:
1230 octeon_mgmt_reset_hw(p);
1231 dma_unmap_single(p->dev, p->rx_ring_handle,
1232 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1233 DMA_BIDIRECTIONAL);
1234 kfree(p->rx_ring);
1235 err_nomem:
1236 dma_unmap_single(p->dev, p->tx_ring_handle,
1237 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1238 DMA_BIDIRECTIONAL);
1239 kfree(p->tx_ring);
1240 return -ENOMEM;
1241 }
1242
octeon_mgmt_stop(struct net_device * netdev)1243 static int octeon_mgmt_stop(struct net_device *netdev)
1244 {
1245 struct octeon_mgmt *p = netdev_priv(netdev);
1246
1247 napi_disable(&p->napi);
1248 netif_stop_queue(netdev);
1249
1250 if (netdev->phydev)
1251 phy_disconnect(netdev->phydev);
1252
1253 netif_carrier_off(netdev);
1254
1255 octeon_mgmt_reset_hw(p);
1256
1257 free_irq(p->irq, netdev);
1258
1259 /* dma_unmap is a nop on Octeon, so just free everything. */
1260 skb_queue_purge(&p->tx_list);
1261 skb_queue_purge(&p->rx_list);
1262
1263 dma_unmap_single(p->dev, p->rx_ring_handle,
1264 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1265 DMA_BIDIRECTIONAL);
1266 kfree(p->rx_ring);
1267
1268 dma_unmap_single(p->dev, p->tx_ring_handle,
1269 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1270 DMA_BIDIRECTIONAL);
1271 kfree(p->tx_ring);
1272
1273 return 0;
1274 }
1275
1276 static netdev_tx_t
octeon_mgmt_xmit(struct sk_buff * skb,struct net_device * netdev)1277 octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev)
1278 {
1279 struct octeon_mgmt *p = netdev_priv(netdev);
1280 union mgmt_port_ring_entry re;
1281 unsigned long flags;
1282 netdev_tx_t rv = NETDEV_TX_BUSY;
1283
1284 re.d64 = 0;
1285 re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0);
1286 re.s.len = skb->len;
1287 re.s.addr = dma_map_single(p->dev, skb->data,
1288 skb->len,
1289 DMA_TO_DEVICE);
1290
1291 spin_lock_irqsave(&p->tx_list.lock, flags);
1292
1293 if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) {
1294 spin_unlock_irqrestore(&p->tx_list.lock, flags);
1295 netif_stop_queue(netdev);
1296 spin_lock_irqsave(&p->tx_list.lock, flags);
1297 }
1298
1299 if (unlikely(p->tx_current_fill >=
1300 ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) {
1301 spin_unlock_irqrestore(&p->tx_list.lock, flags);
1302 dma_unmap_single(p->dev, re.s.addr, re.s.len,
1303 DMA_TO_DEVICE);
1304 goto out;
1305 }
1306
1307 __skb_queue_tail(&p->tx_list, skb);
1308
1309 /* Put it in the ring. */
1310 p->tx_ring[p->tx_next] = re.d64;
1311 p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE;
1312 p->tx_current_fill++;
1313
1314 spin_unlock_irqrestore(&p->tx_list.lock, flags);
1315
1316 dma_sync_single_for_device(p->dev, p->tx_ring_handle,
1317 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1318 DMA_BIDIRECTIONAL);
1319
1320 netdev->stats.tx_packets++;
1321 netdev->stats.tx_bytes += skb->len;
1322
1323 /* Ring the bell. */
1324 cvmx_write_csr(p->mix + MIX_ORING2, 1);
1325
1326 netif_trans_update(netdev);
1327 rv = NETDEV_TX_OK;
1328 out:
1329 octeon_mgmt_update_tx_stats(netdev);
1330 return rv;
1331 }
1332
1333 #ifdef CONFIG_NET_POLL_CONTROLLER
octeon_mgmt_poll_controller(struct net_device * netdev)1334 static void octeon_mgmt_poll_controller(struct net_device *netdev)
1335 {
1336 struct octeon_mgmt *p = netdev_priv(netdev);
1337
1338 octeon_mgmt_receive_packets(p, 16);
1339 octeon_mgmt_update_rx_stats(netdev);
1340 }
1341 #endif
1342
octeon_mgmt_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)1343 static void octeon_mgmt_get_drvinfo(struct net_device *netdev,
1344 struct ethtool_drvinfo *info)
1345 {
1346 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1347 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1348 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1349 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1350 }
1351
octeon_mgmt_nway_reset(struct net_device * dev)1352 static int octeon_mgmt_nway_reset(struct net_device *dev)
1353 {
1354 if (!capable(CAP_NET_ADMIN))
1355 return -EPERM;
1356
1357 if (dev->phydev)
1358 return phy_start_aneg(dev->phydev);
1359
1360 return -EOPNOTSUPP;
1361 }
1362
1363 static const struct ethtool_ops octeon_mgmt_ethtool_ops = {
1364 .get_drvinfo = octeon_mgmt_get_drvinfo,
1365 .nway_reset = octeon_mgmt_nway_reset,
1366 .get_link = ethtool_op_get_link,
1367 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1368 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1369 };
1370
1371 static const struct net_device_ops octeon_mgmt_ops = {
1372 .ndo_open = octeon_mgmt_open,
1373 .ndo_stop = octeon_mgmt_stop,
1374 .ndo_start_xmit = octeon_mgmt_xmit,
1375 .ndo_set_rx_mode = octeon_mgmt_set_rx_filtering,
1376 .ndo_set_mac_address = octeon_mgmt_set_mac_address,
1377 .ndo_do_ioctl = octeon_mgmt_ioctl,
1378 .ndo_change_mtu = octeon_mgmt_change_mtu,
1379 #ifdef CONFIG_NET_POLL_CONTROLLER
1380 .ndo_poll_controller = octeon_mgmt_poll_controller,
1381 #endif
1382 };
1383
octeon_mgmt_probe(struct platform_device * pdev)1384 static int octeon_mgmt_probe(struct platform_device *pdev)
1385 {
1386 struct net_device *netdev;
1387 struct octeon_mgmt *p;
1388 const __be32 *data;
1389 const u8 *mac;
1390 struct resource *res_mix;
1391 struct resource *res_agl;
1392 struct resource *res_agl_prt_ctl;
1393 int len;
1394 int result;
1395
1396 netdev = alloc_etherdev(sizeof(struct octeon_mgmt));
1397 if (netdev == NULL)
1398 return -ENOMEM;
1399
1400 SET_NETDEV_DEV(netdev, &pdev->dev);
1401
1402 platform_set_drvdata(pdev, netdev);
1403 p = netdev_priv(netdev);
1404 netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll,
1405 OCTEON_MGMT_NAPI_WEIGHT);
1406
1407 p->netdev = netdev;
1408 p->dev = &pdev->dev;
1409 p->has_rx_tstamp = false;
1410
1411 data = of_get_property(pdev->dev.of_node, "cell-index", &len);
1412 if (data && len == sizeof(*data)) {
1413 p->port = be32_to_cpup(data);
1414 } else {
1415 dev_err(&pdev->dev, "no 'cell-index' property\n");
1416 result = -ENXIO;
1417 goto err;
1418 }
1419
1420 snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port);
1421
1422 result = platform_get_irq(pdev, 0);
1423 if (result < 0)
1424 goto err;
1425
1426 p->irq = result;
1427
1428 res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1429 if (res_mix == NULL) {
1430 dev_err(&pdev->dev, "no 'reg' resource\n");
1431 result = -ENXIO;
1432 goto err;
1433 }
1434
1435 res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1436 if (res_agl == NULL) {
1437 dev_err(&pdev->dev, "no 'reg' resource\n");
1438 result = -ENXIO;
1439 goto err;
1440 }
1441
1442 res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1443 if (res_agl_prt_ctl == NULL) {
1444 dev_err(&pdev->dev, "no 'reg' resource\n");
1445 result = -ENXIO;
1446 goto err;
1447 }
1448
1449 p->mix_phys = res_mix->start;
1450 p->mix_size = resource_size(res_mix);
1451 p->agl_phys = res_agl->start;
1452 p->agl_size = resource_size(res_agl);
1453 p->agl_prt_ctl_phys = res_agl_prt_ctl->start;
1454 p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl);
1455
1456
1457 if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size,
1458 res_mix->name)) {
1459 dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1460 res_mix->name);
1461 result = -ENXIO;
1462 goto err;
1463 }
1464
1465 if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size,
1466 res_agl->name)) {
1467 result = -ENXIO;
1468 dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1469 res_agl->name);
1470 goto err;
1471 }
1472
1473 if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys,
1474 p->agl_prt_ctl_size, res_agl_prt_ctl->name)) {
1475 result = -ENXIO;
1476 dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1477 res_agl_prt_ctl->name);
1478 goto err;
1479 }
1480
1481 p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size);
1482 p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size);
1483 p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys,
1484 p->agl_prt_ctl_size);
1485 if (!p->mix || !p->agl || !p->agl_prt_ctl) {
1486 dev_err(&pdev->dev, "failed to map I/O memory\n");
1487 result = -ENOMEM;
1488 goto err;
1489 }
1490
1491 spin_lock_init(&p->lock);
1492
1493 skb_queue_head_init(&p->tx_list);
1494 skb_queue_head_init(&p->rx_list);
1495 tasklet_init(&p->tx_clean_tasklet,
1496 octeon_mgmt_clean_tx_tasklet, (unsigned long)p);
1497
1498 netdev->priv_flags |= IFF_UNICAST_FLT;
1499
1500 netdev->netdev_ops = &octeon_mgmt_ops;
1501 netdev->ethtool_ops = &octeon_mgmt_ethtool_ops;
1502
1503 netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM;
1504 netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM - VLAN_HLEN;
1505
1506 mac = of_get_mac_address(pdev->dev.of_node);
1507
1508 if (mac)
1509 memcpy(netdev->dev_addr, mac, ETH_ALEN);
1510 else
1511 eth_hw_addr_random(netdev);
1512
1513 p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1514
1515 result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1516 if (result)
1517 goto err;
1518
1519 netif_carrier_off(netdev);
1520 result = register_netdev(netdev);
1521 if (result)
1522 goto err;
1523
1524 dev_info(&pdev->dev, "Version " DRV_VERSION "\n");
1525 return 0;
1526
1527 err:
1528 of_node_put(p->phy_np);
1529 free_netdev(netdev);
1530 return result;
1531 }
1532
octeon_mgmt_remove(struct platform_device * pdev)1533 static int octeon_mgmt_remove(struct platform_device *pdev)
1534 {
1535 struct net_device *netdev = platform_get_drvdata(pdev);
1536 struct octeon_mgmt *p = netdev_priv(netdev);
1537
1538 unregister_netdev(netdev);
1539 of_node_put(p->phy_np);
1540 free_netdev(netdev);
1541 return 0;
1542 }
1543
1544 static const struct of_device_id octeon_mgmt_match[] = {
1545 {
1546 .compatible = "cavium,octeon-5750-mix",
1547 },
1548 {},
1549 };
1550 MODULE_DEVICE_TABLE(of, octeon_mgmt_match);
1551
1552 static struct platform_driver octeon_mgmt_driver = {
1553 .driver = {
1554 .name = "octeon_mgmt",
1555 .of_match_table = octeon_mgmt_match,
1556 },
1557 .probe = octeon_mgmt_probe,
1558 .remove = octeon_mgmt_remove,
1559 };
1560
1561 extern void octeon_mdiobus_force_mod_depencency(void);
1562
octeon_mgmt_mod_init(void)1563 static int __init octeon_mgmt_mod_init(void)
1564 {
1565 /* Force our mdiobus driver module to be loaded first. */
1566 octeon_mdiobus_force_mod_depencency();
1567 return platform_driver_register(&octeon_mgmt_driver);
1568 }
1569
octeon_mgmt_mod_exit(void)1570 static void __exit octeon_mgmt_mod_exit(void)
1571 {
1572 platform_driver_unregister(&octeon_mgmt_driver);
1573 }
1574
1575 module_init(octeon_mgmt_mod_init);
1576 module_exit(octeon_mgmt_mod_exit);
1577
1578 MODULE_DESCRIPTION(DRV_DESCRIPTION);
1579 MODULE_AUTHOR("David Daney");
1580 MODULE_LICENSE("GPL");
1581 MODULE_VERSION(DRV_VERSION);
1582