1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58
59 /*
60 * Rx buffer size. We use largish buffers if possible but settle for single
61 * pages under memory shortage.
62 */
63 #if PAGE_SHIFT >= 16
64 # define FL_PG_ORDER 0
65 #else
66 # define FL_PG_ORDER (16 - PAGE_SHIFT)
67 #endif
68
69 /* RX_PULL_LEN should be <= RX_COPY_THRES */
70 #define RX_COPY_THRES 256
71 #define RX_PULL_LEN 128
72
73 /*
74 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
75 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
76 */
77 #define RX_PKT_SKB_LEN 512
78
79 /*
80 * Max number of Tx descriptors we clean up at a time. Should be modest as
81 * freeing skbs isn't cheap and it happens while holding locks. We just need
82 * to free packets faster than they arrive, we eventually catch up and keep
83 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
84 */
85 #define MAX_TX_RECLAIM 16
86
87 /*
88 * Max number of Rx buffers we replenish at a time. Again keep this modest,
89 * allocating buffers isn't cheap either.
90 */
91 #define MAX_RX_REFILL 16U
92
93 /*
94 * Period of the Rx queue check timer. This timer is infrequent as it has
95 * something to do only when the system experiences severe memory shortage.
96 */
97 #define RX_QCHECK_PERIOD (HZ / 2)
98
99 /*
100 * Period of the Tx queue check timer.
101 */
102 #define TX_QCHECK_PERIOD (HZ / 2)
103
104 /*
105 * Max number of Tx descriptors to be reclaimed by the Tx timer.
106 */
107 #define MAX_TIMER_TX_RECLAIM 100
108
109 /*
110 * Timer index used when backing off due to memory shortage.
111 */
112 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
113
114 /*
115 * Suspension threshold for non-Ethernet Tx queues. We require enough room
116 * for a full sized WR.
117 */
118 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
119
120 /*
121 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
122 * into a WR.
123 */
124 #define MAX_IMM_TX_PKT_LEN 256
125
126 /*
127 * Max size of a WR sent through a control Tx queue.
128 */
129 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
130
131 struct rx_sw_desc { /* SW state per Rx descriptor */
132 struct page *page;
133 dma_addr_t dma_addr;
134 };
135
136 /*
137 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
138 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
139 * We could easily support more but there doesn't seem to be much need for
140 * that ...
141 */
142 #define FL_MTU_SMALL 1500
143 #define FL_MTU_LARGE 9000
144
fl_mtu_bufsize(struct adapter * adapter,unsigned int mtu)145 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
146 unsigned int mtu)
147 {
148 struct sge *s = &adapter->sge;
149
150 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
151 }
152
153 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
154 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
155
156 /*
157 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
158 * these to specify the buffer size as an index into the SGE Free List Buffer
159 * Size register array. We also use bit 4, when the buffer has been unmapped
160 * for DMA, but this is of course never sent to the hardware and is only used
161 * to prevent double unmappings. All of the above requires that the Free List
162 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
163 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
164 * Free List Buffer alignment is 32 bytes, this works out for us ...
165 */
166 enum {
167 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
168 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
169 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
170
171 /*
172 * XXX We shouldn't depend on being able to use these indices.
173 * XXX Especially when some other Master PF has initialized the
174 * XXX adapter or we use the Firmware Configuration File. We
175 * XXX should really search through the Host Buffer Size register
176 * XXX array for the appropriately sized buffer indices.
177 */
178 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
179 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
180
181 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
182 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
183 };
184
185 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
186 #define MIN_NAPI_WORK 1
187
get_buf_addr(const struct rx_sw_desc * d)188 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
189 {
190 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
191 }
192
is_buf_mapped(const struct rx_sw_desc * d)193 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
194 {
195 return !(d->dma_addr & RX_UNMAPPED_BUF);
196 }
197
198 /**
199 * txq_avail - return the number of available slots in a Tx queue
200 * @q: the Tx queue
201 *
202 * Returns the number of descriptors in a Tx queue available to write new
203 * packets.
204 */
txq_avail(const struct sge_txq * q)205 static inline unsigned int txq_avail(const struct sge_txq *q)
206 {
207 return q->size - 1 - q->in_use;
208 }
209
210 /**
211 * fl_cap - return the capacity of a free-buffer list
212 * @fl: the FL
213 *
214 * Returns the capacity of a free-buffer list. The capacity is less than
215 * the size because one descriptor needs to be left unpopulated, otherwise
216 * HW will think the FL is empty.
217 */
fl_cap(const struct sge_fl * fl)218 static inline unsigned int fl_cap(const struct sge_fl *fl)
219 {
220 return fl->size - 8; /* 1 descriptor = 8 buffers */
221 }
222
223 /**
224 * fl_starving - return whether a Free List is starving.
225 * @adapter: pointer to the adapter
226 * @fl: the Free List
227 *
228 * Tests specified Free List to see whether the number of buffers
229 * available to the hardware has falled below our "starvation"
230 * threshold.
231 */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)232 static inline bool fl_starving(const struct adapter *adapter,
233 const struct sge_fl *fl)
234 {
235 const struct sge *s = &adapter->sge;
236
237 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
238 }
239
cxgb4_map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)240 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
241 dma_addr_t *addr)
242 {
243 const skb_frag_t *fp, *end;
244 const struct skb_shared_info *si;
245
246 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
247 if (dma_mapping_error(dev, *addr))
248 goto out_err;
249
250 si = skb_shinfo(skb);
251 end = &si->frags[si->nr_frags];
252
253 for (fp = si->frags; fp < end; fp++) {
254 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
255 DMA_TO_DEVICE);
256 if (dma_mapping_error(dev, *addr))
257 goto unwind;
258 }
259 return 0;
260
261 unwind:
262 while (fp-- > si->frags)
263 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
264
265 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
266 out_err:
267 return -ENOMEM;
268 }
269 EXPORT_SYMBOL(cxgb4_map_skb);
270
271 #ifdef CONFIG_NEED_DMA_MAP_STATE
unmap_skb(struct device * dev,const struct sk_buff * skb,const dma_addr_t * addr)272 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
273 const dma_addr_t *addr)
274 {
275 const skb_frag_t *fp, *end;
276 const struct skb_shared_info *si;
277
278 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
279
280 si = skb_shinfo(skb);
281 end = &si->frags[si->nr_frags];
282 for (fp = si->frags; fp < end; fp++)
283 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
284 }
285
286 /**
287 * deferred_unmap_destructor - unmap a packet when it is freed
288 * @skb: the packet
289 *
290 * This is the packet destructor used for Tx packets that need to remain
291 * mapped until they are freed rather than until their Tx descriptors are
292 * freed.
293 */
deferred_unmap_destructor(struct sk_buff * skb)294 static void deferred_unmap_destructor(struct sk_buff *skb)
295 {
296 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
297 }
298 #endif
299
unmap_sgl(struct device * dev,const struct sk_buff * skb,const struct ulptx_sgl * sgl,const struct sge_txq * q)300 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
301 const struct ulptx_sgl *sgl, const struct sge_txq *q)
302 {
303 const struct ulptx_sge_pair *p;
304 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
305
306 if (likely(skb_headlen(skb)))
307 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
308 DMA_TO_DEVICE);
309 else {
310 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
311 DMA_TO_DEVICE);
312 nfrags--;
313 }
314
315 /*
316 * the complexity below is because of the possibility of a wrap-around
317 * in the middle of an SGL
318 */
319 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
320 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
321 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
322 ntohl(p->len[0]), DMA_TO_DEVICE);
323 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
324 ntohl(p->len[1]), DMA_TO_DEVICE);
325 p++;
326 } else if ((u8 *)p == (u8 *)q->stat) {
327 p = (const struct ulptx_sge_pair *)q->desc;
328 goto unmap;
329 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
330 const __be64 *addr = (const __be64 *)q->desc;
331
332 dma_unmap_page(dev, be64_to_cpu(addr[0]),
333 ntohl(p->len[0]), DMA_TO_DEVICE);
334 dma_unmap_page(dev, be64_to_cpu(addr[1]),
335 ntohl(p->len[1]), DMA_TO_DEVICE);
336 p = (const struct ulptx_sge_pair *)&addr[2];
337 } else {
338 const __be64 *addr = (const __be64 *)q->desc;
339
340 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
341 ntohl(p->len[0]), DMA_TO_DEVICE);
342 dma_unmap_page(dev, be64_to_cpu(addr[0]),
343 ntohl(p->len[1]), DMA_TO_DEVICE);
344 p = (const struct ulptx_sge_pair *)&addr[1];
345 }
346 }
347 if (nfrags) {
348 __be64 addr;
349
350 if ((u8 *)p == (u8 *)q->stat)
351 p = (const struct ulptx_sge_pair *)q->desc;
352 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
353 *(const __be64 *)q->desc;
354 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
355 DMA_TO_DEVICE);
356 }
357 }
358
359 /**
360 * free_tx_desc - reclaims Tx descriptors and their buffers
361 * @adapter: the adapter
362 * @q: the Tx queue to reclaim descriptors from
363 * @n: the number of descriptors to reclaim
364 * @unmap: whether the buffers should be unmapped for DMA
365 *
366 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
367 * Tx buffers. Called with the Tx queue lock held.
368 */
free_tx_desc(struct adapter * adap,struct sge_txq * q,unsigned int n,bool unmap)369 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
370 unsigned int n, bool unmap)
371 {
372 struct tx_sw_desc *d;
373 unsigned int cidx = q->cidx;
374 struct device *dev = adap->pdev_dev;
375
376 d = &q->sdesc[cidx];
377 while (n--) {
378 if (d->skb) { /* an SGL is present */
379 if (unmap)
380 unmap_sgl(dev, d->skb, d->sgl, q);
381 dev_consume_skb_any(d->skb);
382 d->skb = NULL;
383 }
384 ++d;
385 if (++cidx == q->size) {
386 cidx = 0;
387 d = q->sdesc;
388 }
389 }
390 q->cidx = cidx;
391 }
392
393 /*
394 * Return the number of reclaimable descriptors in a Tx queue.
395 */
reclaimable(const struct sge_txq * q)396 static inline int reclaimable(const struct sge_txq *q)
397 {
398 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
399 hw_cidx -= q->cidx;
400 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
401 }
402
403 /**
404 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
405 * @adap: the adapter
406 * @q: the Tx queue to reclaim completed descriptors from
407 * @unmap: whether the buffers should be unmapped for DMA
408 *
409 * Reclaims Tx descriptors that the SGE has indicated it has processed,
410 * and frees the associated buffers if possible. Called with the Tx
411 * queue locked.
412 */
cxgb4_reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,bool unmap)413 inline void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
414 bool unmap)
415 {
416 int avail = reclaimable(q);
417
418 if (avail) {
419 /*
420 * Limit the amount of clean up work we do at a time to keep
421 * the Tx lock hold time O(1).
422 */
423 if (avail > MAX_TX_RECLAIM)
424 avail = MAX_TX_RECLAIM;
425
426 free_tx_desc(adap, q, avail, unmap);
427 q->in_use -= avail;
428 }
429 }
430 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
431
get_buf_size(struct adapter * adapter,const struct rx_sw_desc * d)432 static inline int get_buf_size(struct adapter *adapter,
433 const struct rx_sw_desc *d)
434 {
435 struct sge *s = &adapter->sge;
436 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
437 int buf_size;
438
439 switch (rx_buf_size_idx) {
440 case RX_SMALL_PG_BUF:
441 buf_size = PAGE_SIZE;
442 break;
443
444 case RX_LARGE_PG_BUF:
445 buf_size = PAGE_SIZE << s->fl_pg_order;
446 break;
447
448 case RX_SMALL_MTU_BUF:
449 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
450 break;
451
452 case RX_LARGE_MTU_BUF:
453 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
454 break;
455
456 default:
457 BUG_ON(1);
458 }
459
460 return buf_size;
461 }
462
463 /**
464 * free_rx_bufs - free the Rx buffers on an SGE free list
465 * @adap: the adapter
466 * @q: the SGE free list to free buffers from
467 * @n: how many buffers to free
468 *
469 * Release the next @n buffers on an SGE free-buffer Rx queue. The
470 * buffers must be made inaccessible to HW before calling this function.
471 */
free_rx_bufs(struct adapter * adap,struct sge_fl * q,int n)472 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
473 {
474 while (n--) {
475 struct rx_sw_desc *d = &q->sdesc[q->cidx];
476
477 if (is_buf_mapped(d))
478 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
479 get_buf_size(adap, d),
480 PCI_DMA_FROMDEVICE);
481 put_page(d->page);
482 d->page = NULL;
483 if (++q->cidx == q->size)
484 q->cidx = 0;
485 q->avail--;
486 }
487 }
488
489 /**
490 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
491 * @adap: the adapter
492 * @q: the SGE free list
493 *
494 * Unmap the current buffer on an SGE free-buffer Rx queue. The
495 * buffer must be made inaccessible to HW before calling this function.
496 *
497 * This is similar to @free_rx_bufs above but does not free the buffer.
498 * Do note that the FL still loses any further access to the buffer.
499 */
unmap_rx_buf(struct adapter * adap,struct sge_fl * q)500 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
501 {
502 struct rx_sw_desc *d = &q->sdesc[q->cidx];
503
504 if (is_buf_mapped(d))
505 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
506 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
507 d->page = NULL;
508 if (++q->cidx == q->size)
509 q->cidx = 0;
510 q->avail--;
511 }
512
ring_fl_db(struct adapter * adap,struct sge_fl * q)513 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
514 {
515 if (q->pend_cred >= 8) {
516 u32 val = adap->params.arch.sge_fl_db;
517
518 if (is_t4(adap->params.chip))
519 val |= PIDX_V(q->pend_cred / 8);
520 else
521 val |= PIDX_T5_V(q->pend_cred / 8);
522
523 /* Make sure all memory writes to the Free List queue are
524 * committed before we tell the hardware about them.
525 */
526 wmb();
527
528 /* If we don't have access to the new User Doorbell (T5+), use
529 * the old doorbell mechanism; otherwise use the new BAR2
530 * mechanism.
531 */
532 if (unlikely(q->bar2_addr == NULL)) {
533 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
534 val | QID_V(q->cntxt_id));
535 } else {
536 writel(val | QID_V(q->bar2_qid),
537 q->bar2_addr + SGE_UDB_KDOORBELL);
538
539 /* This Write memory Barrier will force the write to
540 * the User Doorbell area to be flushed.
541 */
542 wmb();
543 }
544 q->pend_cred &= 7;
545 }
546 }
547
set_rx_sw_desc(struct rx_sw_desc * sd,struct page * pg,dma_addr_t mapping)548 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
549 dma_addr_t mapping)
550 {
551 sd->page = pg;
552 sd->dma_addr = mapping; /* includes size low bits */
553 }
554
555 /**
556 * refill_fl - refill an SGE Rx buffer ring
557 * @adap: the adapter
558 * @q: the ring to refill
559 * @n: the number of new buffers to allocate
560 * @gfp: the gfp flags for the allocations
561 *
562 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
563 * allocated with the supplied gfp flags. The caller must assure that
564 * @n does not exceed the queue's capacity. If afterwards the queue is
565 * found critically low mark it as starving in the bitmap of starving FLs.
566 *
567 * Returns the number of buffers allocated.
568 */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)569 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
570 gfp_t gfp)
571 {
572 struct sge *s = &adap->sge;
573 struct page *pg;
574 dma_addr_t mapping;
575 unsigned int cred = q->avail;
576 __be64 *d = &q->desc[q->pidx];
577 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
578 int node;
579
580 #ifdef CONFIG_DEBUG_FS
581 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
582 goto out;
583 #endif
584
585 gfp |= __GFP_NOWARN;
586 node = dev_to_node(adap->pdev_dev);
587
588 if (s->fl_pg_order == 0)
589 goto alloc_small_pages;
590
591 /*
592 * Prefer large buffers
593 */
594 while (n) {
595 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
596 if (unlikely(!pg)) {
597 q->large_alloc_failed++;
598 break; /* fall back to single pages */
599 }
600
601 mapping = dma_map_page(adap->pdev_dev, pg, 0,
602 PAGE_SIZE << s->fl_pg_order,
603 PCI_DMA_FROMDEVICE);
604 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
605 __free_pages(pg, s->fl_pg_order);
606 q->mapping_err++;
607 goto out; /* do not try small pages for this error */
608 }
609 mapping |= RX_LARGE_PG_BUF;
610 *d++ = cpu_to_be64(mapping);
611
612 set_rx_sw_desc(sd, pg, mapping);
613 sd++;
614
615 q->avail++;
616 if (++q->pidx == q->size) {
617 q->pidx = 0;
618 sd = q->sdesc;
619 d = q->desc;
620 }
621 n--;
622 }
623
624 alloc_small_pages:
625 while (n--) {
626 pg = alloc_pages_node(node, gfp, 0);
627 if (unlikely(!pg)) {
628 q->alloc_failed++;
629 break;
630 }
631
632 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
633 PCI_DMA_FROMDEVICE);
634 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
635 put_page(pg);
636 q->mapping_err++;
637 goto out;
638 }
639 *d++ = cpu_to_be64(mapping);
640
641 set_rx_sw_desc(sd, pg, mapping);
642 sd++;
643
644 q->avail++;
645 if (++q->pidx == q->size) {
646 q->pidx = 0;
647 sd = q->sdesc;
648 d = q->desc;
649 }
650 }
651
652 out: cred = q->avail - cred;
653 q->pend_cred += cred;
654 ring_fl_db(adap, q);
655
656 if (unlikely(fl_starving(adap, q))) {
657 smp_wmb();
658 q->low++;
659 set_bit(q->cntxt_id - adap->sge.egr_start,
660 adap->sge.starving_fl);
661 }
662
663 return cred;
664 }
665
__refill_fl(struct adapter * adap,struct sge_fl * fl)666 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
667 {
668 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
669 GFP_ATOMIC);
670 }
671
672 /**
673 * alloc_ring - allocate resources for an SGE descriptor ring
674 * @dev: the PCI device's core device
675 * @nelem: the number of descriptors
676 * @elem_size: the size of each descriptor
677 * @sw_size: the size of the SW state associated with each ring element
678 * @phys: the physical address of the allocated ring
679 * @metadata: address of the array holding the SW state for the ring
680 * @stat_size: extra space in HW ring for status information
681 * @node: preferred node for memory allocations
682 *
683 * Allocates resources for an SGE descriptor ring, such as Tx queues,
684 * free buffer lists, or response queues. Each SGE ring requires
685 * space for its HW descriptors plus, optionally, space for the SW state
686 * associated with each HW entry (the metadata). The function returns
687 * three values: the virtual address for the HW ring (the return value
688 * of the function), the bus address of the HW ring, and the address
689 * of the SW ring.
690 */
alloc_ring(struct device * dev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata,size_t stat_size,int node)691 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
692 size_t sw_size, dma_addr_t *phys, void *metadata,
693 size_t stat_size, int node)
694 {
695 size_t len = nelem * elem_size + stat_size;
696 void *s = NULL;
697 void *p = dma_zalloc_coherent(dev, len, phys, GFP_KERNEL);
698
699 if (!p)
700 return NULL;
701 if (sw_size) {
702 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
703
704 if (!s) {
705 dma_free_coherent(dev, len, p, *phys);
706 return NULL;
707 }
708 }
709 if (metadata)
710 *(void **)metadata = s;
711 return p;
712 }
713
714 /**
715 * sgl_len - calculates the size of an SGL of the given capacity
716 * @n: the number of SGL entries
717 *
718 * Calculates the number of flits needed for a scatter/gather list that
719 * can hold the given number of entries.
720 */
sgl_len(unsigned int n)721 static inline unsigned int sgl_len(unsigned int n)
722 {
723 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
724 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
725 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
726 * repeated sequences of { Length[i], Length[i+1], Address[i],
727 * Address[i+1] } (this ensures that all addresses are on 64-bit
728 * boundaries). If N is even, then Length[N+1] should be set to 0 and
729 * Address[N+1] is omitted.
730 *
731 * The following calculation incorporates all of the above. It's
732 * somewhat hard to follow but, briefly: the "+2" accounts for the
733 * first two flits which include the DSGL header, Length0 and
734 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
735 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
736 * finally the "+((n-1)&1)" adds the one remaining flit needed if
737 * (n-1) is odd ...
738 */
739 n--;
740 return (3 * n) / 2 + (n & 1) + 2;
741 }
742
743 /**
744 * flits_to_desc - returns the num of Tx descriptors for the given flits
745 * @n: the number of flits
746 *
747 * Returns the number of Tx descriptors needed for the supplied number
748 * of flits.
749 */
flits_to_desc(unsigned int n)750 static inline unsigned int flits_to_desc(unsigned int n)
751 {
752 BUG_ON(n > SGE_MAX_WR_LEN / 8);
753 return DIV_ROUND_UP(n, 8);
754 }
755
756 /**
757 * is_eth_imm - can an Ethernet packet be sent as immediate data?
758 * @skb: the packet
759 *
760 * Returns whether an Ethernet packet is small enough to fit as
761 * immediate data. Return value corresponds to headroom required.
762 */
is_eth_imm(const struct sk_buff * skb,unsigned int chip_ver)763 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
764 {
765 int hdrlen = 0;
766
767 if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
768 chip_ver > CHELSIO_T5) {
769 hdrlen = sizeof(struct cpl_tx_tnl_lso);
770 hdrlen += sizeof(struct cpl_tx_pkt_core);
771 } else {
772 hdrlen = skb_shinfo(skb)->gso_size ?
773 sizeof(struct cpl_tx_pkt_lso_core) : 0;
774 hdrlen += sizeof(struct cpl_tx_pkt);
775 }
776 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
777 return hdrlen;
778 return 0;
779 }
780
781 /**
782 * calc_tx_flits - calculate the number of flits for a packet Tx WR
783 * @skb: the packet
784 *
785 * Returns the number of flits needed for a Tx WR for the given Ethernet
786 * packet, including the needed WR and CPL headers.
787 */
calc_tx_flits(const struct sk_buff * skb,unsigned int chip_ver)788 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
789 unsigned int chip_ver)
790 {
791 unsigned int flits;
792 int hdrlen = is_eth_imm(skb, chip_ver);
793
794 /* If the skb is small enough, we can pump it out as a work request
795 * with only immediate data. In that case we just have to have the
796 * TX Packet header plus the skb data in the Work Request.
797 */
798
799 if (hdrlen)
800 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
801
802 /* Otherwise, we're going to have to construct a Scatter gather list
803 * of the skb body and fragments. We also include the flits necessary
804 * for the TX Packet Work Request and CPL. We always have a firmware
805 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
806 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
807 * message or, if we're doing a Large Send Offload, an LSO CPL message
808 * with an embedded TX Packet Write CPL message.
809 */
810 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
811 if (skb_shinfo(skb)->gso_size) {
812 if (skb->encapsulation && chip_ver > CHELSIO_T5)
813 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
814 sizeof(struct cpl_tx_tnl_lso);
815 else
816 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
817 sizeof(struct cpl_tx_pkt_lso_core);
818
819 hdrlen += sizeof(struct cpl_tx_pkt_core);
820 flits += (hdrlen / sizeof(__be64));
821 } else {
822 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
823 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
824 }
825 return flits;
826 }
827
828 /**
829 * calc_tx_descs - calculate the number of Tx descriptors for a packet
830 * @skb: the packet
831 *
832 * Returns the number of Tx descriptors needed for the given Ethernet
833 * packet, including the needed WR and CPL headers.
834 */
calc_tx_descs(const struct sk_buff * skb,unsigned int chip_ver)835 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
836 unsigned int chip_ver)
837 {
838 return flits_to_desc(calc_tx_flits(skb, chip_ver));
839 }
840
841 /**
842 * cxgb4_write_sgl - populate a scatter/gather list for a packet
843 * @skb: the packet
844 * @q: the Tx queue we are writing into
845 * @sgl: starting location for writing the SGL
846 * @end: points right after the end of the SGL
847 * @start: start offset into skb main-body data to include in the SGL
848 * @addr: the list of bus addresses for the SGL elements
849 *
850 * Generates a gather list for the buffers that make up a packet.
851 * The caller must provide adequate space for the SGL that will be written.
852 * The SGL includes all of the packet's page fragments and the data in its
853 * main body except for the first @start bytes. @sgl must be 16-byte
854 * aligned and within a Tx descriptor with available space. @end points
855 * right after the end of the SGL but does not account for any potential
856 * wrap around, i.e., @end > @sgl.
857 */
cxgb4_write_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)858 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
859 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
860 const dma_addr_t *addr)
861 {
862 unsigned int i, len;
863 struct ulptx_sge_pair *to;
864 const struct skb_shared_info *si = skb_shinfo(skb);
865 unsigned int nfrags = si->nr_frags;
866 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
867
868 len = skb_headlen(skb) - start;
869 if (likely(len)) {
870 sgl->len0 = htonl(len);
871 sgl->addr0 = cpu_to_be64(addr[0] + start);
872 nfrags++;
873 } else {
874 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
875 sgl->addr0 = cpu_to_be64(addr[1]);
876 }
877
878 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
879 ULPTX_NSGE_V(nfrags));
880 if (likely(--nfrags == 0))
881 return;
882 /*
883 * Most of the complexity below deals with the possibility we hit the
884 * end of the queue in the middle of writing the SGL. For this case
885 * only we create the SGL in a temporary buffer and then copy it.
886 */
887 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
888
889 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
890 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
891 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
892 to->addr[0] = cpu_to_be64(addr[i]);
893 to->addr[1] = cpu_to_be64(addr[++i]);
894 }
895 if (nfrags) {
896 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
897 to->len[1] = cpu_to_be32(0);
898 to->addr[0] = cpu_to_be64(addr[i + 1]);
899 }
900 if (unlikely((u8 *)end > (u8 *)q->stat)) {
901 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
902
903 if (likely(part0))
904 memcpy(sgl->sge, buf, part0);
905 part1 = (u8 *)end - (u8 *)q->stat;
906 memcpy(q->desc, (u8 *)buf + part0, part1);
907 end = (void *)q->desc + part1;
908 }
909 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
910 *end = 0;
911 }
912 EXPORT_SYMBOL(cxgb4_write_sgl);
913
914 /* This function copies 64 byte coalesced work request to
915 * memory mapped BAR2 space. For coalesced WR SGE fetches
916 * data from the FIFO instead of from Host.
917 */
cxgb_pio_copy(u64 __iomem * dst,u64 * src)918 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
919 {
920 int count = 8;
921
922 while (count) {
923 writeq(*src, dst);
924 src++;
925 dst++;
926 count--;
927 }
928 }
929
930 /**
931 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
932 * @adap: the adapter
933 * @q: the Tx queue
934 * @n: number of new descriptors to give to HW
935 *
936 * Ring the doorbel for a Tx queue.
937 */
cxgb4_ring_tx_db(struct adapter * adap,struct sge_txq * q,int n)938 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
939 {
940 /* Make sure that all writes to the TX Descriptors are committed
941 * before we tell the hardware about them.
942 */
943 wmb();
944
945 /* If we don't have access to the new User Doorbell (T5+), use the old
946 * doorbell mechanism; otherwise use the new BAR2 mechanism.
947 */
948 if (unlikely(q->bar2_addr == NULL)) {
949 u32 val = PIDX_V(n);
950 unsigned long flags;
951
952 /* For T4 we need to participate in the Doorbell Recovery
953 * mechanism.
954 */
955 spin_lock_irqsave(&q->db_lock, flags);
956 if (!q->db_disabled)
957 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
958 QID_V(q->cntxt_id) | val);
959 else
960 q->db_pidx_inc += n;
961 q->db_pidx = q->pidx;
962 spin_unlock_irqrestore(&q->db_lock, flags);
963 } else {
964 u32 val = PIDX_T5_V(n);
965
966 /* T4 and later chips share the same PIDX field offset within
967 * the doorbell, but T5 and later shrank the field in order to
968 * gain a bit for Doorbell Priority. The field was absurdly
969 * large in the first place (14 bits) so we just use the T5
970 * and later limits and warn if a Queue ID is too large.
971 */
972 WARN_ON(val & DBPRIO_F);
973
974 /* If we're only writing a single TX Descriptor and we can use
975 * Inferred QID registers, we can use the Write Combining
976 * Gather Buffer; otherwise we use the simple doorbell.
977 */
978 if (n == 1 && q->bar2_qid == 0) {
979 int index = (q->pidx
980 ? (q->pidx - 1)
981 : (q->size - 1));
982 u64 *wr = (u64 *)&q->desc[index];
983
984 cxgb_pio_copy((u64 __iomem *)
985 (q->bar2_addr + SGE_UDB_WCDOORBELL),
986 wr);
987 } else {
988 writel(val | QID_V(q->bar2_qid),
989 q->bar2_addr + SGE_UDB_KDOORBELL);
990 }
991
992 /* This Write Memory Barrier will force the write to the User
993 * Doorbell area to be flushed. This is needed to prevent
994 * writes on different CPUs for the same queue from hitting
995 * the adapter out of order. This is required when some Work
996 * Requests take the Write Combine Gather Buffer path (user
997 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
998 * take the traditional path where we simply increment the
999 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1000 * hardware DMA read the actual Work Request.
1001 */
1002 wmb();
1003 }
1004 }
1005 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1006
1007 /**
1008 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1009 * @skb: the packet
1010 * @q: the Tx queue where the packet will be inlined
1011 * @pos: starting position in the Tx queue where to inline the packet
1012 *
1013 * Inline a packet's contents directly into Tx descriptors, starting at
1014 * the given position within the Tx DMA ring.
1015 * Most of the complexity of this operation is dealing with wrap arounds
1016 * in the middle of the packet we want to inline.
1017 */
cxgb4_inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * q,void * pos)1018 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1019 const struct sge_txq *q, void *pos)
1020 {
1021 int left = (void *)q->stat - pos;
1022 u64 *p;
1023
1024 if (likely(skb->len <= left)) {
1025 if (likely(!skb->data_len))
1026 skb_copy_from_linear_data(skb, pos, skb->len);
1027 else
1028 skb_copy_bits(skb, 0, pos, skb->len);
1029 pos += skb->len;
1030 } else {
1031 skb_copy_bits(skb, 0, pos, left);
1032 skb_copy_bits(skb, left, q->desc, skb->len - left);
1033 pos = (void *)q->desc + (skb->len - left);
1034 }
1035
1036 /* 0-pad to multiple of 16 */
1037 p = PTR_ALIGN(pos, 8);
1038 if ((uintptr_t)p & 8)
1039 *p = 0;
1040 }
1041 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1042
inline_tx_skb_header(const struct sk_buff * skb,const struct sge_txq * q,void * pos,int length)1043 static void *inline_tx_skb_header(const struct sk_buff *skb,
1044 const struct sge_txq *q, void *pos,
1045 int length)
1046 {
1047 u64 *p;
1048 int left = (void *)q->stat - pos;
1049
1050 if (likely(length <= left)) {
1051 memcpy(pos, skb->data, length);
1052 pos += length;
1053 } else {
1054 memcpy(pos, skb->data, left);
1055 memcpy(q->desc, skb->data + left, length - left);
1056 pos = (void *)q->desc + (length - left);
1057 }
1058 /* 0-pad to multiple of 16 */
1059 p = PTR_ALIGN(pos, 8);
1060 if ((uintptr_t)p & 8) {
1061 *p = 0;
1062 return p + 1;
1063 }
1064 return p;
1065 }
1066
1067 /*
1068 * Figure out what HW csum a packet wants and return the appropriate control
1069 * bits.
1070 */
hwcsum(enum chip_type chip,const struct sk_buff * skb)1071 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1072 {
1073 int csum_type;
1074 bool inner_hdr_csum = false;
1075 u16 proto, ver;
1076
1077 if (skb->encapsulation &&
1078 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1079 inner_hdr_csum = true;
1080
1081 if (inner_hdr_csum) {
1082 ver = inner_ip_hdr(skb)->version;
1083 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1084 inner_ipv6_hdr(skb)->nexthdr;
1085 } else {
1086 ver = ip_hdr(skb)->version;
1087 proto = (ver == 4) ? ip_hdr(skb)->protocol :
1088 ipv6_hdr(skb)->nexthdr;
1089 }
1090
1091 if (ver == 4) {
1092 if (proto == IPPROTO_TCP)
1093 csum_type = TX_CSUM_TCPIP;
1094 else if (proto == IPPROTO_UDP)
1095 csum_type = TX_CSUM_UDPIP;
1096 else {
1097 nocsum: /*
1098 * unknown protocol, disable HW csum
1099 * and hope a bad packet is detected
1100 */
1101 return TXPKT_L4CSUM_DIS_F;
1102 }
1103 } else {
1104 /*
1105 * this doesn't work with extension headers
1106 */
1107 if (proto == IPPROTO_TCP)
1108 csum_type = TX_CSUM_TCPIP6;
1109 else if (proto == IPPROTO_UDP)
1110 csum_type = TX_CSUM_UDPIP6;
1111 else
1112 goto nocsum;
1113 }
1114
1115 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1116 int eth_hdr_len, l4_len;
1117 u64 hdr_len;
1118
1119 if (inner_hdr_csum) {
1120 /* This allows checksum offload for all encapsulated
1121 * packets like GRE etc..
1122 */
1123 l4_len = skb_inner_network_header_len(skb);
1124 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1125 } else {
1126 l4_len = skb_network_header_len(skb);
1127 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1128 }
1129 hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1130
1131 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1132 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1133 else
1134 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1135 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1136 } else {
1137 int start = skb_transport_offset(skb);
1138
1139 return TXPKT_CSUM_TYPE_V(csum_type) |
1140 TXPKT_CSUM_START_V(start) |
1141 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1142 }
1143 }
1144
eth_txq_stop(struct sge_eth_txq * q)1145 static void eth_txq_stop(struct sge_eth_txq *q)
1146 {
1147 netif_tx_stop_queue(q->txq);
1148 q->q.stops++;
1149 }
1150
txq_advance(struct sge_txq * q,unsigned int n)1151 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1152 {
1153 q->in_use += n;
1154 q->pidx += n;
1155 if (q->pidx >= q->size)
1156 q->pidx -= q->size;
1157 }
1158
1159 #ifdef CONFIG_CHELSIO_T4_FCOE
1160 static inline int
cxgb_fcoe_offload(struct sk_buff * skb,struct adapter * adap,const struct port_info * pi,u64 * cntrl)1161 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1162 const struct port_info *pi, u64 *cntrl)
1163 {
1164 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1165
1166 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1167 return 0;
1168
1169 if (skb->protocol != htons(ETH_P_FCOE))
1170 return 0;
1171
1172 skb_reset_mac_header(skb);
1173 skb->mac_len = sizeof(struct ethhdr);
1174
1175 skb_set_network_header(skb, skb->mac_len);
1176 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1177
1178 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1179 return -ENOTSUPP;
1180
1181 /* FC CRC offload */
1182 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1183 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1184 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1185 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1186 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1187 return 0;
1188 }
1189 #endif /* CONFIG_CHELSIO_T4_FCOE */
1190
1191 /* Returns tunnel type if hardware supports offloading of the same.
1192 * It is called only for T5 and onwards.
1193 */
cxgb_encap_offload_supported(struct sk_buff * skb)1194 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1195 {
1196 u8 l4_hdr = 0;
1197 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1198 struct port_info *pi = netdev_priv(skb->dev);
1199 struct adapter *adapter = pi->adapter;
1200
1201 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1202 skb->inner_protocol != htons(ETH_P_TEB))
1203 return tnl_type;
1204
1205 switch (vlan_get_protocol(skb)) {
1206 case htons(ETH_P_IP):
1207 l4_hdr = ip_hdr(skb)->protocol;
1208 break;
1209 case htons(ETH_P_IPV6):
1210 l4_hdr = ipv6_hdr(skb)->nexthdr;
1211 break;
1212 default:
1213 return tnl_type;
1214 }
1215
1216 switch (l4_hdr) {
1217 case IPPROTO_UDP:
1218 if (adapter->vxlan_port == udp_hdr(skb)->dest)
1219 tnl_type = TX_TNL_TYPE_VXLAN;
1220 else if (adapter->geneve_port == udp_hdr(skb)->dest)
1221 tnl_type = TX_TNL_TYPE_GENEVE;
1222 break;
1223 default:
1224 return tnl_type;
1225 }
1226
1227 return tnl_type;
1228 }
1229
t6_fill_tnl_lso(struct sk_buff * skb,struct cpl_tx_tnl_lso * tnl_lso,enum cpl_tx_tnl_lso_type tnl_type)1230 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1231 struct cpl_tx_tnl_lso *tnl_lso,
1232 enum cpl_tx_tnl_lso_type tnl_type)
1233 {
1234 u32 val;
1235 int in_eth_xtra_len;
1236 int l3hdr_len = skb_network_header_len(skb);
1237 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1238 const struct skb_shared_info *ssi = skb_shinfo(skb);
1239 bool v6 = (ip_hdr(skb)->version == 6);
1240
1241 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1242 CPL_TX_TNL_LSO_FIRST_F |
1243 CPL_TX_TNL_LSO_LAST_F |
1244 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1245 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1246 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1247 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1248 CPL_TX_TNL_LSO_IPLENSETOUT_F |
1249 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1250 tnl_lso->op_to_IpIdSplitOut = htonl(val);
1251
1252 tnl_lso->IpIdOffsetOut = 0;
1253
1254 /* Get the tunnel header length */
1255 val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1256 in_eth_xtra_len = skb_inner_network_header(skb) -
1257 skb_inner_mac_header(skb) - ETH_HLEN;
1258
1259 switch (tnl_type) {
1260 case TX_TNL_TYPE_VXLAN:
1261 case TX_TNL_TYPE_GENEVE:
1262 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1263 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1264 CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1265 break;
1266 default:
1267 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1268 break;
1269 }
1270
1271 tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1272 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1273 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1274
1275 tnl_lso->r1 = 0;
1276
1277 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1278 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1279 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1280 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1281 tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1282
1283 tnl_lso->IpIdOffset = htons(0);
1284
1285 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1286 tnl_lso->TCPSeqOffset = htonl(0);
1287 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1288 }
1289
1290 /**
1291 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1292 * @skb: the packet
1293 * @dev: the egress net device
1294 *
1295 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1296 */
cxgb4_eth_xmit(struct sk_buff * skb,struct net_device * dev)1297 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1298 {
1299 u32 wr_mid, ctrl0, op;
1300 u64 cntrl, *end, *sgl;
1301 int qidx, credits;
1302 unsigned int flits, ndesc;
1303 struct adapter *adap;
1304 struct sge_eth_txq *q;
1305 const struct port_info *pi;
1306 struct fw_eth_tx_pkt_wr *wr;
1307 struct cpl_tx_pkt_core *cpl;
1308 const struct skb_shared_info *ssi;
1309 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1310 bool immediate = false;
1311 int len, max_pkt_len;
1312 bool ptp_enabled = is_ptp_enabled(skb, dev);
1313 unsigned int chip_ver;
1314 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1315
1316 #ifdef CONFIG_CHELSIO_T4_FCOE
1317 int err;
1318 #endif /* CONFIG_CHELSIO_T4_FCOE */
1319
1320 /*
1321 * The chip min packet length is 10 octets but play safe and reject
1322 * anything shorter than an Ethernet header.
1323 */
1324 if (unlikely(skb->len < ETH_HLEN)) {
1325 out_free: dev_kfree_skb_any(skb);
1326 return NETDEV_TX_OK;
1327 }
1328
1329 /* Discard the packet if the length is greater than mtu */
1330 max_pkt_len = ETH_HLEN + dev->mtu;
1331 if (skb_vlan_tagged(skb))
1332 max_pkt_len += VLAN_HLEN;
1333 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1334 goto out_free;
1335
1336 pi = netdev_priv(dev);
1337 adap = pi->adapter;
1338 ssi = skb_shinfo(skb);
1339 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1340 if (xfrm_offload(skb) && !ssi->gso_size)
1341 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1342 #endif /* CHELSIO_IPSEC_INLINE */
1343
1344 qidx = skb_get_queue_mapping(skb);
1345 if (ptp_enabled) {
1346 spin_lock(&adap->ptp_lock);
1347 if (!(adap->ptp_tx_skb)) {
1348 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1349 adap->ptp_tx_skb = skb_get(skb);
1350 } else {
1351 spin_unlock(&adap->ptp_lock);
1352 goto out_free;
1353 }
1354 q = &adap->sge.ptptxq;
1355 } else {
1356 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1357 }
1358 skb_tx_timestamp(skb);
1359
1360 cxgb4_reclaim_completed_tx(adap, &q->q, true);
1361 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1362
1363 #ifdef CONFIG_CHELSIO_T4_FCOE
1364 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1365 if (unlikely(err == -ENOTSUPP)) {
1366 if (ptp_enabled)
1367 spin_unlock(&adap->ptp_lock);
1368 goto out_free;
1369 }
1370 #endif /* CONFIG_CHELSIO_T4_FCOE */
1371
1372 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1373 flits = calc_tx_flits(skb, chip_ver);
1374 ndesc = flits_to_desc(flits);
1375 credits = txq_avail(&q->q) - ndesc;
1376
1377 if (unlikely(credits < 0)) {
1378 eth_txq_stop(q);
1379 dev_err(adap->pdev_dev,
1380 "%s: Tx ring %u full while queue awake!\n",
1381 dev->name, qidx);
1382 if (ptp_enabled)
1383 spin_unlock(&adap->ptp_lock);
1384 return NETDEV_TX_BUSY;
1385 }
1386
1387 if (is_eth_imm(skb, chip_ver))
1388 immediate = true;
1389
1390 if (skb->encapsulation && chip_ver > CHELSIO_T5)
1391 tnl_type = cxgb_encap_offload_supported(skb);
1392
1393 if (!immediate &&
1394 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) {
1395 q->mapping_err++;
1396 if (ptp_enabled)
1397 spin_unlock(&adap->ptp_lock);
1398 goto out_free;
1399 }
1400
1401 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1402 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1403 eth_txq_stop(q);
1404 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1405 }
1406
1407 wr = (void *)&q->q.desc[q->q.pidx];
1408 wr->equiq_to_len16 = htonl(wr_mid);
1409 wr->r3 = cpu_to_be64(0);
1410 end = (u64 *)wr + flits;
1411
1412 len = immediate ? skb->len : 0;
1413 len += sizeof(*cpl);
1414 if (ssi->gso_size) {
1415 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1416 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1417 int l3hdr_len = skb_network_header_len(skb);
1418 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1419 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1420
1421 if (tnl_type)
1422 len += sizeof(*tnl_lso);
1423 else
1424 len += sizeof(*lso);
1425
1426 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1427 FW_WR_IMMDLEN_V(len));
1428 if (tnl_type) {
1429 struct iphdr *iph = ip_hdr(skb);
1430
1431 t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1432 cpl = (void *)(tnl_lso + 1);
1433 /* Driver is expected to compute partial checksum that
1434 * does not include the IP Total Length.
1435 */
1436 if (iph->version == 4) {
1437 iph->check = 0;
1438 iph->tot_len = 0;
1439 iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1440 iph->ihl));
1441 }
1442 if (skb->ip_summed == CHECKSUM_PARTIAL)
1443 cntrl = hwcsum(adap->params.chip, skb);
1444 } else {
1445 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1446 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1447 LSO_IPV6_V(v6) |
1448 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1449 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1450 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1451 lso->ipid_ofst = htons(0);
1452 lso->mss = htons(ssi->gso_size);
1453 lso->seqno_offset = htonl(0);
1454 if (is_t4(adap->params.chip))
1455 lso->len = htonl(skb->len);
1456 else
1457 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1458 cpl = (void *)(lso + 1);
1459
1460 if (CHELSIO_CHIP_VERSION(adap->params.chip)
1461 <= CHELSIO_T5)
1462 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1463 else
1464 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1465
1466 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1467 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1468 TXPKT_IPHDR_LEN_V(l3hdr_len);
1469 }
1470 sgl = (u64 *)(cpl + 1); /* sgl start here */
1471 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1472 /* If current position is already at the end of the
1473 * txq, reset the current to point to start of the queue
1474 * and update the end ptr as well.
1475 */
1476 if (sgl == (u64 *)q->q.stat) {
1477 int left = (u8 *)end - (u8 *)q->q.stat;
1478
1479 end = (void *)q->q.desc + left;
1480 sgl = (void *)q->q.desc;
1481 }
1482 }
1483 q->tso++;
1484 q->tx_cso += ssi->gso_segs;
1485 } else {
1486 if (ptp_enabled)
1487 op = FW_PTP_TX_PKT_WR;
1488 else
1489 op = FW_ETH_TX_PKT_WR;
1490 wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1491 FW_WR_IMMDLEN_V(len));
1492 cpl = (void *)(wr + 1);
1493 sgl = (u64 *)(cpl + 1);
1494 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1495 cntrl = hwcsum(adap->params.chip, skb) |
1496 TXPKT_IPCSUM_DIS_F;
1497 q->tx_cso++;
1498 }
1499 }
1500
1501 if (skb_vlan_tag_present(skb)) {
1502 q->vlan_ins++;
1503 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1504 #ifdef CONFIG_CHELSIO_T4_FCOE
1505 if (skb->protocol == htons(ETH_P_FCOE))
1506 cntrl |= TXPKT_VLAN_V(
1507 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1508 #endif /* CONFIG_CHELSIO_T4_FCOE */
1509 }
1510
1511 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1512 TXPKT_PF_V(adap->pf);
1513 if (ptp_enabled)
1514 ctrl0 |= TXPKT_TSTAMP_F;
1515 #ifdef CONFIG_CHELSIO_T4_DCB
1516 if (is_t4(adap->params.chip))
1517 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1518 else
1519 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1520 #endif
1521 cpl->ctrl0 = htonl(ctrl0);
1522 cpl->pack = htons(0);
1523 cpl->len = htons(skb->len);
1524 cpl->ctrl1 = cpu_to_be64(cntrl);
1525
1526 if (immediate) {
1527 cxgb4_inline_tx_skb(skb, &q->q, sgl);
1528 dev_consume_skb_any(skb);
1529 } else {
1530 int last_desc;
1531
1532 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr);
1533 skb_orphan(skb);
1534
1535 last_desc = q->q.pidx + ndesc - 1;
1536 if (last_desc >= q->q.size)
1537 last_desc -= q->q.size;
1538 q->q.sdesc[last_desc].skb = skb;
1539 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl;
1540 }
1541
1542 txq_advance(&q->q, ndesc);
1543
1544 cxgb4_ring_tx_db(adap, &q->q, ndesc);
1545 if (ptp_enabled)
1546 spin_unlock(&adap->ptp_lock);
1547 return NETDEV_TX_OK;
1548 }
1549
1550 /* Constants ... */
1551 enum {
1552 /* Egress Queue sizes, producer and consumer indices are all in units
1553 * of Egress Context Units bytes. Note that as far as the hardware is
1554 * concerned, the free list is an Egress Queue (the host produces free
1555 * buffers which the hardware consumes) and free list entries are
1556 * 64-bit PCI DMA addresses.
1557 */
1558 EQ_UNIT = SGE_EQ_IDXSIZE,
1559 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1560 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1561
1562 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1563 sizeof(struct cpl_tx_pkt_lso_core) +
1564 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1565 };
1566
1567 /**
1568 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1569 * @skb: the packet
1570 *
1571 * Returns whether an Ethernet packet is small enough to fit completely as
1572 * immediate data.
1573 */
t4vf_is_eth_imm(const struct sk_buff * skb)1574 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1575 {
1576 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1577 * which does not accommodate immediate data. We could dike out all
1578 * of the support code for immediate data but that would tie our hands
1579 * too much if we ever want to enhace the firmware. It would also
1580 * create more differences between the PF and VF Drivers.
1581 */
1582 return false;
1583 }
1584
1585 /**
1586 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1587 * @skb: the packet
1588 *
1589 * Returns the number of flits needed for a TX Work Request for the
1590 * given Ethernet packet, including the needed WR and CPL headers.
1591 */
t4vf_calc_tx_flits(const struct sk_buff * skb)1592 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1593 {
1594 unsigned int flits;
1595
1596 /* If the skb is small enough, we can pump it out as a work request
1597 * with only immediate data. In that case we just have to have the
1598 * TX Packet header plus the skb data in the Work Request.
1599 */
1600 if (t4vf_is_eth_imm(skb))
1601 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1602 sizeof(__be64));
1603
1604 /* Otherwise, we're going to have to construct a Scatter gather list
1605 * of the skb body and fragments. We also include the flits necessary
1606 * for the TX Packet Work Request and CPL. We always have a firmware
1607 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1608 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1609 * message or, if we're doing a Large Send Offload, an LSO CPL message
1610 * with an embedded TX Packet Write CPL message.
1611 */
1612 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1613 if (skb_shinfo(skb)->gso_size)
1614 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1615 sizeof(struct cpl_tx_pkt_lso_core) +
1616 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1617 else
1618 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1619 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1620 return flits;
1621 }
1622
1623 /**
1624 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1625 * @skb: the packet
1626 * @dev: the egress net device
1627 *
1628 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1629 */
cxgb4_vf_eth_xmit(struct sk_buff * skb,struct net_device * dev)1630 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1631 struct net_device *dev)
1632 {
1633 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1634 const struct skb_shared_info *ssi;
1635 struct fw_eth_tx_pkt_vm_wr *wr;
1636 int qidx, credits, max_pkt_len;
1637 struct cpl_tx_pkt_core *cpl;
1638 const struct port_info *pi;
1639 unsigned int flits, ndesc;
1640 struct sge_eth_txq *txq;
1641 struct adapter *adapter;
1642 u64 cntrl, *end;
1643 u32 wr_mid;
1644 const size_t fw_hdr_copy_len = sizeof(wr->ethmacdst) +
1645 sizeof(wr->ethmacsrc) +
1646 sizeof(wr->ethtype) +
1647 sizeof(wr->vlantci);
1648
1649 /* The chip minimum packet length is 10 octets but the firmware
1650 * command that we are using requires that we copy the Ethernet header
1651 * (including the VLAN tag) into the header so we reject anything
1652 * smaller than that ...
1653 */
1654 if (unlikely(skb->len < fw_hdr_copy_len))
1655 goto out_free;
1656
1657 /* Discard the packet if the length is greater than mtu */
1658 max_pkt_len = ETH_HLEN + dev->mtu;
1659 if (skb_vlan_tag_present(skb))
1660 max_pkt_len += VLAN_HLEN;
1661 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1662 goto out_free;
1663
1664 /* Figure out which TX Queue we're going to use. */
1665 pi = netdev_priv(dev);
1666 adapter = pi->adapter;
1667 qidx = skb_get_queue_mapping(skb);
1668 WARN_ON(qidx >= pi->nqsets);
1669 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1670
1671 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1672 * transfers have completed.
1673 */
1674 cxgb4_reclaim_completed_tx(adapter, &txq->q, true);
1675
1676 /* Calculate the number of flits and TX Descriptors we're going to
1677 * need along with how many TX Descriptors will be left over after
1678 * we inject our Work Request.
1679 */
1680 flits = t4vf_calc_tx_flits(skb);
1681 ndesc = flits_to_desc(flits);
1682 credits = txq_avail(&txq->q) - ndesc;
1683
1684 if (unlikely(credits < 0)) {
1685 /* Not enough room for this packet's Work Request. Stop the
1686 * TX Queue and return a "busy" condition. The queue will get
1687 * started later on when the firmware informs us that space
1688 * has opened up.
1689 */
1690 eth_txq_stop(txq);
1691 dev_err(adapter->pdev_dev,
1692 "%s: TX ring %u full while queue awake!\n",
1693 dev->name, qidx);
1694 return NETDEV_TX_BUSY;
1695 }
1696
1697 if (!t4vf_is_eth_imm(skb) &&
1698 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1699 /* We need to map the skb into PCI DMA space (because it can't
1700 * be in-lined directly into the Work Request) and the mapping
1701 * operation failed. Record the error and drop the packet.
1702 */
1703 txq->mapping_err++;
1704 goto out_free;
1705 }
1706
1707 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1708 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1709 /* After we're done injecting the Work Request for this
1710 * packet, we'll be below our "stop threshold" so stop the TX
1711 * Queue now and schedule a request for an SGE Egress Queue
1712 * Update message. The queue will get started later on when
1713 * the firmware processes this Work Request and sends us an
1714 * Egress Queue Status Update message indicating that space
1715 * has opened up.
1716 */
1717 eth_txq_stop(txq);
1718 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1719 }
1720
1721 /* Start filling in our Work Request. Note that we do _not_ handle
1722 * the WR Header wrapping around the TX Descriptor Ring. If our
1723 * maximum header size ever exceeds one TX Descriptor, we'll need to
1724 * do something else here.
1725 */
1726 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1727 wr = (void *)&txq->q.desc[txq->q.pidx];
1728 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1729 wr->r3[0] = cpu_to_be32(0);
1730 wr->r3[1] = cpu_to_be32(0);
1731 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1732 end = (u64 *)wr + flits;
1733
1734 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1735 * message with an encapsulated TX Packet CPL message. Otherwise we
1736 * just use a TX Packet CPL message.
1737 */
1738 ssi = skb_shinfo(skb);
1739 if (ssi->gso_size) {
1740 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1741 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1742 int l3hdr_len = skb_network_header_len(skb);
1743 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1744
1745 wr->op_immdlen =
1746 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1747 FW_WR_IMMDLEN_V(sizeof(*lso) +
1748 sizeof(*cpl)));
1749 /* Fill in the LSO CPL message. */
1750 lso->lso_ctrl =
1751 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1752 LSO_FIRST_SLICE_F |
1753 LSO_LAST_SLICE_F |
1754 LSO_IPV6_V(v6) |
1755 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1756 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1757 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1758 lso->ipid_ofst = cpu_to_be16(0);
1759 lso->mss = cpu_to_be16(ssi->gso_size);
1760 lso->seqno_offset = cpu_to_be32(0);
1761 if (is_t4(adapter->params.chip))
1762 lso->len = cpu_to_be32(skb->len);
1763 else
1764 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1765
1766 /* Set up TX Packet CPL pointer, control word and perform
1767 * accounting.
1768 */
1769 cpl = (void *)(lso + 1);
1770
1771 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1772 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1773 else
1774 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1775
1776 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1777 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1778 TXPKT_IPHDR_LEN_V(l3hdr_len);
1779 txq->tso++;
1780 txq->tx_cso += ssi->gso_segs;
1781 } else {
1782 int len;
1783
1784 len = (t4vf_is_eth_imm(skb)
1785 ? skb->len + sizeof(*cpl)
1786 : sizeof(*cpl));
1787 wr->op_immdlen =
1788 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1789 FW_WR_IMMDLEN_V(len));
1790
1791 /* Set up TX Packet CPL pointer, control word and perform
1792 * accounting.
1793 */
1794 cpl = (void *)(wr + 1);
1795 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1796 cntrl = hwcsum(adapter->params.chip, skb) |
1797 TXPKT_IPCSUM_DIS_F;
1798 txq->tx_cso++;
1799 } else {
1800 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1801 }
1802 }
1803
1804 /* If there's a VLAN tag present, add that to the list of things to
1805 * do in this Work Request.
1806 */
1807 if (skb_vlan_tag_present(skb)) {
1808 txq->vlan_ins++;
1809 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1810 }
1811
1812 /* Fill in the TX Packet CPL message header. */
1813 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1814 TXPKT_INTF_V(pi->port_id) |
1815 TXPKT_PF_V(0));
1816 cpl->pack = cpu_to_be16(0);
1817 cpl->len = cpu_to_be16(skb->len);
1818 cpl->ctrl1 = cpu_to_be64(cntrl);
1819
1820 /* Fill in the body of the TX Packet CPL message with either in-lined
1821 * data or a Scatter/Gather List.
1822 */
1823 if (t4vf_is_eth_imm(skb)) {
1824 /* In-line the packet's data and free the skb since we don't
1825 * need it any longer.
1826 */
1827 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1828 dev_consume_skb_any(skb);
1829 } else {
1830 /* Write the skb's Scatter/Gather list into the TX Packet CPL
1831 * message and retain a pointer to the skb so we can free it
1832 * later when its DMA completes. (We store the skb pointer
1833 * in the Software Descriptor corresponding to the last TX
1834 * Descriptor used by the Work Request.)
1835 *
1836 * The retained skb will be freed when the corresponding TX
1837 * Descriptors are reclaimed after their DMAs complete.
1838 * However, this could take quite a while since, in general,
1839 * the hardware is set up to be lazy about sending DMA
1840 * completion notifications to us and we mostly perform TX
1841 * reclaims in the transmit routine.
1842 *
1843 * This is good for performamce but means that we rely on new
1844 * TX packets arriving to run the destructors of completed
1845 * packets, which open up space in their sockets' send queues.
1846 * Sometimes we do not get such new packets causing TX to
1847 * stall. A single UDP transmitter is a good example of this
1848 * situation. We have a clean up timer that periodically
1849 * reclaims completed packets but it doesn't run often enough
1850 * (nor do we want it to) to prevent lengthy stalls. A
1851 * solution to this problem is to run the destructor early,
1852 * after the packet is queued but before it's DMAd. A con is
1853 * that we lie to socket memory accounting, but the amount of
1854 * extra memory is reasonable (limited by the number of TX
1855 * descriptors), the packets do actually get freed quickly by
1856 * new packets almost always, and for protocols like TCP that
1857 * wait for acks to really free up the data the extra memory
1858 * is even less. On the positive side we run the destructors
1859 * on the sending CPU rather than on a potentially different
1860 * completing CPU, usually a good thing.
1861 *
1862 * Run the destructor before telling the DMA engine about the
1863 * packet to make sure it doesn't complete and get freed
1864 * prematurely.
1865 */
1866 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1867 struct sge_txq *tq = &txq->q;
1868 int last_desc;
1869
1870 /* If the Work Request header was an exact multiple of our TX
1871 * Descriptor length, then it's possible that the starting SGL
1872 * pointer lines up exactly with the end of our TX Descriptor
1873 * ring. If that's the case, wrap around to the beginning
1874 * here ...
1875 */
1876 if (unlikely((void *)sgl == (void *)tq->stat)) {
1877 sgl = (void *)tq->desc;
1878 end = (void *)((void *)tq->desc +
1879 ((void *)end - (void *)tq->stat));
1880 }
1881
1882 cxgb4_write_sgl(skb, tq, sgl, end, 0, addr);
1883 skb_orphan(skb);
1884
1885 last_desc = tq->pidx + ndesc - 1;
1886 if (last_desc >= tq->size)
1887 last_desc -= tq->size;
1888 tq->sdesc[last_desc].skb = skb;
1889 tq->sdesc[last_desc].sgl = sgl;
1890 }
1891
1892 /* Advance our internal TX Queue state, tell the hardware about
1893 * the new TX descriptors and return success.
1894 */
1895 txq_advance(&txq->q, ndesc);
1896
1897 cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1898 return NETDEV_TX_OK;
1899
1900 out_free:
1901 /* An error of some sort happened. Free the TX skb and tell the
1902 * OS that we've "dealt" with the packet ...
1903 */
1904 dev_kfree_skb_any(skb);
1905 return NETDEV_TX_OK;
1906 }
1907
t4_start_xmit(struct sk_buff * skb,struct net_device * dev)1908 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
1909 {
1910 struct port_info *pi = netdev_priv(dev);
1911
1912 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
1913 return cxgb4_vf_eth_xmit(skb, dev);
1914
1915 return cxgb4_eth_xmit(skb, dev);
1916 }
1917
1918 /**
1919 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1920 * @q: the SGE control Tx queue
1921 *
1922 * This is a variant of cxgb4_reclaim_completed_tx() that is used
1923 * for Tx queues that send only immediate data (presently just
1924 * the control queues) and thus do not have any sk_buffs to release.
1925 */
reclaim_completed_tx_imm(struct sge_txq * q)1926 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1927 {
1928 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1929 int reclaim = hw_cidx - q->cidx;
1930
1931 if (reclaim < 0)
1932 reclaim += q->size;
1933
1934 q->in_use -= reclaim;
1935 q->cidx = hw_cidx;
1936 }
1937
1938 /**
1939 * is_imm - check whether a packet can be sent as immediate data
1940 * @skb: the packet
1941 *
1942 * Returns true if a packet can be sent as a WR with immediate data.
1943 */
is_imm(const struct sk_buff * skb)1944 static inline int is_imm(const struct sk_buff *skb)
1945 {
1946 return skb->len <= MAX_CTRL_WR_LEN;
1947 }
1948
1949 /**
1950 * ctrlq_check_stop - check if a control queue is full and should stop
1951 * @q: the queue
1952 * @wr: most recent WR written to the queue
1953 *
1954 * Check if a control queue has become full and should be stopped.
1955 * We clean up control queue descriptors very lazily, only when we are out.
1956 * If the queue is still full after reclaiming any completed descriptors
1957 * we suspend it and have the last WR wake it up.
1958 */
ctrlq_check_stop(struct sge_ctrl_txq * q,struct fw_wr_hdr * wr)1959 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1960 {
1961 reclaim_completed_tx_imm(&q->q);
1962 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1963 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1964 q->q.stops++;
1965 q->full = 1;
1966 }
1967 }
1968
1969 /**
1970 * ctrl_xmit - send a packet through an SGE control Tx queue
1971 * @q: the control queue
1972 * @skb: the packet
1973 *
1974 * Send a packet through an SGE control Tx queue. Packets sent through
1975 * a control queue must fit entirely as immediate data.
1976 */
ctrl_xmit(struct sge_ctrl_txq * q,struct sk_buff * skb)1977 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1978 {
1979 unsigned int ndesc;
1980 struct fw_wr_hdr *wr;
1981
1982 if (unlikely(!is_imm(skb))) {
1983 WARN_ON(1);
1984 dev_kfree_skb(skb);
1985 return NET_XMIT_DROP;
1986 }
1987
1988 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1989 spin_lock(&q->sendq.lock);
1990
1991 if (unlikely(q->full)) {
1992 skb->priority = ndesc; /* save for restart */
1993 __skb_queue_tail(&q->sendq, skb);
1994 spin_unlock(&q->sendq.lock);
1995 return NET_XMIT_CN;
1996 }
1997
1998 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1999 cxgb4_inline_tx_skb(skb, &q->q, wr);
2000
2001 txq_advance(&q->q, ndesc);
2002 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2003 ctrlq_check_stop(q, wr);
2004
2005 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2006 spin_unlock(&q->sendq.lock);
2007
2008 kfree_skb(skb);
2009 return NET_XMIT_SUCCESS;
2010 }
2011
2012 /**
2013 * restart_ctrlq - restart a suspended control queue
2014 * @data: the control queue to restart
2015 *
2016 * Resumes transmission on a suspended Tx control queue.
2017 */
restart_ctrlq(unsigned long data)2018 static void restart_ctrlq(unsigned long data)
2019 {
2020 struct sk_buff *skb;
2021 unsigned int written = 0;
2022 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2023
2024 spin_lock(&q->sendq.lock);
2025 reclaim_completed_tx_imm(&q->q);
2026 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
2027
2028 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2029 struct fw_wr_hdr *wr;
2030 unsigned int ndesc = skb->priority; /* previously saved */
2031
2032 written += ndesc;
2033 /* Write descriptors and free skbs outside the lock to limit
2034 * wait times. q->full is still set so new skbs will be queued.
2035 */
2036 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2037 txq_advance(&q->q, ndesc);
2038 spin_unlock(&q->sendq.lock);
2039
2040 cxgb4_inline_tx_skb(skb, &q->q, wr);
2041 kfree_skb(skb);
2042
2043 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2044 unsigned long old = q->q.stops;
2045
2046 ctrlq_check_stop(q, wr);
2047 if (q->q.stops != old) { /* suspended anew */
2048 spin_lock(&q->sendq.lock);
2049 goto ringdb;
2050 }
2051 }
2052 if (written > 16) {
2053 cxgb4_ring_tx_db(q->adap, &q->q, written);
2054 written = 0;
2055 }
2056 spin_lock(&q->sendq.lock);
2057 }
2058 q->full = 0;
2059 ringdb:
2060 if (written)
2061 cxgb4_ring_tx_db(q->adap, &q->q, written);
2062 spin_unlock(&q->sendq.lock);
2063 }
2064
2065 /**
2066 * t4_mgmt_tx - send a management message
2067 * @adap: the adapter
2068 * @skb: the packet containing the management message
2069 *
2070 * Send a management message through control queue 0.
2071 */
t4_mgmt_tx(struct adapter * adap,struct sk_buff * skb)2072 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2073 {
2074 int ret;
2075
2076 local_bh_disable();
2077 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2078 local_bh_enable();
2079 return ret;
2080 }
2081
2082 /**
2083 * is_ofld_imm - check whether a packet can be sent as immediate data
2084 * @skb: the packet
2085 *
2086 * Returns true if a packet can be sent as an offload WR with immediate
2087 * data. We currently use the same limit as for Ethernet packets.
2088 */
is_ofld_imm(const struct sk_buff * skb)2089 static inline int is_ofld_imm(const struct sk_buff *skb)
2090 {
2091 struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2092 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2093
2094 if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2095 return skb->len <= SGE_MAX_WR_LEN;
2096 else
2097 return skb->len <= MAX_IMM_TX_PKT_LEN;
2098 }
2099
2100 /**
2101 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2102 * @skb: the packet
2103 *
2104 * Returns the number of flits needed for the given offload packet.
2105 * These packets are already fully constructed and no additional headers
2106 * will be added.
2107 */
calc_tx_flits_ofld(const struct sk_buff * skb)2108 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2109 {
2110 unsigned int flits, cnt;
2111
2112 if (is_ofld_imm(skb))
2113 return DIV_ROUND_UP(skb->len, 8);
2114
2115 flits = skb_transport_offset(skb) / 8U; /* headers */
2116 cnt = skb_shinfo(skb)->nr_frags;
2117 if (skb_tail_pointer(skb) != skb_transport_header(skb))
2118 cnt++;
2119 return flits + sgl_len(cnt);
2120 }
2121
2122 /**
2123 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2124 * @adap: the adapter
2125 * @q: the queue to stop
2126 *
2127 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2128 * inability to map packets. A periodic timer attempts to restart
2129 * queues so marked.
2130 */
txq_stop_maperr(struct sge_uld_txq * q)2131 static void txq_stop_maperr(struct sge_uld_txq *q)
2132 {
2133 q->mapping_err++;
2134 q->q.stops++;
2135 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2136 q->adap->sge.txq_maperr);
2137 }
2138
2139 /**
2140 * ofldtxq_stop - stop an offload Tx queue that has become full
2141 * @q: the queue to stop
2142 * @wr: the Work Request causing the queue to become full
2143 *
2144 * Stops an offload Tx queue that has become full and modifies the packet
2145 * being written to request a wakeup.
2146 */
ofldtxq_stop(struct sge_uld_txq * q,struct fw_wr_hdr * wr)2147 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2148 {
2149 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2150 q->q.stops++;
2151 q->full = 1;
2152 }
2153
2154 /**
2155 * service_ofldq - service/restart a suspended offload queue
2156 * @q: the offload queue
2157 *
2158 * Services an offload Tx queue by moving packets from its Pending Send
2159 * Queue to the Hardware TX ring. The function starts and ends with the
2160 * Send Queue locked, but drops the lock while putting the skb at the
2161 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2162 * allows more skbs to be added to the Send Queue by other threads.
2163 * The packet being processed at the head of the Pending Send Queue is
2164 * left on the queue in case we experience DMA Mapping errors, etc.
2165 * and need to give up and restart later.
2166 *
2167 * service_ofldq() can be thought of as a task which opportunistically
2168 * uses other threads execution contexts. We use the Offload Queue
2169 * boolean "service_ofldq_running" to make sure that only one instance
2170 * is ever running at a time ...
2171 */
service_ofldq(struct sge_uld_txq * q)2172 static void service_ofldq(struct sge_uld_txq *q)
2173 {
2174 u64 *pos, *before, *end;
2175 int credits;
2176 struct sk_buff *skb;
2177 struct sge_txq *txq;
2178 unsigned int left;
2179 unsigned int written = 0;
2180 unsigned int flits, ndesc;
2181
2182 /* If another thread is currently in service_ofldq() processing the
2183 * Pending Send Queue then there's nothing to do. Otherwise, flag
2184 * that we're doing the work and continue. Examining/modifying
2185 * the Offload Queue boolean "service_ofldq_running" must be done
2186 * while holding the Pending Send Queue Lock.
2187 */
2188 if (q->service_ofldq_running)
2189 return;
2190 q->service_ofldq_running = true;
2191
2192 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2193 /* We drop the lock while we're working with the skb at the
2194 * head of the Pending Send Queue. This allows more skbs to
2195 * be added to the Pending Send Queue while we're working on
2196 * this one. We don't need to lock to guard the TX Ring
2197 * updates because only one thread of execution is ever
2198 * allowed into service_ofldq() at a time.
2199 */
2200 spin_unlock(&q->sendq.lock);
2201
2202 cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2203
2204 flits = skb->priority; /* previously saved */
2205 ndesc = flits_to_desc(flits);
2206 credits = txq_avail(&q->q) - ndesc;
2207 BUG_ON(credits < 0);
2208 if (unlikely(credits < TXQ_STOP_THRES))
2209 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2210
2211 pos = (u64 *)&q->q.desc[q->q.pidx];
2212 if (is_ofld_imm(skb))
2213 cxgb4_inline_tx_skb(skb, &q->q, pos);
2214 else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2215 (dma_addr_t *)skb->head)) {
2216 txq_stop_maperr(q);
2217 spin_lock(&q->sendq.lock);
2218 break;
2219 } else {
2220 int last_desc, hdr_len = skb_transport_offset(skb);
2221
2222 /* The WR headers may not fit within one descriptor.
2223 * So we need to deal with wrap-around here.
2224 */
2225 before = (u64 *)pos;
2226 end = (u64 *)pos + flits;
2227 txq = &q->q;
2228 pos = (void *)inline_tx_skb_header(skb, &q->q,
2229 (void *)pos,
2230 hdr_len);
2231 if (before > (u64 *)pos) {
2232 left = (u8 *)end - (u8 *)txq->stat;
2233 end = (void *)txq->desc + left;
2234 }
2235
2236 /* If current position is already at the end of the
2237 * ofld queue, reset the current to point to
2238 * start of the queue and update the end ptr as well.
2239 */
2240 if (pos == (u64 *)txq->stat) {
2241 left = (u8 *)end - (u8 *)txq->stat;
2242 end = (void *)txq->desc + left;
2243 pos = (void *)txq->desc;
2244 }
2245
2246 cxgb4_write_sgl(skb, &q->q, (void *)pos,
2247 end, hdr_len,
2248 (dma_addr_t *)skb->head);
2249 #ifdef CONFIG_NEED_DMA_MAP_STATE
2250 skb->dev = q->adap->port[0];
2251 skb->destructor = deferred_unmap_destructor;
2252 #endif
2253 last_desc = q->q.pidx + ndesc - 1;
2254 if (last_desc >= q->q.size)
2255 last_desc -= q->q.size;
2256 q->q.sdesc[last_desc].skb = skb;
2257 }
2258
2259 txq_advance(&q->q, ndesc);
2260 written += ndesc;
2261 if (unlikely(written > 32)) {
2262 cxgb4_ring_tx_db(q->adap, &q->q, written);
2263 written = 0;
2264 }
2265
2266 /* Reacquire the Pending Send Queue Lock so we can unlink the
2267 * skb we've just successfully transferred to the TX Ring and
2268 * loop for the next skb which may be at the head of the
2269 * Pending Send Queue.
2270 */
2271 spin_lock(&q->sendq.lock);
2272 __skb_unlink(skb, &q->sendq);
2273 if (is_ofld_imm(skb))
2274 kfree_skb(skb);
2275 }
2276 if (likely(written))
2277 cxgb4_ring_tx_db(q->adap, &q->q, written);
2278
2279 /*Indicate that no thread is processing the Pending Send Queue
2280 * currently.
2281 */
2282 q->service_ofldq_running = false;
2283 }
2284
2285 /**
2286 * ofld_xmit - send a packet through an offload queue
2287 * @q: the Tx offload queue
2288 * @skb: the packet
2289 *
2290 * Send an offload packet through an SGE offload queue.
2291 */
ofld_xmit(struct sge_uld_txq * q,struct sk_buff * skb)2292 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2293 {
2294 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
2295 spin_lock(&q->sendq.lock);
2296
2297 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
2298 * that results in this new skb being the only one on the queue, start
2299 * servicing it. If there are other skbs already on the list, then
2300 * either the queue is currently being processed or it's been stopped
2301 * for some reason and it'll be restarted at a later time. Restart
2302 * paths are triggered by events like experiencing a DMA Mapping Error
2303 * or filling the Hardware TX Ring.
2304 */
2305 __skb_queue_tail(&q->sendq, skb);
2306 if (q->sendq.qlen == 1)
2307 service_ofldq(q);
2308
2309 spin_unlock(&q->sendq.lock);
2310 return NET_XMIT_SUCCESS;
2311 }
2312
2313 /**
2314 * restart_ofldq - restart a suspended offload queue
2315 * @data: the offload queue to restart
2316 *
2317 * Resumes transmission on a suspended Tx offload queue.
2318 */
restart_ofldq(unsigned long data)2319 static void restart_ofldq(unsigned long data)
2320 {
2321 struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2322
2323 spin_lock(&q->sendq.lock);
2324 q->full = 0; /* the queue actually is completely empty now */
2325 service_ofldq(q);
2326 spin_unlock(&q->sendq.lock);
2327 }
2328
2329 /**
2330 * skb_txq - return the Tx queue an offload packet should use
2331 * @skb: the packet
2332 *
2333 * Returns the Tx queue an offload packet should use as indicated by bits
2334 * 1-15 in the packet's queue_mapping.
2335 */
skb_txq(const struct sk_buff * skb)2336 static inline unsigned int skb_txq(const struct sk_buff *skb)
2337 {
2338 return skb->queue_mapping >> 1;
2339 }
2340
2341 /**
2342 * is_ctrl_pkt - return whether an offload packet is a control packet
2343 * @skb: the packet
2344 *
2345 * Returns whether an offload packet should use an OFLD or a CTRL
2346 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
2347 */
is_ctrl_pkt(const struct sk_buff * skb)2348 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2349 {
2350 return skb->queue_mapping & 1;
2351 }
2352
uld_send(struct adapter * adap,struct sk_buff * skb,unsigned int tx_uld_type)2353 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2354 unsigned int tx_uld_type)
2355 {
2356 struct sge_uld_txq_info *txq_info;
2357 struct sge_uld_txq *txq;
2358 unsigned int idx = skb_txq(skb);
2359
2360 if (unlikely(is_ctrl_pkt(skb))) {
2361 /* Single ctrl queue is a requirement for LE workaround path */
2362 if (adap->tids.nsftids)
2363 idx = 0;
2364 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2365 }
2366
2367 txq_info = adap->sge.uld_txq_info[tx_uld_type];
2368 if (unlikely(!txq_info)) {
2369 WARN_ON(true);
2370 kfree_skb(skb);
2371 return NET_XMIT_DROP;
2372 }
2373
2374 txq = &txq_info->uldtxq[idx];
2375 return ofld_xmit(txq, skb);
2376 }
2377
2378 /**
2379 * t4_ofld_send - send an offload packet
2380 * @adap: the adapter
2381 * @skb: the packet
2382 *
2383 * Sends an offload packet. We use the packet queue_mapping to select the
2384 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2385 * should be sent as regular or control, bits 1-15 select the queue.
2386 */
t4_ofld_send(struct adapter * adap,struct sk_buff * skb)2387 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2388 {
2389 int ret;
2390
2391 local_bh_disable();
2392 ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2393 local_bh_enable();
2394 return ret;
2395 }
2396
2397 /**
2398 * cxgb4_ofld_send - send an offload packet
2399 * @dev: the net device
2400 * @skb: the packet
2401 *
2402 * Sends an offload packet. This is an exported version of @t4_ofld_send,
2403 * intended for ULDs.
2404 */
cxgb4_ofld_send(struct net_device * dev,struct sk_buff * skb)2405 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2406 {
2407 return t4_ofld_send(netdev2adap(dev), skb);
2408 }
2409 EXPORT_SYMBOL(cxgb4_ofld_send);
2410
inline_tx_header(const void * src,const struct sge_txq * q,void * pos,int length)2411 static void *inline_tx_header(const void *src,
2412 const struct sge_txq *q,
2413 void *pos, int length)
2414 {
2415 int left = (void *)q->stat - pos;
2416 u64 *p;
2417
2418 if (likely(length <= left)) {
2419 memcpy(pos, src, length);
2420 pos += length;
2421 } else {
2422 memcpy(pos, src, left);
2423 memcpy(q->desc, src + left, length - left);
2424 pos = (void *)q->desc + (length - left);
2425 }
2426 /* 0-pad to multiple of 16 */
2427 p = PTR_ALIGN(pos, 8);
2428 if ((uintptr_t)p & 8) {
2429 *p = 0;
2430 return p + 1;
2431 }
2432 return p;
2433 }
2434
2435 /**
2436 * ofld_xmit_direct - copy a WR into offload queue
2437 * @q: the Tx offload queue
2438 * @src: location of WR
2439 * @len: WR length
2440 *
2441 * Copy an immediate WR into an uncontended SGE offload queue.
2442 */
ofld_xmit_direct(struct sge_uld_txq * q,const void * src,unsigned int len)2443 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2444 unsigned int len)
2445 {
2446 unsigned int ndesc;
2447 int credits;
2448 u64 *pos;
2449
2450 /* Use the lower limit as the cut-off */
2451 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2452 WARN_ON(1);
2453 return NET_XMIT_DROP;
2454 }
2455
2456 /* Don't return NET_XMIT_CN here as the current
2457 * implementation doesn't queue the request
2458 * using an skb when the following conditions not met
2459 */
2460 if (!spin_trylock(&q->sendq.lock))
2461 return NET_XMIT_DROP;
2462
2463 if (q->full || !skb_queue_empty(&q->sendq) ||
2464 q->service_ofldq_running) {
2465 spin_unlock(&q->sendq.lock);
2466 return NET_XMIT_DROP;
2467 }
2468 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
2469 credits = txq_avail(&q->q) - ndesc;
2470 pos = (u64 *)&q->q.desc[q->q.pidx];
2471
2472 /* ofldtxq_stop modifies WR header in-situ */
2473 inline_tx_header(src, &q->q, pos, len);
2474 if (unlikely(credits < TXQ_STOP_THRES))
2475 ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
2476 txq_advance(&q->q, ndesc);
2477 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2478
2479 spin_unlock(&q->sendq.lock);
2480 return NET_XMIT_SUCCESS;
2481 }
2482
cxgb4_immdata_send(struct net_device * dev,unsigned int idx,const void * src,unsigned int len)2483 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
2484 const void *src, unsigned int len)
2485 {
2486 struct sge_uld_txq_info *txq_info;
2487 struct sge_uld_txq *txq;
2488 struct adapter *adap;
2489 int ret;
2490
2491 adap = netdev2adap(dev);
2492
2493 local_bh_disable();
2494 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2495 if (unlikely(!txq_info)) {
2496 WARN_ON(true);
2497 local_bh_enable();
2498 return NET_XMIT_DROP;
2499 }
2500 txq = &txq_info->uldtxq[idx];
2501
2502 ret = ofld_xmit_direct(txq, src, len);
2503 local_bh_enable();
2504 return net_xmit_eval(ret);
2505 }
2506 EXPORT_SYMBOL(cxgb4_immdata_send);
2507
2508 /**
2509 * t4_crypto_send - send crypto packet
2510 * @adap: the adapter
2511 * @skb: the packet
2512 *
2513 * Sends crypto packet. We use the packet queue_mapping to select the
2514 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2515 * should be sent as regular or control, bits 1-15 select the queue.
2516 */
t4_crypto_send(struct adapter * adap,struct sk_buff * skb)2517 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
2518 {
2519 int ret;
2520
2521 local_bh_disable();
2522 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
2523 local_bh_enable();
2524 return ret;
2525 }
2526
2527 /**
2528 * cxgb4_crypto_send - send crypto packet
2529 * @dev: the net device
2530 * @skb: the packet
2531 *
2532 * Sends crypto packet. This is an exported version of @t4_crypto_send,
2533 * intended for ULDs.
2534 */
cxgb4_crypto_send(struct net_device * dev,struct sk_buff * skb)2535 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
2536 {
2537 return t4_crypto_send(netdev2adap(dev), skb);
2538 }
2539 EXPORT_SYMBOL(cxgb4_crypto_send);
2540
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)2541 static inline void copy_frags(struct sk_buff *skb,
2542 const struct pkt_gl *gl, unsigned int offset)
2543 {
2544 int i;
2545
2546 /* usually there's just one frag */
2547 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
2548 gl->frags[0].offset + offset,
2549 gl->frags[0].size - offset);
2550 skb_shinfo(skb)->nr_frags = gl->nfrags;
2551 for (i = 1; i < gl->nfrags; i++)
2552 __skb_fill_page_desc(skb, i, gl->frags[i].page,
2553 gl->frags[i].offset,
2554 gl->frags[i].size);
2555
2556 /* get a reference to the last page, we don't own it */
2557 get_page(gl->frags[gl->nfrags - 1].page);
2558 }
2559
2560 /**
2561 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
2562 * @gl: the gather list
2563 * @skb_len: size of sk_buff main body if it carries fragments
2564 * @pull_len: amount of data to move to the sk_buff's main body
2565 *
2566 * Builds an sk_buff from the given packet gather list. Returns the
2567 * sk_buff or %NULL if sk_buff allocation failed.
2568 */
cxgb4_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)2569 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
2570 unsigned int skb_len, unsigned int pull_len)
2571 {
2572 struct sk_buff *skb;
2573
2574 /*
2575 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
2576 * size, which is expected since buffers are at least PAGE_SIZEd.
2577 * In this case packets up to RX_COPY_THRES have only one fragment.
2578 */
2579 if (gl->tot_len <= RX_COPY_THRES) {
2580 skb = dev_alloc_skb(gl->tot_len);
2581 if (unlikely(!skb))
2582 goto out;
2583 __skb_put(skb, gl->tot_len);
2584 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
2585 } else {
2586 skb = dev_alloc_skb(skb_len);
2587 if (unlikely(!skb))
2588 goto out;
2589 __skb_put(skb, pull_len);
2590 skb_copy_to_linear_data(skb, gl->va, pull_len);
2591
2592 copy_frags(skb, gl, pull_len);
2593 skb->len = gl->tot_len;
2594 skb->data_len = skb->len - pull_len;
2595 skb->truesize += skb->data_len;
2596 }
2597 out: return skb;
2598 }
2599 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
2600
2601 /**
2602 * t4_pktgl_free - free a packet gather list
2603 * @gl: the gather list
2604 *
2605 * Releases the pages of a packet gather list. We do not own the last
2606 * page on the list and do not free it.
2607 */
t4_pktgl_free(const struct pkt_gl * gl)2608 static void t4_pktgl_free(const struct pkt_gl *gl)
2609 {
2610 int n;
2611 const struct page_frag *p;
2612
2613 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
2614 put_page(p->page);
2615 }
2616
2617 /*
2618 * Process an MPS trace packet. Give it an unused protocol number so it won't
2619 * be delivered to anyone and send it to the stack for capture.
2620 */
handle_trace_pkt(struct adapter * adap,const struct pkt_gl * gl)2621 static noinline int handle_trace_pkt(struct adapter *adap,
2622 const struct pkt_gl *gl)
2623 {
2624 struct sk_buff *skb;
2625
2626 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
2627 if (unlikely(!skb)) {
2628 t4_pktgl_free(gl);
2629 return 0;
2630 }
2631
2632 if (is_t4(adap->params.chip))
2633 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
2634 else
2635 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
2636
2637 skb_reset_mac_header(skb);
2638 skb->protocol = htons(0xffff);
2639 skb->dev = adap->port[0];
2640 netif_receive_skb(skb);
2641 return 0;
2642 }
2643
2644 /**
2645 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
2646 * @adap: the adapter
2647 * @hwtstamps: time stamp structure to update
2648 * @sgetstamp: 60bit iqe timestamp
2649 *
2650 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
2651 * which is in Core Clock ticks into ktime_t and assign it
2652 **/
cxgb4_sgetim_to_hwtstamp(struct adapter * adap,struct skb_shared_hwtstamps * hwtstamps,u64 sgetstamp)2653 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
2654 struct skb_shared_hwtstamps *hwtstamps,
2655 u64 sgetstamp)
2656 {
2657 u64 ns;
2658 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
2659
2660 ns = div_u64(tmp, adap->params.vpd.cclk);
2661
2662 memset(hwtstamps, 0, sizeof(*hwtstamps));
2663 hwtstamps->hwtstamp = ns_to_ktime(ns);
2664 }
2665
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt,unsigned long tnl_hdr_len)2666 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
2667 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
2668 {
2669 struct adapter *adapter = rxq->rspq.adap;
2670 struct sge *s = &adapter->sge;
2671 struct port_info *pi;
2672 int ret;
2673 struct sk_buff *skb;
2674
2675 skb = napi_get_frags(&rxq->rspq.napi);
2676 if (unlikely(!skb)) {
2677 t4_pktgl_free(gl);
2678 rxq->stats.rx_drops++;
2679 return;
2680 }
2681
2682 copy_frags(skb, gl, s->pktshift);
2683 if (tnl_hdr_len)
2684 skb->csum_level = 1;
2685 skb->len = gl->tot_len - s->pktshift;
2686 skb->data_len = skb->len;
2687 skb->truesize += skb->data_len;
2688 skb->ip_summed = CHECKSUM_UNNECESSARY;
2689 skb_record_rx_queue(skb, rxq->rspq.idx);
2690 pi = netdev_priv(skb->dev);
2691 if (pi->rxtstamp)
2692 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
2693 gl->sgetstamp);
2694 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
2695 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2696 PKT_HASH_TYPE_L3);
2697
2698 if (unlikely(pkt->vlan_ex)) {
2699 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2700 rxq->stats.vlan_ex++;
2701 }
2702 ret = napi_gro_frags(&rxq->rspq.napi);
2703 if (ret == GRO_HELD)
2704 rxq->stats.lro_pkts++;
2705 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
2706 rxq->stats.lro_merged++;
2707 rxq->stats.pkts++;
2708 rxq->stats.rx_cso++;
2709 }
2710
2711 enum {
2712 RX_NON_PTP_PKT = 0,
2713 RX_PTP_PKT_SUC = 1,
2714 RX_PTP_PKT_ERR = 2
2715 };
2716
2717 /**
2718 * t4_systim_to_hwstamp - read hardware time stamp
2719 * @adap: the adapter
2720 * @skb: the packet
2721 *
2722 * Read Time Stamp from MPS packet and insert in skb which
2723 * is forwarded to PTP application
2724 */
t4_systim_to_hwstamp(struct adapter * adapter,struct sk_buff * skb)2725 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
2726 struct sk_buff *skb)
2727 {
2728 struct skb_shared_hwtstamps *hwtstamps;
2729 struct cpl_rx_mps_pkt *cpl = NULL;
2730 unsigned char *data;
2731 int offset;
2732
2733 cpl = (struct cpl_rx_mps_pkt *)skb->data;
2734 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
2735 X_CPL_RX_MPS_PKT_TYPE_PTP))
2736 return RX_PTP_PKT_ERR;
2737
2738 data = skb->data + sizeof(*cpl);
2739 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
2740 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
2741 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
2742 return RX_PTP_PKT_ERR;
2743
2744 hwtstamps = skb_hwtstamps(skb);
2745 memset(hwtstamps, 0, sizeof(*hwtstamps));
2746 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
2747
2748 return RX_PTP_PKT_SUC;
2749 }
2750
2751 /**
2752 * t4_rx_hststamp - Recv PTP Event Message
2753 * @adap: the adapter
2754 * @rsp: the response queue descriptor holding the RX_PKT message
2755 * @skb: the packet
2756 *
2757 * PTP enabled and MPS packet, read HW timestamp
2758 */
t4_rx_hststamp(struct adapter * adapter,const __be64 * rsp,struct sge_eth_rxq * rxq,struct sk_buff * skb)2759 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
2760 struct sge_eth_rxq *rxq, struct sk_buff *skb)
2761 {
2762 int ret;
2763
2764 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
2765 !is_t4(adapter->params.chip))) {
2766 ret = t4_systim_to_hwstamp(adapter, skb);
2767 if (ret == RX_PTP_PKT_ERR) {
2768 kfree_skb(skb);
2769 rxq->stats.rx_drops++;
2770 }
2771 return ret;
2772 }
2773 return RX_NON_PTP_PKT;
2774 }
2775
2776 /**
2777 * t4_tx_hststamp - Loopback PTP Transmit Event Message
2778 * @adap: the adapter
2779 * @skb: the packet
2780 * @dev: the ingress net device
2781 *
2782 * Read hardware timestamp for the loopback PTP Tx event message
2783 */
t4_tx_hststamp(struct adapter * adapter,struct sk_buff * skb,struct net_device * dev)2784 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
2785 struct net_device *dev)
2786 {
2787 struct port_info *pi = netdev_priv(dev);
2788
2789 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
2790 cxgb4_ptp_read_hwstamp(adapter, pi);
2791 kfree_skb(skb);
2792 return 0;
2793 }
2794 return 1;
2795 }
2796
2797 /**
2798 * t4_ethrx_handler - process an ingress ethernet packet
2799 * @q: the response queue that received the packet
2800 * @rsp: the response queue descriptor holding the RX_PKT message
2801 * @si: the gather list of packet fragments
2802 *
2803 * Process an ingress ethernet packet and deliver it to the stack.
2804 */
t4_ethrx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)2805 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
2806 const struct pkt_gl *si)
2807 {
2808 bool csum_ok;
2809 struct sk_buff *skb;
2810 const struct cpl_rx_pkt *pkt;
2811 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2812 struct adapter *adapter = q->adap;
2813 struct sge *s = &q->adap->sge;
2814 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2815 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2816 u16 err_vec, tnl_hdr_len = 0;
2817 struct port_info *pi;
2818 int ret = 0;
2819
2820 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2821 return handle_trace_pkt(q->adap, si);
2822
2823 pkt = (const struct cpl_rx_pkt *)rsp;
2824 /* Compressed error vector is enabled for T6 only */
2825 if (q->adap->params.tp.rx_pkt_encap) {
2826 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
2827 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
2828 } else {
2829 err_vec = be16_to_cpu(pkt->err_vec);
2830 }
2831
2832 csum_ok = pkt->csum_calc && !err_vec &&
2833 (q->netdev->features & NETIF_F_RXCSUM);
2834 if (((pkt->l2info & htonl(RXF_TCP_F)) ||
2835 tnl_hdr_len) &&
2836 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
2837 do_gro(rxq, si, pkt, tnl_hdr_len);
2838 return 0;
2839 }
2840
2841 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
2842 if (unlikely(!skb)) {
2843 t4_pktgl_free(si);
2844 rxq->stats.rx_drops++;
2845 return 0;
2846 }
2847 pi = netdev_priv(q->netdev);
2848
2849 /* Handle PTP Event Rx packet */
2850 if (unlikely(pi->ptp_enable)) {
2851 ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
2852 if (ret == RX_PTP_PKT_ERR)
2853 return 0;
2854 }
2855 if (likely(!ret))
2856 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
2857
2858 /* Handle the PTP Event Tx Loopback packet */
2859 if (unlikely(pi->ptp_enable && !ret &&
2860 (pkt->l2info & htonl(RXF_UDP_F)) &&
2861 cxgb4_ptp_is_ptp_rx(skb))) {
2862 if (!t4_tx_hststamp(adapter, skb, q->netdev))
2863 return 0;
2864 }
2865
2866 skb->protocol = eth_type_trans(skb, q->netdev);
2867 skb_record_rx_queue(skb, q->idx);
2868 if (skb->dev->features & NETIF_F_RXHASH)
2869 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2870 PKT_HASH_TYPE_L3);
2871
2872 rxq->stats.pkts++;
2873
2874 if (pi->rxtstamp)
2875 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
2876 si->sgetstamp);
2877 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
2878 if (!pkt->ip_frag) {
2879 skb->ip_summed = CHECKSUM_UNNECESSARY;
2880 rxq->stats.rx_cso++;
2881 } else if (pkt->l2info & htonl(RXF_IP_F)) {
2882 __sum16 c = (__force __sum16)pkt->csum;
2883 skb->csum = csum_unfold(c);
2884
2885 if (tnl_hdr_len) {
2886 skb->ip_summed = CHECKSUM_UNNECESSARY;
2887 skb->csum_level = 1;
2888 } else {
2889 skb->ip_summed = CHECKSUM_COMPLETE;
2890 }
2891 rxq->stats.rx_cso++;
2892 }
2893 } else {
2894 skb_checksum_none_assert(skb);
2895 #ifdef CONFIG_CHELSIO_T4_FCOE
2896 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
2897 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
2898
2899 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
2900 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
2901 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
2902 if (q->adap->params.tp.rx_pkt_encap)
2903 csum_ok = err_vec &
2904 T6_COMPR_RXERR_SUM_F;
2905 else
2906 csum_ok = err_vec & RXERR_CSUM_F;
2907 if (!csum_ok)
2908 skb->ip_summed = CHECKSUM_UNNECESSARY;
2909 }
2910 }
2911
2912 #undef CPL_RX_PKT_FLAGS
2913 #endif /* CONFIG_CHELSIO_T4_FCOE */
2914 }
2915
2916 if (unlikely(pkt->vlan_ex)) {
2917 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2918 rxq->stats.vlan_ex++;
2919 }
2920 skb_mark_napi_id(skb, &q->napi);
2921 netif_receive_skb(skb);
2922 return 0;
2923 }
2924
2925 /**
2926 * restore_rx_bufs - put back a packet's Rx buffers
2927 * @si: the packet gather list
2928 * @q: the SGE free list
2929 * @frags: number of FL buffers to restore
2930 *
2931 * Puts back on an FL the Rx buffers associated with @si. The buffers
2932 * have already been unmapped and are left unmapped, we mark them so to
2933 * prevent further unmapping attempts.
2934 *
2935 * This function undoes a series of @unmap_rx_buf calls when we find out
2936 * that the current packet can't be processed right away afterall and we
2937 * need to come back to it later. This is a very rare event and there's
2938 * no effort to make this particularly efficient.
2939 */
restore_rx_bufs(const struct pkt_gl * si,struct sge_fl * q,int frags)2940 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
2941 int frags)
2942 {
2943 struct rx_sw_desc *d;
2944
2945 while (frags--) {
2946 if (q->cidx == 0)
2947 q->cidx = q->size - 1;
2948 else
2949 q->cidx--;
2950 d = &q->sdesc[q->cidx];
2951 d->page = si->frags[frags].page;
2952 d->dma_addr |= RX_UNMAPPED_BUF;
2953 q->avail++;
2954 }
2955 }
2956
2957 /**
2958 * is_new_response - check if a response is newly written
2959 * @r: the response descriptor
2960 * @q: the response queue
2961 *
2962 * Returns true if a response descriptor contains a yet unprocessed
2963 * response.
2964 */
is_new_response(const struct rsp_ctrl * r,const struct sge_rspq * q)2965 static inline bool is_new_response(const struct rsp_ctrl *r,
2966 const struct sge_rspq *q)
2967 {
2968 return (r->type_gen >> RSPD_GEN_S) == q->gen;
2969 }
2970
2971 /**
2972 * rspq_next - advance to the next entry in a response queue
2973 * @q: the queue
2974 *
2975 * Updates the state of a response queue to advance it to the next entry.
2976 */
rspq_next(struct sge_rspq * q)2977 static inline void rspq_next(struct sge_rspq *q)
2978 {
2979 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
2980 if (unlikely(++q->cidx == q->size)) {
2981 q->cidx = 0;
2982 q->gen ^= 1;
2983 q->cur_desc = q->desc;
2984 }
2985 }
2986
2987 /**
2988 * process_responses - process responses from an SGE response queue
2989 * @q: the ingress queue to process
2990 * @budget: how many responses can be processed in this round
2991 *
2992 * Process responses from an SGE response queue up to the supplied budget.
2993 * Responses include received packets as well as control messages from FW
2994 * or HW.
2995 *
2996 * Additionally choose the interrupt holdoff time for the next interrupt
2997 * on this queue. If the system is under memory shortage use a fairly
2998 * long delay to help recovery.
2999 */
process_responses(struct sge_rspq * q,int budget)3000 static int process_responses(struct sge_rspq *q, int budget)
3001 {
3002 int ret, rsp_type;
3003 int budget_left = budget;
3004 const struct rsp_ctrl *rc;
3005 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3006 struct adapter *adapter = q->adap;
3007 struct sge *s = &adapter->sge;
3008
3009 while (likely(budget_left)) {
3010 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3011 if (!is_new_response(rc, q)) {
3012 if (q->flush_handler)
3013 q->flush_handler(q);
3014 break;
3015 }
3016
3017 dma_rmb();
3018 rsp_type = RSPD_TYPE_G(rc->type_gen);
3019 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3020 struct page_frag *fp;
3021 struct pkt_gl si;
3022 const struct rx_sw_desc *rsd;
3023 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3024
3025 if (len & RSPD_NEWBUF_F) {
3026 if (likely(q->offset > 0)) {
3027 free_rx_bufs(q->adap, &rxq->fl, 1);
3028 q->offset = 0;
3029 }
3030 len = RSPD_LEN_G(len);
3031 }
3032 si.tot_len = len;
3033
3034 /* gather packet fragments */
3035 for (frags = 0, fp = si.frags; ; frags++, fp++) {
3036 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3037 bufsz = get_buf_size(adapter, rsd);
3038 fp->page = rsd->page;
3039 fp->offset = q->offset;
3040 fp->size = min(bufsz, len);
3041 len -= fp->size;
3042 if (!len)
3043 break;
3044 unmap_rx_buf(q->adap, &rxq->fl);
3045 }
3046
3047 si.sgetstamp = SGE_TIMESTAMP_G(
3048 be64_to_cpu(rc->last_flit));
3049 /*
3050 * Last buffer remains mapped so explicitly make it
3051 * coherent for CPU access.
3052 */
3053 dma_sync_single_for_cpu(q->adap->pdev_dev,
3054 get_buf_addr(rsd),
3055 fp->size, DMA_FROM_DEVICE);
3056
3057 si.va = page_address(si.frags[0].page) +
3058 si.frags[0].offset;
3059 prefetch(si.va);
3060
3061 si.nfrags = frags + 1;
3062 ret = q->handler(q, q->cur_desc, &si);
3063 if (likely(ret == 0))
3064 q->offset += ALIGN(fp->size, s->fl_align);
3065 else
3066 restore_rx_bufs(&si, &rxq->fl, frags);
3067 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3068 ret = q->handler(q, q->cur_desc, NULL);
3069 } else {
3070 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3071 }
3072
3073 if (unlikely(ret)) {
3074 /* couldn't process descriptor, back off for recovery */
3075 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3076 break;
3077 }
3078
3079 rspq_next(q);
3080 budget_left--;
3081 }
3082
3083 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3084 __refill_fl(q->adap, &rxq->fl);
3085 return budget - budget_left;
3086 }
3087
3088 /**
3089 * napi_rx_handler - the NAPI handler for Rx processing
3090 * @napi: the napi instance
3091 * @budget: how many packets we can process in this round
3092 *
3093 * Handler for new data events when using NAPI. This does not need any
3094 * locking or protection from interrupts as data interrupts are off at
3095 * this point and other adapter interrupts do not interfere (the latter
3096 * in not a concern at all with MSI-X as non-data interrupts then have
3097 * a separate handler).
3098 */
napi_rx_handler(struct napi_struct * napi,int budget)3099 static int napi_rx_handler(struct napi_struct *napi, int budget)
3100 {
3101 unsigned int params;
3102 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3103 int work_done;
3104 u32 val;
3105
3106 work_done = process_responses(q, budget);
3107 if (likely(work_done < budget)) {
3108 int timer_index;
3109
3110 napi_complete_done(napi, work_done);
3111 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3112
3113 if (q->adaptive_rx) {
3114 if (work_done > max(timer_pkt_quota[timer_index],
3115 MIN_NAPI_WORK))
3116 timer_index = (timer_index + 1);
3117 else
3118 timer_index = timer_index - 1;
3119
3120 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3121 q->next_intr_params =
3122 QINTR_TIMER_IDX_V(timer_index) |
3123 QINTR_CNT_EN_V(0);
3124 params = q->next_intr_params;
3125 } else {
3126 params = q->next_intr_params;
3127 q->next_intr_params = q->intr_params;
3128 }
3129 } else
3130 params = QINTR_TIMER_IDX_V(7);
3131
3132 val = CIDXINC_V(work_done) | SEINTARM_V(params);
3133
3134 /* If we don't have access to the new User GTS (T5+), use the old
3135 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3136 */
3137 if (unlikely(q->bar2_addr == NULL)) {
3138 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3139 val | INGRESSQID_V((u32)q->cntxt_id));
3140 } else {
3141 writel(val | INGRESSQID_V(q->bar2_qid),
3142 q->bar2_addr + SGE_UDB_GTS);
3143 wmb();
3144 }
3145 return work_done;
3146 }
3147
3148 /*
3149 * The MSI-X interrupt handler for an SGE response queue.
3150 */
t4_sge_intr_msix(int irq,void * cookie)3151 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3152 {
3153 struct sge_rspq *q = cookie;
3154
3155 napi_schedule(&q->napi);
3156 return IRQ_HANDLED;
3157 }
3158
3159 /*
3160 * Process the indirect interrupt entries in the interrupt queue and kick off
3161 * NAPI for each queue that has generated an entry.
3162 */
process_intrq(struct adapter * adap)3163 static unsigned int process_intrq(struct adapter *adap)
3164 {
3165 unsigned int credits;
3166 const struct rsp_ctrl *rc;
3167 struct sge_rspq *q = &adap->sge.intrq;
3168 u32 val;
3169
3170 spin_lock(&adap->sge.intrq_lock);
3171 for (credits = 0; ; credits++) {
3172 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3173 if (!is_new_response(rc, q))
3174 break;
3175
3176 dma_rmb();
3177 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3178 unsigned int qid = ntohl(rc->pldbuflen_qid);
3179
3180 qid -= adap->sge.ingr_start;
3181 napi_schedule(&adap->sge.ingr_map[qid]->napi);
3182 }
3183
3184 rspq_next(q);
3185 }
3186
3187 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3188
3189 /* If we don't have access to the new User GTS (T5+), use the old
3190 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3191 */
3192 if (unlikely(q->bar2_addr == NULL)) {
3193 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3194 val | INGRESSQID_V(q->cntxt_id));
3195 } else {
3196 writel(val | INGRESSQID_V(q->bar2_qid),
3197 q->bar2_addr + SGE_UDB_GTS);
3198 wmb();
3199 }
3200 spin_unlock(&adap->sge.intrq_lock);
3201 return credits;
3202 }
3203
3204 /*
3205 * The MSI interrupt handler, which handles data events from SGE response queues
3206 * as well as error and other async events as they all use the same MSI vector.
3207 */
t4_intr_msi(int irq,void * cookie)3208 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3209 {
3210 struct adapter *adap = cookie;
3211
3212 if (adap->flags & MASTER_PF)
3213 t4_slow_intr_handler(adap);
3214 process_intrq(adap);
3215 return IRQ_HANDLED;
3216 }
3217
3218 /*
3219 * Interrupt handler for legacy INTx interrupts.
3220 * Handles data events from SGE response queues as well as error and other
3221 * async events as they all use the same interrupt line.
3222 */
t4_intr_intx(int irq,void * cookie)3223 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3224 {
3225 struct adapter *adap = cookie;
3226
3227 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3228 if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
3229 process_intrq(adap))
3230 return IRQ_HANDLED;
3231 return IRQ_NONE; /* probably shared interrupt */
3232 }
3233
3234 /**
3235 * t4_intr_handler - select the top-level interrupt handler
3236 * @adap: the adapter
3237 *
3238 * Selects the top-level interrupt handler based on the type of interrupts
3239 * (MSI-X, MSI, or INTx).
3240 */
t4_intr_handler(struct adapter * adap)3241 irq_handler_t t4_intr_handler(struct adapter *adap)
3242 {
3243 if (adap->flags & USING_MSIX)
3244 return t4_sge_intr_msix;
3245 if (adap->flags & USING_MSI)
3246 return t4_intr_msi;
3247 return t4_intr_intx;
3248 }
3249
sge_rx_timer_cb(struct timer_list * t)3250 static void sge_rx_timer_cb(struct timer_list *t)
3251 {
3252 unsigned long m;
3253 unsigned int i;
3254 struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3255 struct sge *s = &adap->sge;
3256
3257 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3258 for (m = s->starving_fl[i]; m; m &= m - 1) {
3259 struct sge_eth_rxq *rxq;
3260 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3261 struct sge_fl *fl = s->egr_map[id];
3262
3263 clear_bit(id, s->starving_fl);
3264 smp_mb__after_atomic();
3265
3266 if (fl_starving(adap, fl)) {
3267 rxq = container_of(fl, struct sge_eth_rxq, fl);
3268 if (napi_reschedule(&rxq->rspq.napi))
3269 fl->starving++;
3270 else
3271 set_bit(id, s->starving_fl);
3272 }
3273 }
3274 /* The remainder of the SGE RX Timer Callback routine is dedicated to
3275 * global Master PF activities like checking for chip ingress stalls,
3276 * etc.
3277 */
3278 if (!(adap->flags & MASTER_PF))
3279 goto done;
3280
3281 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
3282
3283 done:
3284 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
3285 }
3286
sge_tx_timer_cb(struct timer_list * t)3287 static void sge_tx_timer_cb(struct timer_list *t)
3288 {
3289 unsigned long m;
3290 unsigned int i, budget;
3291 struct adapter *adap = from_timer(adap, t, sge.tx_timer);
3292 struct sge *s = &adap->sge;
3293
3294 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3295 for (m = s->txq_maperr[i]; m; m &= m - 1) {
3296 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
3297 struct sge_uld_txq *txq = s->egr_map[id];
3298
3299 clear_bit(id, s->txq_maperr);
3300 tasklet_schedule(&txq->qresume_tsk);
3301 }
3302
3303 if (!is_t4(adap->params.chip)) {
3304 struct sge_eth_txq *q = &s->ptptxq;
3305 int avail;
3306
3307 spin_lock(&adap->ptp_lock);
3308 avail = reclaimable(&q->q);
3309
3310 if (avail) {
3311 free_tx_desc(adap, &q->q, avail, false);
3312 q->q.in_use -= avail;
3313 }
3314 spin_unlock(&adap->ptp_lock);
3315 }
3316
3317 budget = MAX_TIMER_TX_RECLAIM;
3318 i = s->ethtxq_rover;
3319 do {
3320 struct sge_eth_txq *q = &s->ethtxq[i];
3321
3322 if (q->q.in_use &&
3323 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
3324 __netif_tx_trylock(q->txq)) {
3325 int avail = reclaimable(&q->q);
3326
3327 if (avail) {
3328 if (avail > budget)
3329 avail = budget;
3330
3331 free_tx_desc(adap, &q->q, avail, true);
3332 q->q.in_use -= avail;
3333 budget -= avail;
3334 }
3335 __netif_tx_unlock(q->txq);
3336 }
3337
3338 if (++i >= s->ethqsets)
3339 i = 0;
3340 } while (budget && i != s->ethtxq_rover);
3341 s->ethtxq_rover = i;
3342 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
3343 }
3344
3345 /**
3346 * bar2_address - return the BAR2 address for an SGE Queue's Registers
3347 * @adapter: the adapter
3348 * @qid: the SGE Queue ID
3349 * @qtype: the SGE Queue Type (Egress or Ingress)
3350 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
3351 *
3352 * Returns the BAR2 address for the SGE Queue Registers associated with
3353 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
3354 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
3355 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
3356 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
3357 */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)3358 static void __iomem *bar2_address(struct adapter *adapter,
3359 unsigned int qid,
3360 enum t4_bar2_qtype qtype,
3361 unsigned int *pbar2_qid)
3362 {
3363 u64 bar2_qoffset;
3364 int ret;
3365
3366 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
3367 &bar2_qoffset, pbar2_qid);
3368 if (ret)
3369 return NULL;
3370
3371 return adapter->bar2 + bar2_qoffset;
3372 }
3373
3374 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
3375 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
3376 */
t4_sge_alloc_rxq(struct adapter * adap,struct sge_rspq * iq,bool fwevtq,struct net_device * dev,int intr_idx,struct sge_fl * fl,rspq_handler_t hnd,rspq_flush_handler_t flush_hnd,int cong)3377 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
3378 struct net_device *dev, int intr_idx,
3379 struct sge_fl *fl, rspq_handler_t hnd,
3380 rspq_flush_handler_t flush_hnd, int cong)
3381 {
3382 int ret, flsz = 0;
3383 struct fw_iq_cmd c;
3384 struct sge *s = &adap->sge;
3385 struct port_info *pi = netdev_priv(dev);
3386 int relaxed = !(adap->flags & ROOT_NO_RELAXED_ORDERING);
3387
3388 /* Size needs to be multiple of 16, including status entry. */
3389 iq->size = roundup(iq->size, 16);
3390
3391 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
3392 &iq->phys_addr, NULL, 0,
3393 dev_to_node(adap->pdev_dev));
3394 if (!iq->desc)
3395 return -ENOMEM;
3396
3397 memset(&c, 0, sizeof(c));
3398 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
3399 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3400 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
3401 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
3402 FW_LEN16(c));
3403 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
3404 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
3405 FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
3406 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
3407 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
3408 -intr_idx - 1));
3409 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
3410 FW_IQ_CMD_IQGTSMODE_F |
3411 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
3412 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
3413 c.iqsize = htons(iq->size);
3414 c.iqaddr = cpu_to_be64(iq->phys_addr);
3415 if (cong >= 0)
3416 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
3417 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
3418 : FW_IQ_IQTYPE_OFLD));
3419
3420 if (fl) {
3421 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3422
3423 /* Allocate the ring for the hardware free list (with space
3424 * for its status page) along with the associated software
3425 * descriptor ring. The free list size needs to be a multiple
3426 * of the Egress Queue Unit and at least 2 Egress Units larger
3427 * than the SGE's Egress Congrestion Threshold
3428 * (fl_starve_thres - 1).
3429 */
3430 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
3431 fl->size = s->fl_starve_thres - 1 + 2 * 8;
3432 fl->size = roundup(fl->size, 8);
3433 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
3434 sizeof(struct rx_sw_desc), &fl->addr,
3435 &fl->sdesc, s->stat_len,
3436 dev_to_node(adap->pdev_dev));
3437 if (!fl->desc)
3438 goto fl_nomem;
3439
3440 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
3441 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
3442 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
3443 FW_IQ_CMD_FL0DATARO_V(relaxed) |
3444 FW_IQ_CMD_FL0PADEN_F);
3445 if (cong >= 0)
3446 c.iqns_to_fl0congen |=
3447 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
3448 FW_IQ_CMD_FL0CONGCIF_F |
3449 FW_IQ_CMD_FL0CONGEN_F);
3450 /* In T6, for egress queue type FL there is internal overhead
3451 * of 16B for header going into FLM module. Hence the maximum
3452 * allowed burst size is 448 bytes. For T4/T5, the hardware
3453 * doesn't coalesce fetch requests if more than 64 bytes of
3454 * Free List pointers are provided, so we use a 128-byte Fetch
3455 * Burst Minimum there (T6 implements coalescing so we can use
3456 * the smaller 64-byte value there).
3457 */
3458 c.fl0dcaen_to_fl0cidxfthresh =
3459 htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
3460 FETCHBURSTMIN_128B_X :
3461 FETCHBURSTMIN_64B_X) |
3462 FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
3463 FETCHBURSTMAX_512B_X :
3464 FETCHBURSTMAX_256B_X));
3465 c.fl0size = htons(flsz);
3466 c.fl0addr = cpu_to_be64(fl->addr);
3467 }
3468
3469 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3470 if (ret)
3471 goto err;
3472
3473 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
3474 iq->cur_desc = iq->desc;
3475 iq->cidx = 0;
3476 iq->gen = 1;
3477 iq->next_intr_params = iq->intr_params;
3478 iq->cntxt_id = ntohs(c.iqid);
3479 iq->abs_id = ntohs(c.physiqid);
3480 iq->bar2_addr = bar2_address(adap,
3481 iq->cntxt_id,
3482 T4_BAR2_QTYPE_INGRESS,
3483 &iq->bar2_qid);
3484 iq->size--; /* subtract status entry */
3485 iq->netdev = dev;
3486 iq->handler = hnd;
3487 iq->flush_handler = flush_hnd;
3488
3489 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
3490 skb_queue_head_init(&iq->lro_mgr.lroq);
3491
3492 /* set offset to -1 to distinguish ingress queues without FL */
3493 iq->offset = fl ? 0 : -1;
3494
3495 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
3496
3497 if (fl) {
3498 fl->cntxt_id = ntohs(c.fl0id);
3499 fl->avail = fl->pend_cred = 0;
3500 fl->pidx = fl->cidx = 0;
3501 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
3502 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
3503
3504 /* Note, we must initialize the BAR2 Free List User Doorbell
3505 * information before refilling the Free List!
3506 */
3507 fl->bar2_addr = bar2_address(adap,
3508 fl->cntxt_id,
3509 T4_BAR2_QTYPE_EGRESS,
3510 &fl->bar2_qid);
3511 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
3512 }
3513
3514 /* For T5 and later we attempt to set up the Congestion Manager values
3515 * of the new RX Ethernet Queue. This should really be handled by
3516 * firmware because it's more complex than any host driver wants to
3517 * get involved with and it's different per chip and this is almost
3518 * certainly wrong. Firmware would be wrong as well, but it would be
3519 * a lot easier to fix in one place ... For now we do something very
3520 * simple (and hopefully less wrong).
3521 */
3522 if (!is_t4(adap->params.chip) && cong >= 0) {
3523 u32 param, val, ch_map = 0;
3524 int i;
3525 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
3526
3527 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3528 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3529 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
3530 if (cong == 0) {
3531 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
3532 } else {
3533 val =
3534 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
3535 for (i = 0; i < 4; i++) {
3536 if (cong & (1 << i))
3537 ch_map |= 1 << (i << cng_ch_bits_log);
3538 }
3539 val |= CONMCTXT_CNGCHMAP_V(ch_map);
3540 }
3541 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
3542 ¶m, &val);
3543 if (ret)
3544 dev_warn(adap->pdev_dev, "Failed to set Congestion"
3545 " Manager Context for Ingress Queue %d: %d\n",
3546 iq->cntxt_id, -ret);
3547 }
3548
3549 return 0;
3550
3551 fl_nomem:
3552 ret = -ENOMEM;
3553 err:
3554 if (iq->desc) {
3555 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
3556 iq->desc, iq->phys_addr);
3557 iq->desc = NULL;
3558 }
3559 if (fl && fl->desc) {
3560 kfree(fl->sdesc);
3561 fl->sdesc = NULL;
3562 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
3563 fl->desc, fl->addr);
3564 fl->desc = NULL;
3565 }
3566 return ret;
3567 }
3568
init_txq(struct adapter * adap,struct sge_txq * q,unsigned int id)3569 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
3570 {
3571 q->cntxt_id = id;
3572 q->bar2_addr = bar2_address(adap,
3573 q->cntxt_id,
3574 T4_BAR2_QTYPE_EGRESS,
3575 &q->bar2_qid);
3576 q->in_use = 0;
3577 q->cidx = q->pidx = 0;
3578 q->stops = q->restarts = 0;
3579 q->stat = (void *)&q->desc[q->size];
3580 spin_lock_init(&q->db_lock);
3581 adap->sge.egr_map[id - adap->sge.egr_start] = q;
3582 }
3583
t4_sge_alloc_eth_txq(struct adapter * adap,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * netdevq,unsigned int iqid)3584 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
3585 struct net_device *dev, struct netdev_queue *netdevq,
3586 unsigned int iqid)
3587 {
3588 int ret, nentries;
3589 struct fw_eq_eth_cmd c;
3590 struct sge *s = &adap->sge;
3591 struct port_info *pi = netdev_priv(dev);
3592
3593 /* Add status entries */
3594 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3595
3596 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3597 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3598 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3599 netdev_queue_numa_node_read(netdevq));
3600 if (!txq->q.desc)
3601 return -ENOMEM;
3602
3603 memset(&c, 0, sizeof(c));
3604 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
3605 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3606 FW_EQ_ETH_CMD_PFN_V(adap->pf) |
3607 FW_EQ_ETH_CMD_VFN_V(0));
3608 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
3609 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
3610 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
3611 FW_EQ_ETH_CMD_VIID_V(pi->viid));
3612 c.fetchszm_to_iqid =
3613 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3614 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
3615 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
3616 c.dcaen_to_eqsize =
3617 htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3618 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3619 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3620 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
3621 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3622
3623 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3624 if (ret) {
3625 kfree(txq->q.sdesc);
3626 txq->q.sdesc = NULL;
3627 dma_free_coherent(adap->pdev_dev,
3628 nentries * sizeof(struct tx_desc),
3629 txq->q.desc, txq->q.phys_addr);
3630 txq->q.desc = NULL;
3631 return ret;
3632 }
3633
3634 txq->q.q_type = CXGB4_TXQ_ETH;
3635 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
3636 txq->txq = netdevq;
3637 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
3638 txq->mapping_err = 0;
3639 return 0;
3640 }
3641
t4_sge_alloc_ctrl_txq(struct adapter * adap,struct sge_ctrl_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int cmplqid)3642 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
3643 struct net_device *dev, unsigned int iqid,
3644 unsigned int cmplqid)
3645 {
3646 int ret, nentries;
3647 struct fw_eq_ctrl_cmd c;
3648 struct sge *s = &adap->sge;
3649 struct port_info *pi = netdev_priv(dev);
3650
3651 /* Add status entries */
3652 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3653
3654 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
3655 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
3656 NULL, 0, dev_to_node(adap->pdev_dev));
3657 if (!txq->q.desc)
3658 return -ENOMEM;
3659
3660 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
3661 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3662 FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
3663 FW_EQ_CTRL_CMD_VFN_V(0));
3664 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
3665 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
3666 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3667 c.physeqid_pkd = htonl(0);
3668 c.fetchszm_to_iqid =
3669 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3670 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
3671 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
3672 c.dcaen_to_eqsize =
3673 htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3674 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3675 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3676 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3677 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3678
3679 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3680 if (ret) {
3681 dma_free_coherent(adap->pdev_dev,
3682 nentries * sizeof(struct tx_desc),
3683 txq->q.desc, txq->q.phys_addr);
3684 txq->q.desc = NULL;
3685 return ret;
3686 }
3687
3688 txq->q.q_type = CXGB4_TXQ_CTRL;
3689 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3690 txq->adap = adap;
3691 skb_queue_head_init(&txq->sendq);
3692 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
3693 txq->full = 0;
3694 return 0;
3695 }
3696
t4_sge_mod_ctrl_txq(struct adapter * adap,unsigned int eqid,unsigned int cmplqid)3697 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
3698 unsigned int cmplqid)
3699 {
3700 u32 param, val;
3701
3702 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3703 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
3704 FW_PARAMS_PARAM_YZ_V(eqid));
3705 val = cmplqid;
3706 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
3707 }
3708
t4_sge_alloc_uld_txq(struct adapter * adap,struct sge_uld_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int uld_type)3709 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
3710 struct net_device *dev, unsigned int iqid,
3711 unsigned int uld_type)
3712 {
3713 int ret, nentries;
3714 struct fw_eq_ofld_cmd c;
3715 struct sge *s = &adap->sge;
3716 struct port_info *pi = netdev_priv(dev);
3717 int cmd = FW_EQ_OFLD_CMD;
3718
3719 /* Add status entries */
3720 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3721
3722 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3723 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3724 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3725 NUMA_NO_NODE);
3726 if (!txq->q.desc)
3727 return -ENOMEM;
3728
3729 memset(&c, 0, sizeof(c));
3730 if (unlikely(uld_type == CXGB4_TX_CRYPTO))
3731 cmd = FW_EQ_CTRL_CMD;
3732 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3733 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3734 FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3735 FW_EQ_OFLD_CMD_VFN_V(0));
3736 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
3737 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3738 c.fetchszm_to_iqid =
3739 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3740 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
3741 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
3742 c.dcaen_to_eqsize =
3743 htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
3744 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3745 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3746 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3747 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3748
3749 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3750 if (ret) {
3751 kfree(txq->q.sdesc);
3752 txq->q.sdesc = NULL;
3753 dma_free_coherent(adap->pdev_dev,
3754 nentries * sizeof(struct tx_desc),
3755 txq->q.desc, txq->q.phys_addr);
3756 txq->q.desc = NULL;
3757 return ret;
3758 }
3759
3760 txq->q.q_type = CXGB4_TXQ_ULD;
3761 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3762 txq->adap = adap;
3763 skb_queue_head_init(&txq->sendq);
3764 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
3765 txq->full = 0;
3766 txq->mapping_err = 0;
3767 return 0;
3768 }
3769
free_txq(struct adapter * adap,struct sge_txq * q)3770 void free_txq(struct adapter *adap, struct sge_txq *q)
3771 {
3772 struct sge *s = &adap->sge;
3773
3774 dma_free_coherent(adap->pdev_dev,
3775 q->size * sizeof(struct tx_desc) + s->stat_len,
3776 q->desc, q->phys_addr);
3777 q->cntxt_id = 0;
3778 q->sdesc = NULL;
3779 q->desc = NULL;
3780 }
3781
free_rspq_fl(struct adapter * adap,struct sge_rspq * rq,struct sge_fl * fl)3782 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
3783 struct sge_fl *fl)
3784 {
3785 struct sge *s = &adap->sge;
3786 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
3787
3788 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
3789 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3790 rq->cntxt_id, fl_id, 0xffff);
3791 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
3792 rq->desc, rq->phys_addr);
3793 netif_napi_del(&rq->napi);
3794 rq->netdev = NULL;
3795 rq->cntxt_id = rq->abs_id = 0;
3796 rq->desc = NULL;
3797
3798 if (fl) {
3799 free_rx_bufs(adap, fl, fl->avail);
3800 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
3801 fl->desc, fl->addr);
3802 kfree(fl->sdesc);
3803 fl->sdesc = NULL;
3804 fl->cntxt_id = 0;
3805 fl->desc = NULL;
3806 }
3807 }
3808
3809 /**
3810 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
3811 * @adap: the adapter
3812 * @n: number of queues
3813 * @q: pointer to first queue
3814 *
3815 * Release the resources of a consecutive block of offload Rx queues.
3816 */
t4_free_ofld_rxqs(struct adapter * adap,int n,struct sge_ofld_rxq * q)3817 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
3818 {
3819 for ( ; n; n--, q++)
3820 if (q->rspq.desc)
3821 free_rspq_fl(adap, &q->rspq,
3822 q->fl.size ? &q->fl : NULL);
3823 }
3824
3825 /**
3826 * t4_free_sge_resources - free SGE resources
3827 * @adap: the adapter
3828 *
3829 * Frees resources used by the SGE queue sets.
3830 */
t4_free_sge_resources(struct adapter * adap)3831 void t4_free_sge_resources(struct adapter *adap)
3832 {
3833 int i;
3834 struct sge_eth_rxq *eq;
3835 struct sge_eth_txq *etq;
3836
3837 /* stop all Rx queues in order to start them draining */
3838 for (i = 0; i < adap->sge.ethqsets; i++) {
3839 eq = &adap->sge.ethrxq[i];
3840 if (eq->rspq.desc)
3841 t4_iq_stop(adap, adap->mbox, adap->pf, 0,
3842 FW_IQ_TYPE_FL_INT_CAP,
3843 eq->rspq.cntxt_id,
3844 eq->fl.size ? eq->fl.cntxt_id : 0xffff,
3845 0xffff);
3846 }
3847
3848 /* clean up Ethernet Tx/Rx queues */
3849 for (i = 0; i < adap->sge.ethqsets; i++) {
3850 eq = &adap->sge.ethrxq[i];
3851 if (eq->rspq.desc)
3852 free_rspq_fl(adap, &eq->rspq,
3853 eq->fl.size ? &eq->fl : NULL);
3854
3855 etq = &adap->sge.ethtxq[i];
3856 if (etq->q.desc) {
3857 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3858 etq->q.cntxt_id);
3859 __netif_tx_lock_bh(etq->txq);
3860 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3861 __netif_tx_unlock_bh(etq->txq);
3862 kfree(etq->q.sdesc);
3863 free_txq(adap, &etq->q);
3864 }
3865 }
3866
3867 /* clean up control Tx queues */
3868 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
3869 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
3870
3871 if (cq->q.desc) {
3872 tasklet_kill(&cq->qresume_tsk);
3873 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
3874 cq->q.cntxt_id);
3875 __skb_queue_purge(&cq->sendq);
3876 free_txq(adap, &cq->q);
3877 }
3878 }
3879
3880 if (adap->sge.fw_evtq.desc)
3881 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
3882
3883 if (adap->sge.intrq.desc)
3884 free_rspq_fl(adap, &adap->sge.intrq, NULL);
3885
3886 if (!is_t4(adap->params.chip)) {
3887 etq = &adap->sge.ptptxq;
3888 if (etq->q.desc) {
3889 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
3890 etq->q.cntxt_id);
3891 spin_lock_bh(&adap->ptp_lock);
3892 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
3893 spin_unlock_bh(&adap->ptp_lock);
3894 kfree(etq->q.sdesc);
3895 free_txq(adap, &etq->q);
3896 }
3897 }
3898
3899 /* clear the reverse egress queue map */
3900 memset(adap->sge.egr_map, 0,
3901 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
3902 }
3903
t4_sge_start(struct adapter * adap)3904 void t4_sge_start(struct adapter *adap)
3905 {
3906 adap->sge.ethtxq_rover = 0;
3907 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
3908 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
3909 }
3910
3911 /**
3912 * t4_sge_stop - disable SGE operation
3913 * @adap: the adapter
3914 *
3915 * Stop tasklets and timers associated with the DMA engine. Note that
3916 * this is effective only if measures have been taken to disable any HW
3917 * events that may restart them.
3918 */
t4_sge_stop(struct adapter * adap)3919 void t4_sge_stop(struct adapter *adap)
3920 {
3921 int i;
3922 struct sge *s = &adap->sge;
3923
3924 if (in_interrupt()) /* actions below require waiting */
3925 return;
3926
3927 if (s->rx_timer.function)
3928 del_timer_sync(&s->rx_timer);
3929 if (s->tx_timer.function)
3930 del_timer_sync(&s->tx_timer);
3931
3932 if (is_offload(adap)) {
3933 struct sge_uld_txq_info *txq_info;
3934
3935 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3936 if (txq_info) {
3937 struct sge_uld_txq *txq = txq_info->uldtxq;
3938
3939 for_each_ofldtxq(&adap->sge, i) {
3940 if (txq->q.desc)
3941 tasklet_kill(&txq->qresume_tsk);
3942 }
3943 }
3944 }
3945
3946 if (is_pci_uld(adap)) {
3947 struct sge_uld_txq_info *txq_info;
3948
3949 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
3950 if (txq_info) {
3951 struct sge_uld_txq *txq = txq_info->uldtxq;
3952
3953 for_each_ofldtxq(&adap->sge, i) {
3954 if (txq->q.desc)
3955 tasklet_kill(&txq->qresume_tsk);
3956 }
3957 }
3958 }
3959
3960 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
3961 struct sge_ctrl_txq *cq = &s->ctrlq[i];
3962
3963 if (cq->q.desc)
3964 tasklet_kill(&cq->qresume_tsk);
3965 }
3966 }
3967
3968 /**
3969 * t4_sge_init_soft - grab core SGE values needed by SGE code
3970 * @adap: the adapter
3971 *
3972 * We need to grab the SGE operating parameters that we need to have
3973 * in order to do our job and make sure we can live with them.
3974 */
3975
t4_sge_init_soft(struct adapter * adap)3976 static int t4_sge_init_soft(struct adapter *adap)
3977 {
3978 struct sge *s = &adap->sge;
3979 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
3980 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
3981 u32 ingress_rx_threshold;
3982
3983 /*
3984 * Verify that CPL messages are going to the Ingress Queue for
3985 * process_responses() and that only packet data is going to the
3986 * Free Lists.
3987 */
3988 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
3989 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
3990 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
3991 return -EINVAL;
3992 }
3993
3994 /*
3995 * Validate the Host Buffer Register Array indices that we want to
3996 * use ...
3997 *
3998 * XXX Note that we should really read through the Host Buffer Size
3999 * XXX register array and find the indices of the Buffer Sizes which
4000 * XXX meet our needs!
4001 */
4002 #define READ_FL_BUF(x) \
4003 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4004
4005 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4006 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4007 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4008 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4009
4010 /* We only bother using the Large Page logic if the Large Page Buffer
4011 * is larger than our Page Size Buffer.
4012 */
4013 if (fl_large_pg <= fl_small_pg)
4014 fl_large_pg = 0;
4015
4016 #undef READ_FL_BUF
4017
4018 /* The Page Size Buffer must be exactly equal to our Page Size and the
4019 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4020 */
4021 if (fl_small_pg != PAGE_SIZE ||
4022 (fl_large_pg & (fl_large_pg-1)) != 0) {
4023 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4024 fl_small_pg, fl_large_pg);
4025 return -EINVAL;
4026 }
4027 if (fl_large_pg)
4028 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4029
4030 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4031 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4032 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4033 fl_small_mtu, fl_large_mtu);
4034 return -EINVAL;
4035 }
4036
4037 /*
4038 * Retrieve our RX interrupt holdoff timer values and counter
4039 * threshold values from the SGE parameters.
4040 */
4041 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4042 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4043 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4044 s->timer_val[0] = core_ticks_to_us(adap,
4045 TIMERVALUE0_G(timer_value_0_and_1));
4046 s->timer_val[1] = core_ticks_to_us(adap,
4047 TIMERVALUE1_G(timer_value_0_and_1));
4048 s->timer_val[2] = core_ticks_to_us(adap,
4049 TIMERVALUE2_G(timer_value_2_and_3));
4050 s->timer_val[3] = core_ticks_to_us(adap,
4051 TIMERVALUE3_G(timer_value_2_and_3));
4052 s->timer_val[4] = core_ticks_to_us(adap,
4053 TIMERVALUE4_G(timer_value_4_and_5));
4054 s->timer_val[5] = core_ticks_to_us(adap,
4055 TIMERVALUE5_G(timer_value_4_and_5));
4056
4057 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4058 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4059 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4060 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4061 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4062
4063 return 0;
4064 }
4065
4066 /**
4067 * t4_sge_init - initialize SGE
4068 * @adap: the adapter
4069 *
4070 * Perform low-level SGE code initialization needed every time after a
4071 * chip reset.
4072 */
t4_sge_init(struct adapter * adap)4073 int t4_sge_init(struct adapter *adap)
4074 {
4075 struct sge *s = &adap->sge;
4076 u32 sge_control, sge_conm_ctrl;
4077 int ret, egress_threshold;
4078
4079 /*
4080 * Ingress Padding Boundary and Egress Status Page Size are set up by
4081 * t4_fixup_host_params().
4082 */
4083 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4084 s->pktshift = PKTSHIFT_G(sge_control);
4085 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4086
4087 s->fl_align = t4_fl_pkt_align(adap);
4088 ret = t4_sge_init_soft(adap);
4089 if (ret < 0)
4090 return ret;
4091
4092 /*
4093 * A FL with <= fl_starve_thres buffers is starving and a periodic
4094 * timer will attempt to refill it. This needs to be larger than the
4095 * SGE's Egress Congestion Threshold. If it isn't, then we can get
4096 * stuck waiting for new packets while the SGE is waiting for us to
4097 * give it more Free List entries. (Note that the SGE's Egress
4098 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4099 * there was only a single field to control this. For T5 there's the
4100 * original field which now only applies to Unpacked Mode Free List
4101 * buffers and a new field which only applies to Packed Mode Free List
4102 * buffers.
4103 */
4104 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4105 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4106 case CHELSIO_T4:
4107 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4108 break;
4109 case CHELSIO_T5:
4110 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4111 break;
4112 case CHELSIO_T6:
4113 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4114 break;
4115 default:
4116 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4117 CHELSIO_CHIP_VERSION(adap->params.chip));
4118 return -EINVAL;
4119 }
4120 s->fl_starve_thres = 2*egress_threshold + 1;
4121
4122 t4_idma_monitor_init(adap, &s->idma_monitor);
4123
4124 /* Set up timers used for recuring callbacks to process RX and TX
4125 * administrative tasks.
4126 */
4127 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4128 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4129
4130 spin_lock_init(&s->intrq_lock);
4131
4132 return 0;
4133 }
4134