1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK 0x7fffffff
12 #define ISGN 0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15 * and this update value cannot be reprogrammed.
16 *
17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
18 * nanoseconds time values for very long. For the 82580, SYSTIM always
19 * counts nanoseconds, but the upper 24 bits are not available. The
20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
21 * register, TIMINCA.
22 *
23 * For the 82576, the SYSTIM register time unit is affect by the
24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25 * field are needed to provide the nominal 16 nanosecond period,
26 * leaving 19 bits for fractional nanoseconds.
27 *
28 * We scale the NIC clock cycle by a large factor so that relatively
29 * small clock corrections can be added or subtracted at each clock
30 * tick. The drawbacks of a large factor are a) that the clock
31 * register overflows more quickly (not such a big deal) and b) that
32 * the increment per tick has to fit into 24 bits. As a result we
33 * need to use a shift of 19 so we can fit a value of 16 into the
34 * TIMINCA register.
35 *
36 *
37 * SYSTIMH SYSTIML
38 * +--------------+ +---+---+------+
39 * 82576 | 32 | | 8 | 5 | 19 |
40 * +--------------+ +---+---+------+
41 * \________ 45 bits _______/ fract
42 *
43 * +----------+---+ +--------------+
44 * 82580 | 24 | 8 | | 32 |
45 * +----------+---+ +--------------+
46 * reserved \______ 40 bits _____/
47 *
48 *
49 * The 45 bit 82576 SYSTIM overflows every
50 * 2^45 * 10^-9 / 3600 = 9.77 hours.
51 *
52 * The 40 bit 82580 SYSTIM overflows every
53 * 2^40 * 10^-9 / 60 = 18.3 minutes.
54 *
55 * SYSTIM is converted to real time using a timecounter. As
56 * timecounter_cyc2time() allows old timestamps, the timecounter
57 * needs to be updated at least once per half of the SYSTIM interval.
58 * Scheduling of delayed work is not very accurate, so we aim for 8
59 * minutes to be sure the actual interval is shorter than 9.16 minutes.
60 */
61
62 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 8)
63 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
64 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
65 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
66 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
67 #define IGB_NBITS_82580 40
68
69 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
70
71 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(const struct cyclecounter * cc)72 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
73 {
74 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
75 struct e1000_hw *hw = &igb->hw;
76 u64 val;
77 u32 lo, hi;
78
79 lo = rd32(E1000_SYSTIML);
80 hi = rd32(E1000_SYSTIMH);
81
82 val = ((u64) hi) << 32;
83 val |= lo;
84
85 return val;
86 }
87
88 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(const struct cyclecounter * cc)89 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
90 {
91 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
92 struct e1000_hw *hw = &igb->hw;
93 u32 lo, hi;
94 u64 val;
95
96 /* The timestamp latches on lowest register read. For the 82580
97 * the lowest register is SYSTIMR instead of SYSTIML. However we only
98 * need to provide nanosecond resolution, so we just ignore it.
99 */
100 rd32(E1000_SYSTIMR);
101 lo = rd32(E1000_SYSTIML);
102 hi = rd32(E1000_SYSTIMH);
103
104 val = ((u64) hi) << 32;
105 val |= lo;
106
107 return val;
108 }
109
110 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)111 static void igb_ptp_read_i210(struct igb_adapter *adapter,
112 struct timespec64 *ts)
113 {
114 struct e1000_hw *hw = &adapter->hw;
115 u32 sec, nsec;
116
117 /* The timestamp latches on lowest register read. For I210/I211, the
118 * lowest register is SYSTIMR. Since we only need to provide nanosecond
119 * resolution, we can ignore it.
120 */
121 rd32(E1000_SYSTIMR);
122 nsec = rd32(E1000_SYSTIML);
123 sec = rd32(E1000_SYSTIMH);
124
125 ts->tv_sec = sec;
126 ts->tv_nsec = nsec;
127 }
128
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)129 static void igb_ptp_write_i210(struct igb_adapter *adapter,
130 const struct timespec64 *ts)
131 {
132 struct e1000_hw *hw = &adapter->hw;
133
134 /* Writing the SYSTIMR register is not necessary as it only provides
135 * sub-nanosecond resolution.
136 */
137 wr32(E1000_SYSTIML, ts->tv_nsec);
138 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
139 }
140
141 /**
142 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
143 * @adapter: board private structure
144 * @hwtstamps: timestamp structure to update
145 * @systim: unsigned 64bit system time value.
146 *
147 * We need to convert the system time value stored in the RX/TXSTMP registers
148 * into a hwtstamp which can be used by the upper level timestamping functions.
149 *
150 * The 'tmreg_lock' spinlock is used to protect the consistency of the
151 * system time value. This is needed because reading the 64 bit time
152 * value involves reading two (or three) 32 bit registers. The first
153 * read latches the value. Ditto for writing.
154 *
155 * In addition, here have extended the system time with an overflow
156 * counter in software.
157 **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)158 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
159 struct skb_shared_hwtstamps *hwtstamps,
160 u64 systim)
161 {
162 unsigned long flags;
163 u64 ns;
164
165 switch (adapter->hw.mac.type) {
166 case e1000_82576:
167 case e1000_82580:
168 case e1000_i354:
169 case e1000_i350:
170 spin_lock_irqsave(&adapter->tmreg_lock, flags);
171
172 ns = timecounter_cyc2time(&adapter->tc, systim);
173
174 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
175
176 memset(hwtstamps, 0, sizeof(*hwtstamps));
177 hwtstamps->hwtstamp = ns_to_ktime(ns);
178 break;
179 case e1000_i210:
180 case e1000_i211:
181 memset(hwtstamps, 0, sizeof(*hwtstamps));
182 /* Upper 32 bits contain s, lower 32 bits contain ns. */
183 hwtstamps->hwtstamp = ktime_set(systim >> 32,
184 systim & 0xFFFFFFFF);
185 break;
186 default:
187 break;
188 }
189 }
190
191 /* PTP clock operations */
igb_ptp_adjfreq_82576(struct ptp_clock_info * ptp,s32 ppb)192 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
193 {
194 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
195 ptp_caps);
196 struct e1000_hw *hw = &igb->hw;
197 int neg_adj = 0;
198 u64 rate;
199 u32 incvalue;
200
201 if (ppb < 0) {
202 neg_adj = 1;
203 ppb = -ppb;
204 }
205 rate = ppb;
206 rate <<= 14;
207 rate = div_u64(rate, 1953125);
208
209 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
210
211 if (neg_adj)
212 incvalue -= rate;
213 else
214 incvalue += rate;
215
216 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
217
218 return 0;
219 }
220
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)221 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
222 {
223 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
224 ptp_caps);
225 struct e1000_hw *hw = &igb->hw;
226 int neg_adj = 0;
227 u64 rate;
228 u32 inca;
229
230 if (scaled_ppm < 0) {
231 neg_adj = 1;
232 scaled_ppm = -scaled_ppm;
233 }
234 rate = scaled_ppm;
235 rate <<= 13;
236 rate = div_u64(rate, 15625);
237
238 inca = rate & INCVALUE_MASK;
239 if (neg_adj)
240 inca |= ISGN;
241
242 wr32(E1000_TIMINCA, inca);
243
244 return 0;
245 }
246
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)247 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
248 {
249 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
250 ptp_caps);
251 unsigned long flags;
252
253 spin_lock_irqsave(&igb->tmreg_lock, flags);
254 timecounter_adjtime(&igb->tc, delta);
255 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
256
257 return 0;
258 }
259
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)260 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
261 {
262 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
263 ptp_caps);
264 unsigned long flags;
265 struct timespec64 now, then = ns_to_timespec64(delta);
266
267 spin_lock_irqsave(&igb->tmreg_lock, flags);
268
269 igb_ptp_read_i210(igb, &now);
270 now = timespec64_add(now, then);
271 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
272
273 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
274
275 return 0;
276 }
277
igb_ptp_gettime_82576(struct ptp_clock_info * ptp,struct timespec64 * ts)278 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
279 struct timespec64 *ts)
280 {
281 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
282 ptp_caps);
283 unsigned long flags;
284 u64 ns;
285
286 spin_lock_irqsave(&igb->tmreg_lock, flags);
287
288 ns = timecounter_read(&igb->tc);
289
290 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
291
292 *ts = ns_to_timespec64(ns);
293
294 return 0;
295 }
296
igb_ptp_gettime_i210(struct ptp_clock_info * ptp,struct timespec64 * ts)297 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
298 struct timespec64 *ts)
299 {
300 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
301 ptp_caps);
302 unsigned long flags;
303
304 spin_lock_irqsave(&igb->tmreg_lock, flags);
305
306 igb_ptp_read_i210(igb, ts);
307
308 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
309
310 return 0;
311 }
312
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)313 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
314 const struct timespec64 *ts)
315 {
316 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
317 ptp_caps);
318 unsigned long flags;
319 u64 ns;
320
321 ns = timespec64_to_ns(ts);
322
323 spin_lock_irqsave(&igb->tmreg_lock, flags);
324
325 timecounter_init(&igb->tc, &igb->cc, ns);
326
327 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
328
329 return 0;
330 }
331
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)332 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
333 const struct timespec64 *ts)
334 {
335 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
336 ptp_caps);
337 unsigned long flags;
338
339 spin_lock_irqsave(&igb->tmreg_lock, flags);
340
341 igb_ptp_write_i210(igb, ts);
342
343 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
344
345 return 0;
346 }
347
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)348 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
349 {
350 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
351 static const u32 mask[IGB_N_SDP] = {
352 E1000_CTRL_SDP0_DIR,
353 E1000_CTRL_SDP1_DIR,
354 E1000_CTRL_EXT_SDP2_DIR,
355 E1000_CTRL_EXT_SDP3_DIR,
356 };
357
358 if (input)
359 *ptr &= ~mask[pin];
360 else
361 *ptr |= mask[pin];
362 }
363
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)364 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
365 {
366 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
367 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
368 };
369 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
370 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
371 };
372 static const u32 ts_sdp_en[IGB_N_SDP] = {
373 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
374 };
375 struct e1000_hw *hw = &igb->hw;
376 u32 ctrl, ctrl_ext, tssdp = 0;
377
378 ctrl = rd32(E1000_CTRL);
379 ctrl_ext = rd32(E1000_CTRL_EXT);
380 tssdp = rd32(E1000_TSSDP);
381
382 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
383
384 /* Make sure this pin is not enabled as an output. */
385 tssdp &= ~ts_sdp_en[pin];
386
387 if (chan == 1) {
388 tssdp &= ~AUX1_SEL_SDP3;
389 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
390 } else {
391 tssdp &= ~AUX0_SEL_SDP3;
392 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
393 }
394
395 wr32(E1000_TSSDP, tssdp);
396 wr32(E1000_CTRL, ctrl);
397 wr32(E1000_CTRL_EXT, ctrl_ext);
398 }
399
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)400 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
401 {
402 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
403 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
404 };
405 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
406 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
407 };
408 static const u32 ts_sdp_en[IGB_N_SDP] = {
409 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
410 };
411 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
412 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
413 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
414 };
415 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
416 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
417 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
418 };
419 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
420 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
421 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
422 };
423 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
424 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
425 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
426 };
427 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
428 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
429 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
430 };
431 struct e1000_hw *hw = &igb->hw;
432 u32 ctrl, ctrl_ext, tssdp = 0;
433
434 ctrl = rd32(E1000_CTRL);
435 ctrl_ext = rd32(E1000_CTRL_EXT);
436 tssdp = rd32(E1000_TSSDP);
437
438 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
439
440 /* Make sure this pin is not enabled as an input. */
441 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
442 tssdp &= ~AUX0_TS_SDP_EN;
443
444 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
445 tssdp &= ~AUX1_TS_SDP_EN;
446
447 tssdp &= ~ts_sdp_sel_clr[pin];
448 if (freq) {
449 if (chan == 1)
450 tssdp |= ts_sdp_sel_fc1[pin];
451 else
452 tssdp |= ts_sdp_sel_fc0[pin];
453 } else {
454 if (chan == 1)
455 tssdp |= ts_sdp_sel_tt1[pin];
456 else
457 tssdp |= ts_sdp_sel_tt0[pin];
458 }
459 tssdp |= ts_sdp_en[pin];
460
461 wr32(E1000_TSSDP, tssdp);
462 wr32(E1000_CTRL, ctrl);
463 wr32(E1000_CTRL_EXT, ctrl_ext);
464 }
465
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)466 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
467 struct ptp_clock_request *rq, int on)
468 {
469 struct igb_adapter *igb =
470 container_of(ptp, struct igb_adapter, ptp_caps);
471 struct e1000_hw *hw = &igb->hw;
472 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
473 unsigned long flags;
474 struct timespec64 ts;
475 int use_freq = 0, pin = -1;
476 s64 ns;
477
478 switch (rq->type) {
479 case PTP_CLK_REQ_EXTTS:
480 if (on) {
481 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
482 rq->extts.index);
483 if (pin < 0)
484 return -EBUSY;
485 }
486 if (rq->extts.index == 1) {
487 tsauxc_mask = TSAUXC_EN_TS1;
488 tsim_mask = TSINTR_AUTT1;
489 } else {
490 tsauxc_mask = TSAUXC_EN_TS0;
491 tsim_mask = TSINTR_AUTT0;
492 }
493 spin_lock_irqsave(&igb->tmreg_lock, flags);
494 tsauxc = rd32(E1000_TSAUXC);
495 tsim = rd32(E1000_TSIM);
496 if (on) {
497 igb_pin_extts(igb, rq->extts.index, pin);
498 tsauxc |= tsauxc_mask;
499 tsim |= tsim_mask;
500 } else {
501 tsauxc &= ~tsauxc_mask;
502 tsim &= ~tsim_mask;
503 }
504 wr32(E1000_TSAUXC, tsauxc);
505 wr32(E1000_TSIM, tsim);
506 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
507 return 0;
508
509 case PTP_CLK_REQ_PEROUT:
510 if (on) {
511 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
512 rq->perout.index);
513 if (pin < 0)
514 return -EBUSY;
515 }
516 ts.tv_sec = rq->perout.period.sec;
517 ts.tv_nsec = rq->perout.period.nsec;
518 ns = timespec64_to_ns(&ts);
519 ns = ns >> 1;
520 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
521 (ns == 250000000LL) || (ns == 500000000LL))) {
522 if (ns < 8LL)
523 return -EINVAL;
524 use_freq = 1;
525 }
526 ts = ns_to_timespec64(ns);
527 if (rq->perout.index == 1) {
528 if (use_freq) {
529 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
530 tsim_mask = 0;
531 } else {
532 tsauxc_mask = TSAUXC_EN_TT1;
533 tsim_mask = TSINTR_TT1;
534 }
535 trgttiml = E1000_TRGTTIML1;
536 trgttimh = E1000_TRGTTIMH1;
537 freqout = E1000_FREQOUT1;
538 } else {
539 if (use_freq) {
540 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
541 tsim_mask = 0;
542 } else {
543 tsauxc_mask = TSAUXC_EN_TT0;
544 tsim_mask = TSINTR_TT0;
545 }
546 trgttiml = E1000_TRGTTIML0;
547 trgttimh = E1000_TRGTTIMH0;
548 freqout = E1000_FREQOUT0;
549 }
550 spin_lock_irqsave(&igb->tmreg_lock, flags);
551 tsauxc = rd32(E1000_TSAUXC);
552 tsim = rd32(E1000_TSIM);
553 if (rq->perout.index == 1) {
554 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
555 tsim &= ~TSINTR_TT1;
556 } else {
557 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
558 tsim &= ~TSINTR_TT0;
559 }
560 if (on) {
561 int i = rq->perout.index;
562 igb_pin_perout(igb, i, pin, use_freq);
563 igb->perout[i].start.tv_sec = rq->perout.start.sec;
564 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
565 igb->perout[i].period.tv_sec = ts.tv_sec;
566 igb->perout[i].period.tv_nsec = ts.tv_nsec;
567 wr32(trgttimh, rq->perout.start.sec);
568 wr32(trgttiml, rq->perout.start.nsec);
569 if (use_freq)
570 wr32(freqout, ns);
571 tsauxc |= tsauxc_mask;
572 tsim |= tsim_mask;
573 }
574 wr32(E1000_TSAUXC, tsauxc);
575 wr32(E1000_TSIM, tsim);
576 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
577 return 0;
578
579 case PTP_CLK_REQ_PPS:
580 spin_lock_irqsave(&igb->tmreg_lock, flags);
581 tsim = rd32(E1000_TSIM);
582 if (on)
583 tsim |= TSINTR_SYS_WRAP;
584 else
585 tsim &= ~TSINTR_SYS_WRAP;
586 igb->pps_sys_wrap_on = !!on;
587 wr32(E1000_TSIM, tsim);
588 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
589 return 0;
590 }
591
592 return -EOPNOTSUPP;
593 }
594
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)595 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
596 struct ptp_clock_request *rq, int on)
597 {
598 return -EOPNOTSUPP;
599 }
600
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)601 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
602 enum ptp_pin_function func, unsigned int chan)
603 {
604 switch (func) {
605 case PTP_PF_NONE:
606 case PTP_PF_EXTTS:
607 case PTP_PF_PEROUT:
608 break;
609 case PTP_PF_PHYSYNC:
610 return -1;
611 }
612 return 0;
613 }
614
615 /**
616 * igb_ptp_tx_work
617 * @work: pointer to work struct
618 *
619 * This work function polls the TSYNCTXCTL valid bit to determine when a
620 * timestamp has been taken for the current stored skb.
621 **/
igb_ptp_tx_work(struct work_struct * work)622 static void igb_ptp_tx_work(struct work_struct *work)
623 {
624 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
625 ptp_tx_work);
626 struct e1000_hw *hw = &adapter->hw;
627 u32 tsynctxctl;
628
629 if (!adapter->ptp_tx_skb)
630 return;
631
632 if (time_is_before_jiffies(adapter->ptp_tx_start +
633 IGB_PTP_TX_TIMEOUT)) {
634 dev_kfree_skb_any(adapter->ptp_tx_skb);
635 adapter->ptp_tx_skb = NULL;
636 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
637 adapter->tx_hwtstamp_timeouts++;
638 /* Clear the tx valid bit in TSYNCTXCTL register to enable
639 * interrupt
640 */
641 rd32(E1000_TXSTMPH);
642 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
643 return;
644 }
645
646 tsynctxctl = rd32(E1000_TSYNCTXCTL);
647 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
648 igb_ptp_tx_hwtstamp(adapter);
649 else
650 /* reschedule to check later */
651 schedule_work(&adapter->ptp_tx_work);
652 }
653
igb_ptp_overflow_check(struct work_struct * work)654 static void igb_ptp_overflow_check(struct work_struct *work)
655 {
656 struct igb_adapter *igb =
657 container_of(work, struct igb_adapter, ptp_overflow_work.work);
658 struct timespec64 ts;
659
660 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
661
662 pr_debug("igb overflow check at %lld.%09lu\n",
663 (long long) ts.tv_sec, ts.tv_nsec);
664
665 schedule_delayed_work(&igb->ptp_overflow_work,
666 IGB_SYSTIM_OVERFLOW_PERIOD);
667 }
668
669 /**
670 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
671 * @adapter: private network adapter structure
672 *
673 * This watchdog task is scheduled to detect error case where hardware has
674 * dropped an Rx packet that was timestamped when the ring is full. The
675 * particular error is rare but leaves the device in a state unable to timestamp
676 * any future packets.
677 **/
igb_ptp_rx_hang(struct igb_adapter * adapter)678 void igb_ptp_rx_hang(struct igb_adapter *adapter)
679 {
680 struct e1000_hw *hw = &adapter->hw;
681 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
682 unsigned long rx_event;
683
684 /* Other hardware uses per-packet timestamps */
685 if (hw->mac.type != e1000_82576)
686 return;
687
688 /* If we don't have a valid timestamp in the registers, just update the
689 * timeout counter and exit
690 */
691 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
692 adapter->last_rx_ptp_check = jiffies;
693 return;
694 }
695
696 /* Determine the most recent watchdog or rx_timestamp event */
697 rx_event = adapter->last_rx_ptp_check;
698 if (time_after(adapter->last_rx_timestamp, rx_event))
699 rx_event = adapter->last_rx_timestamp;
700
701 /* Only need to read the high RXSTMP register to clear the lock */
702 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
703 rd32(E1000_RXSTMPH);
704 adapter->last_rx_ptp_check = jiffies;
705 adapter->rx_hwtstamp_cleared++;
706 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
707 }
708 }
709
710 /**
711 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
712 * @adapter: private network adapter structure
713 */
igb_ptp_tx_hang(struct igb_adapter * adapter)714 void igb_ptp_tx_hang(struct igb_adapter *adapter)
715 {
716 struct e1000_hw *hw = &adapter->hw;
717 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
718 IGB_PTP_TX_TIMEOUT);
719
720 if (!adapter->ptp_tx_skb)
721 return;
722
723 if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
724 return;
725
726 /* If we haven't received a timestamp within the timeout, it is
727 * reasonable to assume that it will never occur, so we can unlock the
728 * timestamp bit when this occurs.
729 */
730 if (timeout) {
731 cancel_work_sync(&adapter->ptp_tx_work);
732 dev_kfree_skb_any(adapter->ptp_tx_skb);
733 adapter->ptp_tx_skb = NULL;
734 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
735 adapter->tx_hwtstamp_timeouts++;
736 /* Clear the tx valid bit in TSYNCTXCTL register to enable
737 * interrupt
738 */
739 rd32(E1000_TXSTMPH);
740 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
741 }
742 }
743
744 /**
745 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
746 * @adapter: Board private structure.
747 *
748 * If we were asked to do hardware stamping and such a time stamp is
749 * available, then it must have been for this skb here because we only
750 * allow only one such packet into the queue.
751 **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)752 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
753 {
754 struct sk_buff *skb = adapter->ptp_tx_skb;
755 struct e1000_hw *hw = &adapter->hw;
756 struct skb_shared_hwtstamps shhwtstamps;
757 u64 regval;
758 int adjust = 0;
759
760 regval = rd32(E1000_TXSTMPL);
761 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
762
763 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
764 /* adjust timestamp for the TX latency based on link speed */
765 if (adapter->hw.mac.type == e1000_i210) {
766 switch (adapter->link_speed) {
767 case SPEED_10:
768 adjust = IGB_I210_TX_LATENCY_10;
769 break;
770 case SPEED_100:
771 adjust = IGB_I210_TX_LATENCY_100;
772 break;
773 case SPEED_1000:
774 adjust = IGB_I210_TX_LATENCY_1000;
775 break;
776 }
777 }
778
779 shhwtstamps.hwtstamp =
780 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
781
782 /* Clear the lock early before calling skb_tstamp_tx so that
783 * applications are not woken up before the lock bit is clear. We use
784 * a copy of the skb pointer to ensure other threads can't change it
785 * while we're notifying the stack.
786 */
787 adapter->ptp_tx_skb = NULL;
788 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
789
790 /* Notify the stack and free the skb after we've unlocked */
791 skb_tstamp_tx(skb, &shhwtstamps);
792 dev_kfree_skb_any(skb);
793 }
794
795 /**
796 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
797 * @q_vector: Pointer to interrupt specific structure
798 * @va: Pointer to address containing Rx buffer
799 * @skb: Buffer containing timestamp and packet
800 *
801 * This function is meant to retrieve a timestamp from the first buffer of an
802 * incoming frame. The value is stored in little endian format starting on
803 * byte 8.
804 **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,struct sk_buff * skb)805 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
806 struct sk_buff *skb)
807 {
808 __le64 *regval = (__le64 *)va;
809 struct igb_adapter *adapter = q_vector->adapter;
810 int adjust = 0;
811
812 /* The timestamp is recorded in little endian format.
813 * DWORD: 0 1 2 3
814 * Field: Reserved Reserved SYSTIML SYSTIMH
815 */
816 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
817 le64_to_cpu(regval[1]));
818
819 /* adjust timestamp for the RX latency based on link speed */
820 if (adapter->hw.mac.type == e1000_i210) {
821 switch (adapter->link_speed) {
822 case SPEED_10:
823 adjust = IGB_I210_RX_LATENCY_10;
824 break;
825 case SPEED_100:
826 adjust = IGB_I210_RX_LATENCY_100;
827 break;
828 case SPEED_1000:
829 adjust = IGB_I210_RX_LATENCY_1000;
830 break;
831 }
832 }
833 skb_hwtstamps(skb)->hwtstamp =
834 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
835 }
836
837 /**
838 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
839 * @q_vector: Pointer to interrupt specific structure
840 * @skb: Buffer containing timestamp and packet
841 *
842 * This function is meant to retrieve a timestamp from the internal registers
843 * of the adapter and store it in the skb.
844 **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)845 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
846 struct sk_buff *skb)
847 {
848 struct igb_adapter *adapter = q_vector->adapter;
849 struct e1000_hw *hw = &adapter->hw;
850 u64 regval;
851 int adjust = 0;
852
853 /* If this bit is set, then the RX registers contain the time stamp. No
854 * other packet will be time stamped until we read these registers, so
855 * read the registers to make them available again. Because only one
856 * packet can be time stamped at a time, we know that the register
857 * values must belong to this one here and therefore we don't need to
858 * compare any of the additional attributes stored for it.
859 *
860 * If nothing went wrong, then it should have a shared tx_flags that we
861 * can turn into a skb_shared_hwtstamps.
862 */
863 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
864 return;
865
866 regval = rd32(E1000_RXSTMPL);
867 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
868
869 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
870
871 /* adjust timestamp for the RX latency based on link speed */
872 if (adapter->hw.mac.type == e1000_i210) {
873 switch (adapter->link_speed) {
874 case SPEED_10:
875 adjust = IGB_I210_RX_LATENCY_10;
876 break;
877 case SPEED_100:
878 adjust = IGB_I210_RX_LATENCY_100;
879 break;
880 case SPEED_1000:
881 adjust = IGB_I210_RX_LATENCY_1000;
882 break;
883 }
884 }
885 skb_hwtstamps(skb)->hwtstamp =
886 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
887
888 /* Update the last_rx_timestamp timer in order to enable watchdog check
889 * for error case of latched timestamp on a dropped packet.
890 */
891 adapter->last_rx_timestamp = jiffies;
892 }
893
894 /**
895 * igb_ptp_get_ts_config - get hardware time stamping config
896 * @netdev:
897 * @ifreq:
898 *
899 * Get the hwtstamp_config settings to return to the user. Rather than attempt
900 * to deconstruct the settings from the registers, just return a shadow copy
901 * of the last known settings.
902 **/
igb_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)903 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
904 {
905 struct igb_adapter *adapter = netdev_priv(netdev);
906 struct hwtstamp_config *config = &adapter->tstamp_config;
907
908 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
909 -EFAULT : 0;
910 }
911
912 /**
913 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
914 * @adapter: networking device structure
915 * @config: hwtstamp configuration
916 *
917 * Outgoing time stamping can be enabled and disabled. Play nice and
918 * disable it when requested, although it shouldn't case any overhead
919 * when no packet needs it. At most one packet in the queue may be
920 * marked for time stamping, otherwise it would be impossible to tell
921 * for sure to which packet the hardware time stamp belongs.
922 *
923 * Incoming time stamping has to be configured via the hardware
924 * filters. Not all combinations are supported, in particular event
925 * type has to be specified. Matching the kind of event packet is
926 * not supported, with the exception of "all V2 events regardless of
927 * level 2 or 4".
928 */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct hwtstamp_config * config)929 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
930 struct hwtstamp_config *config)
931 {
932 struct e1000_hw *hw = &adapter->hw;
933 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
934 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
935 u32 tsync_rx_cfg = 0;
936 bool is_l4 = false;
937 bool is_l2 = false;
938 u32 regval;
939
940 /* reserved for future extensions */
941 if (config->flags)
942 return -EINVAL;
943
944 switch (config->tx_type) {
945 case HWTSTAMP_TX_OFF:
946 tsync_tx_ctl = 0;
947 case HWTSTAMP_TX_ON:
948 break;
949 default:
950 return -ERANGE;
951 }
952
953 switch (config->rx_filter) {
954 case HWTSTAMP_FILTER_NONE:
955 tsync_rx_ctl = 0;
956 break;
957 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
958 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
959 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
960 is_l4 = true;
961 break;
962 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
963 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
964 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
965 is_l4 = true;
966 break;
967 case HWTSTAMP_FILTER_PTP_V2_EVENT:
968 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
969 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
970 case HWTSTAMP_FILTER_PTP_V2_SYNC:
971 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
972 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
973 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
974 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
975 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
976 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
977 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
978 is_l2 = true;
979 is_l4 = true;
980 break;
981 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
982 case HWTSTAMP_FILTER_NTP_ALL:
983 case HWTSTAMP_FILTER_ALL:
984 /* 82576 cannot timestamp all packets, which it needs to do to
985 * support both V1 Sync and Delay_Req messages
986 */
987 if (hw->mac.type != e1000_82576) {
988 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
989 config->rx_filter = HWTSTAMP_FILTER_ALL;
990 break;
991 }
992 /* fall through */
993 default:
994 config->rx_filter = HWTSTAMP_FILTER_NONE;
995 return -ERANGE;
996 }
997
998 if (hw->mac.type == e1000_82575) {
999 if (tsync_rx_ctl | tsync_tx_ctl)
1000 return -EINVAL;
1001 return 0;
1002 }
1003
1004 /* Per-packet timestamping only works if all packets are
1005 * timestamped, so enable timestamping in all packets as
1006 * long as one Rx filter was configured.
1007 */
1008 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1009 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1010 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1011 config->rx_filter = HWTSTAMP_FILTER_ALL;
1012 is_l2 = true;
1013 is_l4 = true;
1014
1015 if ((hw->mac.type == e1000_i210) ||
1016 (hw->mac.type == e1000_i211)) {
1017 regval = rd32(E1000_RXPBS);
1018 regval |= E1000_RXPBS_CFG_TS_EN;
1019 wr32(E1000_RXPBS, regval);
1020 }
1021 }
1022
1023 /* enable/disable TX */
1024 regval = rd32(E1000_TSYNCTXCTL);
1025 regval &= ~E1000_TSYNCTXCTL_ENABLED;
1026 regval |= tsync_tx_ctl;
1027 wr32(E1000_TSYNCTXCTL, regval);
1028
1029 /* enable/disable RX */
1030 regval = rd32(E1000_TSYNCRXCTL);
1031 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1032 regval |= tsync_rx_ctl;
1033 wr32(E1000_TSYNCRXCTL, regval);
1034
1035 /* define which PTP packets are time stamped */
1036 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1037
1038 /* define ethertype filter for timestamped packets */
1039 if (is_l2)
1040 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1041 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1042 E1000_ETQF_1588 | /* enable timestamping */
1043 ETH_P_1588)); /* 1588 eth protocol type */
1044 else
1045 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1046
1047 /* L4 Queue Filter[3]: filter by destination port and protocol */
1048 if (is_l4) {
1049 u32 ftqf = (IPPROTO_UDP /* UDP */
1050 | E1000_FTQF_VF_BP /* VF not compared */
1051 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1052 | E1000_FTQF_MASK); /* mask all inputs */
1053 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1054
1055 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1056 wr32(E1000_IMIREXT(3),
1057 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1058 if (hw->mac.type == e1000_82576) {
1059 /* enable source port check */
1060 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1061 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1062 }
1063 wr32(E1000_FTQF(3), ftqf);
1064 } else {
1065 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1066 }
1067 wrfl();
1068
1069 /* clear TX/RX time stamp registers, just to be sure */
1070 regval = rd32(E1000_TXSTMPL);
1071 regval = rd32(E1000_TXSTMPH);
1072 regval = rd32(E1000_RXSTMPL);
1073 regval = rd32(E1000_RXSTMPH);
1074
1075 return 0;
1076 }
1077
1078 /**
1079 * igb_ptp_set_ts_config - set hardware time stamping config
1080 * @netdev:
1081 * @ifreq:
1082 *
1083 **/
igb_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)1084 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1085 {
1086 struct igb_adapter *adapter = netdev_priv(netdev);
1087 struct hwtstamp_config config;
1088 int err;
1089
1090 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1091 return -EFAULT;
1092
1093 err = igb_ptp_set_timestamp_mode(adapter, &config);
1094 if (err)
1095 return err;
1096
1097 /* save these settings for future reference */
1098 memcpy(&adapter->tstamp_config, &config,
1099 sizeof(adapter->tstamp_config));
1100
1101 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1102 -EFAULT : 0;
1103 }
1104
1105 /**
1106 * igb_ptp_init - Initialize PTP functionality
1107 * @adapter: Board private structure
1108 *
1109 * This function is called at device probe to initialize the PTP
1110 * functionality.
1111 */
igb_ptp_init(struct igb_adapter * adapter)1112 void igb_ptp_init(struct igb_adapter *adapter)
1113 {
1114 struct e1000_hw *hw = &adapter->hw;
1115 struct net_device *netdev = adapter->netdev;
1116 int i;
1117
1118 switch (hw->mac.type) {
1119 case e1000_82576:
1120 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1121 adapter->ptp_caps.owner = THIS_MODULE;
1122 adapter->ptp_caps.max_adj = 999999881;
1123 adapter->ptp_caps.n_ext_ts = 0;
1124 adapter->ptp_caps.pps = 0;
1125 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1126 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1127 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1128 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1129 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1130 adapter->cc.read = igb_ptp_read_82576;
1131 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1132 adapter->cc.mult = 1;
1133 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1134 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1135 break;
1136 case e1000_82580:
1137 case e1000_i354:
1138 case e1000_i350:
1139 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1140 adapter->ptp_caps.owner = THIS_MODULE;
1141 adapter->ptp_caps.max_adj = 62499999;
1142 adapter->ptp_caps.n_ext_ts = 0;
1143 adapter->ptp_caps.pps = 0;
1144 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1145 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1146 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1147 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1148 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1149 adapter->cc.read = igb_ptp_read_82580;
1150 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1151 adapter->cc.mult = 1;
1152 adapter->cc.shift = 0;
1153 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1154 break;
1155 case e1000_i210:
1156 case e1000_i211:
1157 for (i = 0; i < IGB_N_SDP; i++) {
1158 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1159
1160 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1161 ppd->index = i;
1162 ppd->func = PTP_PF_NONE;
1163 }
1164 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1165 adapter->ptp_caps.owner = THIS_MODULE;
1166 adapter->ptp_caps.max_adj = 62499999;
1167 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1168 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1169 adapter->ptp_caps.n_pins = IGB_N_SDP;
1170 adapter->ptp_caps.pps = 1;
1171 adapter->ptp_caps.pin_config = adapter->sdp_config;
1172 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1173 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1174 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1175 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1176 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1177 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1178 break;
1179 default:
1180 adapter->ptp_clock = NULL;
1181 return;
1182 }
1183
1184 spin_lock_init(&adapter->tmreg_lock);
1185 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1186
1187 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1188 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1189 igb_ptp_overflow_check);
1190
1191 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1192 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1193
1194 igb_ptp_reset(adapter);
1195
1196 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1197 &adapter->pdev->dev);
1198 if (IS_ERR(adapter->ptp_clock)) {
1199 adapter->ptp_clock = NULL;
1200 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1201 } else if (adapter->ptp_clock) {
1202 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1203 adapter->netdev->name);
1204 adapter->ptp_flags |= IGB_PTP_ENABLED;
1205 }
1206 }
1207
1208 /**
1209 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1210 * @adapter: Board private structure
1211 *
1212 * This function stops the overflow check work and PTP Tx timestamp work, and
1213 * will prepare the device for OS suspend.
1214 */
igb_ptp_suspend(struct igb_adapter * adapter)1215 void igb_ptp_suspend(struct igb_adapter *adapter)
1216 {
1217 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1218 return;
1219
1220 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1221 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1222
1223 cancel_work_sync(&adapter->ptp_tx_work);
1224 if (adapter->ptp_tx_skb) {
1225 dev_kfree_skb_any(adapter->ptp_tx_skb);
1226 adapter->ptp_tx_skb = NULL;
1227 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1228 }
1229 }
1230
1231 /**
1232 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1233 * @adapter: Board private structure.
1234 *
1235 * This function stops the PTP support and cancels the delayed work.
1236 **/
igb_ptp_stop(struct igb_adapter * adapter)1237 void igb_ptp_stop(struct igb_adapter *adapter)
1238 {
1239 igb_ptp_suspend(adapter);
1240
1241 if (adapter->ptp_clock) {
1242 ptp_clock_unregister(adapter->ptp_clock);
1243 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1244 adapter->netdev->name);
1245 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1246 }
1247 }
1248
1249 /**
1250 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1251 * @adapter: Board private structure.
1252 *
1253 * This function handles the reset work required to re-enable the PTP device.
1254 **/
igb_ptp_reset(struct igb_adapter * adapter)1255 void igb_ptp_reset(struct igb_adapter *adapter)
1256 {
1257 struct e1000_hw *hw = &adapter->hw;
1258 unsigned long flags;
1259
1260 /* reset the tstamp_config */
1261 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1262
1263 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1264
1265 switch (adapter->hw.mac.type) {
1266 case e1000_82576:
1267 /* Dial the nominal frequency. */
1268 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1269 break;
1270 case e1000_82580:
1271 case e1000_i354:
1272 case e1000_i350:
1273 case e1000_i210:
1274 case e1000_i211:
1275 wr32(E1000_TSAUXC, 0x0);
1276 wr32(E1000_TSSDP, 0x0);
1277 wr32(E1000_TSIM,
1278 TSYNC_INTERRUPTS |
1279 (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1280 wr32(E1000_IMS, E1000_IMS_TS);
1281 break;
1282 default:
1283 /* No work to do. */
1284 goto out;
1285 }
1286
1287 /* Re-initialize the timer. */
1288 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1289 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1290
1291 igb_ptp_write_i210(adapter, &ts);
1292 } else {
1293 timecounter_init(&adapter->tc, &adapter->cc,
1294 ktime_to_ns(ktime_get_real()));
1295 }
1296 out:
1297 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1298
1299 wrfl();
1300
1301 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1302 schedule_delayed_work(&adapter->ptp_overflow_work,
1303 IGB_SYSTIM_OVERFLOW_PERIOD);
1304 }
1305