1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24
25 #include "igbvf.h"
26
27 #define DRV_VERSION "2.4.0-k"
28 char igbvf_driver_name[] = "igbvf";
29 const char igbvf_driver_version[] = DRV_VERSION;
30 static const char igbvf_driver_string[] =
31 "Intel(R) Gigabit Virtual Function Network Driver";
32 static const char igbvf_copyright[] =
33 "Copyright (c) 2009 - 2012 Intel Corporation.";
34
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 static int igbvf_poll(struct napi_struct *napi, int budget);
41 static void igbvf_reset(struct igbvf_adapter *);
42 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
43 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
44
45 static struct igbvf_info igbvf_vf_info = {
46 .mac = e1000_vfadapt,
47 .flags = 0,
48 .pba = 10,
49 .init_ops = e1000_init_function_pointers_vf,
50 };
51
52 static struct igbvf_info igbvf_i350_vf_info = {
53 .mac = e1000_vfadapt_i350,
54 .flags = 0,
55 .pba = 10,
56 .init_ops = e1000_init_function_pointers_vf,
57 };
58
59 static const struct igbvf_info *igbvf_info_tbl[] = {
60 [board_vf] = &igbvf_vf_info,
61 [board_i350_vf] = &igbvf_i350_vf_info,
62 };
63
64 /**
65 * igbvf_desc_unused - calculate if we have unused descriptors
66 * @rx_ring: address of receive ring structure
67 **/
igbvf_desc_unused(struct igbvf_ring * ring)68 static int igbvf_desc_unused(struct igbvf_ring *ring)
69 {
70 if (ring->next_to_clean > ring->next_to_use)
71 return ring->next_to_clean - ring->next_to_use - 1;
72
73 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
74 }
75
76 /**
77 * igbvf_receive_skb - helper function to handle Rx indications
78 * @adapter: board private structure
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,u16 vlan)83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, u16 vlan)
87 {
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217 no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233 }
234
235 /**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 *
239 * the return value indicates whether actual cleaning was done, there
240 * is no guarantee that everything was cleaned
241 **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)242 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
243 int *work_done, int work_to_do)
244 {
245 struct igbvf_ring *rx_ring = adapter->rx_ring;
246 struct net_device *netdev = adapter->netdev;
247 struct pci_dev *pdev = adapter->pdev;
248 union e1000_adv_rx_desc *rx_desc, *next_rxd;
249 struct igbvf_buffer *buffer_info, *next_buffer;
250 struct sk_buff *skb;
251 bool cleaned = false;
252 int cleaned_count = 0;
253 unsigned int total_bytes = 0, total_packets = 0;
254 unsigned int i;
255 u32 length, hlen, staterr;
256
257 i = rx_ring->next_to_clean;
258 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
259 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
260
261 while (staterr & E1000_RXD_STAT_DD) {
262 if (*work_done >= work_to_do)
263 break;
264 (*work_done)++;
265 rmb(); /* read descriptor and rx_buffer_info after status DD */
266
267 buffer_info = &rx_ring->buffer_info[i];
268
269 /* HW will not DMA in data larger than the given buffer, even
270 * if it parses the (NFS, of course) header to be larger. In
271 * that case, it fills the header buffer and spills the rest
272 * into the page.
273 */
274 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
275 & E1000_RXDADV_HDRBUFLEN_MASK) >>
276 E1000_RXDADV_HDRBUFLEN_SHIFT;
277 if (hlen > adapter->rx_ps_hdr_size)
278 hlen = adapter->rx_ps_hdr_size;
279
280 length = le16_to_cpu(rx_desc->wb.upper.length);
281 cleaned = true;
282 cleaned_count++;
283
284 skb = buffer_info->skb;
285 prefetch(skb->data - NET_IP_ALIGN);
286 buffer_info->skb = NULL;
287 if (!adapter->rx_ps_hdr_size) {
288 dma_unmap_single(&pdev->dev, buffer_info->dma,
289 adapter->rx_buffer_len,
290 DMA_FROM_DEVICE);
291 buffer_info->dma = 0;
292 skb_put(skb, length);
293 goto send_up;
294 }
295
296 if (!skb_shinfo(skb)->nr_frags) {
297 dma_unmap_single(&pdev->dev, buffer_info->dma,
298 adapter->rx_ps_hdr_size,
299 DMA_FROM_DEVICE);
300 buffer_info->dma = 0;
301 skb_put(skb, hlen);
302 }
303
304 if (length) {
305 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
306 PAGE_SIZE / 2,
307 DMA_FROM_DEVICE);
308 buffer_info->page_dma = 0;
309
310 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
311 buffer_info->page,
312 buffer_info->page_offset,
313 length);
314
315 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
316 (page_count(buffer_info->page) != 1))
317 buffer_info->page = NULL;
318 else
319 get_page(buffer_info->page);
320
321 skb->len += length;
322 skb->data_len += length;
323 skb->truesize += PAGE_SIZE / 2;
324 }
325 send_up:
326 i++;
327 if (i == rx_ring->count)
328 i = 0;
329 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
330 prefetch(next_rxd);
331 next_buffer = &rx_ring->buffer_info[i];
332
333 if (!(staterr & E1000_RXD_STAT_EOP)) {
334 buffer_info->skb = next_buffer->skb;
335 buffer_info->dma = next_buffer->dma;
336 next_buffer->skb = skb;
337 next_buffer->dma = 0;
338 goto next_desc;
339 }
340
341 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
342 dev_kfree_skb_irq(skb);
343 goto next_desc;
344 }
345
346 total_bytes += skb->len;
347 total_packets++;
348
349 igbvf_rx_checksum_adv(adapter, staterr, skb);
350
351 skb->protocol = eth_type_trans(skb, netdev);
352
353 igbvf_receive_skb(adapter, netdev, skb, staterr,
354 rx_desc->wb.upper.vlan);
355
356 next_desc:
357 rx_desc->wb.upper.status_error = 0;
358
359 /* return some buffers to hardware, one at a time is too slow */
360 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
361 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
362 cleaned_count = 0;
363 }
364
365 /* use prefetched values */
366 rx_desc = next_rxd;
367 buffer_info = next_buffer;
368
369 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
370 }
371
372 rx_ring->next_to_clean = i;
373 cleaned_count = igbvf_desc_unused(rx_ring);
374
375 if (cleaned_count)
376 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
377
378 adapter->total_rx_packets += total_packets;
379 adapter->total_rx_bytes += total_bytes;
380 netdev->stats.rx_bytes += total_bytes;
381 netdev->stats.rx_packets += total_packets;
382 return cleaned;
383 }
384
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)385 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
386 struct igbvf_buffer *buffer_info)
387 {
388 if (buffer_info->dma) {
389 if (buffer_info->mapped_as_page)
390 dma_unmap_page(&adapter->pdev->dev,
391 buffer_info->dma,
392 buffer_info->length,
393 DMA_TO_DEVICE);
394 else
395 dma_unmap_single(&adapter->pdev->dev,
396 buffer_info->dma,
397 buffer_info->length,
398 DMA_TO_DEVICE);
399 buffer_info->dma = 0;
400 }
401 if (buffer_info->skb) {
402 dev_kfree_skb_any(buffer_info->skb);
403 buffer_info->skb = NULL;
404 }
405 buffer_info->time_stamp = 0;
406 }
407
408 /**
409 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
410 * @adapter: board private structure
411 *
412 * Return 0 on success, negative on failure
413 **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)414 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
415 struct igbvf_ring *tx_ring)
416 {
417 struct pci_dev *pdev = adapter->pdev;
418 int size;
419
420 size = sizeof(struct igbvf_buffer) * tx_ring->count;
421 tx_ring->buffer_info = vzalloc(size);
422 if (!tx_ring->buffer_info)
423 goto err;
424
425 /* round up to nearest 4K */
426 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
427 tx_ring->size = ALIGN(tx_ring->size, 4096);
428
429 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
430 &tx_ring->dma, GFP_KERNEL);
431 if (!tx_ring->desc)
432 goto err;
433
434 tx_ring->adapter = adapter;
435 tx_ring->next_to_use = 0;
436 tx_ring->next_to_clean = 0;
437
438 return 0;
439 err:
440 vfree(tx_ring->buffer_info);
441 dev_err(&adapter->pdev->dev,
442 "Unable to allocate memory for the transmit descriptor ring\n");
443 return -ENOMEM;
444 }
445
446 /**
447 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448 * @adapter: board private structure
449 *
450 * Returns 0 on success, negative on failure
451 **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)452 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453 struct igbvf_ring *rx_ring)
454 {
455 struct pci_dev *pdev = adapter->pdev;
456 int size, desc_len;
457
458 size = sizeof(struct igbvf_buffer) * rx_ring->count;
459 rx_ring->buffer_info = vzalloc(size);
460 if (!rx_ring->buffer_info)
461 goto err;
462
463 desc_len = sizeof(union e1000_adv_rx_desc);
464
465 /* Round up to nearest 4K */
466 rx_ring->size = rx_ring->count * desc_len;
467 rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470 &rx_ring->dma, GFP_KERNEL);
471 if (!rx_ring->desc)
472 goto err;
473
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 rx_ring->adapter = adapter;
478
479 return 0;
480
481 err:
482 vfree(rx_ring->buffer_info);
483 rx_ring->buffer_info = NULL;
484 dev_err(&adapter->pdev->dev,
485 "Unable to allocate memory for the receive descriptor ring\n");
486 return -ENOMEM;
487 }
488
489 /**
490 * igbvf_clean_tx_ring - Free Tx Buffers
491 * @tx_ring: ring to be cleaned
492 **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)493 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
494 {
495 struct igbvf_adapter *adapter = tx_ring->adapter;
496 struct igbvf_buffer *buffer_info;
497 unsigned long size;
498 unsigned int i;
499
500 if (!tx_ring->buffer_info)
501 return;
502
503 /* Free all the Tx ring sk_buffs */
504 for (i = 0; i < tx_ring->count; i++) {
505 buffer_info = &tx_ring->buffer_info[i];
506 igbvf_put_txbuf(adapter, buffer_info);
507 }
508
509 size = sizeof(struct igbvf_buffer) * tx_ring->count;
510 memset(tx_ring->buffer_info, 0, size);
511
512 /* Zero out the descriptor ring */
513 memset(tx_ring->desc, 0, tx_ring->size);
514
515 tx_ring->next_to_use = 0;
516 tx_ring->next_to_clean = 0;
517
518 writel(0, adapter->hw.hw_addr + tx_ring->head);
519 writel(0, adapter->hw.hw_addr + tx_ring->tail);
520 }
521
522 /**
523 * igbvf_free_tx_resources - Free Tx Resources per Queue
524 * @tx_ring: ring to free resources from
525 *
526 * Free all transmit software resources
527 **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)528 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
529 {
530 struct pci_dev *pdev = tx_ring->adapter->pdev;
531
532 igbvf_clean_tx_ring(tx_ring);
533
534 vfree(tx_ring->buffer_info);
535 tx_ring->buffer_info = NULL;
536
537 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
538 tx_ring->dma);
539
540 tx_ring->desc = NULL;
541 }
542
543 /**
544 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
545 * @adapter: board private structure
546 **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)547 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
548 {
549 struct igbvf_adapter *adapter = rx_ring->adapter;
550 struct igbvf_buffer *buffer_info;
551 struct pci_dev *pdev = adapter->pdev;
552 unsigned long size;
553 unsigned int i;
554
555 if (!rx_ring->buffer_info)
556 return;
557
558 /* Free all the Rx ring sk_buffs */
559 for (i = 0; i < rx_ring->count; i++) {
560 buffer_info = &rx_ring->buffer_info[i];
561 if (buffer_info->dma) {
562 if (adapter->rx_ps_hdr_size) {
563 dma_unmap_single(&pdev->dev, buffer_info->dma,
564 adapter->rx_ps_hdr_size,
565 DMA_FROM_DEVICE);
566 } else {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_buffer_len,
569 DMA_FROM_DEVICE);
570 }
571 buffer_info->dma = 0;
572 }
573
574 if (buffer_info->skb) {
575 dev_kfree_skb(buffer_info->skb);
576 buffer_info->skb = NULL;
577 }
578
579 if (buffer_info->page) {
580 if (buffer_info->page_dma)
581 dma_unmap_page(&pdev->dev,
582 buffer_info->page_dma,
583 PAGE_SIZE / 2,
584 DMA_FROM_DEVICE);
585 put_page(buffer_info->page);
586 buffer_info->page = NULL;
587 buffer_info->page_dma = 0;
588 buffer_info->page_offset = 0;
589 }
590 }
591
592 size = sizeof(struct igbvf_buffer) * rx_ring->count;
593 memset(rx_ring->buffer_info, 0, size);
594
595 /* Zero out the descriptor ring */
596 memset(rx_ring->desc, 0, rx_ring->size);
597
598 rx_ring->next_to_clean = 0;
599 rx_ring->next_to_use = 0;
600
601 writel(0, adapter->hw.hw_addr + rx_ring->head);
602 writel(0, adapter->hw.hw_addr + rx_ring->tail);
603 }
604
605 /**
606 * igbvf_free_rx_resources - Free Rx Resources
607 * @rx_ring: ring to clean the resources from
608 *
609 * Free all receive software resources
610 **/
611
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)612 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
613 {
614 struct pci_dev *pdev = rx_ring->adapter->pdev;
615
616 igbvf_clean_rx_ring(rx_ring);
617
618 vfree(rx_ring->buffer_info);
619 rx_ring->buffer_info = NULL;
620
621 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
622 rx_ring->dma);
623 rx_ring->desc = NULL;
624 }
625
626 /**
627 * igbvf_update_itr - update the dynamic ITR value based on statistics
628 * @adapter: pointer to adapter
629 * @itr_setting: current adapter->itr
630 * @packets: the number of packets during this measurement interval
631 * @bytes: the number of bytes during this measurement interval
632 *
633 * Stores a new ITR value based on packets and byte counts during the last
634 * interrupt. The advantage of per interrupt computation is faster updates
635 * and more accurate ITR for the current traffic pattern. Constants in this
636 * function were computed based on theoretical maximum wire speed and thresholds
637 * were set based on testing data as well as attempting to minimize response
638 * time while increasing bulk throughput.
639 **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)640 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
641 enum latency_range itr_setting,
642 int packets, int bytes)
643 {
644 enum latency_range retval = itr_setting;
645
646 if (packets == 0)
647 goto update_itr_done;
648
649 switch (itr_setting) {
650 case lowest_latency:
651 /* handle TSO and jumbo frames */
652 if (bytes/packets > 8000)
653 retval = bulk_latency;
654 else if ((packets < 5) && (bytes > 512))
655 retval = low_latency;
656 break;
657 case low_latency: /* 50 usec aka 20000 ints/s */
658 if (bytes > 10000) {
659 /* this if handles the TSO accounting */
660 if (bytes/packets > 8000)
661 retval = bulk_latency;
662 else if ((packets < 10) || ((bytes/packets) > 1200))
663 retval = bulk_latency;
664 else if ((packets > 35))
665 retval = lowest_latency;
666 } else if (bytes/packets > 2000) {
667 retval = bulk_latency;
668 } else if (packets <= 2 && bytes < 512) {
669 retval = lowest_latency;
670 }
671 break;
672 case bulk_latency: /* 250 usec aka 4000 ints/s */
673 if (bytes > 25000) {
674 if (packets > 35)
675 retval = low_latency;
676 } else if (bytes < 6000) {
677 retval = low_latency;
678 }
679 break;
680 default:
681 break;
682 }
683
684 update_itr_done:
685 return retval;
686 }
687
igbvf_range_to_itr(enum latency_range current_range)688 static int igbvf_range_to_itr(enum latency_range current_range)
689 {
690 int new_itr;
691
692 switch (current_range) {
693 /* counts and packets in update_itr are dependent on these numbers */
694 case lowest_latency:
695 new_itr = IGBVF_70K_ITR;
696 break;
697 case low_latency:
698 new_itr = IGBVF_20K_ITR;
699 break;
700 case bulk_latency:
701 new_itr = IGBVF_4K_ITR;
702 break;
703 default:
704 new_itr = IGBVF_START_ITR;
705 break;
706 }
707 return new_itr;
708 }
709
igbvf_set_itr(struct igbvf_adapter * adapter)710 static void igbvf_set_itr(struct igbvf_adapter *adapter)
711 {
712 u32 new_itr;
713
714 adapter->tx_ring->itr_range =
715 igbvf_update_itr(adapter,
716 adapter->tx_ring->itr_val,
717 adapter->total_tx_packets,
718 adapter->total_tx_bytes);
719
720 /* conservative mode (itr 3) eliminates the lowest_latency setting */
721 if (adapter->requested_itr == 3 &&
722 adapter->tx_ring->itr_range == lowest_latency)
723 adapter->tx_ring->itr_range = low_latency;
724
725 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
726
727 if (new_itr != adapter->tx_ring->itr_val) {
728 u32 current_itr = adapter->tx_ring->itr_val;
729 /* this attempts to bias the interrupt rate towards Bulk
730 * by adding intermediate steps when interrupt rate is
731 * increasing
732 */
733 new_itr = new_itr > current_itr ?
734 min(current_itr + (new_itr >> 2), new_itr) :
735 new_itr;
736 adapter->tx_ring->itr_val = new_itr;
737
738 adapter->tx_ring->set_itr = 1;
739 }
740
741 adapter->rx_ring->itr_range =
742 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
743 adapter->total_rx_packets,
744 adapter->total_rx_bytes);
745 if (adapter->requested_itr == 3 &&
746 adapter->rx_ring->itr_range == lowest_latency)
747 adapter->rx_ring->itr_range = low_latency;
748
749 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
750
751 if (new_itr != adapter->rx_ring->itr_val) {
752 u32 current_itr = adapter->rx_ring->itr_val;
753
754 new_itr = new_itr > current_itr ?
755 min(current_itr + (new_itr >> 2), new_itr) :
756 new_itr;
757 adapter->rx_ring->itr_val = new_itr;
758
759 adapter->rx_ring->set_itr = 1;
760 }
761 }
762
763 /**
764 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
765 * @adapter: board private structure
766 *
767 * returns true if ring is completely cleaned
768 **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)769 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
770 {
771 struct igbvf_adapter *adapter = tx_ring->adapter;
772 struct net_device *netdev = adapter->netdev;
773 struct igbvf_buffer *buffer_info;
774 struct sk_buff *skb;
775 union e1000_adv_tx_desc *tx_desc, *eop_desc;
776 unsigned int total_bytes = 0, total_packets = 0;
777 unsigned int i, count = 0;
778 bool cleaned = false;
779
780 i = tx_ring->next_to_clean;
781 buffer_info = &tx_ring->buffer_info[i];
782 eop_desc = buffer_info->next_to_watch;
783
784 do {
785 /* if next_to_watch is not set then there is no work pending */
786 if (!eop_desc)
787 break;
788
789 /* prevent any other reads prior to eop_desc */
790 smp_rmb();
791
792 /* if DD is not set pending work has not been completed */
793 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
794 break;
795
796 /* clear next_to_watch to prevent false hangs */
797 buffer_info->next_to_watch = NULL;
798
799 for (cleaned = false; !cleaned; count++) {
800 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
801 cleaned = (tx_desc == eop_desc);
802 skb = buffer_info->skb;
803
804 if (skb) {
805 unsigned int segs, bytecount;
806
807 /* gso_segs is currently only valid for tcp */
808 segs = skb_shinfo(skb)->gso_segs ?: 1;
809 /* multiply data chunks by size of headers */
810 bytecount = ((segs - 1) * skb_headlen(skb)) +
811 skb->len;
812 total_packets += segs;
813 total_bytes += bytecount;
814 }
815
816 igbvf_put_txbuf(adapter, buffer_info);
817 tx_desc->wb.status = 0;
818
819 i++;
820 if (i == tx_ring->count)
821 i = 0;
822
823 buffer_info = &tx_ring->buffer_info[i];
824 }
825
826 eop_desc = buffer_info->next_to_watch;
827 } while (count < tx_ring->count);
828
829 tx_ring->next_to_clean = i;
830
831 if (unlikely(count && netif_carrier_ok(netdev) &&
832 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
833 /* Make sure that anybody stopping the queue after this
834 * sees the new next_to_clean.
835 */
836 smp_mb();
837 if (netif_queue_stopped(netdev) &&
838 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
839 netif_wake_queue(netdev);
840 ++adapter->restart_queue;
841 }
842 }
843
844 netdev->stats.tx_bytes += total_bytes;
845 netdev->stats.tx_packets += total_packets;
846 return count < tx_ring->count;
847 }
848
igbvf_msix_other(int irq,void * data)849 static irqreturn_t igbvf_msix_other(int irq, void *data)
850 {
851 struct net_device *netdev = data;
852 struct igbvf_adapter *adapter = netdev_priv(netdev);
853 struct e1000_hw *hw = &adapter->hw;
854
855 adapter->int_counter1++;
856
857 hw->mac.get_link_status = 1;
858 if (!test_bit(__IGBVF_DOWN, &adapter->state))
859 mod_timer(&adapter->watchdog_timer, jiffies + 1);
860
861 ew32(EIMS, adapter->eims_other);
862
863 return IRQ_HANDLED;
864 }
865
igbvf_intr_msix_tx(int irq,void * data)866 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
867 {
868 struct net_device *netdev = data;
869 struct igbvf_adapter *adapter = netdev_priv(netdev);
870 struct e1000_hw *hw = &adapter->hw;
871 struct igbvf_ring *tx_ring = adapter->tx_ring;
872
873 if (tx_ring->set_itr) {
874 writel(tx_ring->itr_val,
875 adapter->hw.hw_addr + tx_ring->itr_register);
876 adapter->tx_ring->set_itr = 0;
877 }
878
879 adapter->total_tx_bytes = 0;
880 adapter->total_tx_packets = 0;
881
882 /* auto mask will automatically re-enable the interrupt when we write
883 * EICS
884 */
885 if (!igbvf_clean_tx_irq(tx_ring))
886 /* Ring was not completely cleaned, so fire another interrupt */
887 ew32(EICS, tx_ring->eims_value);
888 else
889 ew32(EIMS, tx_ring->eims_value);
890
891 return IRQ_HANDLED;
892 }
893
igbvf_intr_msix_rx(int irq,void * data)894 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
895 {
896 struct net_device *netdev = data;
897 struct igbvf_adapter *adapter = netdev_priv(netdev);
898
899 adapter->int_counter0++;
900
901 /* Write the ITR value calculated at the end of the
902 * previous interrupt.
903 */
904 if (adapter->rx_ring->set_itr) {
905 writel(adapter->rx_ring->itr_val,
906 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
907 adapter->rx_ring->set_itr = 0;
908 }
909
910 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
911 adapter->total_rx_bytes = 0;
912 adapter->total_rx_packets = 0;
913 __napi_schedule(&adapter->rx_ring->napi);
914 }
915
916 return IRQ_HANDLED;
917 }
918
919 #define IGBVF_NO_QUEUE -1
920
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)921 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
922 int tx_queue, int msix_vector)
923 {
924 struct e1000_hw *hw = &adapter->hw;
925 u32 ivar, index;
926
927 /* 82576 uses a table-based method for assigning vectors.
928 * Each queue has a single entry in the table to which we write
929 * a vector number along with a "valid" bit. Sadly, the layout
930 * of the table is somewhat counterintuitive.
931 */
932 if (rx_queue > IGBVF_NO_QUEUE) {
933 index = (rx_queue >> 1);
934 ivar = array_er32(IVAR0, index);
935 if (rx_queue & 0x1) {
936 /* vector goes into third byte of register */
937 ivar = ivar & 0xFF00FFFF;
938 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
939 } else {
940 /* vector goes into low byte of register */
941 ivar = ivar & 0xFFFFFF00;
942 ivar |= msix_vector | E1000_IVAR_VALID;
943 }
944 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
945 array_ew32(IVAR0, index, ivar);
946 }
947 if (tx_queue > IGBVF_NO_QUEUE) {
948 index = (tx_queue >> 1);
949 ivar = array_er32(IVAR0, index);
950 if (tx_queue & 0x1) {
951 /* vector goes into high byte of register */
952 ivar = ivar & 0x00FFFFFF;
953 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
954 } else {
955 /* vector goes into second byte of register */
956 ivar = ivar & 0xFFFF00FF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
958 }
959 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
960 array_ew32(IVAR0, index, ivar);
961 }
962 }
963
964 /**
965 * igbvf_configure_msix - Configure MSI-X hardware
966 * @adapter: board private structure
967 *
968 * igbvf_configure_msix sets up the hardware to properly
969 * generate MSI-X interrupts.
970 **/
igbvf_configure_msix(struct igbvf_adapter * adapter)971 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
972 {
973 u32 tmp;
974 struct e1000_hw *hw = &adapter->hw;
975 struct igbvf_ring *tx_ring = adapter->tx_ring;
976 struct igbvf_ring *rx_ring = adapter->rx_ring;
977 int vector = 0;
978
979 adapter->eims_enable_mask = 0;
980
981 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
982 adapter->eims_enable_mask |= tx_ring->eims_value;
983 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
984 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
985 adapter->eims_enable_mask |= rx_ring->eims_value;
986 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
987
988 /* set vector for other causes, i.e. link changes */
989
990 tmp = (vector++ | E1000_IVAR_VALID);
991
992 ew32(IVAR_MISC, tmp);
993
994 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
995 adapter->eims_other = BIT(vector - 1);
996 e1e_flush();
997 }
998
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)999 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1000 {
1001 if (adapter->msix_entries) {
1002 pci_disable_msix(adapter->pdev);
1003 kfree(adapter->msix_entries);
1004 adapter->msix_entries = NULL;
1005 }
1006 }
1007
1008 /**
1009 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1010 * @adapter: board private structure
1011 *
1012 * Attempt to configure interrupts using the best available
1013 * capabilities of the hardware and kernel.
1014 **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1015 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1016 {
1017 int err = -ENOMEM;
1018 int i;
1019
1020 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1021 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1022 GFP_KERNEL);
1023 if (adapter->msix_entries) {
1024 for (i = 0; i < 3; i++)
1025 adapter->msix_entries[i].entry = i;
1026
1027 err = pci_enable_msix_range(adapter->pdev,
1028 adapter->msix_entries, 3, 3);
1029 }
1030
1031 if (err < 0) {
1032 /* MSI-X failed */
1033 dev_err(&adapter->pdev->dev,
1034 "Failed to initialize MSI-X interrupts.\n");
1035 igbvf_reset_interrupt_capability(adapter);
1036 }
1037 }
1038
1039 /**
1040 * igbvf_request_msix - Initialize MSI-X interrupts
1041 * @adapter: board private structure
1042 *
1043 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1044 * kernel.
1045 **/
igbvf_request_msix(struct igbvf_adapter * adapter)1046 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1047 {
1048 struct net_device *netdev = adapter->netdev;
1049 int err = 0, vector = 0;
1050
1051 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1052 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1053 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1054 } else {
1055 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1056 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1057 }
1058
1059 err = request_irq(adapter->msix_entries[vector].vector,
1060 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1061 netdev);
1062 if (err)
1063 goto out;
1064
1065 adapter->tx_ring->itr_register = E1000_EITR(vector);
1066 adapter->tx_ring->itr_val = adapter->current_itr;
1067 vector++;
1068
1069 err = request_irq(adapter->msix_entries[vector].vector,
1070 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1071 netdev);
1072 if (err)
1073 goto out;
1074
1075 adapter->rx_ring->itr_register = E1000_EITR(vector);
1076 adapter->rx_ring->itr_val = adapter->current_itr;
1077 vector++;
1078
1079 err = request_irq(adapter->msix_entries[vector].vector,
1080 igbvf_msix_other, 0, netdev->name, netdev);
1081 if (err)
1082 goto out;
1083
1084 igbvf_configure_msix(adapter);
1085 return 0;
1086 out:
1087 return err;
1088 }
1089
1090 /**
1091 * igbvf_alloc_queues - Allocate memory for all rings
1092 * @adapter: board private structure to initialize
1093 **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1094 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1095 {
1096 struct net_device *netdev = adapter->netdev;
1097
1098 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099 if (!adapter->tx_ring)
1100 return -ENOMEM;
1101
1102 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->rx_ring) {
1104 kfree(adapter->tx_ring);
1105 return -ENOMEM;
1106 }
1107
1108 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1109
1110 return 0;
1111 }
1112
1113 /**
1114 * igbvf_request_irq - initialize interrupts
1115 * @adapter: board private structure
1116 *
1117 * Attempts to configure interrupts using the best available
1118 * capabilities of the hardware and kernel.
1119 **/
igbvf_request_irq(struct igbvf_adapter * adapter)1120 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1121 {
1122 int err = -1;
1123
1124 /* igbvf supports msi-x only */
1125 if (adapter->msix_entries)
1126 err = igbvf_request_msix(adapter);
1127
1128 if (!err)
1129 return err;
1130
1131 dev_err(&adapter->pdev->dev,
1132 "Unable to allocate interrupt, Error: %d\n", err);
1133
1134 return err;
1135 }
1136
igbvf_free_irq(struct igbvf_adapter * adapter)1137 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1138 {
1139 struct net_device *netdev = adapter->netdev;
1140 int vector;
1141
1142 if (adapter->msix_entries) {
1143 for (vector = 0; vector < 3; vector++)
1144 free_irq(adapter->msix_entries[vector].vector, netdev);
1145 }
1146 }
1147
1148 /**
1149 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1150 * @adapter: board private structure
1151 **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1152 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1153 {
1154 struct e1000_hw *hw = &adapter->hw;
1155
1156 ew32(EIMC, ~0);
1157
1158 if (adapter->msix_entries)
1159 ew32(EIAC, 0);
1160 }
1161
1162 /**
1163 * igbvf_irq_enable - Enable default interrupt generation settings
1164 * @adapter: board private structure
1165 **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1166 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1167 {
1168 struct e1000_hw *hw = &adapter->hw;
1169
1170 ew32(EIAC, adapter->eims_enable_mask);
1171 ew32(EIAM, adapter->eims_enable_mask);
1172 ew32(EIMS, adapter->eims_enable_mask);
1173 }
1174
1175 /**
1176 * igbvf_poll - NAPI Rx polling callback
1177 * @napi: struct associated with this polling callback
1178 * @budget: amount of packets driver is allowed to process this poll
1179 **/
igbvf_poll(struct napi_struct * napi,int budget)1180 static int igbvf_poll(struct napi_struct *napi, int budget)
1181 {
1182 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1183 struct igbvf_adapter *adapter = rx_ring->adapter;
1184 struct e1000_hw *hw = &adapter->hw;
1185 int work_done = 0;
1186
1187 igbvf_clean_rx_irq(adapter, &work_done, budget);
1188
1189 /* If not enough Rx work done, exit the polling mode */
1190 if (work_done < budget) {
1191 napi_complete_done(napi, work_done);
1192
1193 if (adapter->requested_itr & 3)
1194 igbvf_set_itr(adapter);
1195
1196 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1197 ew32(EIMS, adapter->rx_ring->eims_value);
1198 }
1199
1200 return work_done;
1201 }
1202
1203 /**
1204 * igbvf_set_rlpml - set receive large packet maximum length
1205 * @adapter: board private structure
1206 *
1207 * Configure the maximum size of packets that will be received
1208 */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1209 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1210 {
1211 int max_frame_size;
1212 struct e1000_hw *hw = &adapter->hw;
1213
1214 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1215
1216 spin_lock_bh(&hw->mbx_lock);
1217
1218 e1000_rlpml_set_vf(hw, max_frame_size);
1219
1220 spin_unlock_bh(&hw->mbx_lock);
1221 }
1222
igbvf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1223 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1224 __be16 proto, u16 vid)
1225 {
1226 struct igbvf_adapter *adapter = netdev_priv(netdev);
1227 struct e1000_hw *hw = &adapter->hw;
1228
1229 spin_lock_bh(&hw->mbx_lock);
1230
1231 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1232 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1233 spin_unlock_bh(&hw->mbx_lock);
1234 return -EINVAL;
1235 }
1236
1237 spin_unlock_bh(&hw->mbx_lock);
1238
1239 set_bit(vid, adapter->active_vlans);
1240 return 0;
1241 }
1242
igbvf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1243 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1244 __be16 proto, u16 vid)
1245 {
1246 struct igbvf_adapter *adapter = netdev_priv(netdev);
1247 struct e1000_hw *hw = &adapter->hw;
1248
1249 spin_lock_bh(&hw->mbx_lock);
1250
1251 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1252 dev_err(&adapter->pdev->dev,
1253 "Failed to remove vlan id %d\n", vid);
1254 spin_unlock_bh(&hw->mbx_lock);
1255 return -EINVAL;
1256 }
1257
1258 spin_unlock_bh(&hw->mbx_lock);
1259
1260 clear_bit(vid, adapter->active_vlans);
1261 return 0;
1262 }
1263
igbvf_restore_vlan(struct igbvf_adapter * adapter)1264 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1265 {
1266 u16 vid;
1267
1268 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1269 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1270 }
1271
1272 /**
1273 * igbvf_configure_tx - Configure Transmit Unit after Reset
1274 * @adapter: board private structure
1275 *
1276 * Configure the Tx unit of the MAC after a reset.
1277 **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1278 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1279 {
1280 struct e1000_hw *hw = &adapter->hw;
1281 struct igbvf_ring *tx_ring = adapter->tx_ring;
1282 u64 tdba;
1283 u32 txdctl, dca_txctrl;
1284
1285 /* disable transmits */
1286 txdctl = er32(TXDCTL(0));
1287 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1288 e1e_flush();
1289 msleep(10);
1290
1291 /* Setup the HW Tx Head and Tail descriptor pointers */
1292 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1293 tdba = tx_ring->dma;
1294 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1295 ew32(TDBAH(0), (tdba >> 32));
1296 ew32(TDH(0), 0);
1297 ew32(TDT(0), 0);
1298 tx_ring->head = E1000_TDH(0);
1299 tx_ring->tail = E1000_TDT(0);
1300
1301 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1302 * MUST be delivered in order or it will completely screw up
1303 * our bookkeeping.
1304 */
1305 dca_txctrl = er32(DCA_TXCTRL(0));
1306 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1307 ew32(DCA_TXCTRL(0), dca_txctrl);
1308
1309 /* enable transmits */
1310 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1311 ew32(TXDCTL(0), txdctl);
1312
1313 /* Setup Transmit Descriptor Settings for eop descriptor */
1314 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1315
1316 /* enable Report Status bit */
1317 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1318 }
1319
1320 /**
1321 * igbvf_setup_srrctl - configure the receive control registers
1322 * @adapter: Board private structure
1323 **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1324 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1325 {
1326 struct e1000_hw *hw = &adapter->hw;
1327 u32 srrctl = 0;
1328
1329 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1330 E1000_SRRCTL_BSIZEHDR_MASK |
1331 E1000_SRRCTL_BSIZEPKT_MASK);
1332
1333 /* Enable queue drop to avoid head of line blocking */
1334 srrctl |= E1000_SRRCTL_DROP_EN;
1335
1336 /* Setup buffer sizes */
1337 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1338 E1000_SRRCTL_BSIZEPKT_SHIFT;
1339
1340 if (adapter->rx_buffer_len < 2048) {
1341 adapter->rx_ps_hdr_size = 0;
1342 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1343 } else {
1344 adapter->rx_ps_hdr_size = 128;
1345 srrctl |= adapter->rx_ps_hdr_size <<
1346 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1347 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1348 }
1349
1350 ew32(SRRCTL(0), srrctl);
1351 }
1352
1353 /**
1354 * igbvf_configure_rx - Configure Receive Unit after Reset
1355 * @adapter: board private structure
1356 *
1357 * Configure the Rx unit of the MAC after a reset.
1358 **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1359 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1360 {
1361 struct e1000_hw *hw = &adapter->hw;
1362 struct igbvf_ring *rx_ring = adapter->rx_ring;
1363 u64 rdba;
1364 u32 rxdctl;
1365
1366 /* disable receives */
1367 rxdctl = er32(RXDCTL(0));
1368 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1369 e1e_flush();
1370 msleep(10);
1371
1372 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1373 * the Base and Length of the Rx Descriptor Ring
1374 */
1375 rdba = rx_ring->dma;
1376 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1377 ew32(RDBAH(0), (rdba >> 32));
1378 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1379 rx_ring->head = E1000_RDH(0);
1380 rx_ring->tail = E1000_RDT(0);
1381 ew32(RDH(0), 0);
1382 ew32(RDT(0), 0);
1383
1384 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1385 rxdctl &= 0xFFF00000;
1386 rxdctl |= IGBVF_RX_PTHRESH;
1387 rxdctl |= IGBVF_RX_HTHRESH << 8;
1388 rxdctl |= IGBVF_RX_WTHRESH << 16;
1389
1390 igbvf_set_rlpml(adapter);
1391
1392 /* enable receives */
1393 ew32(RXDCTL(0), rxdctl);
1394 }
1395
1396 /**
1397 * igbvf_set_multi - Multicast and Promiscuous mode set
1398 * @netdev: network interface device structure
1399 *
1400 * The set_multi entry point is called whenever the multicast address
1401 * list or the network interface flags are updated. This routine is
1402 * responsible for configuring the hardware for proper multicast,
1403 * promiscuous mode, and all-multi behavior.
1404 **/
igbvf_set_multi(struct net_device * netdev)1405 static void igbvf_set_multi(struct net_device *netdev)
1406 {
1407 struct igbvf_adapter *adapter = netdev_priv(netdev);
1408 struct e1000_hw *hw = &adapter->hw;
1409 struct netdev_hw_addr *ha;
1410 u8 *mta_list = NULL;
1411 int i;
1412
1413 if (!netdev_mc_empty(netdev)) {
1414 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1415 GFP_ATOMIC);
1416 if (!mta_list)
1417 return;
1418 }
1419
1420 /* prepare a packed array of only addresses. */
1421 i = 0;
1422 netdev_for_each_mc_addr(ha, netdev)
1423 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1424
1425 spin_lock_bh(&hw->mbx_lock);
1426
1427 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1428
1429 spin_unlock_bh(&hw->mbx_lock);
1430 kfree(mta_list);
1431 }
1432
1433 /**
1434 * igbvf_set_uni - Configure unicast MAC filters
1435 * @netdev: network interface device structure
1436 *
1437 * This routine is responsible for configuring the hardware for proper
1438 * unicast filters.
1439 **/
igbvf_set_uni(struct net_device * netdev)1440 static int igbvf_set_uni(struct net_device *netdev)
1441 {
1442 struct igbvf_adapter *adapter = netdev_priv(netdev);
1443 struct e1000_hw *hw = &adapter->hw;
1444
1445 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1446 pr_err("Too many unicast filters - No Space\n");
1447 return -ENOSPC;
1448 }
1449
1450 spin_lock_bh(&hw->mbx_lock);
1451
1452 /* Clear all unicast MAC filters */
1453 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1454
1455 spin_unlock_bh(&hw->mbx_lock);
1456
1457 if (!netdev_uc_empty(netdev)) {
1458 struct netdev_hw_addr *ha;
1459
1460 /* Add MAC filters one by one */
1461 netdev_for_each_uc_addr(ha, netdev) {
1462 spin_lock_bh(&hw->mbx_lock);
1463
1464 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1465 ha->addr);
1466
1467 spin_unlock_bh(&hw->mbx_lock);
1468 udelay(200);
1469 }
1470 }
1471
1472 return 0;
1473 }
1474
igbvf_set_rx_mode(struct net_device * netdev)1475 static void igbvf_set_rx_mode(struct net_device *netdev)
1476 {
1477 igbvf_set_multi(netdev);
1478 igbvf_set_uni(netdev);
1479 }
1480
1481 /**
1482 * igbvf_configure - configure the hardware for Rx and Tx
1483 * @adapter: private board structure
1484 **/
igbvf_configure(struct igbvf_adapter * adapter)1485 static void igbvf_configure(struct igbvf_adapter *adapter)
1486 {
1487 igbvf_set_rx_mode(adapter->netdev);
1488
1489 igbvf_restore_vlan(adapter);
1490
1491 igbvf_configure_tx(adapter);
1492 igbvf_setup_srrctl(adapter);
1493 igbvf_configure_rx(adapter);
1494 igbvf_alloc_rx_buffers(adapter->rx_ring,
1495 igbvf_desc_unused(adapter->rx_ring));
1496 }
1497
1498 /* igbvf_reset - bring the hardware into a known good state
1499 * @adapter: private board structure
1500 *
1501 * This function boots the hardware and enables some settings that
1502 * require a configuration cycle of the hardware - those cannot be
1503 * set/changed during runtime. After reset the device needs to be
1504 * properly configured for Rx, Tx etc.
1505 */
igbvf_reset(struct igbvf_adapter * adapter)1506 static void igbvf_reset(struct igbvf_adapter *adapter)
1507 {
1508 struct e1000_mac_info *mac = &adapter->hw.mac;
1509 struct net_device *netdev = adapter->netdev;
1510 struct e1000_hw *hw = &adapter->hw;
1511
1512 spin_lock_bh(&hw->mbx_lock);
1513
1514 /* Allow time for pending master requests to run */
1515 if (mac->ops.reset_hw(hw))
1516 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1517
1518 mac->ops.init_hw(hw);
1519
1520 spin_unlock_bh(&hw->mbx_lock);
1521
1522 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1523 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1524 netdev->addr_len);
1525 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1526 netdev->addr_len);
1527 }
1528
1529 adapter->last_reset = jiffies;
1530 }
1531
igbvf_up(struct igbvf_adapter * adapter)1532 int igbvf_up(struct igbvf_adapter *adapter)
1533 {
1534 struct e1000_hw *hw = &adapter->hw;
1535
1536 /* hardware has been reset, we need to reload some things */
1537 igbvf_configure(adapter);
1538
1539 clear_bit(__IGBVF_DOWN, &adapter->state);
1540
1541 napi_enable(&adapter->rx_ring->napi);
1542 if (adapter->msix_entries)
1543 igbvf_configure_msix(adapter);
1544
1545 /* Clear any pending interrupts. */
1546 er32(EICR);
1547 igbvf_irq_enable(adapter);
1548
1549 /* start the watchdog */
1550 hw->mac.get_link_status = 1;
1551 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1552
1553 return 0;
1554 }
1555
igbvf_down(struct igbvf_adapter * adapter)1556 void igbvf_down(struct igbvf_adapter *adapter)
1557 {
1558 struct net_device *netdev = adapter->netdev;
1559 struct e1000_hw *hw = &adapter->hw;
1560 u32 rxdctl, txdctl;
1561
1562 /* signal that we're down so the interrupt handler does not
1563 * reschedule our watchdog timer
1564 */
1565 set_bit(__IGBVF_DOWN, &adapter->state);
1566
1567 /* disable receives in the hardware */
1568 rxdctl = er32(RXDCTL(0));
1569 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1570
1571 netif_carrier_off(netdev);
1572 netif_stop_queue(netdev);
1573
1574 /* disable transmits in the hardware */
1575 txdctl = er32(TXDCTL(0));
1576 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1577
1578 /* flush both disables and wait for them to finish */
1579 e1e_flush();
1580 msleep(10);
1581
1582 napi_disable(&adapter->rx_ring->napi);
1583
1584 igbvf_irq_disable(adapter);
1585
1586 del_timer_sync(&adapter->watchdog_timer);
1587
1588 /* record the stats before reset*/
1589 igbvf_update_stats(adapter);
1590
1591 adapter->link_speed = 0;
1592 adapter->link_duplex = 0;
1593
1594 igbvf_reset(adapter);
1595 igbvf_clean_tx_ring(adapter->tx_ring);
1596 igbvf_clean_rx_ring(adapter->rx_ring);
1597 }
1598
igbvf_reinit_locked(struct igbvf_adapter * adapter)1599 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1600 {
1601 might_sleep();
1602 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1603 usleep_range(1000, 2000);
1604 igbvf_down(adapter);
1605 igbvf_up(adapter);
1606 clear_bit(__IGBVF_RESETTING, &adapter->state);
1607 }
1608
1609 /**
1610 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1611 * @adapter: board private structure to initialize
1612 *
1613 * igbvf_sw_init initializes the Adapter private data structure.
1614 * Fields are initialized based on PCI device information and
1615 * OS network device settings (MTU size).
1616 **/
igbvf_sw_init(struct igbvf_adapter * adapter)1617 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1618 {
1619 struct net_device *netdev = adapter->netdev;
1620 s32 rc;
1621
1622 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1623 adapter->rx_ps_hdr_size = 0;
1624 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1625 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1626
1627 adapter->tx_int_delay = 8;
1628 adapter->tx_abs_int_delay = 32;
1629 adapter->rx_int_delay = 0;
1630 adapter->rx_abs_int_delay = 8;
1631 adapter->requested_itr = 3;
1632 adapter->current_itr = IGBVF_START_ITR;
1633
1634 /* Set various function pointers */
1635 adapter->ei->init_ops(&adapter->hw);
1636
1637 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1638 if (rc)
1639 return rc;
1640
1641 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1642 if (rc)
1643 return rc;
1644
1645 igbvf_set_interrupt_capability(adapter);
1646
1647 if (igbvf_alloc_queues(adapter))
1648 return -ENOMEM;
1649
1650 spin_lock_init(&adapter->tx_queue_lock);
1651
1652 /* Explicitly disable IRQ since the NIC can be in any state. */
1653 igbvf_irq_disable(adapter);
1654
1655 spin_lock_init(&adapter->stats_lock);
1656 spin_lock_init(&adapter->hw.mbx_lock);
1657
1658 set_bit(__IGBVF_DOWN, &adapter->state);
1659 return 0;
1660 }
1661
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1662 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1663 {
1664 struct e1000_hw *hw = &adapter->hw;
1665
1666 adapter->stats.last_gprc = er32(VFGPRC);
1667 adapter->stats.last_gorc = er32(VFGORC);
1668 adapter->stats.last_gptc = er32(VFGPTC);
1669 adapter->stats.last_gotc = er32(VFGOTC);
1670 adapter->stats.last_mprc = er32(VFMPRC);
1671 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1672 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1673 adapter->stats.last_gorlbc = er32(VFGORLBC);
1674 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1675
1676 adapter->stats.base_gprc = er32(VFGPRC);
1677 adapter->stats.base_gorc = er32(VFGORC);
1678 adapter->stats.base_gptc = er32(VFGPTC);
1679 adapter->stats.base_gotc = er32(VFGOTC);
1680 adapter->stats.base_mprc = er32(VFMPRC);
1681 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1682 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1683 adapter->stats.base_gorlbc = er32(VFGORLBC);
1684 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1685 }
1686
1687 /**
1688 * igbvf_open - Called when a network interface is made active
1689 * @netdev: network interface device structure
1690 *
1691 * Returns 0 on success, negative value on failure
1692 *
1693 * The open entry point is called when a network interface is made
1694 * active by the system (IFF_UP). At this point all resources needed
1695 * for transmit and receive operations are allocated, the interrupt
1696 * handler is registered with the OS, the watchdog timer is started,
1697 * and the stack is notified that the interface is ready.
1698 **/
igbvf_open(struct net_device * netdev)1699 static int igbvf_open(struct net_device *netdev)
1700 {
1701 struct igbvf_adapter *adapter = netdev_priv(netdev);
1702 struct e1000_hw *hw = &adapter->hw;
1703 int err;
1704
1705 /* disallow open during test */
1706 if (test_bit(__IGBVF_TESTING, &adapter->state))
1707 return -EBUSY;
1708
1709 /* allocate transmit descriptors */
1710 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1711 if (err)
1712 goto err_setup_tx;
1713
1714 /* allocate receive descriptors */
1715 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1716 if (err)
1717 goto err_setup_rx;
1718
1719 /* before we allocate an interrupt, we must be ready to handle it.
1720 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1721 * as soon as we call pci_request_irq, so we have to setup our
1722 * clean_rx handler before we do so.
1723 */
1724 igbvf_configure(adapter);
1725
1726 err = igbvf_request_irq(adapter);
1727 if (err)
1728 goto err_req_irq;
1729
1730 /* From here on the code is the same as igbvf_up() */
1731 clear_bit(__IGBVF_DOWN, &adapter->state);
1732
1733 napi_enable(&adapter->rx_ring->napi);
1734
1735 /* clear any pending interrupts */
1736 er32(EICR);
1737
1738 igbvf_irq_enable(adapter);
1739
1740 /* start the watchdog */
1741 hw->mac.get_link_status = 1;
1742 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1743
1744 return 0;
1745
1746 err_req_irq:
1747 igbvf_free_rx_resources(adapter->rx_ring);
1748 err_setup_rx:
1749 igbvf_free_tx_resources(adapter->tx_ring);
1750 err_setup_tx:
1751 igbvf_reset(adapter);
1752
1753 return err;
1754 }
1755
1756 /**
1757 * igbvf_close - Disables a network interface
1758 * @netdev: network interface device structure
1759 *
1760 * Returns 0, this is not allowed to fail
1761 *
1762 * The close entry point is called when an interface is de-activated
1763 * by the OS. The hardware is still under the drivers control, but
1764 * needs to be disabled. A global MAC reset is issued to stop the
1765 * hardware, and all transmit and receive resources are freed.
1766 **/
igbvf_close(struct net_device * netdev)1767 static int igbvf_close(struct net_device *netdev)
1768 {
1769 struct igbvf_adapter *adapter = netdev_priv(netdev);
1770
1771 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1772 igbvf_down(adapter);
1773
1774 igbvf_free_irq(adapter);
1775
1776 igbvf_free_tx_resources(adapter->tx_ring);
1777 igbvf_free_rx_resources(adapter->rx_ring);
1778
1779 return 0;
1780 }
1781
1782 /**
1783 * igbvf_set_mac - Change the Ethernet Address of the NIC
1784 * @netdev: network interface device structure
1785 * @p: pointer to an address structure
1786 *
1787 * Returns 0 on success, negative on failure
1788 **/
igbvf_set_mac(struct net_device * netdev,void * p)1789 static int igbvf_set_mac(struct net_device *netdev, void *p)
1790 {
1791 struct igbvf_adapter *adapter = netdev_priv(netdev);
1792 struct e1000_hw *hw = &adapter->hw;
1793 struct sockaddr *addr = p;
1794
1795 if (!is_valid_ether_addr(addr->sa_data))
1796 return -EADDRNOTAVAIL;
1797
1798 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1799
1800 spin_lock_bh(&hw->mbx_lock);
1801
1802 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1803
1804 spin_unlock_bh(&hw->mbx_lock);
1805
1806 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1807 return -EADDRNOTAVAIL;
1808
1809 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1810
1811 return 0;
1812 }
1813
1814 #define UPDATE_VF_COUNTER(reg, name) \
1815 { \
1816 u32 current_counter = er32(reg); \
1817 if (current_counter < adapter->stats.last_##name) \
1818 adapter->stats.name += 0x100000000LL; \
1819 adapter->stats.last_##name = current_counter; \
1820 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1821 adapter->stats.name |= current_counter; \
1822 }
1823
1824 /**
1825 * igbvf_update_stats - Update the board statistics counters
1826 * @adapter: board private structure
1827 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1828 void igbvf_update_stats(struct igbvf_adapter *adapter)
1829 {
1830 struct e1000_hw *hw = &adapter->hw;
1831 struct pci_dev *pdev = adapter->pdev;
1832
1833 /* Prevent stats update while adapter is being reset, link is down
1834 * or if the pci connection is down.
1835 */
1836 if (adapter->link_speed == 0)
1837 return;
1838
1839 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1840 return;
1841
1842 if (pci_channel_offline(pdev))
1843 return;
1844
1845 UPDATE_VF_COUNTER(VFGPRC, gprc);
1846 UPDATE_VF_COUNTER(VFGORC, gorc);
1847 UPDATE_VF_COUNTER(VFGPTC, gptc);
1848 UPDATE_VF_COUNTER(VFGOTC, gotc);
1849 UPDATE_VF_COUNTER(VFMPRC, mprc);
1850 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1851 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1852 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1853 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1854
1855 /* Fill out the OS statistics structure */
1856 adapter->netdev->stats.multicast = adapter->stats.mprc;
1857 }
1858
igbvf_print_link_info(struct igbvf_adapter * adapter)1859 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1860 {
1861 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1862 adapter->link_speed,
1863 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1864 }
1865
igbvf_has_link(struct igbvf_adapter * adapter)1866 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1867 {
1868 struct e1000_hw *hw = &adapter->hw;
1869 s32 ret_val = E1000_SUCCESS;
1870 bool link_active;
1871
1872 /* If interface is down, stay link down */
1873 if (test_bit(__IGBVF_DOWN, &adapter->state))
1874 return false;
1875
1876 spin_lock_bh(&hw->mbx_lock);
1877
1878 ret_val = hw->mac.ops.check_for_link(hw);
1879
1880 spin_unlock_bh(&hw->mbx_lock);
1881
1882 link_active = !hw->mac.get_link_status;
1883
1884 /* if check for link returns error we will need to reset */
1885 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1886 schedule_work(&adapter->reset_task);
1887
1888 return link_active;
1889 }
1890
1891 /**
1892 * igbvf_watchdog - Timer Call-back
1893 * @data: pointer to adapter cast into an unsigned long
1894 **/
igbvf_watchdog(struct timer_list * t)1895 static void igbvf_watchdog(struct timer_list *t)
1896 {
1897 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1898
1899 /* Do the rest outside of interrupt context */
1900 schedule_work(&adapter->watchdog_task);
1901 }
1902
igbvf_watchdog_task(struct work_struct * work)1903 static void igbvf_watchdog_task(struct work_struct *work)
1904 {
1905 struct igbvf_adapter *adapter = container_of(work,
1906 struct igbvf_adapter,
1907 watchdog_task);
1908 struct net_device *netdev = adapter->netdev;
1909 struct e1000_mac_info *mac = &adapter->hw.mac;
1910 struct igbvf_ring *tx_ring = adapter->tx_ring;
1911 struct e1000_hw *hw = &adapter->hw;
1912 u32 link;
1913 int tx_pending = 0;
1914
1915 link = igbvf_has_link(adapter);
1916
1917 if (link) {
1918 if (!netif_carrier_ok(netdev)) {
1919 mac->ops.get_link_up_info(&adapter->hw,
1920 &adapter->link_speed,
1921 &adapter->link_duplex);
1922 igbvf_print_link_info(adapter);
1923
1924 netif_carrier_on(netdev);
1925 netif_wake_queue(netdev);
1926 }
1927 } else {
1928 if (netif_carrier_ok(netdev)) {
1929 adapter->link_speed = 0;
1930 adapter->link_duplex = 0;
1931 dev_info(&adapter->pdev->dev, "Link is Down\n");
1932 netif_carrier_off(netdev);
1933 netif_stop_queue(netdev);
1934 }
1935 }
1936
1937 if (netif_carrier_ok(netdev)) {
1938 igbvf_update_stats(adapter);
1939 } else {
1940 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1941 tx_ring->count);
1942 if (tx_pending) {
1943 /* We've lost link, so the controller stops DMA,
1944 * but we've got queued Tx work that's never going
1945 * to get done, so reset controller to flush Tx.
1946 * (Do the reset outside of interrupt context).
1947 */
1948 adapter->tx_timeout_count++;
1949 schedule_work(&adapter->reset_task);
1950 }
1951 }
1952
1953 /* Cause software interrupt to ensure Rx ring is cleaned */
1954 ew32(EICS, adapter->rx_ring->eims_value);
1955
1956 /* Reset the timer */
1957 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1958 mod_timer(&adapter->watchdog_timer,
1959 round_jiffies(jiffies + (2 * HZ)));
1960 }
1961
1962 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1963 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1964 #define IGBVF_TX_FLAGS_TSO 0x00000004
1965 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1966 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1967 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1968
igbvf_tx_ctxtdesc(struct igbvf_ring * tx_ring,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1969 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1970 u32 type_tucmd, u32 mss_l4len_idx)
1971 {
1972 struct e1000_adv_tx_context_desc *context_desc;
1973 struct igbvf_buffer *buffer_info;
1974 u16 i = tx_ring->next_to_use;
1975
1976 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1977 buffer_info = &tx_ring->buffer_info[i];
1978
1979 i++;
1980 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1981
1982 /* set bits to identify this as an advanced context descriptor */
1983 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1984
1985 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1986 context_desc->seqnum_seed = 0;
1987 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1988 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1989
1990 buffer_info->time_stamp = jiffies;
1991 buffer_info->dma = 0;
1992 }
1993
igbvf_tso(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)1994 static int igbvf_tso(struct igbvf_ring *tx_ring,
1995 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1996 {
1997 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1998 union {
1999 struct iphdr *v4;
2000 struct ipv6hdr *v6;
2001 unsigned char *hdr;
2002 } ip;
2003 union {
2004 struct tcphdr *tcp;
2005 unsigned char *hdr;
2006 } l4;
2007 u32 paylen, l4_offset;
2008 int err;
2009
2010 if (skb->ip_summed != CHECKSUM_PARTIAL)
2011 return 0;
2012
2013 if (!skb_is_gso(skb))
2014 return 0;
2015
2016 err = skb_cow_head(skb, 0);
2017 if (err < 0)
2018 return err;
2019
2020 ip.hdr = skb_network_header(skb);
2021 l4.hdr = skb_checksum_start(skb);
2022
2023 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2024 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2025
2026 /* initialize outer IP header fields */
2027 if (ip.v4->version == 4) {
2028 unsigned char *csum_start = skb_checksum_start(skb);
2029 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2030
2031 /* IP header will have to cancel out any data that
2032 * is not a part of the outer IP header
2033 */
2034 ip.v4->check = csum_fold(csum_partial(trans_start,
2035 csum_start - trans_start,
2036 0));
2037 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2038
2039 ip.v4->tot_len = 0;
2040 } else {
2041 ip.v6->payload_len = 0;
2042 }
2043
2044 /* determine offset of inner transport header */
2045 l4_offset = l4.hdr - skb->data;
2046
2047 /* compute length of segmentation header */
2048 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2049
2050 /* remove payload length from inner checksum */
2051 paylen = skb->len - l4_offset;
2052 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2053
2054 /* MSS L4LEN IDX */
2055 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2056 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2057
2058 /* VLAN MACLEN IPLEN */
2059 vlan_macip_lens = l4.hdr - ip.hdr;
2060 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2061 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2062
2063 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2064
2065 return 1;
2066 }
2067
igbvf_ipv6_csum_is_sctp(struct sk_buff * skb)2068 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2069 {
2070 unsigned int offset = 0;
2071
2072 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2073
2074 return offset == skb_checksum_start_offset(skb);
2075 }
2076
igbvf_tx_csum(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol)2077 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2078 u32 tx_flags, __be16 protocol)
2079 {
2080 u32 vlan_macip_lens = 0;
2081 u32 type_tucmd = 0;
2082
2083 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2084 csum_failed:
2085 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2086 return false;
2087 goto no_csum;
2088 }
2089
2090 switch (skb->csum_offset) {
2091 case offsetof(struct tcphdr, check):
2092 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2093 /* fall through */
2094 case offsetof(struct udphdr, check):
2095 break;
2096 case offsetof(struct sctphdr, checksum):
2097 /* validate that this is actually an SCTP request */
2098 if (((protocol == htons(ETH_P_IP)) &&
2099 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2100 ((protocol == htons(ETH_P_IPV6)) &&
2101 igbvf_ipv6_csum_is_sctp(skb))) {
2102 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2103 break;
2104 }
2105 /* fall through */
2106 default:
2107 skb_checksum_help(skb);
2108 goto csum_failed;
2109 }
2110
2111 vlan_macip_lens = skb_checksum_start_offset(skb) -
2112 skb_network_offset(skb);
2113 no_csum:
2114 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2115 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2116
2117 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2118 return true;
2119 }
2120
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2121 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2122 {
2123 struct igbvf_adapter *adapter = netdev_priv(netdev);
2124
2125 /* there is enough descriptors then we don't need to worry */
2126 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2127 return 0;
2128
2129 netif_stop_queue(netdev);
2130
2131 /* Herbert's original patch had:
2132 * smp_mb__after_netif_stop_queue();
2133 * but since that doesn't exist yet, just open code it.
2134 */
2135 smp_mb();
2136
2137 /* We need to check again just in case room has been made available */
2138 if (igbvf_desc_unused(adapter->tx_ring) < size)
2139 return -EBUSY;
2140
2141 netif_wake_queue(netdev);
2142
2143 ++adapter->restart_queue;
2144 return 0;
2145 }
2146
2147 #define IGBVF_MAX_TXD_PWR 16
2148 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2149
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb)2150 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2151 struct igbvf_ring *tx_ring,
2152 struct sk_buff *skb)
2153 {
2154 struct igbvf_buffer *buffer_info;
2155 struct pci_dev *pdev = adapter->pdev;
2156 unsigned int len = skb_headlen(skb);
2157 unsigned int count = 0, i;
2158 unsigned int f;
2159
2160 i = tx_ring->next_to_use;
2161
2162 buffer_info = &tx_ring->buffer_info[i];
2163 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2164 buffer_info->length = len;
2165 /* set time_stamp *before* dma to help avoid a possible race */
2166 buffer_info->time_stamp = jiffies;
2167 buffer_info->mapped_as_page = false;
2168 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2169 DMA_TO_DEVICE);
2170 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2171 goto dma_error;
2172
2173 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2174 const struct skb_frag_struct *frag;
2175
2176 count++;
2177 i++;
2178 if (i == tx_ring->count)
2179 i = 0;
2180
2181 frag = &skb_shinfo(skb)->frags[f];
2182 len = skb_frag_size(frag);
2183
2184 buffer_info = &tx_ring->buffer_info[i];
2185 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2186 buffer_info->length = len;
2187 buffer_info->time_stamp = jiffies;
2188 buffer_info->mapped_as_page = true;
2189 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2190 DMA_TO_DEVICE);
2191 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2192 goto dma_error;
2193 }
2194
2195 tx_ring->buffer_info[i].skb = skb;
2196
2197 return ++count;
2198
2199 dma_error:
2200 dev_err(&pdev->dev, "TX DMA map failed\n");
2201
2202 /* clear timestamp and dma mappings for failed buffer_info mapping */
2203 buffer_info->dma = 0;
2204 buffer_info->time_stamp = 0;
2205 buffer_info->length = 0;
2206 buffer_info->mapped_as_page = false;
2207 if (count)
2208 count--;
2209
2210 /* clear timestamp and dma mappings for remaining portion of packet */
2211 while (count--) {
2212 if (i == 0)
2213 i += tx_ring->count;
2214 i--;
2215 buffer_info = &tx_ring->buffer_info[i];
2216 igbvf_put_txbuf(adapter, buffer_info);
2217 }
2218
2219 return 0;
2220 }
2221
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,unsigned int first,u32 paylen,u8 hdr_len)2222 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2223 struct igbvf_ring *tx_ring,
2224 int tx_flags, int count,
2225 unsigned int first, u32 paylen,
2226 u8 hdr_len)
2227 {
2228 union e1000_adv_tx_desc *tx_desc = NULL;
2229 struct igbvf_buffer *buffer_info;
2230 u32 olinfo_status = 0, cmd_type_len;
2231 unsigned int i;
2232
2233 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2234 E1000_ADVTXD_DCMD_DEXT);
2235
2236 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2237 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2238
2239 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2240 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2241
2242 /* insert tcp checksum */
2243 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2244
2245 /* insert ip checksum */
2246 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2247 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2248
2249 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2250 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2251 }
2252
2253 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2254
2255 i = tx_ring->next_to_use;
2256 while (count--) {
2257 buffer_info = &tx_ring->buffer_info[i];
2258 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2259 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2260 tx_desc->read.cmd_type_len =
2261 cpu_to_le32(cmd_type_len | buffer_info->length);
2262 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2263 i++;
2264 if (i == tx_ring->count)
2265 i = 0;
2266 }
2267
2268 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2269 /* Force memory writes to complete before letting h/w
2270 * know there are new descriptors to fetch. (Only
2271 * applicable for weak-ordered memory model archs,
2272 * such as IA-64).
2273 */
2274 wmb();
2275
2276 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2277 tx_ring->next_to_use = i;
2278 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2279 /* we need this if more than one processor can write to our tail
2280 * at a time, it synchronizes IO on IA64/Altix systems
2281 */
2282 mmiowb();
2283 }
2284
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2285 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2286 struct net_device *netdev,
2287 struct igbvf_ring *tx_ring)
2288 {
2289 struct igbvf_adapter *adapter = netdev_priv(netdev);
2290 unsigned int first, tx_flags = 0;
2291 u8 hdr_len = 0;
2292 int count = 0;
2293 int tso = 0;
2294 __be16 protocol = vlan_get_protocol(skb);
2295
2296 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2297 dev_kfree_skb_any(skb);
2298 return NETDEV_TX_OK;
2299 }
2300
2301 if (skb->len <= 0) {
2302 dev_kfree_skb_any(skb);
2303 return NETDEV_TX_OK;
2304 }
2305
2306 /* need: count + 4 desc gap to keep tail from touching
2307 * + 2 desc gap to keep tail from touching head,
2308 * + 1 desc for skb->data,
2309 * + 1 desc for context descriptor,
2310 * head, otherwise try next time
2311 */
2312 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2313 /* this is a hard error */
2314 return NETDEV_TX_BUSY;
2315 }
2316
2317 if (skb_vlan_tag_present(skb)) {
2318 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2319 tx_flags |= (skb_vlan_tag_get(skb) <<
2320 IGBVF_TX_FLAGS_VLAN_SHIFT);
2321 }
2322
2323 if (protocol == htons(ETH_P_IP))
2324 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2325
2326 first = tx_ring->next_to_use;
2327
2328 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2329 if (unlikely(tso < 0)) {
2330 dev_kfree_skb_any(skb);
2331 return NETDEV_TX_OK;
2332 }
2333
2334 if (tso)
2335 tx_flags |= IGBVF_TX_FLAGS_TSO;
2336 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2337 (skb->ip_summed == CHECKSUM_PARTIAL))
2338 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2339
2340 /* count reflects descriptors mapped, if 0 then mapping error
2341 * has occurred and we need to rewind the descriptor queue
2342 */
2343 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2344
2345 if (count) {
2346 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2347 first, skb->len, hdr_len);
2348 /* Make sure there is space in the ring for the next send. */
2349 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2350 } else {
2351 dev_kfree_skb_any(skb);
2352 tx_ring->buffer_info[first].time_stamp = 0;
2353 tx_ring->next_to_use = first;
2354 }
2355
2356 return NETDEV_TX_OK;
2357 }
2358
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2359 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2360 struct net_device *netdev)
2361 {
2362 struct igbvf_adapter *adapter = netdev_priv(netdev);
2363 struct igbvf_ring *tx_ring;
2364
2365 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2366 dev_kfree_skb_any(skb);
2367 return NETDEV_TX_OK;
2368 }
2369
2370 tx_ring = &adapter->tx_ring[0];
2371
2372 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2373 }
2374
2375 /**
2376 * igbvf_tx_timeout - Respond to a Tx Hang
2377 * @netdev: network interface device structure
2378 **/
igbvf_tx_timeout(struct net_device * netdev)2379 static void igbvf_tx_timeout(struct net_device *netdev)
2380 {
2381 struct igbvf_adapter *adapter = netdev_priv(netdev);
2382
2383 /* Do the reset outside of interrupt context */
2384 adapter->tx_timeout_count++;
2385 schedule_work(&adapter->reset_task);
2386 }
2387
igbvf_reset_task(struct work_struct * work)2388 static void igbvf_reset_task(struct work_struct *work)
2389 {
2390 struct igbvf_adapter *adapter;
2391
2392 adapter = container_of(work, struct igbvf_adapter, reset_task);
2393
2394 igbvf_reinit_locked(adapter);
2395 }
2396
2397 /**
2398 * igbvf_change_mtu - Change the Maximum Transfer Unit
2399 * @netdev: network interface device structure
2400 * @new_mtu: new value for maximum frame size
2401 *
2402 * Returns 0 on success, negative on failure
2403 **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2404 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2405 {
2406 struct igbvf_adapter *adapter = netdev_priv(netdev);
2407 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2408
2409 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2410 usleep_range(1000, 2000);
2411 /* igbvf_down has a dependency on max_frame_size */
2412 adapter->max_frame_size = max_frame;
2413 if (netif_running(netdev))
2414 igbvf_down(adapter);
2415
2416 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2417 * means we reserve 2 more, this pushes us to allocate from the next
2418 * larger slab size.
2419 * i.e. RXBUFFER_2048 --> size-4096 slab
2420 * However with the new *_jumbo_rx* routines, jumbo receives will use
2421 * fragmented skbs
2422 */
2423
2424 if (max_frame <= 1024)
2425 adapter->rx_buffer_len = 1024;
2426 else if (max_frame <= 2048)
2427 adapter->rx_buffer_len = 2048;
2428 else
2429 #if (PAGE_SIZE / 2) > 16384
2430 adapter->rx_buffer_len = 16384;
2431 #else
2432 adapter->rx_buffer_len = PAGE_SIZE / 2;
2433 #endif
2434
2435 /* adjust allocation if LPE protects us, and we aren't using SBP */
2436 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2437 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2438 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2439 ETH_FCS_LEN;
2440
2441 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2442 netdev->mtu, new_mtu);
2443 netdev->mtu = new_mtu;
2444
2445 if (netif_running(netdev))
2446 igbvf_up(adapter);
2447 else
2448 igbvf_reset(adapter);
2449
2450 clear_bit(__IGBVF_RESETTING, &adapter->state);
2451
2452 return 0;
2453 }
2454
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2455 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2456 {
2457 switch (cmd) {
2458 default:
2459 return -EOPNOTSUPP;
2460 }
2461 }
2462
igbvf_suspend(struct pci_dev * pdev,pm_message_t state)2463 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2464 {
2465 struct net_device *netdev = pci_get_drvdata(pdev);
2466 struct igbvf_adapter *adapter = netdev_priv(netdev);
2467 #ifdef CONFIG_PM
2468 int retval = 0;
2469 #endif
2470
2471 netif_device_detach(netdev);
2472
2473 if (netif_running(netdev)) {
2474 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2475 igbvf_down(adapter);
2476 igbvf_free_irq(adapter);
2477 }
2478
2479 #ifdef CONFIG_PM
2480 retval = pci_save_state(pdev);
2481 if (retval)
2482 return retval;
2483 #endif
2484
2485 pci_disable_device(pdev);
2486
2487 return 0;
2488 }
2489
2490 #ifdef CONFIG_PM
igbvf_resume(struct pci_dev * pdev)2491 static int igbvf_resume(struct pci_dev *pdev)
2492 {
2493 struct net_device *netdev = pci_get_drvdata(pdev);
2494 struct igbvf_adapter *adapter = netdev_priv(netdev);
2495 u32 err;
2496
2497 pci_restore_state(pdev);
2498 err = pci_enable_device_mem(pdev);
2499 if (err) {
2500 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2501 return err;
2502 }
2503
2504 pci_set_master(pdev);
2505
2506 if (netif_running(netdev)) {
2507 err = igbvf_request_irq(adapter);
2508 if (err)
2509 return err;
2510 }
2511
2512 igbvf_reset(adapter);
2513
2514 if (netif_running(netdev))
2515 igbvf_up(adapter);
2516
2517 netif_device_attach(netdev);
2518
2519 return 0;
2520 }
2521 #endif
2522
igbvf_shutdown(struct pci_dev * pdev)2523 static void igbvf_shutdown(struct pci_dev *pdev)
2524 {
2525 igbvf_suspend(pdev, PMSG_SUSPEND);
2526 }
2527
2528 #ifdef CONFIG_NET_POLL_CONTROLLER
2529 /* Polling 'interrupt' - used by things like netconsole to send skbs
2530 * without having to re-enable interrupts. It's not called while
2531 * the interrupt routine is executing.
2532 */
igbvf_netpoll(struct net_device * netdev)2533 static void igbvf_netpoll(struct net_device *netdev)
2534 {
2535 struct igbvf_adapter *adapter = netdev_priv(netdev);
2536
2537 disable_irq(adapter->pdev->irq);
2538
2539 igbvf_clean_tx_irq(adapter->tx_ring);
2540
2541 enable_irq(adapter->pdev->irq);
2542 }
2543 #endif
2544
2545 /**
2546 * igbvf_io_error_detected - called when PCI error is detected
2547 * @pdev: Pointer to PCI device
2548 * @state: The current pci connection state
2549 *
2550 * This function is called after a PCI bus error affecting
2551 * this device has been detected.
2552 */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2553 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2554 pci_channel_state_t state)
2555 {
2556 struct net_device *netdev = pci_get_drvdata(pdev);
2557 struct igbvf_adapter *adapter = netdev_priv(netdev);
2558
2559 netif_device_detach(netdev);
2560
2561 if (state == pci_channel_io_perm_failure)
2562 return PCI_ERS_RESULT_DISCONNECT;
2563
2564 if (netif_running(netdev))
2565 igbvf_down(adapter);
2566 pci_disable_device(pdev);
2567
2568 /* Request a slot slot reset. */
2569 return PCI_ERS_RESULT_NEED_RESET;
2570 }
2571
2572 /**
2573 * igbvf_io_slot_reset - called after the pci bus has been reset.
2574 * @pdev: Pointer to PCI device
2575 *
2576 * Restart the card from scratch, as if from a cold-boot. Implementation
2577 * resembles the first-half of the igbvf_resume routine.
2578 */
igbvf_io_slot_reset(struct pci_dev * pdev)2579 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2580 {
2581 struct net_device *netdev = pci_get_drvdata(pdev);
2582 struct igbvf_adapter *adapter = netdev_priv(netdev);
2583
2584 if (pci_enable_device_mem(pdev)) {
2585 dev_err(&pdev->dev,
2586 "Cannot re-enable PCI device after reset.\n");
2587 return PCI_ERS_RESULT_DISCONNECT;
2588 }
2589 pci_set_master(pdev);
2590
2591 igbvf_reset(adapter);
2592
2593 return PCI_ERS_RESULT_RECOVERED;
2594 }
2595
2596 /**
2597 * igbvf_io_resume - called when traffic can start flowing again.
2598 * @pdev: Pointer to PCI device
2599 *
2600 * This callback is called when the error recovery driver tells us that
2601 * its OK to resume normal operation. Implementation resembles the
2602 * second-half of the igbvf_resume routine.
2603 */
igbvf_io_resume(struct pci_dev * pdev)2604 static void igbvf_io_resume(struct pci_dev *pdev)
2605 {
2606 struct net_device *netdev = pci_get_drvdata(pdev);
2607 struct igbvf_adapter *adapter = netdev_priv(netdev);
2608
2609 if (netif_running(netdev)) {
2610 if (igbvf_up(adapter)) {
2611 dev_err(&pdev->dev,
2612 "can't bring device back up after reset\n");
2613 return;
2614 }
2615 }
2616
2617 netif_device_attach(netdev);
2618 }
2619
igbvf_print_device_info(struct igbvf_adapter * adapter)2620 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2621 {
2622 struct e1000_hw *hw = &adapter->hw;
2623 struct net_device *netdev = adapter->netdev;
2624 struct pci_dev *pdev = adapter->pdev;
2625
2626 if (hw->mac.type == e1000_vfadapt_i350)
2627 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2628 else
2629 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2630 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2631 }
2632
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2633 static int igbvf_set_features(struct net_device *netdev,
2634 netdev_features_t features)
2635 {
2636 struct igbvf_adapter *adapter = netdev_priv(netdev);
2637
2638 if (features & NETIF_F_RXCSUM)
2639 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2640 else
2641 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2642
2643 return 0;
2644 }
2645
2646 #define IGBVF_MAX_MAC_HDR_LEN 127
2647 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2648
2649 static netdev_features_t
igbvf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2650 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2651 netdev_features_t features)
2652 {
2653 unsigned int network_hdr_len, mac_hdr_len;
2654
2655 /* Make certain the headers can be described by a context descriptor */
2656 mac_hdr_len = skb_network_header(skb) - skb->data;
2657 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2658 return features & ~(NETIF_F_HW_CSUM |
2659 NETIF_F_SCTP_CRC |
2660 NETIF_F_HW_VLAN_CTAG_TX |
2661 NETIF_F_TSO |
2662 NETIF_F_TSO6);
2663
2664 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2665 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2666 return features & ~(NETIF_F_HW_CSUM |
2667 NETIF_F_SCTP_CRC |
2668 NETIF_F_TSO |
2669 NETIF_F_TSO6);
2670
2671 /* We can only support IPV4 TSO in tunnels if we can mangle the
2672 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2673 */
2674 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2675 features &= ~NETIF_F_TSO;
2676
2677 return features;
2678 }
2679
2680 static const struct net_device_ops igbvf_netdev_ops = {
2681 .ndo_open = igbvf_open,
2682 .ndo_stop = igbvf_close,
2683 .ndo_start_xmit = igbvf_xmit_frame,
2684 .ndo_set_rx_mode = igbvf_set_rx_mode,
2685 .ndo_set_mac_address = igbvf_set_mac,
2686 .ndo_change_mtu = igbvf_change_mtu,
2687 .ndo_do_ioctl = igbvf_ioctl,
2688 .ndo_tx_timeout = igbvf_tx_timeout,
2689 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2690 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2691 #ifdef CONFIG_NET_POLL_CONTROLLER
2692 .ndo_poll_controller = igbvf_netpoll,
2693 #endif
2694 .ndo_set_features = igbvf_set_features,
2695 .ndo_features_check = igbvf_features_check,
2696 };
2697
2698 /**
2699 * igbvf_probe - Device Initialization Routine
2700 * @pdev: PCI device information struct
2701 * @ent: entry in igbvf_pci_tbl
2702 *
2703 * Returns 0 on success, negative on failure
2704 *
2705 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2706 * The OS initialization, configuring of the adapter private structure,
2707 * and a hardware reset occur.
2708 **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2709 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2710 {
2711 struct net_device *netdev;
2712 struct igbvf_adapter *adapter;
2713 struct e1000_hw *hw;
2714 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2715
2716 static int cards_found;
2717 int err, pci_using_dac;
2718
2719 err = pci_enable_device_mem(pdev);
2720 if (err)
2721 return err;
2722
2723 pci_using_dac = 0;
2724 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2725 if (!err) {
2726 pci_using_dac = 1;
2727 } else {
2728 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2729 if (err) {
2730 dev_err(&pdev->dev,
2731 "No usable DMA configuration, aborting\n");
2732 goto err_dma;
2733 }
2734 }
2735
2736 err = pci_request_regions(pdev, igbvf_driver_name);
2737 if (err)
2738 goto err_pci_reg;
2739
2740 pci_set_master(pdev);
2741
2742 err = -ENOMEM;
2743 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2744 if (!netdev)
2745 goto err_alloc_etherdev;
2746
2747 SET_NETDEV_DEV(netdev, &pdev->dev);
2748
2749 pci_set_drvdata(pdev, netdev);
2750 adapter = netdev_priv(netdev);
2751 hw = &adapter->hw;
2752 adapter->netdev = netdev;
2753 adapter->pdev = pdev;
2754 adapter->ei = ei;
2755 adapter->pba = ei->pba;
2756 adapter->flags = ei->flags;
2757 adapter->hw.back = adapter;
2758 adapter->hw.mac.type = ei->mac;
2759 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2760
2761 /* PCI config space info */
2762
2763 hw->vendor_id = pdev->vendor;
2764 hw->device_id = pdev->device;
2765 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2766 hw->subsystem_device_id = pdev->subsystem_device;
2767 hw->revision_id = pdev->revision;
2768
2769 err = -EIO;
2770 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2771 pci_resource_len(pdev, 0));
2772
2773 if (!adapter->hw.hw_addr)
2774 goto err_ioremap;
2775
2776 if (ei->get_variants) {
2777 err = ei->get_variants(adapter);
2778 if (err)
2779 goto err_get_variants;
2780 }
2781
2782 /* setup adapter struct */
2783 err = igbvf_sw_init(adapter);
2784 if (err)
2785 goto err_sw_init;
2786
2787 /* construct the net_device struct */
2788 netdev->netdev_ops = &igbvf_netdev_ops;
2789
2790 igbvf_set_ethtool_ops(netdev);
2791 netdev->watchdog_timeo = 5 * HZ;
2792 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2793
2794 adapter->bd_number = cards_found++;
2795
2796 netdev->hw_features = NETIF_F_SG |
2797 NETIF_F_TSO |
2798 NETIF_F_TSO6 |
2799 NETIF_F_RXCSUM |
2800 NETIF_F_HW_CSUM |
2801 NETIF_F_SCTP_CRC;
2802
2803 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2804 NETIF_F_GSO_GRE_CSUM | \
2805 NETIF_F_GSO_IPXIP4 | \
2806 NETIF_F_GSO_IPXIP6 | \
2807 NETIF_F_GSO_UDP_TUNNEL | \
2808 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2809
2810 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2811 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2812 IGBVF_GSO_PARTIAL_FEATURES;
2813
2814 netdev->features = netdev->hw_features;
2815
2816 if (pci_using_dac)
2817 netdev->features |= NETIF_F_HIGHDMA;
2818
2819 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2820 netdev->mpls_features |= NETIF_F_HW_CSUM;
2821 netdev->hw_enc_features |= netdev->vlan_features;
2822
2823 /* set this bit last since it cannot be part of vlan_features */
2824 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2825 NETIF_F_HW_VLAN_CTAG_RX |
2826 NETIF_F_HW_VLAN_CTAG_TX;
2827
2828 /* MTU range: 68 - 9216 */
2829 netdev->min_mtu = ETH_MIN_MTU;
2830 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2831
2832 spin_lock_bh(&hw->mbx_lock);
2833
2834 /*reset the controller to put the device in a known good state */
2835 err = hw->mac.ops.reset_hw(hw);
2836 if (err) {
2837 dev_info(&pdev->dev,
2838 "PF still in reset state. Is the PF interface up?\n");
2839 } else {
2840 err = hw->mac.ops.read_mac_addr(hw);
2841 if (err)
2842 dev_info(&pdev->dev, "Error reading MAC address.\n");
2843 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2844 dev_info(&pdev->dev,
2845 "MAC address not assigned by administrator.\n");
2846 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2847 netdev->addr_len);
2848 }
2849
2850 spin_unlock_bh(&hw->mbx_lock);
2851
2852 if (!is_valid_ether_addr(netdev->dev_addr)) {
2853 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2854 eth_hw_addr_random(netdev);
2855 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2856 netdev->addr_len);
2857 }
2858
2859 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2860
2861 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2862 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2863
2864 /* ring size defaults */
2865 adapter->rx_ring->count = 1024;
2866 adapter->tx_ring->count = 1024;
2867
2868 /* reset the hardware with the new settings */
2869 igbvf_reset(adapter);
2870
2871 /* set hardware-specific flags */
2872 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2873 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2874
2875 strcpy(netdev->name, "eth%d");
2876 err = register_netdev(netdev);
2877 if (err)
2878 goto err_hw_init;
2879
2880 /* tell the stack to leave us alone until igbvf_open() is called */
2881 netif_carrier_off(netdev);
2882 netif_stop_queue(netdev);
2883
2884 igbvf_print_device_info(adapter);
2885
2886 igbvf_initialize_last_counter_stats(adapter);
2887
2888 return 0;
2889
2890 err_hw_init:
2891 kfree(adapter->tx_ring);
2892 kfree(adapter->rx_ring);
2893 err_sw_init:
2894 igbvf_reset_interrupt_capability(adapter);
2895 err_get_variants:
2896 iounmap(adapter->hw.hw_addr);
2897 err_ioremap:
2898 free_netdev(netdev);
2899 err_alloc_etherdev:
2900 pci_release_regions(pdev);
2901 err_pci_reg:
2902 err_dma:
2903 pci_disable_device(pdev);
2904 return err;
2905 }
2906
2907 /**
2908 * igbvf_remove - Device Removal Routine
2909 * @pdev: PCI device information struct
2910 *
2911 * igbvf_remove is called by the PCI subsystem to alert the driver
2912 * that it should release a PCI device. The could be caused by a
2913 * Hot-Plug event, or because the driver is going to be removed from
2914 * memory.
2915 **/
igbvf_remove(struct pci_dev * pdev)2916 static void igbvf_remove(struct pci_dev *pdev)
2917 {
2918 struct net_device *netdev = pci_get_drvdata(pdev);
2919 struct igbvf_adapter *adapter = netdev_priv(netdev);
2920 struct e1000_hw *hw = &adapter->hw;
2921
2922 /* The watchdog timer may be rescheduled, so explicitly
2923 * disable it from being rescheduled.
2924 */
2925 set_bit(__IGBVF_DOWN, &adapter->state);
2926 del_timer_sync(&adapter->watchdog_timer);
2927
2928 cancel_work_sync(&adapter->reset_task);
2929 cancel_work_sync(&adapter->watchdog_task);
2930
2931 unregister_netdev(netdev);
2932
2933 igbvf_reset_interrupt_capability(adapter);
2934
2935 /* it is important to delete the NAPI struct prior to freeing the
2936 * Rx ring so that you do not end up with null pointer refs
2937 */
2938 netif_napi_del(&adapter->rx_ring->napi);
2939 kfree(adapter->tx_ring);
2940 kfree(adapter->rx_ring);
2941
2942 iounmap(hw->hw_addr);
2943 if (hw->flash_address)
2944 iounmap(hw->flash_address);
2945 pci_release_regions(pdev);
2946
2947 free_netdev(netdev);
2948
2949 pci_disable_device(pdev);
2950 }
2951
2952 /* PCI Error Recovery (ERS) */
2953 static const struct pci_error_handlers igbvf_err_handler = {
2954 .error_detected = igbvf_io_error_detected,
2955 .slot_reset = igbvf_io_slot_reset,
2956 .resume = igbvf_io_resume,
2957 };
2958
2959 static const struct pci_device_id igbvf_pci_tbl[] = {
2960 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2961 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2962 { } /* terminate list */
2963 };
2964 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2965
2966 /* PCI Device API Driver */
2967 static struct pci_driver igbvf_driver = {
2968 .name = igbvf_driver_name,
2969 .id_table = igbvf_pci_tbl,
2970 .probe = igbvf_probe,
2971 .remove = igbvf_remove,
2972 #ifdef CONFIG_PM
2973 /* Power Management Hooks */
2974 .suspend = igbvf_suspend,
2975 .resume = igbvf_resume,
2976 #endif
2977 .shutdown = igbvf_shutdown,
2978 .err_handler = &igbvf_err_handler
2979 };
2980
2981 /**
2982 * igbvf_init_module - Driver Registration Routine
2983 *
2984 * igbvf_init_module is the first routine called when the driver is
2985 * loaded. All it does is register with the PCI subsystem.
2986 **/
igbvf_init_module(void)2987 static int __init igbvf_init_module(void)
2988 {
2989 int ret;
2990
2991 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2992 pr_info("%s\n", igbvf_copyright);
2993
2994 ret = pci_register_driver(&igbvf_driver);
2995
2996 return ret;
2997 }
2998 module_init(igbvf_init_module);
2999
3000 /**
3001 * igbvf_exit_module - Driver Exit Cleanup Routine
3002 *
3003 * igbvf_exit_module is called just before the driver is removed
3004 * from memory.
3005 **/
igbvf_exit_module(void)3006 static void __exit igbvf_exit_module(void)
3007 {
3008 pci_unregister_driver(&igbvf_driver);
3009 }
3010 module_exit(igbvf_exit_module);
3011
3012 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3013 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3014 MODULE_LICENSE("GPL");
3015 MODULE_VERSION(DRV_VERSION);
3016
3017 /* netdev.c */
3018