• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Battery driver for CPCAP PMIC
3  *
4  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
5  *
6  * Some parts of the code based on earlie Motorola mapphone Linux kernel
7  * drivers:
8  *
9  * Copyright (C) 2009-2010 Motorola, Inc.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14 
15  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
16  * kind, whether express or implied; without even the implied warranty
17  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/power_supply.h>
29 #include <linux/reboot.h>
30 #include <linux/regmap.h>
31 
32 #include <linux/iio/consumer.h>
33 #include <linux/iio/types.h>
34 #include <linux/mfd/motorola-cpcap.h>
35 
36 #include <asm/div64.h>
37 
38 /*
39  * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
40  * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
41  * to enable BATTDETEN, LOBAT and EOL features. We currently use
42  * LOBAT interrupts instead of EOL.
43  */
44 #define CPCAP_REG_BPEOL_BIT_EOL9	BIT(9)	/* Set for EOL irq */
45 #define CPCAP_REG_BPEOL_BIT_EOL8	BIT(8)	/* Set for EOL irq */
46 #define CPCAP_REG_BPEOL_BIT_UNKNOWN7	BIT(7)
47 #define CPCAP_REG_BPEOL_BIT_UNKNOWN6	BIT(6)
48 #define CPCAP_REG_BPEOL_BIT_UNKNOWN5	BIT(5)
49 #define CPCAP_REG_BPEOL_BIT_EOL_MULTI	BIT(4)	/* Set for multiple EOL irqs */
50 #define CPCAP_REG_BPEOL_BIT_UNKNOWN3	BIT(3)
51 #define CPCAP_REG_BPEOL_BIT_UNKNOWN2	BIT(2)
52 #define CPCAP_REG_BPEOL_BIT_BATTDETEN	BIT(1)	/* Enable battery detect */
53 #define CPCAP_REG_BPEOL_BIT_EOLSEL	BIT(0)	/* BPDET = 0, EOL = 1 */
54 
55 #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS	250
56 
57 enum {
58 	CPCAP_BATTERY_IIO_BATTDET,
59 	CPCAP_BATTERY_IIO_VOLTAGE,
60 	CPCAP_BATTERY_IIO_CHRG_CURRENT,
61 	CPCAP_BATTERY_IIO_BATT_CURRENT,
62 	CPCAP_BATTERY_IIO_NR,
63 };
64 
65 enum cpcap_battery_irq_action {
66 	CPCAP_BATTERY_IRQ_ACTION_NONE,
67 	CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
68 	CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
69 };
70 
71 struct cpcap_interrupt_desc {
72 	const char *name;
73 	struct list_head node;
74 	int irq;
75 	enum cpcap_battery_irq_action action;
76 };
77 
78 struct cpcap_battery_config {
79 	int ccm;
80 	int cd_factor;
81 	struct power_supply_info info;
82 };
83 
84 struct cpcap_coulomb_counter_data {
85 	s32 sample;		/* 24 or 32 bits */
86 	s32 accumulator;
87 	s16 offset;		/* 10-bits */
88 };
89 
90 enum cpcap_battery_state {
91 	CPCAP_BATTERY_STATE_PREVIOUS,
92 	CPCAP_BATTERY_STATE_LATEST,
93 	CPCAP_BATTERY_STATE_NR,
94 };
95 
96 struct cpcap_battery_state_data {
97 	int voltage;
98 	int current_ua;
99 	int counter_uah;
100 	int temperature;
101 	ktime_t time;
102 	struct cpcap_coulomb_counter_data cc;
103 };
104 
105 struct cpcap_battery_ddata {
106 	struct device *dev;
107 	struct regmap *reg;
108 	struct list_head irq_list;
109 	struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
110 	struct power_supply *psy;
111 	struct cpcap_battery_config config;
112 	struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
113 	atomic_t active;
114 	int status;
115 	u16 vendor;
116 };
117 
118 #define CPCAP_NO_BATTERY	-400
119 
120 static struct cpcap_battery_state_data *
cpcap_battery_get_state(struct cpcap_battery_ddata * ddata,enum cpcap_battery_state state)121 cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
122 			enum cpcap_battery_state state)
123 {
124 	if (state >= CPCAP_BATTERY_STATE_NR)
125 		return NULL;
126 
127 	return &ddata->state[state];
128 }
129 
130 static struct cpcap_battery_state_data *
cpcap_battery_latest(struct cpcap_battery_ddata * ddata)131 cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
132 {
133 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
134 }
135 
136 static struct cpcap_battery_state_data *
cpcap_battery_previous(struct cpcap_battery_ddata * ddata)137 cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
138 {
139 	return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
140 }
141 
cpcap_charger_battery_temperature(struct cpcap_battery_ddata * ddata,int * value)142 static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
143 					     int *value)
144 {
145 	struct iio_channel *channel;
146 	int error;
147 
148 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
149 	error = iio_read_channel_processed(channel, value);
150 	if (error < 0) {
151 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
152 		*value = CPCAP_NO_BATTERY;
153 
154 		return error;
155 	}
156 
157 	*value /= 100;
158 
159 	return 0;
160 }
161 
cpcap_battery_get_voltage(struct cpcap_battery_ddata * ddata)162 static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
163 {
164 	struct iio_channel *channel;
165 	int error, value = 0;
166 
167 	channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
168 	error = iio_read_channel_processed(channel, &value);
169 	if (error < 0) {
170 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
171 
172 		return 0;
173 	}
174 
175 	return value * 1000;
176 }
177 
cpcap_battery_get_current(struct cpcap_battery_ddata * ddata)178 static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
179 {
180 	struct iio_channel *channel;
181 	int error, value = 0;
182 
183 	channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
184 	error = iio_read_channel_processed(channel, &value);
185 	if (error < 0) {
186 		dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
187 
188 		return 0;
189 	}
190 
191 	return value * 1000;
192 }
193 
194 /**
195  * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
196  * @ddata: device driver data
197  * @sample: coulomb counter sample value
198  * @accumulator: coulomb counter integrator value
199  * @offset: coulomb counter offset value
200  * @divider: conversion divider
201  *
202  * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
203  * function data_get_avg_curr_ua() and seem to be based on measured test
204  * results. It also has the following comment:
205  *
206  * Adjustment factors are applied here as a temp solution per the test
207  * results. Need to work out a formal solution for this adjustment.
208  *
209  * A coulomb counter for similar hardware seems to be documented in
210  * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
211  * "10 Calculating Accumulated Current". We however follow what the
212  * Motorola mapphone Linux kernel is doing as there may be either a
213  * TI or ST coulomb counter in the PMIC.
214  */
cpcap_battery_cc_raw_div(struct cpcap_battery_ddata * ddata,s32 sample,s32 accumulator,s16 offset,u32 divider)215 static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
216 				    s32 sample, s32 accumulator,
217 				    s16 offset, u32 divider)
218 {
219 	s64 acc;
220 	u64 tmp;
221 	int avg_current;
222 	u32 cc_lsb;
223 
224 	if (!divider)
225 		return 0;
226 
227 	offset &= 0x7ff;		/* 10-bits, signed */
228 
229 	switch (ddata->vendor) {
230 	case CPCAP_VENDOR_ST:
231 		cc_lsb = 95374;		/* μAms per LSB */
232 		break;
233 	case CPCAP_VENDOR_TI:
234 		cc_lsb = 91501;		/* μAms per LSB */
235 		break;
236 	default:
237 		return -EINVAL;
238 	}
239 
240 	acc = accumulator;
241 	acc = acc - ((s64)sample * offset);
242 	cc_lsb = (cc_lsb * ddata->config.cd_factor) / 1000;
243 
244 	if (acc >=  0)
245 		tmp = acc;
246 	else
247 		tmp = acc * -1;
248 
249 	tmp = tmp * cc_lsb;
250 	do_div(tmp, divider);
251 	avg_current = tmp;
252 
253 	if (acc >= 0)
254 		return -avg_current;
255 	else
256 		return avg_current;
257 }
258 
259 /* 3600000μAms = 1μAh */
cpcap_battery_cc_to_uah(struct cpcap_battery_ddata * ddata,s32 sample,s32 accumulator,s16 offset)260 static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
261 				   s32 sample, s32 accumulator,
262 				   s16 offset)
263 {
264 	return cpcap_battery_cc_raw_div(ddata, sample,
265 					accumulator, offset,
266 					3600000);
267 }
268 
cpcap_battery_cc_to_ua(struct cpcap_battery_ddata * ddata,s32 sample,s32 accumulator,s16 offset)269 static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
270 				  s32 sample, s32 accumulator,
271 				  s16 offset)
272 {
273 	return cpcap_battery_cc_raw_div(ddata, sample,
274 					accumulator, offset,
275 					sample *
276 					CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
277 }
278 
279 /**
280  * cpcap_battery_read_accumulated - reads cpcap coulomb counter
281  * @ddata: device driver data
282  * @regs: coulomb counter values
283  *
284  * Based on Motorola mapphone kernel function data_read_regs().
285  * Looking at the registers, the coulomb counter seems similar to
286  * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
287  * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
288  *
289  * Note that swca095a.pdf instructs to stop the coulomb counter
290  * before reading to avoid values changing. Motorola mapphone
291  * Linux kernel does not do it, so let's assume they've verified
292  * the data produced is correct.
293  */
294 static int
cpcap_battery_read_accumulated(struct cpcap_battery_ddata * ddata,struct cpcap_coulomb_counter_data * ccd)295 cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
296 			       struct cpcap_coulomb_counter_data *ccd)
297 {
298 	u16 buf[7];	/* CPCAP_REG_CC1 to CCI */
299 	int error;
300 
301 	ccd->sample = 0;
302 	ccd->accumulator = 0;
303 	ccd->offset = 0;
304 
305 	/* Read coulomb counter register range */
306 	error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
307 				 buf, ARRAY_SIZE(buf));
308 	if (error)
309 		return 0;
310 
311 	/* Sample value CPCAP_REG_CCS1 & 2 */
312 	ccd->sample = (buf[1] & 0x0fff) << 16;
313 	ccd->sample |= buf[0];
314 	if (ddata->vendor == CPCAP_VENDOR_TI)
315 		ccd->sample = sign_extend32(24, ccd->sample);
316 
317 	/* Accumulator value CPCAP_REG_CCA1 & 2 */
318 	ccd->accumulator = ((s16)buf[3]) << 16;
319 	ccd->accumulator |= buf[2];
320 
321 	/* Offset value CPCAP_REG_CCO */
322 	ccd->offset = buf[5];
323 
324 	/* Adjust offset based on mode value CPCAP_REG_CCM? */
325 	if (buf[4] >= 0x200)
326 		ccd->offset |= 0xfc00;
327 
328 	return cpcap_battery_cc_to_uah(ddata,
329 				       ccd->sample,
330 				       ccd->accumulator,
331 				       ccd->offset);
332 }
333 
334 /**
335  * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
336  * @ddata: cpcap battery driver device data
337  */
cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata * ddata)338 static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
339 {
340 	int value, acc, error;
341 	s32 sample = 1;
342 	s16 offset;
343 
344 	if (ddata->vendor == CPCAP_VENDOR_ST)
345 		sample = 4;
346 
347 	/* Coulomb counter integrator */
348 	error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
349 	if (error)
350 		return error;
351 
352 	if ((ddata->vendor == CPCAP_VENDOR_TI) && (value > 0x2000))
353 		value = value | 0xc000;
354 
355 	acc = (s16)value;
356 
357 	/* Coulomb counter sample time */
358 	error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
359 	if (error)
360 		return error;
361 
362 	if (value < 0x200)
363 		offset = value;
364 	else
365 		offset = value | 0xfc00;
366 
367 	return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
368 }
369 
cpcap_battery_full(struct cpcap_battery_ddata * ddata)370 static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
371 {
372 	struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
373 
374 	/* Basically anything that measures above 4347000 is full */
375 	if (state->voltage >= (ddata->config.info.voltage_max_design - 4000))
376 		return true;
377 
378 	return false;
379 }
380 
cpcap_battery_update_status(struct cpcap_battery_ddata * ddata)381 static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
382 {
383 	struct cpcap_battery_state_data state, *latest, *previous;
384 	ktime_t now;
385 	int error;
386 
387 	memset(&state, 0, sizeof(state));
388 	now = ktime_get();
389 
390 	latest = cpcap_battery_latest(ddata);
391 	if (latest) {
392 		s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
393 
394 		if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
395 			return delta_ms;
396 	}
397 
398 	state.time = now;
399 	state.voltage = cpcap_battery_get_voltage(ddata);
400 	state.current_ua = cpcap_battery_get_current(ddata);
401 	state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
402 
403 	error = cpcap_charger_battery_temperature(ddata,
404 						  &state.temperature);
405 	if (error)
406 		return error;
407 
408 	previous = cpcap_battery_previous(ddata);
409 	memcpy(previous, latest, sizeof(*previous));
410 	memcpy(latest, &state, sizeof(*latest));
411 
412 	return 0;
413 }
414 
415 static enum power_supply_property cpcap_battery_props[] = {
416 	POWER_SUPPLY_PROP_STATUS,
417 	POWER_SUPPLY_PROP_PRESENT,
418 	POWER_SUPPLY_PROP_TECHNOLOGY,
419 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
420 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
421 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
422 	POWER_SUPPLY_PROP_CURRENT_AVG,
423 	POWER_SUPPLY_PROP_CURRENT_NOW,
424 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
425 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
426 	POWER_SUPPLY_PROP_POWER_NOW,
427 	POWER_SUPPLY_PROP_POWER_AVG,
428 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
429 	POWER_SUPPLY_PROP_SCOPE,
430 	POWER_SUPPLY_PROP_TEMP,
431 };
432 
cpcap_battery_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)433 static int cpcap_battery_get_property(struct power_supply *psy,
434 				      enum power_supply_property psp,
435 				      union power_supply_propval *val)
436 {
437 	struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
438 	struct cpcap_battery_state_data *latest, *previous;
439 	u32 sample;
440 	s32 accumulator;
441 	int cached;
442 	s64 tmp;
443 
444 	cached = cpcap_battery_update_status(ddata);
445 	if (cached < 0)
446 		return cached;
447 
448 	latest = cpcap_battery_latest(ddata);
449 	previous = cpcap_battery_previous(ddata);
450 
451 	switch (psp) {
452 	case POWER_SUPPLY_PROP_PRESENT:
453 		if (latest->temperature > CPCAP_NO_BATTERY)
454 			val->intval = 1;
455 		else
456 			val->intval = 0;
457 		break;
458 	case POWER_SUPPLY_PROP_STATUS:
459 		if (cpcap_battery_full(ddata)) {
460 			val->intval = POWER_SUPPLY_STATUS_FULL;
461 			break;
462 		}
463 		if (cpcap_battery_cc_get_avg_current(ddata) < 0)
464 			val->intval = POWER_SUPPLY_STATUS_CHARGING;
465 		else
466 			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
467 		break;
468 	case POWER_SUPPLY_PROP_TECHNOLOGY:
469 		val->intval = ddata->config.info.technology;
470 		break;
471 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
472 		val->intval = cpcap_battery_get_voltage(ddata);
473 		break;
474 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
475 		val->intval = ddata->config.info.voltage_max_design;
476 		break;
477 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
478 		val->intval = ddata->config.info.voltage_min_design;
479 		break;
480 	case POWER_SUPPLY_PROP_CURRENT_AVG:
481 		if (cached) {
482 			val->intval = cpcap_battery_cc_get_avg_current(ddata);
483 			break;
484 		}
485 		sample = latest->cc.sample - previous->cc.sample;
486 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
487 		val->intval = cpcap_battery_cc_to_ua(ddata, sample,
488 						     accumulator,
489 						     latest->cc.offset);
490 		break;
491 	case POWER_SUPPLY_PROP_CURRENT_NOW:
492 		val->intval = latest->current_ua;
493 		break;
494 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
495 		val->intval = latest->counter_uah;
496 		break;
497 	case POWER_SUPPLY_PROP_POWER_NOW:
498 		tmp = (latest->voltage / 10000) * latest->current_ua;
499 		val->intval = div64_s64(tmp, 100);
500 		break;
501 	case POWER_SUPPLY_PROP_POWER_AVG:
502 		if (cached) {
503 			tmp = cpcap_battery_cc_get_avg_current(ddata);
504 			tmp *= (latest->voltage / 10000);
505 			val->intval = div64_s64(tmp, 100);
506 			break;
507 		}
508 		sample = latest->cc.sample - previous->cc.sample;
509 		accumulator = latest->cc.accumulator - previous->cc.accumulator;
510 		tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
511 					     latest->cc.offset);
512 		tmp *= ((latest->voltage + previous->voltage) / 20000);
513 		val->intval = div64_s64(tmp, 100);
514 		break;
515 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
516 		if (cpcap_battery_full(ddata))
517 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
518 		else if (latest->voltage >= 3750000)
519 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
520 		else if (latest->voltage >= 3300000)
521 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
522 		else if (latest->voltage > 3100000)
523 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
524 		else if (latest->voltage <= 3100000)
525 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
526 		else
527 			val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
528 		break;
529 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
530 		val->intval = ddata->config.info.charge_full_design;
531 		break;
532 	case POWER_SUPPLY_PROP_SCOPE:
533 		val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
534 		break;
535 	case POWER_SUPPLY_PROP_TEMP:
536 		val->intval = latest->temperature;
537 		break;
538 	default:
539 		return -EINVAL;
540 	}
541 
542 	return 0;
543 }
544 
cpcap_battery_irq_thread(int irq,void * data)545 static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
546 {
547 	struct cpcap_battery_ddata *ddata = data;
548 	struct cpcap_battery_state_data *latest;
549 	struct cpcap_interrupt_desc *d;
550 
551 	if (!atomic_read(&ddata->active))
552 		return IRQ_NONE;
553 
554 	list_for_each_entry(d, &ddata->irq_list, node) {
555 		if (irq == d->irq)
556 			break;
557 	}
558 
559 	if (!d)
560 		return IRQ_NONE;
561 
562 	latest = cpcap_battery_latest(ddata);
563 
564 	switch (d->action) {
565 	case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
566 		if (latest->counter_uah >= 0)
567 			dev_warn(ddata->dev, "Battery low at 3.3V!\n");
568 		break;
569 	case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
570 		if (latest->counter_uah >= 0) {
571 			dev_emerg(ddata->dev,
572 				  "Battery empty at 3.1V, powering off\n");
573 			orderly_poweroff(true);
574 		}
575 		break;
576 	default:
577 		break;
578 	}
579 
580 	power_supply_changed(ddata->psy);
581 
582 	return IRQ_HANDLED;
583 }
584 
cpcap_battery_init_irq(struct platform_device * pdev,struct cpcap_battery_ddata * ddata,const char * name)585 static int cpcap_battery_init_irq(struct platform_device *pdev,
586 				  struct cpcap_battery_ddata *ddata,
587 				  const char *name)
588 {
589 	struct cpcap_interrupt_desc *d;
590 	int irq, error;
591 
592 	irq = platform_get_irq_byname(pdev, name);
593 	if (irq < 0)
594 		return irq;
595 
596 	error = devm_request_threaded_irq(ddata->dev, irq, NULL,
597 					  cpcap_battery_irq_thread,
598 					  IRQF_SHARED,
599 					  name, ddata);
600 	if (error) {
601 		dev_err(ddata->dev, "could not get irq %s: %i\n",
602 			name, error);
603 
604 		return error;
605 	}
606 
607 	d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
608 	if (!d)
609 		return -ENOMEM;
610 
611 	d->name = name;
612 	d->irq = irq;
613 
614 	if (!strncmp(name, "lowbph", 6))
615 		d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
616 	else if (!strncmp(name, "lowbpl", 6))
617 		d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
618 
619 	list_add(&d->node, &ddata->irq_list);
620 
621 	return 0;
622 }
623 
cpcap_battery_init_interrupts(struct platform_device * pdev,struct cpcap_battery_ddata * ddata)624 static int cpcap_battery_init_interrupts(struct platform_device *pdev,
625 					 struct cpcap_battery_ddata *ddata)
626 {
627 	const char * const cpcap_battery_irqs[] = {
628 		"eol", "lowbph", "lowbpl",
629 		"chrgcurr1", "battdetb"
630 	};
631 	int i, error;
632 
633 	for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
634 		error = cpcap_battery_init_irq(pdev, ddata,
635 					       cpcap_battery_irqs[i]);
636 		if (error)
637 			return error;
638 	}
639 
640 	/* Enable low battery interrupts for 3.3V high and 3.1V low */
641 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
642 				   0xffff,
643 				   CPCAP_REG_BPEOL_BIT_BATTDETEN);
644 	if (error)
645 		return error;
646 
647 	return 0;
648 }
649 
cpcap_battery_init_iio(struct cpcap_battery_ddata * ddata)650 static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
651 {
652 	const char * const names[CPCAP_BATTERY_IIO_NR] = {
653 		"battdetb", "battp", "chg_isense", "batti",
654 	};
655 	int error, i;
656 
657 	for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
658 		ddata->channels[i] = devm_iio_channel_get(ddata->dev,
659 							  names[i]);
660 		if (IS_ERR(ddata->channels[i])) {
661 			error = PTR_ERR(ddata->channels[i]);
662 			goto out_err;
663 		}
664 
665 		if (!ddata->channels[i]->indio_dev) {
666 			error = -ENXIO;
667 			goto out_err;
668 		}
669 	}
670 
671 	return 0;
672 
673 out_err:
674 	dev_err(ddata->dev, "could not initialize VBUS or ID IIO: %i\n",
675 		error);
676 
677 	return error;
678 }
679 
680 /*
681  * Based on the values from Motorola mapphone Linux kernel. In the
682  * the Motorola mapphone Linux kernel tree the value for pm_cd_factor
683  * is passed to the kernel via device tree. If it turns out to be
684  * something device specific we can consider that too later.
685  *
686  * And looking at the battery full and shutdown values for the stock
687  * kernel on droid 4, full is 4351000 and software initiates shutdown
688  * at 3078000. The device will die around 2743000.
689  */
690 static const struct cpcap_battery_config cpcap_battery_default_data = {
691 	.ccm = 0x3ff,
692 	.cd_factor = 0x3cc,
693 	.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
694 	.info.voltage_max_design = 4351000,
695 	.info.voltage_min_design = 3100000,
696 	.info.charge_full_design = 1740000,
697 };
698 
699 #ifdef CONFIG_OF
700 static const struct of_device_id cpcap_battery_id_table[] = {
701 	{
702 		.compatible = "motorola,cpcap-battery",
703 		.data = &cpcap_battery_default_data,
704 	},
705 	{},
706 };
707 MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
708 #endif
709 
cpcap_battery_probe(struct platform_device * pdev)710 static int cpcap_battery_probe(struct platform_device *pdev)
711 {
712 	struct power_supply_desc *psy_desc;
713 	struct cpcap_battery_ddata *ddata;
714 	const struct of_device_id *match;
715 	struct power_supply_config psy_cfg = {};
716 	int error;
717 
718 	match = of_match_device(of_match_ptr(cpcap_battery_id_table),
719 				&pdev->dev);
720 	if (!match)
721 		return -EINVAL;
722 
723 	if (!match->data) {
724 		dev_err(&pdev->dev, "no configuration data found\n");
725 
726 		return -ENODEV;
727 	}
728 
729 	ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
730 	if (!ddata)
731 		return -ENOMEM;
732 
733 	INIT_LIST_HEAD(&ddata->irq_list);
734 	ddata->dev = &pdev->dev;
735 	memcpy(&ddata->config, match->data, sizeof(ddata->config));
736 
737 	ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
738 	if (!ddata->reg)
739 		return -ENODEV;
740 
741 	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
742 	if (error)
743 		return error;
744 
745 	platform_set_drvdata(pdev, ddata);
746 
747 	error = regmap_update_bits(ddata->reg, CPCAP_REG_CCM,
748 				   0xffff, ddata->config.ccm);
749 	if (error)
750 		return error;
751 
752 	error = cpcap_battery_init_interrupts(pdev, ddata);
753 	if (error)
754 		return error;
755 
756 	error = cpcap_battery_init_iio(ddata);
757 	if (error)
758 		return error;
759 
760 	psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
761 	if (!psy_desc)
762 		return -ENOMEM;
763 
764 	psy_desc->name = "battery",
765 	psy_desc->type = POWER_SUPPLY_TYPE_BATTERY,
766 	psy_desc->properties = cpcap_battery_props,
767 	psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props),
768 	psy_desc->get_property = cpcap_battery_get_property,
769 
770 	psy_cfg.of_node = pdev->dev.of_node;
771 	psy_cfg.drv_data = ddata;
772 
773 	ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
774 						&psy_cfg);
775 	error = PTR_ERR_OR_ZERO(ddata->psy);
776 	if (error) {
777 		dev_err(ddata->dev, "failed to register power supply\n");
778 		return error;
779 	}
780 
781 	atomic_set(&ddata->active, 1);
782 
783 	return 0;
784 }
785 
cpcap_battery_remove(struct platform_device * pdev)786 static int cpcap_battery_remove(struct platform_device *pdev)
787 {
788 	struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
789 	int error;
790 
791 	atomic_set(&ddata->active, 0);
792 	error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
793 				   0xffff, 0);
794 	if (error)
795 		dev_err(&pdev->dev, "could not disable: %i\n", error);
796 
797 	return 0;
798 }
799 
800 static struct platform_driver cpcap_battery_driver = {
801 	.driver	= {
802 		.name		= "cpcap_battery",
803 		.of_match_table = of_match_ptr(cpcap_battery_id_table),
804 	},
805 	.probe	= cpcap_battery_probe,
806 	.remove = cpcap_battery_remove,
807 };
808 module_platform_driver(cpcap_battery_driver);
809 
810 MODULE_LICENSE("GPL v2");
811 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
812 MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");
813