• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35 
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 			     u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41 
42 /* ---------- SMP task management ---------- */
43 
smp_task_timedout(struct timer_list * t)44 static void smp_task_timedout(struct timer_list *t)
45 {
46 	struct sas_task_slow *slow = from_timer(slow, t, timer);
47 	struct sas_task *task = slow->task;
48 	unsigned long flags;
49 
50 	spin_lock_irqsave(&task->task_state_lock, flags);
51 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
52 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 		complete(&task->slow_task->completion);
54 	}
55 	spin_unlock_irqrestore(&task->task_state_lock, flags);
56 }
57 
smp_task_done(struct sas_task * task)58 static void smp_task_done(struct sas_task *task)
59 {
60 	del_timer(&task->slow_task->timer);
61 	complete(&task->slow_task->completion);
62 }
63 
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66 
smp_execute_task_sg(struct domain_device * dev,struct scatterlist * req,struct scatterlist * resp)67 static int smp_execute_task_sg(struct domain_device *dev,
68 		struct scatterlist *req, struct scatterlist *resp)
69 {
70 	int res, retry;
71 	struct sas_task *task = NULL;
72 	struct sas_internal *i =
73 		to_sas_internal(dev->port->ha->core.shost->transportt);
74 
75 	mutex_lock(&dev->ex_dev.cmd_mutex);
76 	for (retry = 0; retry < 3; retry++) {
77 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 			res = -ECOMM;
79 			break;
80 		}
81 
82 		task = sas_alloc_slow_task(GFP_KERNEL);
83 		if (!task) {
84 			res = -ENOMEM;
85 			break;
86 		}
87 		task->dev = dev;
88 		task->task_proto = dev->tproto;
89 		task->smp_task.smp_req = *req;
90 		task->smp_task.smp_resp = *resp;
91 
92 		task->task_done = smp_task_done;
93 
94 		task->slow_task->timer.function = smp_task_timedout;
95 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
96 		add_timer(&task->slow_task->timer);
97 
98 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
99 
100 		if (res) {
101 			del_timer(&task->slow_task->timer);
102 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
103 			break;
104 		}
105 
106 		wait_for_completion(&task->slow_task->completion);
107 		res = -ECOMM;
108 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
109 			SAS_DPRINTK("smp task timed out or aborted\n");
110 			i->dft->lldd_abort_task(task);
111 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
112 				SAS_DPRINTK("SMP task aborted and not done\n");
113 				break;
114 			}
115 		}
116 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
117 		    task->task_status.stat == SAM_STAT_GOOD) {
118 			res = 0;
119 			break;
120 		}
121 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
122 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
123 			/* no error, but return the number of bytes of
124 			 * underrun */
125 			res = task->task_status.residual;
126 			break;
127 		}
128 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
129 		    task->task_status.stat == SAS_DATA_OVERRUN) {
130 			res = -EMSGSIZE;
131 			break;
132 		}
133 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
134 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
135 			break;
136 		else {
137 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
138 				    "status 0x%x\n", __func__,
139 				    SAS_ADDR(dev->sas_addr),
140 				    task->task_status.resp,
141 				    task->task_status.stat);
142 			sas_free_task(task);
143 			task = NULL;
144 		}
145 	}
146 	mutex_unlock(&dev->ex_dev.cmd_mutex);
147 
148 	BUG_ON(retry == 3 && task != NULL);
149 	sas_free_task(task);
150 	return res;
151 }
152 
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)153 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
154 			    void *resp, int resp_size)
155 {
156 	struct scatterlist req_sg;
157 	struct scatterlist resp_sg;
158 
159 	sg_init_one(&req_sg, req, req_size);
160 	sg_init_one(&resp_sg, resp, resp_size);
161 	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
162 }
163 
164 /* ---------- Allocations ---------- */
165 
alloc_smp_req(int size)166 static inline void *alloc_smp_req(int size)
167 {
168 	u8 *p = kzalloc(size, GFP_KERNEL);
169 	if (p)
170 		p[0] = SMP_REQUEST;
171 	return p;
172 }
173 
alloc_smp_resp(int size)174 static inline void *alloc_smp_resp(int size)
175 {
176 	return kzalloc(size, GFP_KERNEL);
177 }
178 
sas_route_char(struct domain_device * dev,struct ex_phy * phy)179 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
180 {
181 	switch (phy->routing_attr) {
182 	case TABLE_ROUTING:
183 		if (dev->ex_dev.t2t_supp)
184 			return 'U';
185 		else
186 			return 'T';
187 	case DIRECT_ROUTING:
188 		return 'D';
189 	case SUBTRACTIVE_ROUTING:
190 		return 'S';
191 	default:
192 		return '?';
193 	}
194 }
195 
to_dev_type(struct discover_resp * dr)196 static enum sas_device_type to_dev_type(struct discover_resp *dr)
197 {
198 	/* This is detecting a failure to transmit initial dev to host
199 	 * FIS as described in section J.5 of sas-2 r16
200 	 */
201 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
202 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
203 		return SAS_SATA_PENDING;
204 	else
205 		return dr->attached_dev_type;
206 }
207 
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * rsp)208 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
209 {
210 	enum sas_device_type dev_type;
211 	enum sas_linkrate linkrate;
212 	u8 sas_addr[SAS_ADDR_SIZE];
213 	struct smp_resp *resp = rsp;
214 	struct discover_resp *dr = &resp->disc;
215 	struct sas_ha_struct *ha = dev->port->ha;
216 	struct expander_device *ex = &dev->ex_dev;
217 	struct ex_phy *phy = &ex->ex_phy[phy_id];
218 	struct sas_rphy *rphy = dev->rphy;
219 	bool new_phy = !phy->phy;
220 	char *type;
221 
222 	if (new_phy) {
223 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
224 			return;
225 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
226 
227 		/* FIXME: error_handling */
228 		BUG_ON(!phy->phy);
229 	}
230 
231 	switch (resp->result) {
232 	case SMP_RESP_PHY_VACANT:
233 		phy->phy_state = PHY_VACANT;
234 		break;
235 	default:
236 		phy->phy_state = PHY_NOT_PRESENT;
237 		break;
238 	case SMP_RESP_FUNC_ACC:
239 		phy->phy_state = PHY_EMPTY; /* do not know yet */
240 		break;
241 	}
242 
243 	/* check if anything important changed to squelch debug */
244 	dev_type = phy->attached_dev_type;
245 	linkrate  = phy->linkrate;
246 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
247 
248 	/* Handle vacant phy - rest of dr data is not valid so skip it */
249 	if (phy->phy_state == PHY_VACANT) {
250 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
251 		phy->attached_dev_type = SAS_PHY_UNUSED;
252 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
253 			phy->phy_id = phy_id;
254 			goto skip;
255 		} else
256 			goto out;
257 	}
258 
259 	phy->attached_dev_type = to_dev_type(dr);
260 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
261 		goto out;
262 	phy->phy_id = phy_id;
263 	phy->linkrate = dr->linkrate;
264 	phy->attached_sata_host = dr->attached_sata_host;
265 	phy->attached_sata_dev  = dr->attached_sata_dev;
266 	phy->attached_sata_ps   = dr->attached_sata_ps;
267 	phy->attached_iproto = dr->iproto << 1;
268 	phy->attached_tproto = dr->tproto << 1;
269 	/* help some expanders that fail to zero sas_address in the 'no
270 	 * device' case
271 	 */
272 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
273 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
274 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
275 	else
276 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
277 	phy->attached_phy_id = dr->attached_phy_id;
278 	phy->phy_change_count = dr->change_count;
279 	phy->routing_attr = dr->routing_attr;
280 	phy->virtual = dr->virtual;
281 	phy->last_da_index = -1;
282 
283 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
284 	phy->phy->identify.device_type = dr->attached_dev_type;
285 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
286 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
287 	if (!phy->attached_tproto && dr->attached_sata_dev)
288 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
289 	phy->phy->identify.phy_identifier = phy_id;
290 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
291 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
292 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
293 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
294 	phy->phy->negotiated_linkrate = phy->linkrate;
295 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
296 
297  skip:
298 	if (new_phy)
299 		if (sas_phy_add(phy->phy)) {
300 			sas_phy_free(phy->phy);
301 			return;
302 		}
303 
304  out:
305 	switch (phy->attached_dev_type) {
306 	case SAS_SATA_PENDING:
307 		type = "stp pending";
308 		break;
309 	case SAS_PHY_UNUSED:
310 		type = "no device";
311 		break;
312 	case SAS_END_DEVICE:
313 		if (phy->attached_iproto) {
314 			if (phy->attached_tproto)
315 				type = "host+target";
316 			else
317 				type = "host";
318 		} else {
319 			if (dr->attached_sata_dev)
320 				type = "stp";
321 			else
322 				type = "ssp";
323 		}
324 		break;
325 	case SAS_EDGE_EXPANDER_DEVICE:
326 	case SAS_FANOUT_EXPANDER_DEVICE:
327 		type = "smp";
328 		break;
329 	default:
330 		type = "unknown";
331 	}
332 
333 	/* this routine is polled by libata error recovery so filter
334 	 * unimportant messages
335 	 */
336 	if (new_phy || phy->attached_dev_type != dev_type ||
337 	    phy->linkrate != linkrate ||
338 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
339 		/* pass */;
340 	else
341 		return;
342 
343 	/* if the attached device type changed and ata_eh is active,
344 	 * make sure we run revalidation when eh completes (see:
345 	 * sas_enable_revalidation)
346 	 */
347 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
348 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
349 
350 	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
351 		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
352 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
353 		    sas_route_char(dev, phy), phy->linkrate,
354 		    SAS_ADDR(phy->attached_sas_addr), type);
355 }
356 
357 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)358 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
359 {
360 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
361 	struct domain_device *dev;
362 	struct sas_rphy *rphy;
363 
364 	if (!ex_phy->port)
365 		return NULL;
366 
367 	rphy = ex_phy->port->rphy;
368 	if (!rphy)
369 		return NULL;
370 
371 	dev = sas_find_dev_by_rphy(rphy);
372 
373 	if (dev && dev_is_sata(dev))
374 		return dev;
375 
376 	return NULL;
377 }
378 
379 #define DISCOVER_REQ_SIZE  16
380 #define DISCOVER_RESP_SIZE 56
381 
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)382 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
383 				      u8 *disc_resp, int single)
384 {
385 	struct discover_resp *dr;
386 	int res;
387 
388 	disc_req[9] = single;
389 
390 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
391 			       disc_resp, DISCOVER_RESP_SIZE);
392 	if (res)
393 		return res;
394 	dr = &((struct smp_resp *)disc_resp)->disc;
395 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
396 		sas_printk("Found loopback topology, just ignore it!\n");
397 		return 0;
398 	}
399 	sas_set_ex_phy(dev, single, disc_resp);
400 	return 0;
401 }
402 
sas_ex_phy_discover(struct domain_device * dev,int single)403 int sas_ex_phy_discover(struct domain_device *dev, int single)
404 {
405 	struct expander_device *ex = &dev->ex_dev;
406 	int  res = 0;
407 	u8   *disc_req;
408 	u8   *disc_resp;
409 
410 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
411 	if (!disc_req)
412 		return -ENOMEM;
413 
414 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
415 	if (!disc_resp) {
416 		kfree(disc_req);
417 		return -ENOMEM;
418 	}
419 
420 	disc_req[1] = SMP_DISCOVER;
421 
422 	if (0 <= single && single < ex->num_phys) {
423 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
424 	} else {
425 		int i;
426 
427 		for (i = 0; i < ex->num_phys; i++) {
428 			res = sas_ex_phy_discover_helper(dev, disc_req,
429 							 disc_resp, i);
430 			if (res)
431 				goto out_err;
432 		}
433 	}
434 out_err:
435 	kfree(disc_resp);
436 	kfree(disc_req);
437 	return res;
438 }
439 
sas_expander_discover(struct domain_device * dev)440 static int sas_expander_discover(struct domain_device *dev)
441 {
442 	struct expander_device *ex = &dev->ex_dev;
443 	int res = -ENOMEM;
444 
445 	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
446 	if (!ex->ex_phy)
447 		return -ENOMEM;
448 
449 	res = sas_ex_phy_discover(dev, -1);
450 	if (res)
451 		goto out_err;
452 
453 	return 0;
454  out_err:
455 	kfree(ex->ex_phy);
456 	ex->ex_phy = NULL;
457 	return res;
458 }
459 
460 #define MAX_EXPANDER_PHYS 128
461 
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)462 static void ex_assign_report_general(struct domain_device *dev,
463 					    struct smp_resp *resp)
464 {
465 	struct report_general_resp *rg = &resp->rg;
466 
467 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
468 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
469 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
470 	dev->ex_dev.t2t_supp = rg->t2t_supp;
471 	dev->ex_dev.conf_route_table = rg->conf_route_table;
472 	dev->ex_dev.configuring = rg->configuring;
473 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
474 }
475 
476 #define RG_REQ_SIZE   8
477 #define RG_RESP_SIZE 32
478 
sas_ex_general(struct domain_device * dev)479 static int sas_ex_general(struct domain_device *dev)
480 {
481 	u8 *rg_req;
482 	struct smp_resp *rg_resp;
483 	int res;
484 	int i;
485 
486 	rg_req = alloc_smp_req(RG_REQ_SIZE);
487 	if (!rg_req)
488 		return -ENOMEM;
489 
490 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
491 	if (!rg_resp) {
492 		kfree(rg_req);
493 		return -ENOMEM;
494 	}
495 
496 	rg_req[1] = SMP_REPORT_GENERAL;
497 
498 	for (i = 0; i < 5; i++) {
499 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
500 				       RG_RESP_SIZE);
501 
502 		if (res) {
503 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
504 				    SAS_ADDR(dev->sas_addr), res);
505 			goto out;
506 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
507 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
508 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
509 			res = rg_resp->result;
510 			goto out;
511 		}
512 
513 		ex_assign_report_general(dev, rg_resp);
514 
515 		if (dev->ex_dev.configuring) {
516 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
517 				    SAS_ADDR(dev->sas_addr));
518 			schedule_timeout_interruptible(5*HZ);
519 		} else
520 			break;
521 	}
522 out:
523 	kfree(rg_req);
524 	kfree(rg_resp);
525 	return res;
526 }
527 
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)528 static void ex_assign_manuf_info(struct domain_device *dev, void
529 					*_mi_resp)
530 {
531 	u8 *mi_resp = _mi_resp;
532 	struct sas_rphy *rphy = dev->rphy;
533 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
534 
535 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
536 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
537 	memcpy(edev->product_rev, mi_resp + 36,
538 	       SAS_EXPANDER_PRODUCT_REV_LEN);
539 
540 	if (mi_resp[8] & 1) {
541 		memcpy(edev->component_vendor_id, mi_resp + 40,
542 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
543 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
544 		edev->component_revision_id = mi_resp[50];
545 	}
546 }
547 
548 #define MI_REQ_SIZE   8
549 #define MI_RESP_SIZE 64
550 
sas_ex_manuf_info(struct domain_device * dev)551 static int sas_ex_manuf_info(struct domain_device *dev)
552 {
553 	u8 *mi_req;
554 	u8 *mi_resp;
555 	int res;
556 
557 	mi_req = alloc_smp_req(MI_REQ_SIZE);
558 	if (!mi_req)
559 		return -ENOMEM;
560 
561 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
562 	if (!mi_resp) {
563 		kfree(mi_req);
564 		return -ENOMEM;
565 	}
566 
567 	mi_req[1] = SMP_REPORT_MANUF_INFO;
568 
569 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
570 	if (res) {
571 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
572 			    SAS_ADDR(dev->sas_addr), res);
573 		goto out;
574 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
575 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
576 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
577 		goto out;
578 	}
579 
580 	ex_assign_manuf_info(dev, mi_resp);
581 out:
582 	kfree(mi_req);
583 	kfree(mi_resp);
584 	return res;
585 }
586 
587 #define PC_REQ_SIZE  44
588 #define PC_RESP_SIZE 8
589 
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)590 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
591 			enum phy_func phy_func,
592 			struct sas_phy_linkrates *rates)
593 {
594 	u8 *pc_req;
595 	u8 *pc_resp;
596 	int res;
597 
598 	pc_req = alloc_smp_req(PC_REQ_SIZE);
599 	if (!pc_req)
600 		return -ENOMEM;
601 
602 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
603 	if (!pc_resp) {
604 		kfree(pc_req);
605 		return -ENOMEM;
606 	}
607 
608 	pc_req[1] = SMP_PHY_CONTROL;
609 	pc_req[9] = phy_id;
610 	pc_req[10]= phy_func;
611 	if (rates) {
612 		pc_req[32] = rates->minimum_linkrate << 4;
613 		pc_req[33] = rates->maximum_linkrate << 4;
614 	}
615 
616 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
617 	if (res) {
618 		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
619 		       SAS_ADDR(dev->sas_addr), phy_id, res);
620 	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
621 		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
622 		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
623 		res = pc_resp[2];
624 	}
625 	kfree(pc_resp);
626 	kfree(pc_req);
627 	return res;
628 }
629 
sas_ex_disable_phy(struct domain_device * dev,int phy_id)630 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
631 {
632 	struct expander_device *ex = &dev->ex_dev;
633 	struct ex_phy *phy = &ex->ex_phy[phy_id];
634 
635 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
636 	phy->linkrate = SAS_PHY_DISABLED;
637 }
638 
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)639 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
640 {
641 	struct expander_device *ex = &dev->ex_dev;
642 	int i;
643 
644 	for (i = 0; i < ex->num_phys; i++) {
645 		struct ex_phy *phy = &ex->ex_phy[i];
646 
647 		if (phy->phy_state == PHY_VACANT ||
648 		    phy->phy_state == PHY_NOT_PRESENT)
649 			continue;
650 
651 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
652 			sas_ex_disable_phy(dev, i);
653 	}
654 }
655 
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)656 static int sas_dev_present_in_domain(struct asd_sas_port *port,
657 					    u8 *sas_addr)
658 {
659 	struct domain_device *dev;
660 
661 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
662 		return 1;
663 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
664 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
665 			return 1;
666 	}
667 	return 0;
668 }
669 
670 #define RPEL_REQ_SIZE	16
671 #define RPEL_RESP_SIZE	32
sas_smp_get_phy_events(struct sas_phy * phy)672 int sas_smp_get_phy_events(struct sas_phy *phy)
673 {
674 	int res;
675 	u8 *req;
676 	u8 *resp;
677 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
678 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
679 
680 	req = alloc_smp_req(RPEL_REQ_SIZE);
681 	if (!req)
682 		return -ENOMEM;
683 
684 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
685 	if (!resp) {
686 		kfree(req);
687 		return -ENOMEM;
688 	}
689 
690 	req[1] = SMP_REPORT_PHY_ERR_LOG;
691 	req[9] = phy->number;
692 
693 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
694 			            resp, RPEL_RESP_SIZE);
695 
696 	if (res)
697 		goto out;
698 
699 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
700 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
701 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
702 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
703 
704  out:
705 	kfree(req);
706 	kfree(resp);
707 	return res;
708 
709 }
710 
711 #ifdef CONFIG_SCSI_SAS_ATA
712 
713 #define RPS_REQ_SIZE  16
714 #define RPS_RESP_SIZE 60
715 
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)716 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
717 			    struct smp_resp *rps_resp)
718 {
719 	int res;
720 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
721 	u8 *resp = (u8 *)rps_resp;
722 
723 	if (!rps_req)
724 		return -ENOMEM;
725 
726 	rps_req[1] = SMP_REPORT_PHY_SATA;
727 	rps_req[9] = phy_id;
728 
729 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
730 			            rps_resp, RPS_RESP_SIZE);
731 
732 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
733 	 * standards cockup here.  sas-2 explicitly specifies the FIS
734 	 * should be encoded so that FIS type is in resp[24].
735 	 * However, some expanders endian reverse this.  Undo the
736 	 * reversal here */
737 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
738 		int i;
739 
740 		for (i = 0; i < 5; i++) {
741 			int j = 24 + (i*4);
742 			u8 a, b;
743 			a = resp[j + 0];
744 			b = resp[j + 1];
745 			resp[j + 0] = resp[j + 3];
746 			resp[j + 1] = resp[j + 2];
747 			resp[j + 2] = b;
748 			resp[j + 3] = a;
749 		}
750 	}
751 
752 	kfree(rps_req);
753 	return res;
754 }
755 #endif
756 
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)757 static void sas_ex_get_linkrate(struct domain_device *parent,
758 				       struct domain_device *child,
759 				       struct ex_phy *parent_phy)
760 {
761 	struct expander_device *parent_ex = &parent->ex_dev;
762 	struct sas_port *port;
763 	int i;
764 
765 	child->pathways = 0;
766 
767 	port = parent_phy->port;
768 
769 	for (i = 0; i < parent_ex->num_phys; i++) {
770 		struct ex_phy *phy = &parent_ex->ex_phy[i];
771 
772 		if (phy->phy_state == PHY_VACANT ||
773 		    phy->phy_state == PHY_NOT_PRESENT)
774 			continue;
775 
776 		if (SAS_ADDR(phy->attached_sas_addr) ==
777 		    SAS_ADDR(child->sas_addr)) {
778 
779 			child->min_linkrate = min(parent->min_linkrate,
780 						  phy->linkrate);
781 			child->max_linkrate = max(parent->max_linkrate,
782 						  phy->linkrate);
783 			child->pathways++;
784 			sas_port_add_phy(port, phy->phy);
785 		}
786 	}
787 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
788 	child->pathways = min(child->pathways, parent->pathways);
789 }
790 
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)791 static struct domain_device *sas_ex_discover_end_dev(
792 	struct domain_device *parent, int phy_id)
793 {
794 	struct expander_device *parent_ex = &parent->ex_dev;
795 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
796 	struct domain_device *child = NULL;
797 	struct sas_rphy *rphy;
798 	int res;
799 
800 	if (phy->attached_sata_host || phy->attached_sata_ps)
801 		return NULL;
802 
803 	child = sas_alloc_device();
804 	if (!child)
805 		return NULL;
806 
807 	kref_get(&parent->kref);
808 	child->parent = parent;
809 	child->port   = parent->port;
810 	child->iproto = phy->attached_iproto;
811 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
812 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
813 	if (!phy->port) {
814 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
815 		if (unlikely(!phy->port))
816 			goto out_err;
817 		if (unlikely(sas_port_add(phy->port) != 0)) {
818 			sas_port_free(phy->port);
819 			goto out_err;
820 		}
821 	}
822 	sas_ex_get_linkrate(parent, child, phy);
823 	sas_device_set_phy(child, phy->port);
824 
825 #ifdef CONFIG_SCSI_SAS_ATA
826 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
827 		if (child->linkrate > parent->min_linkrate) {
828 			struct sas_phy_linkrates rates = {
829 				.maximum_linkrate = parent->min_linkrate,
830 				.minimum_linkrate = parent->min_linkrate,
831 			};
832 			int ret;
833 
834 			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
835 				   SAS_ADDR(child->sas_addr), phy_id);
836 			ret = sas_smp_phy_control(parent, phy_id,
837 						  PHY_FUNC_LINK_RESET, &rates);
838 			if (ret) {
839 				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
840 				       SAS_ADDR(child->sas_addr), phy_id, ret);
841 				goto out_free;
842 			}
843 			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
844 				  SAS_ADDR(child->sas_addr), phy_id);
845 			child->linkrate = child->min_linkrate;
846 		}
847 		res = sas_get_ata_info(child, phy);
848 		if (res)
849 			goto out_free;
850 
851 		sas_init_dev(child);
852 		res = sas_ata_init(child);
853 		if (res)
854 			goto out_free;
855 		rphy = sas_end_device_alloc(phy->port);
856 		if (!rphy)
857 			goto out_free;
858 		rphy->identify.phy_identifier = phy_id;
859 
860 		child->rphy = rphy;
861 		get_device(&rphy->dev);
862 
863 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
864 
865 		res = sas_discover_sata(child);
866 		if (res) {
867 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
868 				    "%016llx:0x%x returned 0x%x\n",
869 				    SAS_ADDR(child->sas_addr),
870 				    SAS_ADDR(parent->sas_addr), phy_id, res);
871 			goto out_list_del;
872 		}
873 	} else
874 #endif
875 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
876 		child->dev_type = SAS_END_DEVICE;
877 		rphy = sas_end_device_alloc(phy->port);
878 		/* FIXME: error handling */
879 		if (unlikely(!rphy))
880 			goto out_free;
881 		child->tproto = phy->attached_tproto;
882 		sas_init_dev(child);
883 
884 		child->rphy = rphy;
885 		get_device(&rphy->dev);
886 		rphy->identify.phy_identifier = phy_id;
887 		sas_fill_in_rphy(child, rphy);
888 
889 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
890 
891 		res = sas_discover_end_dev(child);
892 		if (res) {
893 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
894 				    "at %016llx:0x%x returned 0x%x\n",
895 				    SAS_ADDR(child->sas_addr),
896 				    SAS_ADDR(parent->sas_addr), phy_id, res);
897 			goto out_list_del;
898 		}
899 	} else {
900 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
901 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
902 			    phy_id);
903 		goto out_free;
904 	}
905 
906 	list_add_tail(&child->siblings, &parent_ex->children);
907 	return child;
908 
909  out_list_del:
910 	sas_rphy_free(child->rphy);
911 	list_del(&child->disco_list_node);
912 	spin_lock_irq(&parent->port->dev_list_lock);
913 	list_del(&child->dev_list_node);
914 	spin_unlock_irq(&parent->port->dev_list_lock);
915  out_free:
916 	sas_port_delete(phy->port);
917  out_err:
918 	phy->port = NULL;
919 	sas_put_device(child);
920 	return NULL;
921 }
922 
923 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)924 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
925 {
926 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
927 	int i;
928 
929 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
930 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
931 
932 		if (ephy == phy)
933 			continue;
934 
935 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
936 			    SAS_ADDR_SIZE) && ephy->port) {
937 			sas_port_add_phy(ephy->port, phy->phy);
938 			phy->port = ephy->port;
939 			phy->phy_state = PHY_DEVICE_DISCOVERED;
940 			return true;
941 		}
942 	}
943 
944 	return false;
945 }
946 
sas_ex_discover_expander(struct domain_device * parent,int phy_id)947 static struct domain_device *sas_ex_discover_expander(
948 	struct domain_device *parent, int phy_id)
949 {
950 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
951 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
952 	struct domain_device *child = NULL;
953 	struct sas_rphy *rphy;
954 	struct sas_expander_device *edev;
955 	struct asd_sas_port *port;
956 	int res;
957 
958 	if (phy->routing_attr == DIRECT_ROUTING) {
959 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
960 			    "allowed\n",
961 			    SAS_ADDR(parent->sas_addr), phy_id,
962 			    SAS_ADDR(phy->attached_sas_addr),
963 			    phy->attached_phy_id);
964 		return NULL;
965 	}
966 	child = sas_alloc_device();
967 	if (!child)
968 		return NULL;
969 
970 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
971 	/* FIXME: better error handling */
972 	BUG_ON(sas_port_add(phy->port) != 0);
973 
974 
975 	switch (phy->attached_dev_type) {
976 	case SAS_EDGE_EXPANDER_DEVICE:
977 		rphy = sas_expander_alloc(phy->port,
978 					  SAS_EDGE_EXPANDER_DEVICE);
979 		break;
980 	case SAS_FANOUT_EXPANDER_DEVICE:
981 		rphy = sas_expander_alloc(phy->port,
982 					  SAS_FANOUT_EXPANDER_DEVICE);
983 		break;
984 	default:
985 		rphy = NULL;	/* shut gcc up */
986 		BUG();
987 	}
988 	port = parent->port;
989 	child->rphy = rphy;
990 	get_device(&rphy->dev);
991 	edev = rphy_to_expander_device(rphy);
992 	child->dev_type = phy->attached_dev_type;
993 	kref_get(&parent->kref);
994 	child->parent = parent;
995 	child->port = port;
996 	child->iproto = phy->attached_iproto;
997 	child->tproto = phy->attached_tproto;
998 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
999 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
1000 	sas_ex_get_linkrate(parent, child, phy);
1001 	edev->level = parent_ex->level + 1;
1002 	parent->port->disc.max_level = max(parent->port->disc.max_level,
1003 					   edev->level);
1004 	sas_init_dev(child);
1005 	sas_fill_in_rphy(child, rphy);
1006 	sas_rphy_add(rphy);
1007 
1008 	spin_lock_irq(&parent->port->dev_list_lock);
1009 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1010 	spin_unlock_irq(&parent->port->dev_list_lock);
1011 
1012 	res = sas_discover_expander(child);
1013 	if (res) {
1014 		sas_rphy_delete(rphy);
1015 		spin_lock_irq(&parent->port->dev_list_lock);
1016 		list_del(&child->dev_list_node);
1017 		spin_unlock_irq(&parent->port->dev_list_lock);
1018 		sas_put_device(child);
1019 		sas_port_delete(phy->port);
1020 		phy->port = NULL;
1021 		return NULL;
1022 	}
1023 	list_add_tail(&child->siblings, &parent->ex_dev.children);
1024 	return child;
1025 }
1026 
sas_ex_discover_dev(struct domain_device * dev,int phy_id)1027 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1028 {
1029 	struct expander_device *ex = &dev->ex_dev;
1030 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1031 	struct domain_device *child = NULL;
1032 	int res = 0;
1033 
1034 	/* Phy state */
1035 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1036 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1037 			res = sas_ex_phy_discover(dev, phy_id);
1038 		if (res)
1039 			return res;
1040 	}
1041 
1042 	/* Parent and domain coherency */
1043 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1044 			     SAS_ADDR(dev->port->sas_addr))) {
1045 		sas_add_parent_port(dev, phy_id);
1046 		return 0;
1047 	}
1048 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1049 			    SAS_ADDR(dev->parent->sas_addr))) {
1050 		sas_add_parent_port(dev, phy_id);
1051 		if (ex_phy->routing_attr == TABLE_ROUTING)
1052 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1053 		return 0;
1054 	}
1055 
1056 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1057 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1058 
1059 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1060 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1061 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1062 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1063 		}
1064 		return 0;
1065 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1066 		return 0;
1067 
1068 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1069 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1070 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1071 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1072 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1073 			    "phy 0x%x\n", ex_phy->attached_dev_type,
1074 			    SAS_ADDR(dev->sas_addr),
1075 			    phy_id);
1076 		return 0;
1077 	}
1078 
1079 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1080 	if (res) {
1081 		SAS_DPRINTK("configure routing for dev %016llx "
1082 			    "reported 0x%x. Forgotten\n",
1083 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1084 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1085 		return res;
1086 	}
1087 
1088 	if (sas_ex_join_wide_port(dev, phy_id)) {
1089 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1090 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1091 		return res;
1092 	}
1093 
1094 	switch (ex_phy->attached_dev_type) {
1095 	case SAS_END_DEVICE:
1096 	case SAS_SATA_PENDING:
1097 		child = sas_ex_discover_end_dev(dev, phy_id);
1098 		break;
1099 	case SAS_FANOUT_EXPANDER_DEVICE:
1100 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1101 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1102 				    "attached to ex %016llx phy 0x%x\n",
1103 				    SAS_ADDR(ex_phy->attached_sas_addr),
1104 				    ex_phy->attached_phy_id,
1105 				    SAS_ADDR(dev->sas_addr),
1106 				    phy_id);
1107 			sas_ex_disable_phy(dev, phy_id);
1108 			break;
1109 		} else
1110 			memcpy(dev->port->disc.fanout_sas_addr,
1111 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1112 		/* fallthrough */
1113 	case SAS_EDGE_EXPANDER_DEVICE:
1114 		child = sas_ex_discover_expander(dev, phy_id);
1115 		break;
1116 	default:
1117 		break;
1118 	}
1119 
1120 	if (child) {
1121 		int i;
1122 
1123 		for (i = 0; i < ex->num_phys; i++) {
1124 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1125 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1126 				continue;
1127 			/*
1128 			 * Due to races, the phy might not get added to the
1129 			 * wide port, so we add the phy to the wide port here.
1130 			 */
1131 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1132 			    SAS_ADDR(child->sas_addr)) {
1133 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1134 				if (sas_ex_join_wide_port(dev, i))
1135 					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1136 						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1137 
1138 			}
1139 		}
1140 	}
1141 
1142 	return res;
1143 }
1144 
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1145 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1146 {
1147 	struct expander_device *ex = &dev->ex_dev;
1148 	int i;
1149 
1150 	for (i = 0; i < ex->num_phys; i++) {
1151 		struct ex_phy *phy = &ex->ex_phy[i];
1152 
1153 		if (phy->phy_state == PHY_VACANT ||
1154 		    phy->phy_state == PHY_NOT_PRESENT)
1155 			continue;
1156 
1157 		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1158 		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1159 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1160 
1161 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1162 
1163 			return 1;
1164 		}
1165 	}
1166 	return 0;
1167 }
1168 
sas_check_level_subtractive_boundary(struct domain_device * dev)1169 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1170 {
1171 	struct expander_device *ex = &dev->ex_dev;
1172 	struct domain_device *child;
1173 	u8 sub_addr[8] = {0, };
1174 
1175 	list_for_each_entry(child, &ex->children, siblings) {
1176 		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1177 		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1178 			continue;
1179 		if (sub_addr[0] == 0) {
1180 			sas_find_sub_addr(child, sub_addr);
1181 			continue;
1182 		} else {
1183 			u8 s2[8];
1184 
1185 			if (sas_find_sub_addr(child, s2) &&
1186 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1187 
1188 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1189 					    "diverges from subtractive "
1190 					    "boundary %016llx\n",
1191 					    SAS_ADDR(dev->sas_addr),
1192 					    SAS_ADDR(child->sas_addr),
1193 					    SAS_ADDR(s2),
1194 					    SAS_ADDR(sub_addr));
1195 
1196 				sas_ex_disable_port(child, s2);
1197 			}
1198 		}
1199 	}
1200 	return 0;
1201 }
1202 /**
1203  * sas_ex_discover_devices - discover devices attached to this expander
1204  * @dev: pointer to the expander domain device
1205  * @single: if you want to do a single phy, else set to -1;
1206  *
1207  * Configure this expander for use with its devices and register the
1208  * devices of this expander.
1209  */
sas_ex_discover_devices(struct domain_device * dev,int single)1210 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1211 {
1212 	struct expander_device *ex = &dev->ex_dev;
1213 	int i = 0, end = ex->num_phys;
1214 	int res = 0;
1215 
1216 	if (0 <= single && single < end) {
1217 		i = single;
1218 		end = i+1;
1219 	}
1220 
1221 	for ( ; i < end; i++) {
1222 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1223 
1224 		if (ex_phy->phy_state == PHY_VACANT ||
1225 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1226 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1227 			continue;
1228 
1229 		switch (ex_phy->linkrate) {
1230 		case SAS_PHY_DISABLED:
1231 		case SAS_PHY_RESET_PROBLEM:
1232 		case SAS_SATA_PORT_SELECTOR:
1233 			continue;
1234 		default:
1235 			res = sas_ex_discover_dev(dev, i);
1236 			if (res)
1237 				break;
1238 			continue;
1239 		}
1240 	}
1241 
1242 	if (!res)
1243 		sas_check_level_subtractive_boundary(dev);
1244 
1245 	return res;
1246 }
1247 
sas_check_ex_subtractive_boundary(struct domain_device * dev)1248 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1249 {
1250 	struct expander_device *ex = &dev->ex_dev;
1251 	int i;
1252 	u8  *sub_sas_addr = NULL;
1253 
1254 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1255 		return 0;
1256 
1257 	for (i = 0; i < ex->num_phys; i++) {
1258 		struct ex_phy *phy = &ex->ex_phy[i];
1259 
1260 		if (phy->phy_state == PHY_VACANT ||
1261 		    phy->phy_state == PHY_NOT_PRESENT)
1262 			continue;
1263 
1264 		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1265 		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1266 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1267 
1268 			if (!sub_sas_addr)
1269 				sub_sas_addr = &phy->attached_sas_addr[0];
1270 			else if (SAS_ADDR(sub_sas_addr) !=
1271 				 SAS_ADDR(phy->attached_sas_addr)) {
1272 
1273 				SAS_DPRINTK("ex %016llx phy 0x%x "
1274 					    "diverges(%016llx) on subtractive "
1275 					    "boundary(%016llx). Disabled\n",
1276 					    SAS_ADDR(dev->sas_addr), i,
1277 					    SAS_ADDR(phy->attached_sas_addr),
1278 					    SAS_ADDR(sub_sas_addr));
1279 				sas_ex_disable_phy(dev, i);
1280 			}
1281 		}
1282 	}
1283 	return 0;
1284 }
1285 
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1286 static void sas_print_parent_topology_bug(struct domain_device *child,
1287 						 struct ex_phy *parent_phy,
1288 						 struct ex_phy *child_phy)
1289 {
1290 	static const char *ex_type[] = {
1291 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1292 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1293 	};
1294 	struct domain_device *parent = child->parent;
1295 
1296 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1297 		   "phy 0x%x has %c:%c routing link!\n",
1298 
1299 		   ex_type[parent->dev_type],
1300 		   SAS_ADDR(parent->sas_addr),
1301 		   parent_phy->phy_id,
1302 
1303 		   ex_type[child->dev_type],
1304 		   SAS_ADDR(child->sas_addr),
1305 		   child_phy->phy_id,
1306 
1307 		   sas_route_char(parent, parent_phy),
1308 		   sas_route_char(child, child_phy));
1309 }
1310 
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1311 static int sas_check_eeds(struct domain_device *child,
1312 				 struct ex_phy *parent_phy,
1313 				 struct ex_phy *child_phy)
1314 {
1315 	int res = 0;
1316 	struct domain_device *parent = child->parent;
1317 
1318 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1319 		res = -ENODEV;
1320 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1321 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1322 			    SAS_ADDR(parent->sas_addr),
1323 			    parent_phy->phy_id,
1324 			    SAS_ADDR(child->sas_addr),
1325 			    child_phy->phy_id,
1326 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1327 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1328 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1329 		       SAS_ADDR_SIZE);
1330 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1331 		       SAS_ADDR_SIZE);
1332 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1333 		    SAS_ADDR(parent->sas_addr)) ||
1334 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1335 		    SAS_ADDR(child->sas_addr)))
1336 		   &&
1337 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1338 		     SAS_ADDR(parent->sas_addr)) ||
1339 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1340 		     SAS_ADDR(child->sas_addr))))
1341 		;
1342 	else {
1343 		res = -ENODEV;
1344 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1345 			    "phy 0x%x link forms a third EEDS!\n",
1346 			    SAS_ADDR(parent->sas_addr),
1347 			    parent_phy->phy_id,
1348 			    SAS_ADDR(child->sas_addr),
1349 			    child_phy->phy_id);
1350 	}
1351 
1352 	return res;
1353 }
1354 
1355 /* Here we spill over 80 columns.  It is intentional.
1356  */
sas_check_parent_topology(struct domain_device * child)1357 static int sas_check_parent_topology(struct domain_device *child)
1358 {
1359 	struct expander_device *child_ex = &child->ex_dev;
1360 	struct expander_device *parent_ex;
1361 	int i;
1362 	int res = 0;
1363 
1364 	if (!child->parent)
1365 		return 0;
1366 
1367 	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1368 	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1369 		return 0;
1370 
1371 	parent_ex = &child->parent->ex_dev;
1372 
1373 	for (i = 0; i < parent_ex->num_phys; i++) {
1374 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1375 		struct ex_phy *child_phy;
1376 
1377 		if (parent_phy->phy_state == PHY_VACANT ||
1378 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1379 			continue;
1380 
1381 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1382 			continue;
1383 
1384 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1385 
1386 		switch (child->parent->dev_type) {
1387 		case SAS_EDGE_EXPANDER_DEVICE:
1388 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1389 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1390 				    child_phy->routing_attr != TABLE_ROUTING) {
1391 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1392 					res = -ENODEV;
1393 				}
1394 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1395 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1396 					res = sas_check_eeds(child, parent_phy, child_phy);
1397 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1398 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1399 					res = -ENODEV;
1400 				}
1401 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1402 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1403 				    (child_phy->routing_attr == TABLE_ROUTING &&
1404 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1405 					/* All good */;
1406 				} else {
1407 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1408 					res = -ENODEV;
1409 				}
1410 			}
1411 			break;
1412 		case SAS_FANOUT_EXPANDER_DEVICE:
1413 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1414 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1415 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1416 				res = -ENODEV;
1417 			}
1418 			break;
1419 		default:
1420 			break;
1421 		}
1422 	}
1423 
1424 	return res;
1425 }
1426 
1427 #define RRI_REQ_SIZE  16
1428 #define RRI_RESP_SIZE 44
1429 
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1430 static int sas_configure_present(struct domain_device *dev, int phy_id,
1431 				 u8 *sas_addr, int *index, int *present)
1432 {
1433 	int i, res = 0;
1434 	struct expander_device *ex = &dev->ex_dev;
1435 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1436 	u8 *rri_req;
1437 	u8 *rri_resp;
1438 
1439 	*present = 0;
1440 	*index = 0;
1441 
1442 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1443 	if (!rri_req)
1444 		return -ENOMEM;
1445 
1446 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1447 	if (!rri_resp) {
1448 		kfree(rri_req);
1449 		return -ENOMEM;
1450 	}
1451 
1452 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1453 	rri_req[9] = phy_id;
1454 
1455 	for (i = 0; i < ex->max_route_indexes ; i++) {
1456 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1457 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1458 				       RRI_RESP_SIZE);
1459 		if (res)
1460 			goto out;
1461 		res = rri_resp[2];
1462 		if (res == SMP_RESP_NO_INDEX) {
1463 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1464 				    "phy 0x%x index 0x%x\n",
1465 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1466 			goto out;
1467 		} else if (res != SMP_RESP_FUNC_ACC) {
1468 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1469 				    "result 0x%x\n", __func__,
1470 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1471 			goto out;
1472 		}
1473 		if (SAS_ADDR(sas_addr) != 0) {
1474 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1475 				*index = i;
1476 				if ((rri_resp[12] & 0x80) == 0x80)
1477 					*present = 0;
1478 				else
1479 					*present = 1;
1480 				goto out;
1481 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1482 				*index = i;
1483 				*present = 0;
1484 				goto out;
1485 			}
1486 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1487 			   phy->last_da_index < i) {
1488 			phy->last_da_index = i;
1489 			*index = i;
1490 			*present = 0;
1491 			goto out;
1492 		}
1493 	}
1494 	res = -1;
1495 out:
1496 	kfree(rri_req);
1497 	kfree(rri_resp);
1498 	return res;
1499 }
1500 
1501 #define CRI_REQ_SIZE  44
1502 #define CRI_RESP_SIZE  8
1503 
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1504 static int sas_configure_set(struct domain_device *dev, int phy_id,
1505 			     u8 *sas_addr, int index, int include)
1506 {
1507 	int res;
1508 	u8 *cri_req;
1509 	u8 *cri_resp;
1510 
1511 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1512 	if (!cri_req)
1513 		return -ENOMEM;
1514 
1515 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1516 	if (!cri_resp) {
1517 		kfree(cri_req);
1518 		return -ENOMEM;
1519 	}
1520 
1521 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1522 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1523 	cri_req[9] = phy_id;
1524 	if (SAS_ADDR(sas_addr) == 0 || !include)
1525 		cri_req[12] |= 0x80;
1526 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1527 
1528 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1529 			       CRI_RESP_SIZE);
1530 	if (res)
1531 		goto out;
1532 	res = cri_resp[2];
1533 	if (res == SMP_RESP_NO_INDEX) {
1534 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1535 			    "index 0x%x\n",
1536 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1537 	}
1538 out:
1539 	kfree(cri_req);
1540 	kfree(cri_resp);
1541 	return res;
1542 }
1543 
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1544 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1545 				    u8 *sas_addr, int include)
1546 {
1547 	int index;
1548 	int present;
1549 	int res;
1550 
1551 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1552 	if (res)
1553 		return res;
1554 	if (include ^ present)
1555 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1556 
1557 	return res;
1558 }
1559 
1560 /**
1561  * sas_configure_parent - configure routing table of parent
1562  * @parent: parent expander
1563  * @child: child expander
1564  * @sas_addr: SAS port identifier of device directly attached to child
1565  * @include: whether or not to include @child in the expander routing table
1566  */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1567 static int sas_configure_parent(struct domain_device *parent,
1568 				struct domain_device *child,
1569 				u8 *sas_addr, int include)
1570 {
1571 	struct expander_device *ex_parent = &parent->ex_dev;
1572 	int res = 0;
1573 	int i;
1574 
1575 	if (parent->parent) {
1576 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1577 					   include);
1578 		if (res)
1579 			return res;
1580 	}
1581 
1582 	if (ex_parent->conf_route_table == 0) {
1583 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1584 			    SAS_ADDR(parent->sas_addr));
1585 		return 0;
1586 	}
1587 
1588 	for (i = 0; i < ex_parent->num_phys; i++) {
1589 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1590 
1591 		if ((phy->routing_attr == TABLE_ROUTING) &&
1592 		    (SAS_ADDR(phy->attached_sas_addr) ==
1593 		     SAS_ADDR(child->sas_addr))) {
1594 			res = sas_configure_phy(parent, i, sas_addr, include);
1595 			if (res)
1596 				return res;
1597 		}
1598 	}
1599 
1600 	return res;
1601 }
1602 
1603 /**
1604  * sas_configure_routing - configure routing
1605  * @dev: expander device
1606  * @sas_addr: port identifier of device directly attached to the expander device
1607  */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1608 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1609 {
1610 	if (dev->parent)
1611 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1612 	return 0;
1613 }
1614 
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1615 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1616 {
1617 	if (dev->parent)
1618 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1619 	return 0;
1620 }
1621 
1622 /**
1623  * sas_discover_expander - expander discovery
1624  * @dev: pointer to expander domain device
1625  *
1626  * See comment in sas_discover_sata().
1627  */
sas_discover_expander(struct domain_device * dev)1628 static int sas_discover_expander(struct domain_device *dev)
1629 {
1630 	int res;
1631 
1632 	res = sas_notify_lldd_dev_found(dev);
1633 	if (res)
1634 		return res;
1635 
1636 	res = sas_ex_general(dev);
1637 	if (res)
1638 		goto out_err;
1639 	res = sas_ex_manuf_info(dev);
1640 	if (res)
1641 		goto out_err;
1642 
1643 	res = sas_expander_discover(dev);
1644 	if (res) {
1645 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1646 			    SAS_ADDR(dev->sas_addr), res);
1647 		goto out_err;
1648 	}
1649 
1650 	sas_check_ex_subtractive_boundary(dev);
1651 	res = sas_check_parent_topology(dev);
1652 	if (res)
1653 		goto out_err;
1654 	return 0;
1655 out_err:
1656 	sas_notify_lldd_dev_gone(dev);
1657 	return res;
1658 }
1659 
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1660 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1661 {
1662 	int res = 0;
1663 	struct domain_device *dev;
1664 
1665 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1666 		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1667 		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1668 			struct sas_expander_device *ex =
1669 				rphy_to_expander_device(dev->rphy);
1670 
1671 			if (level == ex->level)
1672 				res = sas_ex_discover_devices(dev, -1);
1673 			else if (level > 0)
1674 				res = sas_ex_discover_devices(port->port_dev, -1);
1675 
1676 		}
1677 	}
1678 
1679 	return res;
1680 }
1681 
sas_ex_bfs_disc(struct asd_sas_port * port)1682 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1683 {
1684 	int res;
1685 	int level;
1686 
1687 	do {
1688 		level = port->disc.max_level;
1689 		res = sas_ex_level_discovery(port, level);
1690 		mb();
1691 	} while (level < port->disc.max_level);
1692 
1693 	return res;
1694 }
1695 
sas_discover_root_expander(struct domain_device * dev)1696 int sas_discover_root_expander(struct domain_device *dev)
1697 {
1698 	int res;
1699 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1700 
1701 	res = sas_rphy_add(dev->rphy);
1702 	if (res)
1703 		goto out_err;
1704 
1705 	ex->level = dev->port->disc.max_level; /* 0 */
1706 	res = sas_discover_expander(dev);
1707 	if (res)
1708 		goto out_err2;
1709 
1710 	sas_ex_bfs_disc(dev->port);
1711 
1712 	return res;
1713 
1714 out_err2:
1715 	sas_rphy_remove(dev->rphy);
1716 out_err:
1717 	return res;
1718 }
1719 
1720 /* ---------- Domain revalidation ---------- */
1721 
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1722 static int sas_get_phy_discover(struct domain_device *dev,
1723 				int phy_id, struct smp_resp *disc_resp)
1724 {
1725 	int res;
1726 	u8 *disc_req;
1727 
1728 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1729 	if (!disc_req)
1730 		return -ENOMEM;
1731 
1732 	disc_req[1] = SMP_DISCOVER;
1733 	disc_req[9] = phy_id;
1734 
1735 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1736 			       disc_resp, DISCOVER_RESP_SIZE);
1737 	if (res)
1738 		goto out;
1739 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1740 		res = disc_resp->result;
1741 		goto out;
1742 	}
1743 out:
1744 	kfree(disc_req);
1745 	return res;
1746 }
1747 
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1748 static int sas_get_phy_change_count(struct domain_device *dev,
1749 				    int phy_id, int *pcc)
1750 {
1751 	int res;
1752 	struct smp_resp *disc_resp;
1753 
1754 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1755 	if (!disc_resp)
1756 		return -ENOMEM;
1757 
1758 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1759 	if (!res)
1760 		*pcc = disc_resp->disc.change_count;
1761 
1762 	kfree(disc_resp);
1763 	return res;
1764 }
1765 
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1766 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1767 				    u8 *sas_addr, enum sas_device_type *type)
1768 {
1769 	int res;
1770 	struct smp_resp *disc_resp;
1771 	struct discover_resp *dr;
1772 
1773 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1774 	if (!disc_resp)
1775 		return -ENOMEM;
1776 	dr = &disc_resp->disc;
1777 
1778 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1779 	if (res == 0) {
1780 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1781 		*type = to_dev_type(dr);
1782 		if (*type == 0)
1783 			memset(sas_addr, 0, 8);
1784 	}
1785 	kfree(disc_resp);
1786 	return res;
1787 }
1788 
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1789 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1790 			      int from_phy, bool update)
1791 {
1792 	struct expander_device *ex = &dev->ex_dev;
1793 	int res = 0;
1794 	int i;
1795 
1796 	for (i = from_phy; i < ex->num_phys; i++) {
1797 		int phy_change_count = 0;
1798 
1799 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1800 		switch (res) {
1801 		case SMP_RESP_PHY_VACANT:
1802 		case SMP_RESP_NO_PHY:
1803 			continue;
1804 		case SMP_RESP_FUNC_ACC:
1805 			break;
1806 		default:
1807 			return res;
1808 		}
1809 
1810 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1811 			if (update)
1812 				ex->ex_phy[i].phy_change_count =
1813 					phy_change_count;
1814 			*phy_id = i;
1815 			return 0;
1816 		}
1817 	}
1818 	return 0;
1819 }
1820 
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1821 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1822 {
1823 	int res;
1824 	u8  *rg_req;
1825 	struct smp_resp  *rg_resp;
1826 
1827 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1828 	if (!rg_req)
1829 		return -ENOMEM;
1830 
1831 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1832 	if (!rg_resp) {
1833 		kfree(rg_req);
1834 		return -ENOMEM;
1835 	}
1836 
1837 	rg_req[1] = SMP_REPORT_GENERAL;
1838 
1839 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1840 			       RG_RESP_SIZE);
1841 	if (res)
1842 		goto out;
1843 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1844 		res = rg_resp->result;
1845 		goto out;
1846 	}
1847 
1848 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1849 out:
1850 	kfree(rg_resp);
1851 	kfree(rg_req);
1852 	return res;
1853 }
1854 /**
1855  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1856  * @dev:domain device to be detect.
1857  * @src_dev: the device which originated BROADCAST(CHANGE).
1858  *
1859  * Add self-configuration expander support. Suppose two expander cascading,
1860  * when the first level expander is self-configuring, hotplug the disks in
1861  * second level expander, BROADCAST(CHANGE) will not only be originated
1862  * in the second level expander, but also be originated in the first level
1863  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1864  * expander changed count in two level expanders will all increment at least
1865  * once, but the phy which chang count has changed is the source device which
1866  * we concerned.
1867  */
1868 
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1869 static int sas_find_bcast_dev(struct domain_device *dev,
1870 			      struct domain_device **src_dev)
1871 {
1872 	struct expander_device *ex = &dev->ex_dev;
1873 	int ex_change_count = -1;
1874 	int phy_id = -1;
1875 	int res;
1876 	struct domain_device *ch;
1877 
1878 	res = sas_get_ex_change_count(dev, &ex_change_count);
1879 	if (res)
1880 		goto out;
1881 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1882 		/* Just detect if this expander phys phy change count changed,
1883 		* in order to determine if this expander originate BROADCAST,
1884 		* and do not update phy change count field in our structure.
1885 		*/
1886 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1887 		if (phy_id != -1) {
1888 			*src_dev = dev;
1889 			ex->ex_change_count = ex_change_count;
1890 			SAS_DPRINTK("Expander phy change count has changed\n");
1891 			return res;
1892 		} else
1893 			SAS_DPRINTK("Expander phys DID NOT change\n");
1894 	}
1895 	list_for_each_entry(ch, &ex->children, siblings) {
1896 		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1897 			res = sas_find_bcast_dev(ch, src_dev);
1898 			if (*src_dev)
1899 				return res;
1900 		}
1901 	}
1902 out:
1903 	return res;
1904 }
1905 
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1906 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1907 {
1908 	struct expander_device *ex = &dev->ex_dev;
1909 	struct domain_device *child, *n;
1910 
1911 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1912 		set_bit(SAS_DEV_GONE, &child->state);
1913 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1914 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1915 			sas_unregister_ex_tree(port, child);
1916 		else
1917 			sas_unregister_dev(port, child);
1918 	}
1919 	sas_unregister_dev(port, dev);
1920 }
1921 
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1922 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1923 					 int phy_id, bool last)
1924 {
1925 	struct expander_device *ex_dev = &parent->ex_dev;
1926 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1927 	struct domain_device *child, *n, *found = NULL;
1928 	if (last) {
1929 		list_for_each_entry_safe(child, n,
1930 			&ex_dev->children, siblings) {
1931 			if (SAS_ADDR(child->sas_addr) ==
1932 			    SAS_ADDR(phy->attached_sas_addr)) {
1933 				set_bit(SAS_DEV_GONE, &child->state);
1934 				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935 				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1936 					sas_unregister_ex_tree(parent->port, child);
1937 				else
1938 					sas_unregister_dev(parent->port, child);
1939 				found = child;
1940 				break;
1941 			}
1942 		}
1943 		sas_disable_routing(parent, phy->attached_sas_addr);
1944 	}
1945 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1946 	if (phy->port) {
1947 		sas_port_delete_phy(phy->port, phy->phy);
1948 		sas_device_set_phy(found, phy->port);
1949 		if (phy->port->num_phys == 0)
1950 			list_add_tail(&phy->port->del_list,
1951 				&parent->port->sas_port_del_list);
1952 		phy->port = NULL;
1953 	}
1954 }
1955 
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1956 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1957 					  const int level)
1958 {
1959 	struct expander_device *ex_root = &root->ex_dev;
1960 	struct domain_device *child;
1961 	int res = 0;
1962 
1963 	list_for_each_entry(child, &ex_root->children, siblings) {
1964 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1965 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1966 			struct sas_expander_device *ex =
1967 				rphy_to_expander_device(child->rphy);
1968 
1969 			if (level > ex->level)
1970 				res = sas_discover_bfs_by_root_level(child,
1971 								     level);
1972 			else if (level == ex->level)
1973 				res = sas_ex_discover_devices(child, -1);
1974 		}
1975 	}
1976 	return res;
1977 }
1978 
sas_discover_bfs_by_root(struct domain_device * dev)1979 static int sas_discover_bfs_by_root(struct domain_device *dev)
1980 {
1981 	int res;
1982 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1983 	int level = ex->level+1;
1984 
1985 	res = sas_ex_discover_devices(dev, -1);
1986 	if (res)
1987 		goto out;
1988 	do {
1989 		res = sas_discover_bfs_by_root_level(dev, level);
1990 		mb();
1991 		level += 1;
1992 	} while (level <= dev->port->disc.max_level);
1993 out:
1994 	return res;
1995 }
1996 
sas_discover_new(struct domain_device * dev,int phy_id)1997 static int sas_discover_new(struct domain_device *dev, int phy_id)
1998 {
1999 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
2000 	struct domain_device *child;
2001 	int res;
2002 
2003 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
2004 		    SAS_ADDR(dev->sas_addr), phy_id);
2005 	res = sas_ex_phy_discover(dev, phy_id);
2006 	if (res)
2007 		return res;
2008 
2009 	if (sas_ex_join_wide_port(dev, phy_id))
2010 		return 0;
2011 
2012 	res = sas_ex_discover_devices(dev, phy_id);
2013 	if (res)
2014 		return res;
2015 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
2016 		if (SAS_ADDR(child->sas_addr) ==
2017 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
2018 			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2019 			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2020 				res = sas_discover_bfs_by_root(child);
2021 			break;
2022 		}
2023 	}
2024 	return res;
2025 }
2026 
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)2027 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2028 {
2029 	if (old == new)
2030 		return true;
2031 
2032 	/* treat device directed resets as flutter, if we went
2033 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2034 	 */
2035 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2036 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2037 		return true;
2038 
2039 	return false;
2040 }
2041 
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last)2042 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2043 {
2044 	struct expander_device *ex = &dev->ex_dev;
2045 	struct ex_phy *phy = &ex->ex_phy[phy_id];
2046 	enum sas_device_type type = SAS_PHY_UNUSED;
2047 	u8 sas_addr[8];
2048 	int res;
2049 
2050 	memset(sas_addr, 0, 8);
2051 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2052 	switch (res) {
2053 	case SMP_RESP_NO_PHY:
2054 		phy->phy_state = PHY_NOT_PRESENT;
2055 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2056 		return res;
2057 	case SMP_RESP_PHY_VACANT:
2058 		phy->phy_state = PHY_VACANT;
2059 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2060 		return res;
2061 	case SMP_RESP_FUNC_ACC:
2062 		break;
2063 	case -ECOMM:
2064 		break;
2065 	default:
2066 		return res;
2067 	}
2068 
2069 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2070 		phy->phy_state = PHY_EMPTY;
2071 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2072 		/*
2073 		 * Even though the PHY is empty, for convenience we discover
2074 		 * the PHY to update the PHY info, like negotiated linkrate.
2075 		 */
2076 		sas_ex_phy_discover(dev, phy_id);
2077 		return res;
2078 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2079 		   dev_type_flutter(type, phy->attached_dev_type)) {
2080 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2081 		char *action = "";
2082 
2083 		sas_ex_phy_discover(dev, phy_id);
2084 
2085 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2086 			action = ", needs recovery";
2087 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2088 			    SAS_ADDR(dev->sas_addr), phy_id, action);
2089 		return res;
2090 	}
2091 
2092 	/* we always have to delete the old device when we went here */
2093 	SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2094 		    SAS_ADDR(dev->sas_addr), phy_id,
2095 		    SAS_ADDR(phy->attached_sas_addr));
2096 	sas_unregister_devs_sas_addr(dev, phy_id, last);
2097 
2098 	return sas_discover_new(dev, phy_id);
2099 }
2100 
2101 /**
2102  * sas_rediscover - revalidate the domain.
2103  * @dev:domain device to be detect.
2104  * @phy_id: the phy id will be detected.
2105  *
2106  * NOTE: this process _must_ quit (return) as soon as any connection
2107  * errors are encountered.  Connection recovery is done elsewhere.
2108  * Discover process only interrogates devices in order to discover the
2109  * domain.For plugging out, we un-register the device only when it is
2110  * the last phy in the port, for other phys in this port, we just delete it
2111  * from the port.For inserting, we do discovery when it is the
2112  * first phy,for other phys in this port, we add it to the port to
2113  * forming the wide-port.
2114  */
sas_rediscover(struct domain_device * dev,const int phy_id)2115 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2116 {
2117 	struct expander_device *ex = &dev->ex_dev;
2118 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2119 	int res = 0;
2120 	int i;
2121 	bool last = true;	/* is this the last phy of the port */
2122 
2123 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2124 		    SAS_ADDR(dev->sas_addr), phy_id);
2125 
2126 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2127 		for (i = 0; i < ex->num_phys; i++) {
2128 			struct ex_phy *phy = &ex->ex_phy[i];
2129 
2130 			if (i == phy_id)
2131 				continue;
2132 			if (SAS_ADDR(phy->attached_sas_addr) ==
2133 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2134 				SAS_DPRINTK("phy%d part of wide port with "
2135 					    "phy%d\n", phy_id, i);
2136 				last = false;
2137 				break;
2138 			}
2139 		}
2140 		res = sas_rediscover_dev(dev, phy_id, last);
2141 	} else
2142 		res = sas_discover_new(dev, phy_id);
2143 	return res;
2144 }
2145 
2146 /**
2147  * sas_ex_revalidate_domain - revalidate the domain
2148  * @port_dev: port domain device.
2149  *
2150  * NOTE: this process _must_ quit (return) as soon as any connection
2151  * errors are encountered.  Connection recovery is done elsewhere.
2152  * Discover process only interrogates devices in order to discover the
2153  * domain.
2154  */
sas_ex_revalidate_domain(struct domain_device * port_dev)2155 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2156 {
2157 	int res;
2158 	struct domain_device *dev = NULL;
2159 
2160 	res = sas_find_bcast_dev(port_dev, &dev);
2161 	if (res == 0 && dev) {
2162 		struct expander_device *ex = &dev->ex_dev;
2163 		int i = 0, phy_id;
2164 
2165 		do {
2166 			phy_id = -1;
2167 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2168 			if (phy_id == -1)
2169 				break;
2170 			res = sas_rediscover(dev, phy_id);
2171 			i = phy_id + 1;
2172 		} while (i < ex->num_phys);
2173 	}
2174 	return res;
2175 }
2176 
sas_smp_handler(struct bsg_job * job,struct Scsi_Host * shost,struct sas_rphy * rphy)2177 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2178 		struct sas_rphy *rphy)
2179 {
2180 	struct domain_device *dev;
2181 	unsigned int rcvlen = 0;
2182 	int ret = -EINVAL;
2183 
2184 	/* no rphy means no smp target support (ie aic94xx host) */
2185 	if (!rphy)
2186 		return sas_smp_host_handler(job, shost);
2187 
2188 	switch (rphy->identify.device_type) {
2189 	case SAS_EDGE_EXPANDER_DEVICE:
2190 	case SAS_FANOUT_EXPANDER_DEVICE:
2191 		break;
2192 	default:
2193 		printk("%s: can we send a smp request to a device?\n",
2194 		       __func__);
2195 		goto out;
2196 	}
2197 
2198 	dev = sas_find_dev_by_rphy(rphy);
2199 	if (!dev) {
2200 		printk("%s: fail to find a domain_device?\n", __func__);
2201 		goto out;
2202 	}
2203 
2204 	/* do we need to support multiple segments? */
2205 	if (job->request_payload.sg_cnt > 1 ||
2206 	    job->reply_payload.sg_cnt > 1) {
2207 		printk("%s: multiple segments req %u, rsp %u\n",
2208 		       __func__, job->request_payload.payload_len,
2209 		       job->reply_payload.payload_len);
2210 		goto out;
2211 	}
2212 
2213 	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2214 			job->reply_payload.sg_list);
2215 	if (ret >= 0) {
2216 		/* bsg_job_done() requires the length received  */
2217 		rcvlen = job->reply_payload.payload_len - ret;
2218 		ret = 0;
2219 	}
2220 
2221 out:
2222 	bsg_job_done(job, ret, rcvlen);
2223 }
2224