• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/sed-opal.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/pr.h>
56 #include <linux/t10-pi.h>
57 #include <linux/uaccess.h>
58 #include <asm/unaligned.h>
59 
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_dbg.h>
63 #include <scsi/scsi_device.h>
64 #include <scsi/scsi_driver.h>
65 #include <scsi/scsi_eh.h>
66 #include <scsi/scsi_host.h>
67 #include <scsi/scsi_ioctl.h>
68 #include <scsi/scsicam.h>
69 
70 #include "sd.h"
71 #include "scsi_priv.h"
72 #include "scsi_logging.h"
73 
74 MODULE_AUTHOR("Eric Youngdale");
75 MODULE_DESCRIPTION("SCSI disk (sd) driver");
76 MODULE_LICENSE("GPL");
77 
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
98 
99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
100 #define SD_MINORS	16
101 #else
102 #define SD_MINORS	0
103 #endif
104 
105 static void sd_config_discard(struct scsi_disk *, unsigned int);
106 static void sd_config_write_same(struct scsi_disk *);
107 static int  sd_revalidate_disk(struct gendisk *);
108 static void sd_unlock_native_capacity(struct gendisk *disk);
109 static int  sd_probe(struct device *);
110 static int  sd_remove(struct device *);
111 static void sd_shutdown(struct device *);
112 static int sd_suspend_system(struct device *);
113 static int sd_suspend_runtime(struct device *);
114 static int sd_resume(struct device *);
115 static void sd_rescan(struct device *);
116 static int sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
124 static void sd_print_result(const struct scsi_disk *, const char *, int);
125 
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
sd_set_flush_flag(struct scsi_disk * sdkp)142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	/*
209 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 	 * received mode parameter buffer before doing MODE SELECT.
211 	 */
212 	data.device_specific = 0;
213 
214 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 			     SD_MAX_RETRIES, &data, &sshdr)) {
216 		if (scsi_sense_valid(&sshdr))
217 			sd_print_sense_hdr(sdkp, &sshdr);
218 		return -EINVAL;
219 	}
220 	revalidate_disk(sdkp->disk);
221 	return count;
222 }
223 
224 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 		       char *buf)
227 {
228 	struct scsi_disk *sdkp = to_scsi_disk(dev);
229 	struct scsi_device *sdp = sdkp->device;
230 
231 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233 
234 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 			const char *buf, size_t count)
237 {
238 	struct scsi_disk *sdkp = to_scsi_disk(dev);
239 	struct scsi_device *sdp = sdkp->device;
240 	bool v;
241 
242 	if (!capable(CAP_SYS_ADMIN))
243 		return -EACCES;
244 
245 	if (kstrtobool(buf, &v))
246 		return -EINVAL;
247 
248 	sdp->manage_start_stop = v;
249 
250 	return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253 
254 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 	struct scsi_disk *sdkp = to_scsi_disk(dev);
258 
259 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261 
262 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 		    const char *buf, size_t count)
265 {
266 	bool v;
267 	struct scsi_disk *sdkp = to_scsi_disk(dev);
268 	struct scsi_device *sdp = sdkp->device;
269 
270 	if (!capable(CAP_SYS_ADMIN))
271 		return -EACCES;
272 
273 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 		return -EINVAL;
275 
276 	if (kstrtobool(buf, &v))
277 		return -EINVAL;
278 
279 	sdp->allow_restart = v;
280 
281 	return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284 
285 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 	int ct = sdkp->RCD + 2*sdkp->WCE;
290 
291 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294 
295 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303 
304 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 		     char *buf)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 
310 	return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312 
313 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 		      const char *buf, size_t count)
316 {
317 	struct scsi_disk *sdkp = to_scsi_disk(dev);
318 	unsigned int val;
319 	int err;
320 
321 	if (!capable(CAP_SYS_ADMIN))
322 		return -EACCES;
323 
324 	err = kstrtouint(buf, 10, &val);
325 
326 	if (err)
327 		return err;
328 
329 	if (val <= T10_PI_TYPE3_PROTECTION)
330 		sdkp->protection_type = val;
331 
332 	return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335 
336 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 		     char *buf)
339 {
340 	struct scsi_disk *sdkp = to_scsi_disk(dev);
341 	struct scsi_device *sdp = sdkp->device;
342 	unsigned int dif, dix;
343 
344 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346 
347 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 		dif = 0;
349 		dix = 1;
350 	}
351 
352 	if (!dif && !dix)
353 		return sprintf(buf, "none\n");
354 
355 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358 
359 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367 
368 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 		       char *buf)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 
374 	return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377 
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 	[SD_LBP_FULL]		= "full",
381 	[SD_LBP_UNMAP]		= "unmap",
382 	[SD_LBP_WS16]		= "writesame_16",
383 	[SD_LBP_WS10]		= "writesame_10",
384 	[SD_LBP_ZERO]		= "writesame_zero",
385 	[SD_LBP_DISABLE]	= "disabled",
386 };
387 
388 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 		       char *buf)
391 {
392 	struct scsi_disk *sdkp = to_scsi_disk(dev);
393 
394 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396 
397 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 			const char *buf, size_t count)
400 {
401 	struct scsi_disk *sdkp = to_scsi_disk(dev);
402 	struct scsi_device *sdp = sdkp->device;
403 	int mode;
404 
405 	if (!capable(CAP_SYS_ADMIN))
406 		return -EACCES;
407 
408 	if (sd_is_zoned(sdkp)) {
409 		sd_config_discard(sdkp, SD_LBP_DISABLE);
410 		return count;
411 	}
412 
413 	if (sdp->type != TYPE_DISK)
414 		return -EINVAL;
415 
416 	mode = sysfs_match_string(lbp_mode, buf);
417 	if (mode < 0)
418 		return -EINVAL;
419 
420 	sd_config_discard(sdkp, mode);
421 
422 	return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425 
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 	[SD_ZERO_WRITE]		= "write",
429 	[SD_ZERO_WS]		= "writesame",
430 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
431 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
432 };
433 
434 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 		  char *buf)
437 {
438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
439 
440 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442 
443 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 		   const char *buf, size_t count)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 	int mode;
449 
450 	if (!capable(CAP_SYS_ADMIN))
451 		return -EACCES;
452 
453 	mode = sysfs_match_string(zeroing_mode, buf);
454 	if (mode < 0)
455 		return -EINVAL;
456 
457 	sdkp->zeroing_mode = mode;
458 
459 	return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462 
463 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)464 max_medium_access_timeouts_show(struct device *dev,
465 				struct device_attribute *attr, char *buf)
466 {
467 	struct scsi_disk *sdkp = to_scsi_disk(dev);
468 
469 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471 
472 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)473 max_medium_access_timeouts_store(struct device *dev,
474 				 struct device_attribute *attr, const char *buf,
475 				 size_t count)
476 {
477 	struct scsi_disk *sdkp = to_scsi_disk(dev);
478 	int err;
479 
480 	if (!capable(CAP_SYS_ADMIN))
481 		return -EACCES;
482 
483 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484 
485 	return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488 
489 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 			   char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497 
498 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 			    const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	struct scsi_device *sdp = sdkp->device;
504 	unsigned long max;
505 	int err;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EACCES;
509 
510 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 		return -EINVAL;
512 
513 	err = kstrtoul(buf, 10, &max);
514 
515 	if (err)
516 		return err;
517 
518 	if (max == 0)
519 		sdp->no_write_same = 1;
520 	else if (max <= SD_MAX_WS16_BLOCKS) {
521 		sdp->no_write_same = 0;
522 		sdkp->max_ws_blocks = max;
523 	}
524 
525 	sd_config_write_same(sdkp);
526 
527 	return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530 
531 static struct attribute *sd_disk_attrs[] = {
532 	&dev_attr_cache_type.attr,
533 	&dev_attr_FUA.attr,
534 	&dev_attr_allow_restart.attr,
535 	&dev_attr_manage_start_stop.attr,
536 	&dev_attr_protection_type.attr,
537 	&dev_attr_protection_mode.attr,
538 	&dev_attr_app_tag_own.attr,
539 	&dev_attr_thin_provisioning.attr,
540 	&dev_attr_provisioning_mode.attr,
541 	&dev_attr_zeroing_mode.attr,
542 	&dev_attr_max_write_same_blocks.attr,
543 	&dev_attr_max_medium_access_timeouts.attr,
544 	NULL,
545 };
546 ATTRIBUTE_GROUPS(sd_disk);
547 
548 static struct class sd_disk_class = {
549 	.name		= "scsi_disk",
550 	.owner		= THIS_MODULE,
551 	.dev_release	= scsi_disk_release,
552 	.dev_groups	= sd_disk_groups,
553 };
554 
555 static const struct dev_pm_ops sd_pm_ops = {
556 	.suspend		= sd_suspend_system,
557 	.resume			= sd_resume,
558 	.poweroff		= sd_suspend_system,
559 	.restore		= sd_resume,
560 	.runtime_suspend	= sd_suspend_runtime,
561 	.runtime_resume		= sd_resume,
562 };
563 
564 static struct scsi_driver sd_template = {
565 	.gendrv = {
566 		.name		= "sd",
567 		.owner		= THIS_MODULE,
568 		.probe		= sd_probe,
569 		.remove		= sd_remove,
570 		.shutdown	= sd_shutdown,
571 		.pm		= &sd_pm_ops,
572 	},
573 	.rescan			= sd_rescan,
574 	.init_command		= sd_init_command,
575 	.uninit_command		= sd_uninit_command,
576 	.done			= sd_done,
577 	.eh_action		= sd_eh_action,
578 	.eh_reset		= sd_eh_reset,
579 };
580 
581 /*
582  * Dummy kobj_map->probe function.
583  * The default ->probe function will call modprobe, which is
584  * pointless as this module is already loaded.
585  */
sd_default_probe(dev_t devt,int * partno,void * data)586 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
587 {
588 	return NULL;
589 }
590 
591 /*
592  * Device no to disk mapping:
593  *
594  *       major         disc2     disc  p1
595  *   |............|.............|....|....| <- dev_t
596  *    31        20 19          8 7  4 3  0
597  *
598  * Inside a major, we have 16k disks, however mapped non-
599  * contiguously. The first 16 disks are for major0, the next
600  * ones with major1, ... Disk 256 is for major0 again, disk 272
601  * for major1, ...
602  * As we stay compatible with our numbering scheme, we can reuse
603  * the well-know SCSI majors 8, 65--71, 136--143.
604  */
sd_major(int major_idx)605 static int sd_major(int major_idx)
606 {
607 	switch (major_idx) {
608 	case 0:
609 		return SCSI_DISK0_MAJOR;
610 	case 1 ... 7:
611 		return SCSI_DISK1_MAJOR + major_idx - 1;
612 	case 8 ... 15:
613 		return SCSI_DISK8_MAJOR + major_idx - 8;
614 	default:
615 		BUG();
616 		return 0;	/* shut up gcc */
617 	}
618 }
619 
scsi_disk_get(struct gendisk * disk)620 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
621 {
622 	struct scsi_disk *sdkp = NULL;
623 
624 	mutex_lock(&sd_ref_mutex);
625 
626 	if (disk->private_data) {
627 		sdkp = scsi_disk(disk);
628 		if (scsi_device_get(sdkp->device) == 0)
629 			get_device(&sdkp->dev);
630 		else
631 			sdkp = NULL;
632 	}
633 	mutex_unlock(&sd_ref_mutex);
634 	return sdkp;
635 }
636 
scsi_disk_put(struct scsi_disk * sdkp)637 static void scsi_disk_put(struct scsi_disk *sdkp)
638 {
639 	struct scsi_device *sdev = sdkp->device;
640 
641 	mutex_lock(&sd_ref_mutex);
642 	put_device(&sdkp->dev);
643 	scsi_device_put(sdev);
644 	mutex_unlock(&sd_ref_mutex);
645 }
646 
647 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)648 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
649 		size_t len, bool send)
650 {
651 	struct scsi_device *sdev = data;
652 	u8 cdb[12] = { 0, };
653 	int ret;
654 
655 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
656 	cdb[1] = secp;
657 	put_unaligned_be16(spsp, &cdb[2]);
658 	put_unaligned_be32(len, &cdb[6]);
659 
660 	ret = scsi_execute_req(sdev, cdb,
661 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
662 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
663 	return ret <= 0 ? ret : -EIO;
664 }
665 #endif /* CONFIG_BLK_SED_OPAL */
666 
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)667 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
668 					   unsigned int dix, unsigned int dif)
669 {
670 	struct bio *bio = scmd->request->bio;
671 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
672 	unsigned int protect = 0;
673 
674 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
675 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
676 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
677 
678 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
679 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
680 	}
681 
682 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
683 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
684 
685 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
686 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
687 	}
688 
689 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
690 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
691 
692 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
693 			protect = 3 << 5;	/* Disable target PI checking */
694 		else
695 			protect = 1 << 5;	/* Enable target PI checking */
696 	}
697 
698 	scsi_set_prot_op(scmd, prot_op);
699 	scsi_set_prot_type(scmd, dif);
700 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
701 
702 	return protect;
703 }
704 
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)705 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
706 {
707 	struct request_queue *q = sdkp->disk->queue;
708 	unsigned int logical_block_size = sdkp->device->sector_size;
709 	unsigned int max_blocks = 0;
710 
711 	q->limits.discard_alignment =
712 		sdkp->unmap_alignment * logical_block_size;
713 	q->limits.discard_granularity =
714 		max(sdkp->physical_block_size,
715 		    sdkp->unmap_granularity * logical_block_size);
716 	sdkp->provisioning_mode = mode;
717 
718 	switch (mode) {
719 
720 	case SD_LBP_FULL:
721 	case SD_LBP_DISABLE:
722 		blk_queue_max_discard_sectors(q, 0);
723 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
724 		return;
725 
726 	case SD_LBP_UNMAP:
727 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
728 					  (u32)SD_MAX_WS16_BLOCKS);
729 		break;
730 
731 	case SD_LBP_WS16:
732 		if (sdkp->device->unmap_limit_for_ws)
733 			max_blocks = sdkp->max_unmap_blocks;
734 		else
735 			max_blocks = sdkp->max_ws_blocks;
736 
737 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
738 		break;
739 
740 	case SD_LBP_WS10:
741 		if (sdkp->device->unmap_limit_for_ws)
742 			max_blocks = sdkp->max_unmap_blocks;
743 		else
744 			max_blocks = sdkp->max_ws_blocks;
745 
746 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
747 		break;
748 
749 	case SD_LBP_ZERO:
750 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
751 					  (u32)SD_MAX_WS10_BLOCKS);
752 		break;
753 	}
754 
755 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
756 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
757 }
758 
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)759 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
760 {
761 	struct scsi_device *sdp = cmd->device;
762 	struct request *rq = cmd->request;
763 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
764 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
765 	unsigned int data_len = 24;
766 	char *buf;
767 
768 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
769 	if (!rq->special_vec.bv_page)
770 		return BLKPREP_DEFER;
771 	clear_highpage(rq->special_vec.bv_page);
772 	rq->special_vec.bv_offset = 0;
773 	rq->special_vec.bv_len = data_len;
774 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
775 
776 	cmd->cmd_len = 10;
777 	cmd->cmnd[0] = UNMAP;
778 	cmd->cmnd[8] = 24;
779 
780 	buf = page_address(rq->special_vec.bv_page);
781 	put_unaligned_be16(6 + 16, &buf[0]);
782 	put_unaligned_be16(16, &buf[2]);
783 	put_unaligned_be64(sector, &buf[8]);
784 	put_unaligned_be32(nr_sectors, &buf[16]);
785 
786 	cmd->allowed = SD_MAX_RETRIES;
787 	cmd->transfersize = data_len;
788 	rq->timeout = SD_TIMEOUT;
789 	scsi_req(rq)->resid_len = data_len;
790 
791 	return scsi_init_io(cmd);
792 }
793 
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)794 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
795 {
796 	struct scsi_device *sdp = cmd->device;
797 	struct request *rq = cmd->request;
798 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
799 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
800 	u32 data_len = sdp->sector_size;
801 
802 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
803 	if (!rq->special_vec.bv_page)
804 		return BLKPREP_DEFER;
805 	clear_highpage(rq->special_vec.bv_page);
806 	rq->special_vec.bv_offset = 0;
807 	rq->special_vec.bv_len = data_len;
808 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
809 
810 	cmd->cmd_len = 16;
811 	cmd->cmnd[0] = WRITE_SAME_16;
812 	if (unmap)
813 		cmd->cmnd[1] = 0x8; /* UNMAP */
814 	put_unaligned_be64(sector, &cmd->cmnd[2]);
815 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
816 
817 	cmd->allowed = SD_MAX_RETRIES;
818 	cmd->transfersize = data_len;
819 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
820 	scsi_req(rq)->resid_len = data_len;
821 
822 	return scsi_init_io(cmd);
823 }
824 
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)825 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
826 {
827 	struct scsi_device *sdp = cmd->device;
828 	struct request *rq = cmd->request;
829 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
830 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
831 	u32 data_len = sdp->sector_size;
832 
833 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
834 	if (!rq->special_vec.bv_page)
835 		return BLKPREP_DEFER;
836 	clear_highpage(rq->special_vec.bv_page);
837 	rq->special_vec.bv_offset = 0;
838 	rq->special_vec.bv_len = data_len;
839 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
840 
841 	cmd->cmd_len = 10;
842 	cmd->cmnd[0] = WRITE_SAME;
843 	if (unmap)
844 		cmd->cmnd[1] = 0x8; /* UNMAP */
845 	put_unaligned_be32(sector, &cmd->cmnd[2]);
846 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
847 
848 	cmd->allowed = SD_MAX_RETRIES;
849 	cmd->transfersize = data_len;
850 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
851 	scsi_req(rq)->resid_len = data_len;
852 
853 	return scsi_init_io(cmd);
854 }
855 
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)856 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
857 {
858 	struct request *rq = cmd->request;
859 	struct scsi_device *sdp = cmd->device;
860 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
861 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
862 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
863 
864 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
865 		switch (sdkp->zeroing_mode) {
866 		case SD_ZERO_WS16_UNMAP:
867 			return sd_setup_write_same16_cmnd(cmd, true);
868 		case SD_ZERO_WS10_UNMAP:
869 			return sd_setup_write_same10_cmnd(cmd, true);
870 		}
871 	}
872 
873 	if (sdp->no_write_same)
874 		return BLKPREP_INVALID;
875 
876 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
877 		return sd_setup_write_same16_cmnd(cmd, false);
878 
879 	return sd_setup_write_same10_cmnd(cmd, false);
880 }
881 
sd_config_write_same(struct scsi_disk * sdkp)882 static void sd_config_write_same(struct scsi_disk *sdkp)
883 {
884 	struct request_queue *q = sdkp->disk->queue;
885 	unsigned int logical_block_size = sdkp->device->sector_size;
886 
887 	if (sdkp->device->no_write_same) {
888 		sdkp->max_ws_blocks = 0;
889 		goto out;
890 	}
891 
892 	/* Some devices can not handle block counts above 0xffff despite
893 	 * supporting WRITE SAME(16). Consequently we default to 64k
894 	 * blocks per I/O unless the device explicitly advertises a
895 	 * bigger limit.
896 	 */
897 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
898 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
899 						   (u32)SD_MAX_WS16_BLOCKS);
900 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
901 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
902 						   (u32)SD_MAX_WS10_BLOCKS);
903 	else {
904 		sdkp->device->no_write_same = 1;
905 		sdkp->max_ws_blocks = 0;
906 	}
907 
908 	if (sdkp->lbprz && sdkp->lbpws)
909 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
910 	else if (sdkp->lbprz && sdkp->lbpws10)
911 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
912 	else if (sdkp->max_ws_blocks)
913 		sdkp->zeroing_mode = SD_ZERO_WS;
914 	else
915 		sdkp->zeroing_mode = SD_ZERO_WRITE;
916 
917 	if (sdkp->max_ws_blocks &&
918 	    sdkp->physical_block_size > logical_block_size) {
919 		/*
920 		 * Reporting a maximum number of blocks that is not aligned
921 		 * on the device physical size would cause a large write same
922 		 * request to be split into physically unaligned chunks by
923 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
924 		 * even if the caller of these functions took care to align the
925 		 * large request. So make sure the maximum reported is aligned
926 		 * to the device physical block size. This is only an optional
927 		 * optimization for regular disks, but this is mandatory to
928 		 * avoid failure of large write same requests directed at
929 		 * sequential write required zones of host-managed ZBC disks.
930 		 */
931 		sdkp->max_ws_blocks =
932 			round_down(sdkp->max_ws_blocks,
933 				   bytes_to_logical(sdkp->device,
934 						    sdkp->physical_block_size));
935 	}
936 
937 out:
938 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
939 					 (logical_block_size >> 9));
940 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
941 					 (logical_block_size >> 9));
942 }
943 
944 /**
945  * sd_setup_write_same_cmnd - write the same data to multiple blocks
946  * @cmd: command to prepare
947  *
948  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
949  * the preference indicated by the target device.
950  **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)951 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
952 {
953 	struct request *rq = cmd->request;
954 	struct scsi_device *sdp = cmd->device;
955 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
956 	struct bio *bio = rq->bio;
957 	sector_t sector = blk_rq_pos(rq);
958 	unsigned int nr_sectors = blk_rq_sectors(rq);
959 	unsigned int nr_bytes = blk_rq_bytes(rq);
960 	int ret;
961 
962 	if (sdkp->device->no_write_same)
963 		return BLKPREP_INVALID;
964 
965 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
966 
967 	sector >>= ilog2(sdp->sector_size) - 9;
968 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
969 
970 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
971 
972 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
973 		cmd->cmd_len = 16;
974 		cmd->cmnd[0] = WRITE_SAME_16;
975 		put_unaligned_be64(sector, &cmd->cmnd[2]);
976 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
977 	} else {
978 		cmd->cmd_len = 10;
979 		cmd->cmnd[0] = WRITE_SAME;
980 		put_unaligned_be32(sector, &cmd->cmnd[2]);
981 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
982 	}
983 
984 	cmd->transfersize = sdp->sector_size;
985 	cmd->allowed = SD_MAX_RETRIES;
986 
987 	/*
988 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
989 	 * different from the amount of data actually written to the target.
990 	 *
991 	 * We set up __data_len to the amount of data transferred via the
992 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
993 	 * to transfer a single sector of data first, but then reset it to
994 	 * the amount of data to be written right after so that the I/O path
995 	 * knows how much to actually write.
996 	 */
997 	rq->__data_len = sdp->sector_size;
998 	ret = scsi_init_io(cmd);
999 	rq->__data_len = nr_bytes;
1000 
1001 	return ret;
1002 }
1003 
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1004 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1005 {
1006 	struct request *rq = cmd->request;
1007 
1008 	/* flush requests don't perform I/O, zero the S/G table */
1009 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1010 
1011 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1012 	cmd->cmd_len = 10;
1013 	cmd->transfersize = 0;
1014 	cmd->allowed = SD_MAX_RETRIES;
1015 
1016 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1017 	return BLKPREP_OK;
1018 }
1019 
sd_setup_read_write_cmnd(struct scsi_cmnd * SCpnt)1020 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1021 {
1022 	struct request *rq = SCpnt->request;
1023 	struct scsi_device *sdp = SCpnt->device;
1024 	struct gendisk *disk = rq->rq_disk;
1025 	struct scsi_disk *sdkp = scsi_disk(disk);
1026 	sector_t block = blk_rq_pos(rq);
1027 	sector_t threshold;
1028 	unsigned int this_count = blk_rq_sectors(rq);
1029 	unsigned int dif, dix;
1030 	int ret;
1031 	unsigned char protect;
1032 
1033 	ret = scsi_init_io(SCpnt);
1034 	if (ret != BLKPREP_OK)
1035 		return ret;
1036 	WARN_ON_ONCE(SCpnt != rq->special);
1037 
1038 	/* from here on until we're complete, any goto out
1039 	 * is used for a killable error condition */
1040 	ret = BLKPREP_KILL;
1041 
1042 	SCSI_LOG_HLQUEUE(1,
1043 		scmd_printk(KERN_INFO, SCpnt,
1044 			"%s: block=%llu, count=%d\n",
1045 			__func__, (unsigned long long)block, this_count));
1046 
1047 	if (!sdp || !scsi_device_online(sdp) ||
1048 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1049 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1050 						"Finishing %u sectors\n",
1051 						blk_rq_sectors(rq)));
1052 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1053 						"Retry with 0x%p\n", SCpnt));
1054 		goto out;
1055 	}
1056 
1057 	if (sdp->changed) {
1058 		/*
1059 		 * quietly refuse to do anything to a changed disc until
1060 		 * the changed bit has been reset
1061 		 */
1062 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1063 		goto out;
1064 	}
1065 
1066 	/*
1067 	 * Some SD card readers can't handle multi-sector accesses which touch
1068 	 * the last one or two hardware sectors.  Split accesses as needed.
1069 	 */
1070 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1071 		(sdp->sector_size / 512);
1072 
1073 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1074 		if (block < threshold) {
1075 			/* Access up to the threshold but not beyond */
1076 			this_count = threshold - block;
1077 		} else {
1078 			/* Access only a single hardware sector */
1079 			this_count = sdp->sector_size / 512;
1080 		}
1081 	}
1082 
1083 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1084 					(unsigned long long)block));
1085 
1086 	/*
1087 	 * If we have a 1K hardware sectorsize, prevent access to single
1088 	 * 512 byte sectors.  In theory we could handle this - in fact
1089 	 * the scsi cdrom driver must be able to handle this because
1090 	 * we typically use 1K blocksizes, and cdroms typically have
1091 	 * 2K hardware sectorsizes.  Of course, things are simpler
1092 	 * with the cdrom, since it is read-only.  For performance
1093 	 * reasons, the filesystems should be able to handle this
1094 	 * and not force the scsi disk driver to use bounce buffers
1095 	 * for this.
1096 	 */
1097 	if (sdp->sector_size == 1024) {
1098 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1099 			scmd_printk(KERN_ERR, SCpnt,
1100 				    "Bad block number requested\n");
1101 			goto out;
1102 		} else {
1103 			block = block >> 1;
1104 			this_count = this_count >> 1;
1105 		}
1106 	}
1107 	if (sdp->sector_size == 2048) {
1108 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1109 			scmd_printk(KERN_ERR, SCpnt,
1110 				    "Bad block number requested\n");
1111 			goto out;
1112 		} else {
1113 			block = block >> 2;
1114 			this_count = this_count >> 2;
1115 		}
1116 	}
1117 	if (sdp->sector_size == 4096) {
1118 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1119 			scmd_printk(KERN_ERR, SCpnt,
1120 				    "Bad block number requested\n");
1121 			goto out;
1122 		} else {
1123 			block = block >> 3;
1124 			this_count = this_count >> 3;
1125 		}
1126 	}
1127 	if (rq_data_dir(rq) == WRITE) {
1128 		SCpnt->cmnd[0] = WRITE_6;
1129 
1130 		if (blk_integrity_rq(rq))
1131 			t10_pi_prepare(SCpnt->request, sdkp->protection_type);
1132 
1133 	} else if (rq_data_dir(rq) == READ) {
1134 		SCpnt->cmnd[0] = READ_6;
1135 	} else {
1136 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1137 		goto out;
1138 	}
1139 
1140 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1141 					"%s %d/%u 512 byte blocks.\n",
1142 					(rq_data_dir(rq) == WRITE) ?
1143 					"writing" : "reading", this_count,
1144 					blk_rq_sectors(rq)));
1145 
1146 	dix = scsi_prot_sg_count(SCpnt);
1147 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1148 
1149 	if (dif || dix)
1150 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1151 	else
1152 		protect = 0;
1153 
1154 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1155 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1156 
1157 		if (unlikely(SCpnt->cmnd == NULL)) {
1158 			ret = BLKPREP_DEFER;
1159 			goto out;
1160 		}
1161 
1162 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1163 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1164 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1165 		SCpnt->cmnd[7] = 0x18;
1166 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1167 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1168 
1169 		/* LBA */
1170 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1171 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1172 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1173 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1174 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1175 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1176 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1177 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1178 
1179 		/* Expected Indirect LBA */
1180 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1181 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1182 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1183 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1184 
1185 		/* Transfer length */
1186 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1187 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1188 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1189 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1190 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1191 		SCpnt->cmnd[0] += READ_16 - READ_6;
1192 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1193 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1194 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1195 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1196 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1197 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1198 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1199 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1200 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1201 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1202 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1203 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1204 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1205 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1206 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1207 		   scsi_device_protection(SCpnt->device) ||
1208 		   SCpnt->device->use_10_for_rw) {
1209 		SCpnt->cmnd[0] += READ_10 - READ_6;
1210 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1211 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1212 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1213 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1214 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1215 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1216 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1217 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1218 	} else {
1219 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1220 			/*
1221 			 * This happens only if this drive failed
1222 			 * 10byte rw command with ILLEGAL_REQUEST
1223 			 * during operation and thus turned off
1224 			 * use_10_for_rw.
1225 			 */
1226 			scmd_printk(KERN_ERR, SCpnt,
1227 				    "FUA write on READ/WRITE(6) drive\n");
1228 			goto out;
1229 		}
1230 
1231 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1232 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1233 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1234 		SCpnt->cmnd[4] = (unsigned char) this_count;
1235 		SCpnt->cmnd[5] = 0;
1236 	}
1237 	SCpnt->sdb.length = this_count * sdp->sector_size;
1238 
1239 	/*
1240 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1241 	 * host adapter, it's safe to assume that we can at least transfer
1242 	 * this many bytes between each connect / disconnect.
1243 	 */
1244 	SCpnt->transfersize = sdp->sector_size;
1245 	SCpnt->underflow = this_count << 9;
1246 	SCpnt->allowed = SD_MAX_RETRIES;
1247 
1248 	/*
1249 	 * This indicates that the command is ready from our end to be
1250 	 * queued.
1251 	 */
1252 	ret = BLKPREP_OK;
1253  out:
1254 	return ret;
1255 }
1256 
sd_init_command(struct scsi_cmnd * cmd)1257 static int sd_init_command(struct scsi_cmnd *cmd)
1258 {
1259 	struct request *rq = cmd->request;
1260 
1261 	switch (req_op(rq)) {
1262 	case REQ_OP_DISCARD:
1263 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1264 		case SD_LBP_UNMAP:
1265 			return sd_setup_unmap_cmnd(cmd);
1266 		case SD_LBP_WS16:
1267 			return sd_setup_write_same16_cmnd(cmd, true);
1268 		case SD_LBP_WS10:
1269 			return sd_setup_write_same10_cmnd(cmd, true);
1270 		case SD_LBP_ZERO:
1271 			return sd_setup_write_same10_cmnd(cmd, false);
1272 		default:
1273 			return BLKPREP_INVALID;
1274 		}
1275 	case REQ_OP_WRITE_ZEROES:
1276 		return sd_setup_write_zeroes_cmnd(cmd);
1277 	case REQ_OP_WRITE_SAME:
1278 		return sd_setup_write_same_cmnd(cmd);
1279 	case REQ_OP_FLUSH:
1280 		return sd_setup_flush_cmnd(cmd);
1281 	case REQ_OP_READ:
1282 	case REQ_OP_WRITE:
1283 		return sd_setup_read_write_cmnd(cmd);
1284 	case REQ_OP_ZONE_REPORT:
1285 		return sd_zbc_setup_report_cmnd(cmd);
1286 	case REQ_OP_ZONE_RESET:
1287 		return sd_zbc_setup_reset_cmnd(cmd);
1288 	default:
1289 		WARN_ON_ONCE(1);
1290 		return BLKPREP_KILL;
1291 	}
1292 }
1293 
sd_uninit_command(struct scsi_cmnd * SCpnt)1294 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1295 {
1296 	struct request *rq = SCpnt->request;
1297 	u8 *cmnd;
1298 
1299 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1300 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1301 
1302 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1303 		cmnd = SCpnt->cmnd;
1304 		SCpnt->cmnd = NULL;
1305 		SCpnt->cmd_len = 0;
1306 		mempool_free(cmnd, sd_cdb_pool);
1307 	}
1308 }
1309 
1310 /**
1311  *	sd_open - open a scsi disk device
1312  *	@bdev: Block device of the scsi disk to open
1313  *	@mode: FMODE_* mask
1314  *
1315  *	Returns 0 if successful. Returns a negated errno value in case
1316  *	of error.
1317  *
1318  *	Note: This can be called from a user context (e.g. fsck(1) )
1319  *	or from within the kernel (e.g. as a result of a mount(1) ).
1320  *	In the latter case @inode and @filp carry an abridged amount
1321  *	of information as noted above.
1322  *
1323  *	Locking: called with bdev->bd_mutex held.
1324  **/
sd_open(struct block_device * bdev,fmode_t mode)1325 static int sd_open(struct block_device *bdev, fmode_t mode)
1326 {
1327 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1328 	struct scsi_device *sdev;
1329 	int retval;
1330 
1331 	if (!sdkp)
1332 		return -ENXIO;
1333 
1334 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1335 
1336 	sdev = sdkp->device;
1337 
1338 	/*
1339 	 * If the device is in error recovery, wait until it is done.
1340 	 * If the device is offline, then disallow any access to it.
1341 	 */
1342 	retval = -ENXIO;
1343 	if (!scsi_block_when_processing_errors(sdev))
1344 		goto error_out;
1345 
1346 	if (sdev->removable || sdkp->write_prot)
1347 		check_disk_change(bdev);
1348 
1349 	/*
1350 	 * If the drive is empty, just let the open fail.
1351 	 */
1352 	retval = -ENOMEDIUM;
1353 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1354 		goto error_out;
1355 
1356 	/*
1357 	 * If the device has the write protect tab set, have the open fail
1358 	 * if the user expects to be able to write to the thing.
1359 	 */
1360 	retval = -EROFS;
1361 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1362 		goto error_out;
1363 
1364 	/*
1365 	 * It is possible that the disk changing stuff resulted in
1366 	 * the device being taken offline.  If this is the case,
1367 	 * report this to the user, and don't pretend that the
1368 	 * open actually succeeded.
1369 	 */
1370 	retval = -ENXIO;
1371 	if (!scsi_device_online(sdev))
1372 		goto error_out;
1373 
1374 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1375 		if (scsi_block_when_processing_errors(sdev))
1376 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1377 	}
1378 
1379 	return 0;
1380 
1381 error_out:
1382 	scsi_disk_put(sdkp);
1383 	return retval;
1384 }
1385 
1386 /**
1387  *	sd_release - invoked when the (last) close(2) is called on this
1388  *	scsi disk.
1389  *	@disk: disk to release
1390  *	@mode: FMODE_* mask
1391  *
1392  *	Returns 0.
1393  *
1394  *	Note: may block (uninterruptible) if error recovery is underway
1395  *	on this disk.
1396  *
1397  *	Locking: called with bdev->bd_mutex held.
1398  **/
sd_release(struct gendisk * disk,fmode_t mode)1399 static void sd_release(struct gendisk *disk, fmode_t mode)
1400 {
1401 	struct scsi_disk *sdkp = scsi_disk(disk);
1402 	struct scsi_device *sdev = sdkp->device;
1403 
1404 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1405 
1406 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1407 		if (scsi_block_when_processing_errors(sdev))
1408 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1409 	}
1410 
1411 	scsi_disk_put(sdkp);
1412 }
1413 
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1414 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1415 {
1416 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1417 	struct scsi_device *sdp = sdkp->device;
1418 	struct Scsi_Host *host = sdp->host;
1419 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1420 	int diskinfo[4];
1421 
1422 	/* default to most commonly used values */
1423 	diskinfo[0] = 0x40;	/* 1 << 6 */
1424 	diskinfo[1] = 0x20;	/* 1 << 5 */
1425 	diskinfo[2] = capacity >> 11;
1426 
1427 	/* override with calculated, extended default, or driver values */
1428 	if (host->hostt->bios_param)
1429 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1430 	else
1431 		scsicam_bios_param(bdev, capacity, diskinfo);
1432 
1433 	geo->heads = diskinfo[0];
1434 	geo->sectors = diskinfo[1];
1435 	geo->cylinders = diskinfo[2];
1436 	return 0;
1437 }
1438 
1439 /**
1440  *	sd_ioctl - process an ioctl
1441  *	@bdev: target block device
1442  *	@mode: FMODE_* mask
1443  *	@cmd: ioctl command number
1444  *	@arg: this is third argument given to ioctl(2) system call.
1445  *	Often contains a pointer.
1446  *
1447  *	Returns 0 if successful (some ioctls return positive numbers on
1448  *	success as well). Returns a negated errno value in case of error.
1449  *
1450  *	Note: most ioctls are forward onto the block subsystem or further
1451  *	down in the scsi subsystem.
1452  **/
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1453 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1454 		    unsigned int cmd, unsigned long arg)
1455 {
1456 	struct gendisk *disk = bdev->bd_disk;
1457 	struct scsi_disk *sdkp = scsi_disk(disk);
1458 	struct scsi_device *sdp = sdkp->device;
1459 	void __user *p = (void __user *)arg;
1460 	int error;
1461 
1462 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1463 				    "cmd=0x%x\n", disk->disk_name, cmd));
1464 
1465 	error = scsi_verify_blk_ioctl(bdev, cmd);
1466 	if (error < 0)
1467 		return error;
1468 
1469 	/*
1470 	 * If we are in the middle of error recovery, don't let anyone
1471 	 * else try and use this device.  Also, if error recovery fails, it
1472 	 * may try and take the device offline, in which case all further
1473 	 * access to the device is prohibited.
1474 	 */
1475 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1476 			(mode & FMODE_NDELAY) != 0);
1477 	if (error)
1478 		goto out;
1479 
1480 	if (is_sed_ioctl(cmd))
1481 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1482 
1483 	/*
1484 	 * Send SCSI addressing ioctls directly to mid level, send other
1485 	 * ioctls to block level and then onto mid level if they can't be
1486 	 * resolved.
1487 	 */
1488 	switch (cmd) {
1489 		case SCSI_IOCTL_GET_IDLUN:
1490 		case SCSI_IOCTL_GET_BUS_NUMBER:
1491 			error = scsi_ioctl(sdp, cmd, p);
1492 			break;
1493 		default:
1494 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1495 			if (error != -ENOTTY)
1496 				break;
1497 			error = scsi_ioctl(sdp, cmd, p);
1498 			break;
1499 	}
1500 out:
1501 	return error;
1502 }
1503 
set_media_not_present(struct scsi_disk * sdkp)1504 static void set_media_not_present(struct scsi_disk *sdkp)
1505 {
1506 	if (sdkp->media_present)
1507 		sdkp->device->changed = 1;
1508 
1509 	if (sdkp->device->removable) {
1510 		sdkp->media_present = 0;
1511 		sdkp->capacity = 0;
1512 	}
1513 }
1514 
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1515 static int media_not_present(struct scsi_disk *sdkp,
1516 			     struct scsi_sense_hdr *sshdr)
1517 {
1518 	if (!scsi_sense_valid(sshdr))
1519 		return 0;
1520 
1521 	/* not invoked for commands that could return deferred errors */
1522 	switch (sshdr->sense_key) {
1523 	case UNIT_ATTENTION:
1524 	case NOT_READY:
1525 		/* medium not present */
1526 		if (sshdr->asc == 0x3A) {
1527 			set_media_not_present(sdkp);
1528 			return 1;
1529 		}
1530 	}
1531 	return 0;
1532 }
1533 
1534 /**
1535  *	sd_check_events - check media events
1536  *	@disk: kernel device descriptor
1537  *	@clearing: disk events currently being cleared
1538  *
1539  *	Returns mask of DISK_EVENT_*.
1540  *
1541  *	Note: this function is invoked from the block subsystem.
1542  **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1543 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1544 {
1545 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1546 	struct scsi_device *sdp;
1547 	int retval;
1548 
1549 	if (!sdkp)
1550 		return 0;
1551 
1552 	sdp = sdkp->device;
1553 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1554 
1555 	/*
1556 	 * If the device is offline, don't send any commands - just pretend as
1557 	 * if the command failed.  If the device ever comes back online, we
1558 	 * can deal with it then.  It is only because of unrecoverable errors
1559 	 * that we would ever take a device offline in the first place.
1560 	 */
1561 	if (!scsi_device_online(sdp)) {
1562 		set_media_not_present(sdkp);
1563 		goto out;
1564 	}
1565 
1566 	/*
1567 	 * Using TEST_UNIT_READY enables differentiation between drive with
1568 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1569 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1570 	 *
1571 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1572 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1573 	 * sd_revalidate() is called.
1574 	 */
1575 	if (scsi_block_when_processing_errors(sdp)) {
1576 		struct scsi_sense_hdr sshdr = { 0, };
1577 
1578 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1579 					      &sshdr);
1580 
1581 		/* failed to execute TUR, assume media not present */
1582 		if (host_byte(retval)) {
1583 			set_media_not_present(sdkp);
1584 			goto out;
1585 		}
1586 
1587 		if (media_not_present(sdkp, &sshdr))
1588 			goto out;
1589 	}
1590 
1591 	/*
1592 	 * For removable scsi disk we have to recognise the presence
1593 	 * of a disk in the drive.
1594 	 */
1595 	if (!sdkp->media_present)
1596 		sdp->changed = 1;
1597 	sdkp->media_present = 1;
1598 out:
1599 	/*
1600 	 * sdp->changed is set under the following conditions:
1601 	 *
1602 	 *	Medium present state has changed in either direction.
1603 	 *	Device has indicated UNIT_ATTENTION.
1604 	 */
1605 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1606 	sdp->changed = 0;
1607 	scsi_disk_put(sdkp);
1608 	return retval;
1609 }
1610 
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1611 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1612 {
1613 	int retries, res;
1614 	struct scsi_device *sdp = sdkp->device;
1615 	const int timeout = sdp->request_queue->rq_timeout
1616 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1617 	struct scsi_sense_hdr my_sshdr;
1618 
1619 	if (!scsi_device_online(sdp))
1620 		return -ENODEV;
1621 
1622 	/* caller might not be interested in sense, but we need it */
1623 	if (!sshdr)
1624 		sshdr = &my_sshdr;
1625 
1626 	for (retries = 3; retries > 0; --retries) {
1627 		unsigned char cmd[10] = { 0 };
1628 
1629 		cmd[0] = SYNCHRONIZE_CACHE;
1630 		/*
1631 		 * Leave the rest of the command zero to indicate
1632 		 * flush everything.
1633 		 */
1634 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1635 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1636 		if (res == 0)
1637 			break;
1638 	}
1639 
1640 	if (res) {
1641 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1642 
1643 		if (driver_byte(res) == DRIVER_SENSE)
1644 			sd_print_sense_hdr(sdkp, sshdr);
1645 
1646 		/* we need to evaluate the error return  */
1647 		if (scsi_sense_valid(sshdr) &&
1648 			(sshdr->asc == 0x3a ||	/* medium not present */
1649 			 sshdr->asc == 0x20 ||	/* invalid command */
1650 			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1651 				/* this is no error here */
1652 				return 0;
1653 
1654 		switch (host_byte(res)) {
1655 		/* ignore errors due to racing a disconnection */
1656 		case DID_BAD_TARGET:
1657 		case DID_NO_CONNECT:
1658 			return 0;
1659 		/* signal the upper layer it might try again */
1660 		case DID_BUS_BUSY:
1661 		case DID_IMM_RETRY:
1662 		case DID_REQUEUE:
1663 		case DID_SOFT_ERROR:
1664 			return -EBUSY;
1665 		default:
1666 			return -EIO;
1667 		}
1668 	}
1669 	return 0;
1670 }
1671 
sd_rescan(struct device * dev)1672 static void sd_rescan(struct device *dev)
1673 {
1674 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1675 
1676 	revalidate_disk(sdkp->disk);
1677 }
1678 
1679 
1680 #ifdef CONFIG_COMPAT
1681 /*
1682  * This gets directly called from VFS. When the ioctl
1683  * is not recognized we go back to the other translation paths.
1684  */
sd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1685 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1686 			   unsigned int cmd, unsigned long arg)
1687 {
1688 	struct gendisk *disk = bdev->bd_disk;
1689 	struct scsi_disk *sdkp = scsi_disk(disk);
1690 	struct scsi_device *sdev = sdkp->device;
1691 	void __user *p = compat_ptr(arg);
1692 	int error;
1693 
1694 	error = scsi_verify_blk_ioctl(bdev, cmd);
1695 	if (error < 0)
1696 		return error;
1697 
1698 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1699 			(mode & FMODE_NDELAY) != 0);
1700 	if (error)
1701 		return error;
1702 
1703 	if (is_sed_ioctl(cmd))
1704 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1705 
1706 	/*
1707 	 * Let the static ioctl translation table take care of it.
1708 	 */
1709 	if (!sdev->host->hostt->compat_ioctl)
1710 		return -ENOIOCTLCMD;
1711 	return sdev->host->hostt->compat_ioctl(sdev, cmd, p);
1712 }
1713 #endif
1714 
sd_pr_type(enum pr_type type)1715 static char sd_pr_type(enum pr_type type)
1716 {
1717 	switch (type) {
1718 	case PR_WRITE_EXCLUSIVE:
1719 		return 0x01;
1720 	case PR_EXCLUSIVE_ACCESS:
1721 		return 0x03;
1722 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1723 		return 0x05;
1724 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1725 		return 0x06;
1726 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1727 		return 0x07;
1728 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1729 		return 0x08;
1730 	default:
1731 		return 0;
1732 	}
1733 };
1734 
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1735 static int sd_pr_command(struct block_device *bdev, u8 sa,
1736 		u64 key, u64 sa_key, u8 type, u8 flags)
1737 {
1738 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1739 	struct scsi_sense_hdr sshdr;
1740 	int result;
1741 	u8 cmd[16] = { 0, };
1742 	u8 data[24] = { 0, };
1743 
1744 	cmd[0] = PERSISTENT_RESERVE_OUT;
1745 	cmd[1] = sa;
1746 	cmd[2] = type;
1747 	put_unaligned_be32(sizeof(data), &cmd[5]);
1748 
1749 	put_unaligned_be64(key, &data[0]);
1750 	put_unaligned_be64(sa_key, &data[8]);
1751 	data[20] = flags;
1752 
1753 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1754 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1755 
1756 	if (driver_byte(result) == DRIVER_SENSE &&
1757 	    scsi_sense_valid(&sshdr)) {
1758 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1759 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1760 	}
1761 
1762 	return result;
1763 }
1764 
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1765 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1766 		u32 flags)
1767 {
1768 	if (flags & ~PR_FL_IGNORE_KEY)
1769 		return -EOPNOTSUPP;
1770 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1771 			old_key, new_key, 0,
1772 			(1 << 0) /* APTPL */);
1773 }
1774 
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1775 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1776 		u32 flags)
1777 {
1778 	if (flags)
1779 		return -EOPNOTSUPP;
1780 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1781 }
1782 
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1783 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1784 {
1785 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1786 }
1787 
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1788 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1789 		enum pr_type type, bool abort)
1790 {
1791 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1792 			     sd_pr_type(type), 0);
1793 }
1794 
sd_pr_clear(struct block_device * bdev,u64 key)1795 static int sd_pr_clear(struct block_device *bdev, u64 key)
1796 {
1797 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1798 }
1799 
1800 static const struct pr_ops sd_pr_ops = {
1801 	.pr_register	= sd_pr_register,
1802 	.pr_reserve	= sd_pr_reserve,
1803 	.pr_release	= sd_pr_release,
1804 	.pr_preempt	= sd_pr_preempt,
1805 	.pr_clear	= sd_pr_clear,
1806 };
1807 
1808 static const struct block_device_operations sd_fops = {
1809 	.owner			= THIS_MODULE,
1810 	.open			= sd_open,
1811 	.release		= sd_release,
1812 	.ioctl			= sd_ioctl,
1813 	.getgeo			= sd_getgeo,
1814 #ifdef CONFIG_COMPAT
1815 	.compat_ioctl		= sd_compat_ioctl,
1816 #endif
1817 	.check_events		= sd_check_events,
1818 	.revalidate_disk	= sd_revalidate_disk,
1819 	.unlock_native_capacity	= sd_unlock_native_capacity,
1820 	.pr_ops			= &sd_pr_ops,
1821 };
1822 
1823 /**
1824  *	sd_eh_reset - reset error handling callback
1825  *	@scmd:		sd-issued command that has failed
1826  *
1827  *	This function is called by the SCSI midlayer before starting
1828  *	SCSI EH. When counting medium access failures we have to be
1829  *	careful to register it only only once per device and SCSI EH run;
1830  *	there might be several timed out commands which will cause the
1831  *	'max_medium_access_timeouts' counter to trigger after the first
1832  *	SCSI EH run already and set the device to offline.
1833  *	So this function resets the internal counter before starting SCSI EH.
1834  **/
sd_eh_reset(struct scsi_cmnd * scmd)1835 static void sd_eh_reset(struct scsi_cmnd *scmd)
1836 {
1837 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1838 
1839 	/* New SCSI EH run, reset gate variable */
1840 	sdkp->ignore_medium_access_errors = false;
1841 }
1842 
1843 /**
1844  *	sd_eh_action - error handling callback
1845  *	@scmd:		sd-issued command that has failed
1846  *	@eh_disp:	The recovery disposition suggested by the midlayer
1847  *
1848  *	This function is called by the SCSI midlayer upon completion of an
1849  *	error test command (currently TEST UNIT READY). The result of sending
1850  *	the eh command is passed in eh_disp.  We're looking for devices that
1851  *	fail medium access commands but are OK with non access commands like
1852  *	test unit ready (so wrongly see the device as having a successful
1853  *	recovery)
1854  **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1855 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1856 {
1857 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1858 	struct scsi_device *sdev = scmd->device;
1859 
1860 	if (!scsi_device_online(sdev) ||
1861 	    !scsi_medium_access_command(scmd) ||
1862 	    host_byte(scmd->result) != DID_TIME_OUT ||
1863 	    eh_disp != SUCCESS)
1864 		return eh_disp;
1865 
1866 	/*
1867 	 * The device has timed out executing a medium access command.
1868 	 * However, the TEST UNIT READY command sent during error
1869 	 * handling completed successfully. Either the device is in the
1870 	 * process of recovering or has it suffered an internal failure
1871 	 * that prevents access to the storage medium.
1872 	 */
1873 	if (!sdkp->ignore_medium_access_errors) {
1874 		sdkp->medium_access_timed_out++;
1875 		sdkp->ignore_medium_access_errors = true;
1876 	}
1877 
1878 	/*
1879 	 * If the device keeps failing read/write commands but TEST UNIT
1880 	 * READY always completes successfully we assume that medium
1881 	 * access is no longer possible and take the device offline.
1882 	 */
1883 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1884 		scmd_printk(KERN_ERR, scmd,
1885 			    "Medium access timeout failure. Offlining disk!\n");
1886 		mutex_lock(&sdev->state_mutex);
1887 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1888 		mutex_unlock(&sdev->state_mutex);
1889 
1890 		return SUCCESS;
1891 	}
1892 
1893 	return eh_disp;
1894 }
1895 
sd_completed_bytes(struct scsi_cmnd * scmd)1896 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1897 {
1898 	struct request *req = scmd->request;
1899 	struct scsi_device *sdev = scmd->device;
1900 	unsigned int transferred, good_bytes;
1901 	u64 start_lba, end_lba, bad_lba;
1902 
1903 	/*
1904 	 * Some commands have a payload smaller than the device logical
1905 	 * block size (e.g. INQUIRY on a 4K disk).
1906 	 */
1907 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1908 		return 0;
1909 
1910 	/* Check if we have a 'bad_lba' information */
1911 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1912 				     SCSI_SENSE_BUFFERSIZE,
1913 				     &bad_lba))
1914 		return 0;
1915 
1916 	/*
1917 	 * If the bad lba was reported incorrectly, we have no idea where
1918 	 * the error is.
1919 	 */
1920 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1921 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1922 	if (bad_lba < start_lba || bad_lba >= end_lba)
1923 		return 0;
1924 
1925 	/*
1926 	 * resid is optional but mostly filled in.  When it's unused,
1927 	 * its value is zero, so we assume the whole buffer transferred
1928 	 */
1929 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1930 
1931 	/* This computation should always be done in terms of the
1932 	 * resolution of the device's medium.
1933 	 */
1934 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1935 
1936 	return min(good_bytes, transferred);
1937 }
1938 
1939 /**
1940  *	sd_done - bottom half handler: called when the lower level
1941  *	driver has completed (successfully or otherwise) a scsi command.
1942  *	@SCpnt: mid-level's per command structure.
1943  *
1944  *	Note: potentially run from within an ISR. Must not block.
1945  **/
sd_done(struct scsi_cmnd * SCpnt)1946 static int sd_done(struct scsi_cmnd *SCpnt)
1947 {
1948 	int result = SCpnt->result;
1949 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1950 	unsigned int sector_size = SCpnt->device->sector_size;
1951 	unsigned int resid;
1952 	struct scsi_sense_hdr sshdr;
1953 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1954 	struct request *req = SCpnt->request;
1955 	int sense_valid = 0;
1956 	int sense_deferred = 0;
1957 
1958 	switch (req_op(req)) {
1959 	case REQ_OP_DISCARD:
1960 	case REQ_OP_WRITE_ZEROES:
1961 	case REQ_OP_WRITE_SAME:
1962 	case REQ_OP_ZONE_RESET:
1963 		if (!result) {
1964 			good_bytes = blk_rq_bytes(req);
1965 			scsi_set_resid(SCpnt, 0);
1966 		} else {
1967 			good_bytes = 0;
1968 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1969 		}
1970 		break;
1971 	case REQ_OP_ZONE_REPORT:
1972 		/* To avoid that the block layer performs an incorrect
1973 		 * bio_advance() call and restart of the remainder of
1974 		 * incomplete report zone BIOs, always indicate a full
1975 		 * completion of REQ_OP_ZONE_REPORT.
1976 		 */
1977 		if (!result) {
1978 			good_bytes = scsi_bufflen(SCpnt);
1979 			scsi_set_resid(SCpnt, 0);
1980 		} else {
1981 			good_bytes = 0;
1982 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1983 		}
1984 		break;
1985 	default:
1986 		/*
1987 		 * In case of bogus fw or device, we could end up having
1988 		 * an unaligned partial completion. Check this here and force
1989 		 * alignment.
1990 		 */
1991 		resid = scsi_get_resid(SCpnt);
1992 		if (resid & (sector_size - 1)) {
1993 			sd_printk(KERN_INFO, sdkp,
1994 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1995 				resid, sector_size);
1996 			resid = min(scsi_bufflen(SCpnt),
1997 				    round_up(resid, sector_size));
1998 			scsi_set_resid(SCpnt, resid);
1999 		}
2000 	}
2001 
2002 	if (result) {
2003 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2004 		if (sense_valid)
2005 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2006 	}
2007 	sdkp->medium_access_timed_out = 0;
2008 
2009 	if (driver_byte(result) != DRIVER_SENSE &&
2010 	    (!sense_valid || sense_deferred))
2011 		goto out;
2012 
2013 	switch (sshdr.sense_key) {
2014 	case HARDWARE_ERROR:
2015 	case MEDIUM_ERROR:
2016 		good_bytes = sd_completed_bytes(SCpnt);
2017 		break;
2018 	case RECOVERED_ERROR:
2019 		good_bytes = scsi_bufflen(SCpnt);
2020 		break;
2021 	case NO_SENSE:
2022 		/* This indicates a false check condition, so ignore it.  An
2023 		 * unknown amount of data was transferred so treat it as an
2024 		 * error.
2025 		 */
2026 		SCpnt->result = 0;
2027 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2028 		break;
2029 	case ABORTED_COMMAND:
2030 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2031 			good_bytes = sd_completed_bytes(SCpnt);
2032 		break;
2033 	case ILLEGAL_REQUEST:
2034 		switch (sshdr.asc) {
2035 		case 0x10:	/* DIX: Host detected corruption */
2036 			good_bytes = sd_completed_bytes(SCpnt);
2037 			break;
2038 		case 0x20:	/* INVALID COMMAND OPCODE */
2039 		case 0x24:	/* INVALID FIELD IN CDB */
2040 			switch (SCpnt->cmnd[0]) {
2041 			case UNMAP:
2042 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2043 				break;
2044 			case WRITE_SAME_16:
2045 			case WRITE_SAME:
2046 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2047 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2048 				} else {
2049 					sdkp->device->no_write_same = 1;
2050 					sd_config_write_same(sdkp);
2051 					req->rq_flags |= RQF_QUIET;
2052 				}
2053 				break;
2054 			}
2055 		}
2056 		break;
2057 	default:
2058 		break;
2059 	}
2060 
2061  out:
2062 	if (sd_is_zoned(sdkp))
2063 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2064 
2065 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2066 					   "sd_done: completed %d of %d bytes\n",
2067 					   good_bytes, scsi_bufflen(SCpnt)));
2068 
2069 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2070 	    good_bytes)
2071 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2072 				good_bytes / scsi_prot_interval(SCpnt));
2073 
2074 	return good_bytes;
2075 }
2076 
2077 /*
2078  * spinup disk - called only in sd_revalidate_disk()
2079  */
2080 static void
sd_spinup_disk(struct scsi_disk * sdkp)2081 sd_spinup_disk(struct scsi_disk *sdkp)
2082 {
2083 	unsigned char cmd[10];
2084 	unsigned long spintime_expire = 0;
2085 	int retries, spintime;
2086 	unsigned int the_result;
2087 	struct scsi_sense_hdr sshdr;
2088 	int sense_valid = 0;
2089 
2090 	spintime = 0;
2091 
2092 	/* Spin up drives, as required.  Only do this at boot time */
2093 	/* Spinup needs to be done for module loads too. */
2094 	do {
2095 		retries = 0;
2096 
2097 		do {
2098 			cmd[0] = TEST_UNIT_READY;
2099 			memset((void *) &cmd[1], 0, 9);
2100 
2101 			the_result = scsi_execute_req(sdkp->device, cmd,
2102 						      DMA_NONE, NULL, 0,
2103 						      &sshdr, SD_TIMEOUT,
2104 						      SD_MAX_RETRIES, NULL);
2105 
2106 			/*
2107 			 * If the drive has indicated to us that it
2108 			 * doesn't have any media in it, don't bother
2109 			 * with any more polling.
2110 			 */
2111 			if (media_not_present(sdkp, &sshdr))
2112 				return;
2113 
2114 			if (the_result)
2115 				sense_valid = scsi_sense_valid(&sshdr);
2116 			retries++;
2117 		} while (retries < 3 &&
2118 			 (!scsi_status_is_good(the_result) ||
2119 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2120 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2121 
2122 		if (driver_byte(the_result) != DRIVER_SENSE) {
2123 			/* no sense, TUR either succeeded or failed
2124 			 * with a status error */
2125 			if(!spintime && !scsi_status_is_good(the_result)) {
2126 				sd_print_result(sdkp, "Test Unit Ready failed",
2127 						the_result);
2128 			}
2129 			break;
2130 		}
2131 
2132 		/*
2133 		 * The device does not want the automatic start to be issued.
2134 		 */
2135 		if (sdkp->device->no_start_on_add)
2136 			break;
2137 
2138 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2139 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2140 				break;	/* manual intervention required */
2141 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2142 				break;	/* standby */
2143 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2144 				break;	/* unavailable */
2145 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2146 				break;	/* sanitize in progress */
2147 			/*
2148 			 * Issue command to spin up drive when not ready
2149 			 */
2150 			if (!spintime) {
2151 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2152 				cmd[0] = START_STOP;
2153 				cmd[1] = 1;	/* Return immediately */
2154 				memset((void *) &cmd[2], 0, 8);
2155 				cmd[4] = 1;	/* Start spin cycle */
2156 				if (sdkp->device->start_stop_pwr_cond)
2157 					cmd[4] |= 1 << 4;
2158 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2159 						 NULL, 0, &sshdr,
2160 						 SD_TIMEOUT, SD_MAX_RETRIES,
2161 						 NULL);
2162 				spintime_expire = jiffies + 100 * HZ;
2163 				spintime = 1;
2164 			}
2165 			/* Wait 1 second for next try */
2166 			msleep(1000);
2167 			printk(KERN_CONT ".");
2168 
2169 		/*
2170 		 * Wait for USB flash devices with slow firmware.
2171 		 * Yes, this sense key/ASC combination shouldn't
2172 		 * occur here.  It's characteristic of these devices.
2173 		 */
2174 		} else if (sense_valid &&
2175 				sshdr.sense_key == UNIT_ATTENTION &&
2176 				sshdr.asc == 0x28) {
2177 			if (!spintime) {
2178 				spintime_expire = jiffies + 5 * HZ;
2179 				spintime = 1;
2180 			}
2181 			/* Wait 1 second for next try */
2182 			msleep(1000);
2183 		} else {
2184 			/* we don't understand the sense code, so it's
2185 			 * probably pointless to loop */
2186 			if(!spintime) {
2187 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2188 				sd_print_sense_hdr(sdkp, &sshdr);
2189 			}
2190 			break;
2191 		}
2192 
2193 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2194 
2195 	if (spintime) {
2196 		if (scsi_status_is_good(the_result))
2197 			printk(KERN_CONT "ready\n");
2198 		else
2199 			printk(KERN_CONT "not responding...\n");
2200 	}
2201 }
2202 
2203 /*
2204  * Determine whether disk supports Data Integrity Field.
2205  */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2206 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2207 {
2208 	struct scsi_device *sdp = sdkp->device;
2209 	u8 type;
2210 	int ret = 0;
2211 
2212 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2213 		sdkp->protection_type = 0;
2214 		return ret;
2215 	}
2216 
2217 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2218 
2219 	if (type > T10_PI_TYPE3_PROTECTION)
2220 		ret = -ENODEV;
2221 	else if (scsi_host_dif_capable(sdp->host, type))
2222 		ret = 1;
2223 
2224 	if (sdkp->first_scan || type != sdkp->protection_type)
2225 		switch (ret) {
2226 		case -ENODEV:
2227 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2228 				  " protection type %u. Disabling disk!\n",
2229 				  type);
2230 			break;
2231 		case 1:
2232 			sd_printk(KERN_NOTICE, sdkp,
2233 				  "Enabling DIF Type %u protection\n", type);
2234 			break;
2235 		case 0:
2236 			sd_printk(KERN_NOTICE, sdkp,
2237 				  "Disabling DIF Type %u protection\n", type);
2238 			break;
2239 		}
2240 
2241 	sdkp->protection_type = type;
2242 
2243 	return ret;
2244 }
2245 
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2246 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2247 			struct scsi_sense_hdr *sshdr, int sense_valid,
2248 			int the_result)
2249 {
2250 	if (driver_byte(the_result) == DRIVER_SENSE)
2251 		sd_print_sense_hdr(sdkp, sshdr);
2252 	else
2253 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2254 
2255 	/*
2256 	 * Set dirty bit for removable devices if not ready -
2257 	 * sometimes drives will not report this properly.
2258 	 */
2259 	if (sdp->removable &&
2260 	    sense_valid && sshdr->sense_key == NOT_READY)
2261 		set_media_not_present(sdkp);
2262 
2263 	/*
2264 	 * We used to set media_present to 0 here to indicate no media
2265 	 * in the drive, but some drives fail read capacity even with
2266 	 * media present, so we can't do that.
2267 	 */
2268 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2269 }
2270 
2271 #define RC16_LEN 32
2272 #if RC16_LEN > SD_BUF_SIZE
2273 #error RC16_LEN must not be more than SD_BUF_SIZE
2274 #endif
2275 
2276 #define READ_CAPACITY_RETRIES_ON_RESET	10
2277 
2278 /*
2279  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2280  * and the reported logical block size is bigger than 512 bytes. Note
2281  * that last_sector is a u64 and therefore logical_to_sectors() is not
2282  * applicable.
2283  */
sd_addressable_capacity(u64 lba,unsigned int sector_size)2284 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2285 {
2286 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2287 
2288 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2289 		return false;
2290 
2291 	return true;
2292 }
2293 
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2294 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2295 						unsigned char *buffer)
2296 {
2297 	unsigned char cmd[16];
2298 	struct scsi_sense_hdr sshdr;
2299 	int sense_valid = 0;
2300 	int the_result;
2301 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2302 	unsigned int alignment;
2303 	unsigned long long lba;
2304 	unsigned sector_size;
2305 
2306 	if (sdp->no_read_capacity_16)
2307 		return -EINVAL;
2308 
2309 	do {
2310 		memset(cmd, 0, 16);
2311 		cmd[0] = SERVICE_ACTION_IN_16;
2312 		cmd[1] = SAI_READ_CAPACITY_16;
2313 		cmd[13] = RC16_LEN;
2314 		memset(buffer, 0, RC16_LEN);
2315 
2316 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2317 					buffer, RC16_LEN, &sshdr,
2318 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2319 
2320 		if (media_not_present(sdkp, &sshdr))
2321 			return -ENODEV;
2322 
2323 		if (the_result) {
2324 			sense_valid = scsi_sense_valid(&sshdr);
2325 			if (sense_valid &&
2326 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2327 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2328 			    sshdr.ascq == 0x00)
2329 				/* Invalid Command Operation Code or
2330 				 * Invalid Field in CDB, just retry
2331 				 * silently with RC10 */
2332 				return -EINVAL;
2333 			if (sense_valid &&
2334 			    sshdr.sense_key == UNIT_ATTENTION &&
2335 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2336 				/* Device reset might occur several times,
2337 				 * give it one more chance */
2338 				if (--reset_retries > 0)
2339 					continue;
2340 		}
2341 		retries--;
2342 
2343 	} while (the_result && retries);
2344 
2345 	if (the_result) {
2346 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2347 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2348 		return -EINVAL;
2349 	}
2350 
2351 	sector_size = get_unaligned_be32(&buffer[8]);
2352 	lba = get_unaligned_be64(&buffer[0]);
2353 
2354 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2355 		sdkp->capacity = 0;
2356 		return -ENODEV;
2357 	}
2358 
2359 	if (!sd_addressable_capacity(lba, sector_size)) {
2360 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2361 			"kernel compiled with support for large block "
2362 			"devices.\n");
2363 		sdkp->capacity = 0;
2364 		return -EOVERFLOW;
2365 	}
2366 
2367 	/* Logical blocks per physical block exponent */
2368 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2369 
2370 	/* RC basis */
2371 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2372 
2373 	/* Lowest aligned logical block */
2374 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2375 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2376 	if (alignment && sdkp->first_scan)
2377 		sd_printk(KERN_NOTICE, sdkp,
2378 			  "physical block alignment offset: %u\n", alignment);
2379 
2380 	if (buffer[14] & 0x80) { /* LBPME */
2381 		sdkp->lbpme = 1;
2382 
2383 		if (buffer[14] & 0x40) /* LBPRZ */
2384 			sdkp->lbprz = 1;
2385 
2386 		sd_config_discard(sdkp, SD_LBP_WS16);
2387 	}
2388 
2389 	sdkp->capacity = lba + 1;
2390 	return sector_size;
2391 }
2392 
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2393 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2394 						unsigned char *buffer)
2395 {
2396 	unsigned char cmd[16];
2397 	struct scsi_sense_hdr sshdr;
2398 	int sense_valid = 0;
2399 	int the_result;
2400 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2401 	sector_t lba;
2402 	unsigned sector_size;
2403 
2404 	do {
2405 		cmd[0] = READ_CAPACITY;
2406 		memset(&cmd[1], 0, 9);
2407 		memset(buffer, 0, 8);
2408 
2409 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2410 					buffer, 8, &sshdr,
2411 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2412 
2413 		if (media_not_present(sdkp, &sshdr))
2414 			return -ENODEV;
2415 
2416 		if (the_result) {
2417 			sense_valid = scsi_sense_valid(&sshdr);
2418 			if (sense_valid &&
2419 			    sshdr.sense_key == UNIT_ATTENTION &&
2420 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2421 				/* Device reset might occur several times,
2422 				 * give it one more chance */
2423 				if (--reset_retries > 0)
2424 					continue;
2425 		}
2426 		retries--;
2427 
2428 	} while (the_result && retries);
2429 
2430 	if (the_result) {
2431 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2432 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2433 		return -EINVAL;
2434 	}
2435 
2436 	sector_size = get_unaligned_be32(&buffer[4]);
2437 	lba = get_unaligned_be32(&buffer[0]);
2438 
2439 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2440 		/* Some buggy (usb cardreader) devices return an lba of
2441 		   0xffffffff when the want to report a size of 0 (with
2442 		   which they really mean no media is present) */
2443 		sdkp->capacity = 0;
2444 		sdkp->physical_block_size = sector_size;
2445 		return sector_size;
2446 	}
2447 
2448 	if (!sd_addressable_capacity(lba, sector_size)) {
2449 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2450 			"kernel compiled with support for large block "
2451 			"devices.\n");
2452 		sdkp->capacity = 0;
2453 		return -EOVERFLOW;
2454 	}
2455 
2456 	sdkp->capacity = lba + 1;
2457 	sdkp->physical_block_size = sector_size;
2458 	return sector_size;
2459 }
2460 
sd_try_rc16_first(struct scsi_device * sdp)2461 static int sd_try_rc16_first(struct scsi_device *sdp)
2462 {
2463 	if (sdp->host->max_cmd_len < 16)
2464 		return 0;
2465 	if (sdp->try_rc_10_first)
2466 		return 0;
2467 	if (sdp->scsi_level > SCSI_SPC_2)
2468 		return 1;
2469 	if (scsi_device_protection(sdp))
2470 		return 1;
2471 	return 0;
2472 }
2473 
2474 /*
2475  * read disk capacity
2476  */
2477 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2478 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2479 {
2480 	int sector_size;
2481 	struct scsi_device *sdp = sdkp->device;
2482 
2483 	if (sd_try_rc16_first(sdp)) {
2484 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2485 		if (sector_size == -EOVERFLOW)
2486 			goto got_data;
2487 		if (sector_size == -ENODEV)
2488 			return;
2489 		if (sector_size < 0)
2490 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2491 		if (sector_size < 0)
2492 			return;
2493 	} else {
2494 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2495 		if (sector_size == -EOVERFLOW)
2496 			goto got_data;
2497 		if (sector_size < 0)
2498 			return;
2499 		if ((sizeof(sdkp->capacity) > 4) &&
2500 		    (sdkp->capacity > 0xffffffffULL)) {
2501 			int old_sector_size = sector_size;
2502 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2503 					"Trying to use READ CAPACITY(16).\n");
2504 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2505 			if (sector_size < 0) {
2506 				sd_printk(KERN_NOTICE, sdkp,
2507 					"Using 0xffffffff as device size\n");
2508 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2509 				sector_size = old_sector_size;
2510 				goto got_data;
2511 			}
2512 			/* Remember that READ CAPACITY(16) succeeded */
2513 			sdp->try_rc_10_first = 0;
2514 		}
2515 	}
2516 
2517 	/* Some devices are known to return the total number of blocks,
2518 	 * not the highest block number.  Some devices have versions
2519 	 * which do this and others which do not.  Some devices we might
2520 	 * suspect of doing this but we don't know for certain.
2521 	 *
2522 	 * If we know the reported capacity is wrong, decrement it.  If
2523 	 * we can only guess, then assume the number of blocks is even
2524 	 * (usually true but not always) and err on the side of lowering
2525 	 * the capacity.
2526 	 */
2527 	if (sdp->fix_capacity ||
2528 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2529 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2530 				"from its reported value: %llu\n",
2531 				(unsigned long long) sdkp->capacity);
2532 		--sdkp->capacity;
2533 	}
2534 
2535 got_data:
2536 	if (sector_size == 0) {
2537 		sector_size = 512;
2538 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2539 			  "assuming 512.\n");
2540 	}
2541 
2542 	if (sector_size != 512 &&
2543 	    sector_size != 1024 &&
2544 	    sector_size != 2048 &&
2545 	    sector_size != 4096) {
2546 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2547 			  sector_size);
2548 		/*
2549 		 * The user might want to re-format the drive with
2550 		 * a supported sectorsize.  Once this happens, it
2551 		 * would be relatively trivial to set the thing up.
2552 		 * For this reason, we leave the thing in the table.
2553 		 */
2554 		sdkp->capacity = 0;
2555 		/*
2556 		 * set a bogus sector size so the normal read/write
2557 		 * logic in the block layer will eventually refuse any
2558 		 * request on this device without tripping over power
2559 		 * of two sector size assumptions
2560 		 */
2561 		sector_size = 512;
2562 	}
2563 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2564 	blk_queue_physical_block_size(sdp->request_queue,
2565 				      sdkp->physical_block_size);
2566 	sdkp->device->sector_size = sector_size;
2567 
2568 	if (sdkp->capacity > 0xffffffff)
2569 		sdp->use_16_for_rw = 1;
2570 
2571 }
2572 
2573 /*
2574  * Print disk capacity
2575  */
2576 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2577 sd_print_capacity(struct scsi_disk *sdkp,
2578 		  sector_t old_capacity)
2579 {
2580 	int sector_size = sdkp->device->sector_size;
2581 	char cap_str_2[10], cap_str_10[10];
2582 
2583 	string_get_size(sdkp->capacity, sector_size,
2584 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2585 	string_get_size(sdkp->capacity, sector_size,
2586 			STRING_UNITS_10, cap_str_10,
2587 			sizeof(cap_str_10));
2588 
2589 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2590 		sd_printk(KERN_NOTICE, sdkp,
2591 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2592 			  (unsigned long long)sdkp->capacity,
2593 			  sector_size, cap_str_10, cap_str_2);
2594 
2595 		if (sdkp->physical_block_size != sector_size)
2596 			sd_printk(KERN_NOTICE, sdkp,
2597 				  "%u-byte physical blocks\n",
2598 				  sdkp->physical_block_size);
2599 
2600 		sd_zbc_print_zones(sdkp);
2601 	}
2602 }
2603 
2604 /* called with buffer of length 512 */
2605 static inline int
sd_do_mode_sense(struct scsi_device * sdp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2606 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2607 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2608 		 struct scsi_sense_hdr *sshdr)
2609 {
2610 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2611 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2612 			       sshdr);
2613 }
2614 
2615 /*
2616  * read write protect setting, if possible - called only in sd_revalidate_disk()
2617  * called with buffer of length SD_BUF_SIZE
2618  */
2619 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2620 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2621 {
2622 	int res;
2623 	struct scsi_device *sdp = sdkp->device;
2624 	struct scsi_mode_data data;
2625 	int old_wp = sdkp->write_prot;
2626 
2627 	set_disk_ro(sdkp->disk, 0);
2628 	if (sdp->skip_ms_page_3f) {
2629 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2630 		return;
2631 	}
2632 
2633 	if (sdp->use_192_bytes_for_3f) {
2634 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2635 	} else {
2636 		/*
2637 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2638 		 * We have to start carefully: some devices hang if we ask
2639 		 * for more than is available.
2640 		 */
2641 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2642 
2643 		/*
2644 		 * Second attempt: ask for page 0 When only page 0 is
2645 		 * implemented, a request for page 3F may return Sense Key
2646 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2647 		 * CDB.
2648 		 */
2649 		if (!scsi_status_is_good(res))
2650 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2651 
2652 		/*
2653 		 * Third attempt: ask 255 bytes, as we did earlier.
2654 		 */
2655 		if (!scsi_status_is_good(res))
2656 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2657 					       &data, NULL);
2658 	}
2659 
2660 	if (!scsi_status_is_good(res)) {
2661 		sd_first_printk(KERN_WARNING, sdkp,
2662 			  "Test WP failed, assume Write Enabled\n");
2663 	} else {
2664 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2665 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2666 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2667 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2668 				  sdkp->write_prot ? "on" : "off");
2669 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2670 		}
2671 	}
2672 }
2673 
2674 /*
2675  * sd_read_cache_type - called only from sd_revalidate_disk()
2676  * called with buffer of length SD_BUF_SIZE
2677  */
2678 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2679 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2680 {
2681 	int len = 0, res;
2682 	struct scsi_device *sdp = sdkp->device;
2683 
2684 	int dbd;
2685 	int modepage;
2686 	int first_len;
2687 	struct scsi_mode_data data;
2688 	struct scsi_sense_hdr sshdr;
2689 	int old_wce = sdkp->WCE;
2690 	int old_rcd = sdkp->RCD;
2691 	int old_dpofua = sdkp->DPOFUA;
2692 
2693 
2694 	if (sdkp->cache_override)
2695 		return;
2696 
2697 	first_len = 4;
2698 	if (sdp->skip_ms_page_8) {
2699 		if (sdp->type == TYPE_RBC)
2700 			goto defaults;
2701 		else {
2702 			if (sdp->skip_ms_page_3f)
2703 				goto defaults;
2704 			modepage = 0x3F;
2705 			if (sdp->use_192_bytes_for_3f)
2706 				first_len = 192;
2707 			dbd = 0;
2708 		}
2709 	} else if (sdp->type == TYPE_RBC) {
2710 		modepage = 6;
2711 		dbd = 8;
2712 	} else {
2713 		modepage = 8;
2714 		dbd = 0;
2715 	}
2716 
2717 	/* cautiously ask */
2718 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2719 			&data, &sshdr);
2720 
2721 	if (!scsi_status_is_good(res))
2722 		goto bad_sense;
2723 
2724 	if (!data.header_length) {
2725 		modepage = 6;
2726 		first_len = 0;
2727 		sd_first_printk(KERN_ERR, sdkp,
2728 				"Missing header in MODE_SENSE response\n");
2729 	}
2730 
2731 	/* that went OK, now ask for the proper length */
2732 	len = data.length;
2733 
2734 	/*
2735 	 * We're only interested in the first three bytes, actually.
2736 	 * But the data cache page is defined for the first 20.
2737 	 */
2738 	if (len < 3)
2739 		goto bad_sense;
2740 	else if (len > SD_BUF_SIZE) {
2741 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2742 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2743 		len = SD_BUF_SIZE;
2744 	}
2745 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2746 		len = 192;
2747 
2748 	/* Get the data */
2749 	if (len > first_len)
2750 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2751 				&data, &sshdr);
2752 
2753 	if (scsi_status_is_good(res)) {
2754 		int offset = data.header_length + data.block_descriptor_length;
2755 
2756 		while (offset < len) {
2757 			u8 page_code = buffer[offset] & 0x3F;
2758 			u8 spf       = buffer[offset] & 0x40;
2759 
2760 			if (page_code == 8 || page_code == 6) {
2761 				/* We're interested only in the first 3 bytes.
2762 				 */
2763 				if (len - offset <= 2) {
2764 					sd_first_printk(KERN_ERR, sdkp,
2765 						"Incomplete mode parameter "
2766 							"data\n");
2767 					goto defaults;
2768 				} else {
2769 					modepage = page_code;
2770 					goto Page_found;
2771 				}
2772 			} else {
2773 				/* Go to the next page */
2774 				if (spf && len - offset > 3)
2775 					offset += 4 + (buffer[offset+2] << 8) +
2776 						buffer[offset+3];
2777 				else if (!spf && len - offset > 1)
2778 					offset += 2 + buffer[offset+1];
2779 				else {
2780 					sd_first_printk(KERN_ERR, sdkp,
2781 							"Incomplete mode "
2782 							"parameter data\n");
2783 					goto defaults;
2784 				}
2785 			}
2786 		}
2787 
2788 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2789 		goto defaults;
2790 
2791 	Page_found:
2792 		if (modepage == 8) {
2793 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2794 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2795 		} else {
2796 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2797 			sdkp->RCD = 0;
2798 		}
2799 
2800 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2801 		if (sdp->broken_fua) {
2802 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2803 			sdkp->DPOFUA = 0;
2804 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2805 			   !sdkp->device->use_16_for_rw) {
2806 			sd_first_printk(KERN_NOTICE, sdkp,
2807 				  "Uses READ/WRITE(6), disabling FUA\n");
2808 			sdkp->DPOFUA = 0;
2809 		}
2810 
2811 		/* No cache flush allowed for write protected devices */
2812 		if (sdkp->WCE && sdkp->write_prot)
2813 			sdkp->WCE = 0;
2814 
2815 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2816 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2817 			sd_printk(KERN_NOTICE, sdkp,
2818 				  "Write cache: %s, read cache: %s, %s\n",
2819 				  sdkp->WCE ? "enabled" : "disabled",
2820 				  sdkp->RCD ? "disabled" : "enabled",
2821 				  sdkp->DPOFUA ? "supports DPO and FUA"
2822 				  : "doesn't support DPO or FUA");
2823 
2824 		return;
2825 	}
2826 
2827 bad_sense:
2828 	if (scsi_sense_valid(&sshdr) &&
2829 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2830 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2831 		/* Invalid field in CDB */
2832 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2833 	else
2834 		sd_first_printk(KERN_ERR, sdkp,
2835 				"Asking for cache data failed\n");
2836 
2837 defaults:
2838 	if (sdp->wce_default_on) {
2839 		sd_first_printk(KERN_NOTICE, sdkp,
2840 				"Assuming drive cache: write back\n");
2841 		sdkp->WCE = 1;
2842 	} else {
2843 		sd_first_printk(KERN_ERR, sdkp,
2844 				"Assuming drive cache: write through\n");
2845 		sdkp->WCE = 0;
2846 	}
2847 	sdkp->RCD = 0;
2848 	sdkp->DPOFUA = 0;
2849 }
2850 
2851 /*
2852  * The ATO bit indicates whether the DIF application tag is available
2853  * for use by the operating system.
2854  */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2855 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2856 {
2857 	int res, offset;
2858 	struct scsi_device *sdp = sdkp->device;
2859 	struct scsi_mode_data data;
2860 	struct scsi_sense_hdr sshdr;
2861 
2862 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2863 		return;
2864 
2865 	if (sdkp->protection_type == 0)
2866 		return;
2867 
2868 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2869 			      SD_MAX_RETRIES, &data, &sshdr);
2870 
2871 	if (!scsi_status_is_good(res) || !data.header_length ||
2872 	    data.length < 6) {
2873 		sd_first_printk(KERN_WARNING, sdkp,
2874 			  "getting Control mode page failed, assume no ATO\n");
2875 
2876 		if (scsi_sense_valid(&sshdr))
2877 			sd_print_sense_hdr(sdkp, &sshdr);
2878 
2879 		return;
2880 	}
2881 
2882 	offset = data.header_length + data.block_descriptor_length;
2883 
2884 	if ((buffer[offset] & 0x3f) != 0x0a) {
2885 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2886 		return;
2887 	}
2888 
2889 	if ((buffer[offset + 5] & 0x80) == 0)
2890 		return;
2891 
2892 	sdkp->ATO = 1;
2893 
2894 	return;
2895 }
2896 
2897 /**
2898  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2899  * @sdkp: disk to query
2900  */
sd_read_block_limits(struct scsi_disk * sdkp)2901 static void sd_read_block_limits(struct scsi_disk *sdkp)
2902 {
2903 	unsigned int sector_sz = sdkp->device->sector_size;
2904 	const int vpd_len = 64;
2905 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2906 
2907 	if (!buffer ||
2908 	    /* Block Limits VPD */
2909 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2910 		goto out;
2911 
2912 	blk_queue_io_min(sdkp->disk->queue,
2913 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2914 
2915 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2916 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2917 
2918 	if (buffer[3] == 0x3c) {
2919 		unsigned int lba_count, desc_count;
2920 
2921 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2922 
2923 		if (!sdkp->lbpme)
2924 			goto out;
2925 
2926 		lba_count = get_unaligned_be32(&buffer[20]);
2927 		desc_count = get_unaligned_be32(&buffer[24]);
2928 
2929 		if (lba_count && desc_count)
2930 			sdkp->max_unmap_blocks = lba_count;
2931 
2932 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2933 
2934 		if (buffer[32] & 0x80)
2935 			sdkp->unmap_alignment =
2936 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2937 
2938 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2939 
2940 			if (sdkp->max_unmap_blocks)
2941 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2942 			else
2943 				sd_config_discard(sdkp, SD_LBP_WS16);
2944 
2945 		} else {	/* LBP VPD page tells us what to use */
2946 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2947 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2948 			else if (sdkp->lbpws)
2949 				sd_config_discard(sdkp, SD_LBP_WS16);
2950 			else if (sdkp->lbpws10)
2951 				sd_config_discard(sdkp, SD_LBP_WS10);
2952 			else
2953 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2954 		}
2955 	}
2956 
2957  out:
2958 	kfree(buffer);
2959 }
2960 
2961 /**
2962  * sd_read_block_characteristics - Query block dev. characteristics
2963  * @sdkp: disk to query
2964  */
sd_read_block_characteristics(struct scsi_disk * sdkp)2965 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2966 {
2967 	struct request_queue *q = sdkp->disk->queue;
2968 	unsigned char *buffer;
2969 	u16 rot;
2970 	const int vpd_len = 64;
2971 
2972 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2973 
2974 	if (!buffer ||
2975 	    /* Block Device Characteristics VPD */
2976 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2977 		goto out;
2978 
2979 	rot = get_unaligned_be16(&buffer[4]);
2980 
2981 	if (rot == 1) {
2982 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2983 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2984 	}
2985 
2986 	if (sdkp->device->type == TYPE_ZBC) {
2987 		/* Host-managed */
2988 		q->limits.zoned = BLK_ZONED_HM;
2989 	} else {
2990 		sdkp->zoned = (buffer[8] >> 4) & 3;
2991 		if (sdkp->zoned == 1)
2992 			/* Host-aware */
2993 			q->limits.zoned = BLK_ZONED_HA;
2994 		else
2995 			/*
2996 			 * Treat drive-managed devices as
2997 			 * regular block devices.
2998 			 */
2999 			q->limits.zoned = BLK_ZONED_NONE;
3000 	}
3001 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
3002 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3003 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3004 
3005  out:
3006 	kfree(buffer);
3007 }
3008 
3009 /**
3010  * sd_read_block_provisioning - Query provisioning VPD page
3011  * @sdkp: disk to query
3012  */
sd_read_block_provisioning(struct scsi_disk * sdkp)3013 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3014 {
3015 	unsigned char *buffer;
3016 	const int vpd_len = 8;
3017 
3018 	if (sdkp->lbpme == 0)
3019 		return;
3020 
3021 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3022 
3023 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3024 		goto out;
3025 
3026 	sdkp->lbpvpd	= 1;
3027 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3028 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3029 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3030 
3031  out:
3032 	kfree(buffer);
3033 }
3034 
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3035 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3036 {
3037 	struct scsi_device *sdev = sdkp->device;
3038 
3039 	if (sdev->host->no_write_same) {
3040 		sdev->no_write_same = 1;
3041 
3042 		return;
3043 	}
3044 
3045 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3046 		/* too large values might cause issues with arcmsr */
3047 		int vpd_buf_len = 64;
3048 
3049 		sdev->no_report_opcodes = 1;
3050 
3051 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3052 		 * CODES is unsupported and the device has an ATA
3053 		 * Information VPD page (SAT).
3054 		 */
3055 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3056 			sdev->no_write_same = 1;
3057 	}
3058 
3059 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3060 		sdkp->ws16 = 1;
3061 
3062 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3063 		sdkp->ws10 = 1;
3064 }
3065 
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3066 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3067 {
3068 	struct scsi_device *sdev = sdkp->device;
3069 
3070 	if (!sdev->security_supported)
3071 		return;
3072 
3073 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3074 			SECURITY_PROTOCOL_IN) == 1 &&
3075 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3076 			SECURITY_PROTOCOL_OUT) == 1)
3077 		sdkp->security = 1;
3078 }
3079 
3080 /*
3081  * Determine the device's preferred I/O size for reads and writes
3082  * unless the reported value is unreasonably small, large, not a
3083  * multiple of the physical block size, or simply garbage.
3084  */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3085 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3086 				      unsigned int dev_max)
3087 {
3088 	struct scsi_device *sdp = sdkp->device;
3089 	unsigned int opt_xfer_bytes =
3090 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3091 
3092 	if (sdkp->opt_xfer_blocks == 0)
3093 		return false;
3094 
3095 	if (sdkp->opt_xfer_blocks > dev_max) {
3096 		sd_first_printk(KERN_WARNING, sdkp,
3097 				"Optimal transfer size %u logical blocks " \
3098 				"> dev_max (%u logical blocks)\n",
3099 				sdkp->opt_xfer_blocks, dev_max);
3100 		return false;
3101 	}
3102 
3103 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3104 		sd_first_printk(KERN_WARNING, sdkp,
3105 				"Optimal transfer size %u logical blocks " \
3106 				"> sd driver limit (%u logical blocks)\n",
3107 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3108 		return false;
3109 	}
3110 
3111 	if (opt_xfer_bytes < PAGE_SIZE) {
3112 		sd_first_printk(KERN_WARNING, sdkp,
3113 				"Optimal transfer size %u bytes < " \
3114 				"PAGE_SIZE (%u bytes)\n",
3115 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3116 		return false;
3117 	}
3118 
3119 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3120 		sd_first_printk(KERN_WARNING, sdkp,
3121 				"Optimal transfer size %u bytes not a " \
3122 				"multiple of physical block size (%u bytes)\n",
3123 				opt_xfer_bytes, sdkp->physical_block_size);
3124 		return false;
3125 	}
3126 
3127 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3128 			opt_xfer_bytes);
3129 	return true;
3130 }
3131 
3132 /**
3133  *	sd_revalidate_disk - called the first time a new disk is seen,
3134  *	performs disk spin up, read_capacity, etc.
3135  *	@disk: struct gendisk we care about
3136  **/
sd_revalidate_disk(struct gendisk * disk)3137 static int sd_revalidate_disk(struct gendisk *disk)
3138 {
3139 	struct scsi_disk *sdkp = scsi_disk(disk);
3140 	struct scsi_device *sdp = sdkp->device;
3141 	struct request_queue *q = sdkp->disk->queue;
3142 	sector_t old_capacity = sdkp->capacity;
3143 	unsigned char *buffer;
3144 	unsigned int dev_max, rw_max;
3145 
3146 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3147 				      "sd_revalidate_disk\n"));
3148 
3149 	/*
3150 	 * If the device is offline, don't try and read capacity or any
3151 	 * of the other niceties.
3152 	 */
3153 	if (!scsi_device_online(sdp))
3154 		goto out;
3155 
3156 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3157 	if (!buffer) {
3158 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3159 			  "allocation failure.\n");
3160 		goto out;
3161 	}
3162 
3163 	sd_spinup_disk(sdkp);
3164 
3165 	/*
3166 	 * Without media there is no reason to ask; moreover, some devices
3167 	 * react badly if we do.
3168 	 */
3169 	if (sdkp->media_present) {
3170 		sd_read_capacity(sdkp, buffer);
3171 
3172 		/*
3173 		 * set the default to rotational.  All non-rotational devices
3174 		 * support the block characteristics VPD page, which will
3175 		 * cause this to be updated correctly and any device which
3176 		 * doesn't support it should be treated as rotational.
3177 		 */
3178 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3179 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3180 
3181 		if (scsi_device_supports_vpd(sdp)) {
3182 			sd_read_block_provisioning(sdkp);
3183 			sd_read_block_limits(sdkp);
3184 			sd_read_block_characteristics(sdkp);
3185 			sd_zbc_read_zones(sdkp, buffer);
3186 		}
3187 
3188 		sd_print_capacity(sdkp, old_capacity);
3189 
3190 		sd_read_write_protect_flag(sdkp, buffer);
3191 		sd_read_cache_type(sdkp, buffer);
3192 		sd_read_app_tag_own(sdkp, buffer);
3193 		sd_read_write_same(sdkp, buffer);
3194 		sd_read_security(sdkp, buffer);
3195 	}
3196 
3197 	/*
3198 	 * We now have all cache related info, determine how we deal
3199 	 * with flush requests.
3200 	 */
3201 	sd_set_flush_flag(sdkp);
3202 
3203 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3204 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3205 
3206 	/* Some devices report a maximum block count for READ/WRITE requests. */
3207 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3208 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3209 
3210 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3211 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3212 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3213 	} else {
3214 		q->limits.io_opt = 0;
3215 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3216 				      (sector_t)BLK_DEF_MAX_SECTORS);
3217 	}
3218 
3219 	/* Do not exceed controller limit */
3220 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3221 
3222 	/*
3223 	 * Only update max_sectors if previously unset or if the current value
3224 	 * exceeds the capabilities of the hardware.
3225 	 */
3226 	if (sdkp->first_scan ||
3227 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3228 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3229 		q->limits.max_sectors = rw_max;
3230 
3231 	sdkp->first_scan = 0;
3232 
3233 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3234 	sd_config_write_same(sdkp);
3235 	kfree(buffer);
3236 
3237  out:
3238 	return 0;
3239 }
3240 
3241 /**
3242  *	sd_unlock_native_capacity - unlock native capacity
3243  *	@disk: struct gendisk to set capacity for
3244  *
3245  *	Block layer calls this function if it detects that partitions
3246  *	on @disk reach beyond the end of the device.  If the SCSI host
3247  *	implements ->unlock_native_capacity() method, it's invoked to
3248  *	give it a chance to adjust the device capacity.
3249  *
3250  *	CONTEXT:
3251  *	Defined by block layer.  Might sleep.
3252  */
sd_unlock_native_capacity(struct gendisk * disk)3253 static void sd_unlock_native_capacity(struct gendisk *disk)
3254 {
3255 	struct scsi_device *sdev = scsi_disk(disk)->device;
3256 
3257 	if (sdev->host->hostt->unlock_native_capacity)
3258 		sdev->host->hostt->unlock_native_capacity(sdev);
3259 }
3260 
3261 /**
3262  *	sd_format_disk_name - format disk name
3263  *	@prefix: name prefix - ie. "sd" for SCSI disks
3264  *	@index: index of the disk to format name for
3265  *	@buf: output buffer
3266  *	@buflen: length of the output buffer
3267  *
3268  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3269  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3270  *	which is followed by sdaaa.
3271  *
3272  *	This is basically 26 base counting with one extra 'nil' entry
3273  *	at the beginning from the second digit on and can be
3274  *	determined using similar method as 26 base conversion with the
3275  *	index shifted -1 after each digit is computed.
3276  *
3277  *	CONTEXT:
3278  *	Don't care.
3279  *
3280  *	RETURNS:
3281  *	0 on success, -errno on failure.
3282  */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3283 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3284 {
3285 	const int base = 'z' - 'a' + 1;
3286 	char *begin = buf + strlen(prefix);
3287 	char *end = buf + buflen;
3288 	char *p;
3289 	int unit;
3290 
3291 	p = end - 1;
3292 	*p = '\0';
3293 	unit = base;
3294 	do {
3295 		if (p == begin)
3296 			return -EINVAL;
3297 		*--p = 'a' + (index % unit);
3298 		index = (index / unit) - 1;
3299 	} while (index >= 0);
3300 
3301 	memmove(begin, p, end - p);
3302 	memcpy(buf, prefix, strlen(prefix));
3303 
3304 	return 0;
3305 }
3306 
3307 /*
3308  * The asynchronous part of sd_probe
3309  */
sd_probe_async(void * data,async_cookie_t cookie)3310 static void sd_probe_async(void *data, async_cookie_t cookie)
3311 {
3312 	struct scsi_disk *sdkp = data;
3313 	struct scsi_device *sdp;
3314 	struct gendisk *gd;
3315 	u32 index;
3316 	struct device *dev;
3317 
3318 	sdp = sdkp->device;
3319 	gd = sdkp->disk;
3320 	index = sdkp->index;
3321 	dev = &sdp->sdev_gendev;
3322 
3323 	gd->major = sd_major((index & 0xf0) >> 4);
3324 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3325 
3326 	gd->fops = &sd_fops;
3327 	gd->private_data = &sdkp->driver;
3328 	gd->queue = sdkp->device->request_queue;
3329 
3330 	/* defaults, until the device tells us otherwise */
3331 	sdp->sector_size = 512;
3332 	sdkp->capacity = 0;
3333 	sdkp->media_present = 1;
3334 	sdkp->write_prot = 0;
3335 	sdkp->cache_override = 0;
3336 	sdkp->WCE = 0;
3337 	sdkp->RCD = 0;
3338 	sdkp->ATO = 0;
3339 	sdkp->first_scan = 1;
3340 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3341 
3342 	sd_revalidate_disk(gd);
3343 
3344 	gd->flags = GENHD_FL_EXT_DEVT;
3345 	if (sdp->removable) {
3346 		gd->flags |= GENHD_FL_REMOVABLE;
3347 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3348 	}
3349 
3350 	blk_pm_runtime_init(sdp->request_queue, dev);
3351 	device_add_disk(dev, gd);
3352 	if (sdkp->capacity)
3353 		sd_dif_config_host(sdkp);
3354 
3355 	sd_revalidate_disk(gd);
3356 
3357 	if (sdkp->security) {
3358 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3359 		if (sdkp->opal_dev)
3360 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3361 	}
3362 
3363 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3364 		  sdp->removable ? "removable " : "");
3365 	scsi_autopm_put_device(sdp);
3366 	put_device(&sdkp->dev);
3367 }
3368 
3369 /**
3370  *	sd_probe - called during driver initialization and whenever a
3371  *	new scsi device is attached to the system. It is called once
3372  *	for each scsi device (not just disks) present.
3373  *	@dev: pointer to device object
3374  *
3375  *	Returns 0 if successful (or not interested in this scsi device
3376  *	(e.g. scanner)); 1 when there is an error.
3377  *
3378  *	Note: this function is invoked from the scsi mid-level.
3379  *	This function sets up the mapping between a given
3380  *	<host,channel,id,lun> (found in sdp) and new device name
3381  *	(e.g. /dev/sda). More precisely it is the block device major
3382  *	and minor number that is chosen here.
3383  *
3384  *	Assume sd_probe is not re-entrant (for time being)
3385  *	Also think about sd_probe() and sd_remove() running coincidentally.
3386  **/
sd_probe(struct device * dev)3387 static int sd_probe(struct device *dev)
3388 {
3389 	struct scsi_device *sdp = to_scsi_device(dev);
3390 	struct scsi_disk *sdkp;
3391 	struct gendisk *gd;
3392 	int index;
3393 	int error;
3394 
3395 	scsi_autopm_get_device(sdp);
3396 	error = -ENODEV;
3397 	if (sdp->type != TYPE_DISK &&
3398 	    sdp->type != TYPE_ZBC &&
3399 	    sdp->type != TYPE_MOD &&
3400 	    sdp->type != TYPE_RBC)
3401 		goto out;
3402 
3403 #ifndef CONFIG_BLK_DEV_ZONED
3404 	if (sdp->type == TYPE_ZBC)
3405 		goto out;
3406 #endif
3407 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3408 					"sd_probe\n"));
3409 
3410 	error = -ENOMEM;
3411 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3412 	if (!sdkp)
3413 		goto out;
3414 
3415 	gd = alloc_disk(SD_MINORS);
3416 	if (!gd)
3417 		goto out_free;
3418 
3419 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3420 	if (index < 0) {
3421 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3422 		goto out_put;
3423 	}
3424 
3425 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3426 	if (error) {
3427 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3428 		goto out_free_index;
3429 	}
3430 
3431 	sdkp->device = sdp;
3432 	sdkp->driver = &sd_template;
3433 	sdkp->disk = gd;
3434 	sdkp->index = index;
3435 	atomic_set(&sdkp->openers, 0);
3436 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3437 
3438 	if (!sdp->request_queue->rq_timeout) {
3439 		if (sdp->type != TYPE_MOD)
3440 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3441 		else
3442 			blk_queue_rq_timeout(sdp->request_queue,
3443 					     SD_MOD_TIMEOUT);
3444 	}
3445 
3446 	device_initialize(&sdkp->dev);
3447 	sdkp->dev.parent = dev;
3448 	sdkp->dev.class = &sd_disk_class;
3449 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3450 
3451 	error = device_add(&sdkp->dev);
3452 	if (error)
3453 		goto out_free_index;
3454 
3455 	get_device(dev);
3456 	dev_set_drvdata(dev, sdkp);
3457 
3458 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3459 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3460 
3461 	return 0;
3462 
3463  out_free_index:
3464 	ida_free(&sd_index_ida, index);
3465  out_put:
3466 	put_disk(gd);
3467  out_free:
3468 	kfree(sdkp);
3469  out:
3470 	scsi_autopm_put_device(sdp);
3471 	return error;
3472 }
3473 
3474 /**
3475  *	sd_remove - called whenever a scsi disk (previously recognized by
3476  *	sd_probe) is detached from the system. It is called (potentially
3477  *	multiple times) during sd module unload.
3478  *	@dev: pointer to device object
3479  *
3480  *	Note: this function is invoked from the scsi mid-level.
3481  *	This function potentially frees up a device name (e.g. /dev/sdc)
3482  *	that could be re-used by a subsequent sd_probe().
3483  *	This function is not called when the built-in sd driver is "exit-ed".
3484  **/
sd_remove(struct device * dev)3485 static int sd_remove(struct device *dev)
3486 {
3487 	struct scsi_disk *sdkp;
3488 	dev_t devt;
3489 
3490 	sdkp = dev_get_drvdata(dev);
3491 	devt = disk_devt(sdkp->disk);
3492 	scsi_autopm_get_device(sdkp->device);
3493 
3494 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3495 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3496 	device_del(&sdkp->dev);
3497 	del_gendisk(sdkp->disk);
3498 	sd_shutdown(dev);
3499 
3500 	sd_zbc_remove(sdkp);
3501 
3502 	free_opal_dev(sdkp->opal_dev);
3503 
3504 	blk_register_region(devt, SD_MINORS, NULL,
3505 			    sd_default_probe, NULL, NULL);
3506 
3507 	mutex_lock(&sd_ref_mutex);
3508 	dev_set_drvdata(dev, NULL);
3509 	put_device(&sdkp->dev);
3510 	mutex_unlock(&sd_ref_mutex);
3511 
3512 	return 0;
3513 }
3514 
3515 /**
3516  *	scsi_disk_release - Called to free the scsi_disk structure
3517  *	@dev: pointer to embedded class device
3518  *
3519  *	sd_ref_mutex must be held entering this routine.  Because it is
3520  *	called on last put, you should always use the scsi_disk_get()
3521  *	scsi_disk_put() helpers which manipulate the semaphore directly
3522  *	and never do a direct put_device.
3523  **/
scsi_disk_release(struct device * dev)3524 static void scsi_disk_release(struct device *dev)
3525 {
3526 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3527 	struct gendisk *disk = sdkp->disk;
3528 	struct request_queue *q = disk->queue;
3529 
3530 	ida_free(&sd_index_ida, sdkp->index);
3531 
3532 	/*
3533 	 * Wait until all requests that are in progress have completed.
3534 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3535 	 * due to clearing the disk->private_data pointer. Wait from inside
3536 	 * scsi_disk_release() instead of from sd_release() to avoid that
3537 	 * freezing and unfreezing the request queue affects user space I/O
3538 	 * in case multiple processes open a /dev/sd... node concurrently.
3539 	 */
3540 	blk_mq_freeze_queue(q);
3541 	blk_mq_unfreeze_queue(q);
3542 
3543 	disk->private_data = NULL;
3544 	put_disk(disk);
3545 	put_device(&sdkp->device->sdev_gendev);
3546 
3547 	kfree(sdkp);
3548 }
3549 
sd_start_stop_device(struct scsi_disk * sdkp,int start)3550 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3551 {
3552 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3553 	struct scsi_sense_hdr sshdr;
3554 	struct scsi_device *sdp = sdkp->device;
3555 	int res;
3556 
3557 	if (start)
3558 		cmd[4] |= 1;	/* START */
3559 
3560 	if (sdp->start_stop_pwr_cond)
3561 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3562 
3563 	if (!scsi_device_online(sdp))
3564 		return -ENODEV;
3565 
3566 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3567 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3568 	if (res) {
3569 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3570 		if (driver_byte(res) == DRIVER_SENSE)
3571 			sd_print_sense_hdr(sdkp, &sshdr);
3572 		if (scsi_sense_valid(&sshdr) &&
3573 			/* 0x3a is medium not present */
3574 			sshdr.asc == 0x3a)
3575 			res = 0;
3576 	}
3577 
3578 	/* SCSI error codes must not go to the generic layer */
3579 	if (res)
3580 		return -EIO;
3581 
3582 	return 0;
3583 }
3584 
3585 /*
3586  * Send a SYNCHRONIZE CACHE instruction down to the device through
3587  * the normal SCSI command structure.  Wait for the command to
3588  * complete.
3589  */
sd_shutdown(struct device * dev)3590 static void sd_shutdown(struct device *dev)
3591 {
3592 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3593 
3594 	if (!sdkp)
3595 		return;         /* this can happen */
3596 
3597 	if (pm_runtime_suspended(dev))
3598 		return;
3599 
3600 	if (sdkp->WCE && sdkp->media_present) {
3601 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3602 		sd_sync_cache(sdkp, NULL);
3603 	}
3604 
3605 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3606 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3607 		sd_start_stop_device(sdkp, 0);
3608 	}
3609 }
3610 
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3611 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3612 {
3613 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3614 	struct scsi_sense_hdr sshdr;
3615 	int ret = 0;
3616 
3617 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3618 		return 0;
3619 
3620 	if (sdkp->WCE && sdkp->media_present) {
3621 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3622 		ret = sd_sync_cache(sdkp, &sshdr);
3623 
3624 		if (ret) {
3625 			/* ignore OFFLINE device */
3626 			if (ret == -ENODEV)
3627 				return 0;
3628 
3629 			if (!scsi_sense_valid(&sshdr) ||
3630 			    sshdr.sense_key != ILLEGAL_REQUEST)
3631 				return ret;
3632 
3633 			/*
3634 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3635 			 * doesn't support sync. There's not much to do and
3636 			 * suspend shouldn't fail.
3637 			 */
3638 			ret = 0;
3639 		}
3640 	}
3641 
3642 	if (sdkp->device->manage_start_stop) {
3643 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3644 		/* an error is not worth aborting a system sleep */
3645 		ret = sd_start_stop_device(sdkp, 0);
3646 		if (ignore_stop_errors)
3647 			ret = 0;
3648 	}
3649 
3650 	return ret;
3651 }
3652 
sd_suspend_system(struct device * dev)3653 static int sd_suspend_system(struct device *dev)
3654 {
3655 	return sd_suspend_common(dev, true);
3656 }
3657 
sd_suspend_runtime(struct device * dev)3658 static int sd_suspend_runtime(struct device *dev)
3659 {
3660 	return sd_suspend_common(dev, false);
3661 }
3662 
sd_resume(struct device * dev)3663 static int sd_resume(struct device *dev)
3664 {
3665 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3666 	int ret;
3667 
3668 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3669 		return 0;
3670 
3671 	if (!sdkp->device->manage_start_stop)
3672 		return 0;
3673 
3674 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3675 	ret = sd_start_stop_device(sdkp, 1);
3676 	if (!ret)
3677 		opal_unlock_from_suspend(sdkp->opal_dev);
3678 	return ret;
3679 }
3680 
3681 /**
3682  *	init_sd - entry point for this driver (both when built in or when
3683  *	a module).
3684  *
3685  *	Note: this function registers this driver with the scsi mid-level.
3686  **/
init_sd(void)3687 static int __init init_sd(void)
3688 {
3689 	int majors = 0, i, err;
3690 
3691 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3692 
3693 	for (i = 0; i < SD_MAJORS; i++) {
3694 		if (register_blkdev(sd_major(i), "sd") != 0)
3695 			continue;
3696 		majors++;
3697 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3698 				    sd_default_probe, NULL, NULL);
3699 	}
3700 
3701 	if (!majors)
3702 		return -ENODEV;
3703 
3704 	err = class_register(&sd_disk_class);
3705 	if (err)
3706 		goto err_out;
3707 
3708 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3709 					 0, 0, NULL);
3710 	if (!sd_cdb_cache) {
3711 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3712 		err = -ENOMEM;
3713 		goto err_out_class;
3714 	}
3715 
3716 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3717 	if (!sd_cdb_pool) {
3718 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3719 		err = -ENOMEM;
3720 		goto err_out_cache;
3721 	}
3722 
3723 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3724 	if (!sd_page_pool) {
3725 		printk(KERN_ERR "sd: can't init discard page pool\n");
3726 		err = -ENOMEM;
3727 		goto err_out_ppool;
3728 	}
3729 
3730 	err = scsi_register_driver(&sd_template.gendrv);
3731 	if (err)
3732 		goto err_out_driver;
3733 
3734 	return 0;
3735 
3736 err_out_driver:
3737 	mempool_destroy(sd_page_pool);
3738 
3739 err_out_ppool:
3740 	mempool_destroy(sd_cdb_pool);
3741 
3742 err_out_cache:
3743 	kmem_cache_destroy(sd_cdb_cache);
3744 
3745 err_out_class:
3746 	class_unregister(&sd_disk_class);
3747 err_out:
3748 	for (i = 0; i < SD_MAJORS; i++)
3749 		unregister_blkdev(sd_major(i), "sd");
3750 	return err;
3751 }
3752 
3753 /**
3754  *	exit_sd - exit point for this driver (when it is a module).
3755  *
3756  *	Note: this function unregisters this driver from the scsi mid-level.
3757  **/
exit_sd(void)3758 static void __exit exit_sd(void)
3759 {
3760 	int i;
3761 
3762 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3763 
3764 	scsi_unregister_driver(&sd_template.gendrv);
3765 	mempool_destroy(sd_cdb_pool);
3766 	mempool_destroy(sd_page_pool);
3767 	kmem_cache_destroy(sd_cdb_cache);
3768 
3769 	class_unregister(&sd_disk_class);
3770 
3771 	for (i = 0; i < SD_MAJORS; i++) {
3772 		blk_unregister_region(sd_major(i), SD_MINORS);
3773 		unregister_blkdev(sd_major(i), "sd");
3774 	}
3775 }
3776 
3777 module_init(init_sd);
3778 module_exit(exit_sd);
3779 
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3780 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3781 			       struct scsi_sense_hdr *sshdr)
3782 {
3783 	scsi_print_sense_hdr(sdkp->device,
3784 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3785 }
3786 
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3787 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3788 			    int result)
3789 {
3790 	const char *hb_string = scsi_hostbyte_string(result);
3791 	const char *db_string = scsi_driverbyte_string(result);
3792 
3793 	if (hb_string || db_string)
3794 		sd_printk(KERN_INFO, sdkp,
3795 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3796 			  hb_string ? hb_string : "invalid",
3797 			  db_string ? db_string : "invalid");
3798 	else
3799 		sd_printk(KERN_INFO, sdkp,
3800 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3801 			  msg, host_byte(result), driver_byte(result));
3802 }
3803 
3804