• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  */
5 
6 /*
7  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8  * or rs-channels. It also implements echoing, cooked mode etc.
9  *
10  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11  *
12  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13  * tty_struct and tty_queue structures.  Previously there was an array
14  * of 256 tty_struct's which was statically allocated, and the
15  * tty_queue structures were allocated at boot time.  Both are now
16  * dynamically allocated only when the tty is open.
17  *
18  * Also restructured routines so that there is more of a separation
19  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20  * the low-level tty routines (serial.c, pty.c, console.c).  This
21  * makes for cleaner and more compact code.  -TYT, 9/17/92
22  *
23  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24  * which can be dynamically activated and de-activated by the line
25  * discipline handling modules (like SLIP).
26  *
27  * NOTE: pay no attention to the line discipline code (yet); its
28  * interface is still subject to change in this version...
29  * -- TYT, 1/31/92
30  *
31  * Added functionality to the OPOST tty handling.  No delays, but all
32  * other bits should be there.
33  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34  *
35  * Rewrote canonical mode and added more termios flags.
36  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37  *
38  * Reorganized FASYNC support so mouse code can share it.
39  *	-- ctm@ardi.com, 9Sep95
40  *
41  * New TIOCLINUX variants added.
42  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43  *
44  * Restrict vt switching via ioctl()
45  *      -- grif@cs.ucr.edu, 5-Dec-95
46  *
47  * Move console and virtual terminal code to more appropriate files,
48  * implement CONFIG_VT and generalize console device interface.
49  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50  *
51  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52  *	-- Bill Hawes <whawes@star.net>, June 97
53  *
54  * Added devfs support.
55  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56  *
57  * Added support for a Unix98-style ptmx device.
58  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59  *
60  * Reduced memory usage for older ARM systems
61  *      -- Russell King <rmk@arm.linux.org.uk>
62  *
63  * Move do_SAK() into process context.  Less stack use in devfs functions.
64  * alloc_tty_struct() always uses kmalloc()
65  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66  */
67 
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/device.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
97 #include <linux/seq_file.h>
98 #include <linux/serial.h>
99 #include <linux/ratelimit.h>
100 
101 #include <linux/uaccess.h>
102 
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106 
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109 
110 #undef TTY_DEBUG_HANGUP
111 #ifdef TTY_DEBUG_HANGUP
112 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
113 #else
114 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
115 #endif
116 
117 #define TTY_PARANOIA_CHECK 1
118 #define CHECK_TTY_COUNT 1
119 
120 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
121 	.c_iflag = ICRNL | IXON,
122 	.c_oflag = OPOST | ONLCR,
123 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 		   ECHOCTL | ECHOKE | IEXTEN,
126 	.c_cc = INIT_C_CC,
127 	.c_ispeed = 38400,
128 	.c_ospeed = 38400,
129 	/* .c_line = N_TTY, */
130 };
131 
132 EXPORT_SYMBOL(tty_std_termios);
133 
134 /* This list gets poked at by procfs and various bits of boot up code. This
135    could do with some rationalisation such as pulling the tty proc function
136    into this file */
137 
138 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
139 
140 /* Mutex to protect creating and releasing a tty */
141 DEFINE_MUTEX(tty_mutex);
142 
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146 							size_t, loff_t *);
147 static __poll_t tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 				unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 
160 /**
161  *	free_tty_struct		-	free a disused tty
162  *	@tty: tty struct to free
163  *
164  *	Free the write buffers, tty queue and tty memory itself.
165  *
166  *	Locking: none. Must be called after tty is definitely unused
167  */
168 
free_tty_struct(struct tty_struct * tty)169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 	tty_ldisc_deinit(tty);
172 	put_device(tty->dev);
173 	kfree(tty->write_buf);
174 	tty->magic = 0xDEADDEAD;
175 	kfree(tty);
176 }
177 
file_tty(struct file * file)178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 	return ((struct tty_file_private *)file->private_data)->tty;
181 }
182 
tty_alloc_file(struct file * file)183 int tty_alloc_file(struct file *file)
184 {
185 	struct tty_file_private *priv;
186 
187 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 	if (!priv)
189 		return -ENOMEM;
190 
191 	file->private_data = priv;
192 
193 	return 0;
194 }
195 
196 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 	struct tty_file_private *priv = file->private_data;
200 
201 	priv->tty = tty;
202 	priv->file = file;
203 
204 	spin_lock(&tty->files_lock);
205 	list_add(&priv->list, &tty->tty_files);
206 	spin_unlock(&tty->files_lock);
207 }
208 
209 /**
210  * tty_free_file - free file->private_data
211  *
212  * This shall be used only for fail path handling when tty_add_file was not
213  * called yet.
214  */
tty_free_file(struct file * file)215 void tty_free_file(struct file *file)
216 {
217 	struct tty_file_private *priv = file->private_data;
218 
219 	file->private_data = NULL;
220 	kfree(priv);
221 }
222 
223 /* Delete file from its tty */
tty_del_file(struct file * file)224 static void tty_del_file(struct file *file)
225 {
226 	struct tty_file_private *priv = file->private_data;
227 	struct tty_struct *tty = priv->tty;
228 
229 	spin_lock(&tty->files_lock);
230 	list_del(&priv->list);
231 	spin_unlock(&tty->files_lock);
232 	tty_free_file(file);
233 }
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *
239  *	Convert a tty structure into a name. The name reflects the kernel
240  *	naming policy and if udev is in use may not reflect user space
241  *
242  *	Locking: none
243  */
244 
tty_name(const struct tty_struct * tty)245 const char *tty_name(const struct tty_struct *tty)
246 {
247 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248 		return "NULL tty";
249 	return tty->name;
250 }
251 
252 EXPORT_SYMBOL(tty_name);
253 
tty_driver_name(const struct tty_struct * tty)254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 	if (!tty || !tty->driver)
257 		return "";
258 	return tty->driver->name;
259 }
260 
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 			      const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 	if (!tty) {
266 		pr_warn("(%d:%d): %s: NULL tty\n",
267 			imajor(inode), iminor(inode), routine);
268 		return 1;
269 	}
270 	if (tty->magic != TTY_MAGIC) {
271 		pr_warn("(%d:%d): %s: bad magic number\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0, kopen_count = 0;
285 
286 	spin_lock(&tty->files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty->files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty_port_kopened(tty->port))
296 		kopen_count++;
297 	if (tty->count != (count + kopen_count)) {
298 		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 			 routine, tty->count, count, kopen_count);
300 		return (count + kopen_count);
301 	}
302 #endif
303 	return 0;
304 }
305 
306 /**
307  *	get_tty_driver		-	find device of a tty
308  *	@dev_t: device identifier
309  *	@index: returns the index of the tty
310  *
311  *	This routine returns a tty driver structure, given a device number
312  *	and also passes back the index number.
313  *
314  *	Locking: caller must hold tty_mutex
315  */
316 
get_tty_driver(dev_t device,int * index)317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 	struct tty_driver *p;
320 
321 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 		dev_t base = MKDEV(p->major, p->minor_start);
323 		if (device < base || device >= base + p->num)
324 			continue;
325 		*index = device - base;
326 		return tty_driver_kref_get(p);
327 	}
328 	return NULL;
329 }
330 
331 /**
332  *	tty_dev_name_to_number	-	return dev_t for device name
333  *	@name: user space name of device under /dev
334  *	@number: pointer to dev_t that this function will populate
335  *
336  *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
337  *	like (4, 64) or (188, 1). If no corresponding driver is registered then
338  *	the function returns -ENODEV.
339  *
340  *	Locking: this acquires tty_mutex to protect the tty_drivers list from
341  *		being modified while we are traversing it, and makes sure to
342  *		release it before exiting.
343  */
tty_dev_name_to_number(const char * name,dev_t * number)344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 	struct tty_driver *p;
347 	int ret;
348 	int index, prefix_length = 0;
349 	const char *str;
350 
351 	for (str = name; *str && !isdigit(*str); str++)
352 		;
353 
354 	if (!*str)
355 		return -EINVAL;
356 
357 	ret = kstrtoint(str, 10, &index);
358 	if (ret)
359 		return ret;
360 
361 	prefix_length = str - name;
362 	mutex_lock(&tty_mutex);
363 
364 	list_for_each_entry(p, &tty_drivers, tty_drivers)
365 		if (prefix_length == strlen(p->name) && strncmp(name,
366 					p->name, prefix_length) == 0) {
367 			if (index < p->num) {
368 				*number = MKDEV(p->major, p->minor_start + index);
369 				goto out;
370 			}
371 		}
372 
373 	/* if here then driver wasn't found */
374 	ret = -ENODEV;
375 out:
376 	mutex_unlock(&tty_mutex);
377 	return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380 
381 #ifdef CONFIG_CONSOLE_POLL
382 
383 /**
384  *	tty_find_polling_driver	-	find device of a polled tty
385  *	@name: name string to match
386  *	@line: pointer to resulting tty line nr
387  *
388  *	This routine returns a tty driver structure, given a name
389  *	and the condition that the tty driver is capable of polled
390  *	operation.
391  */
tty_find_polling_driver(char * name,int * line)392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 	struct tty_driver *p, *res = NULL;
395 	int tty_line = 0;
396 	int len;
397 	char *str, *stp;
398 
399 	for (str = name; *str; str++)
400 		if ((*str >= '0' && *str <= '9') || *str == ',')
401 			break;
402 	if (!*str)
403 		return NULL;
404 
405 	len = str - name;
406 	tty_line = simple_strtoul(str, &str, 10);
407 
408 	mutex_lock(&tty_mutex);
409 	/* Search through the tty devices to look for a match */
410 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 		if (!len || strncmp(name, p->name, len) != 0)
412 			continue;
413 		stp = str;
414 		if (*stp == ',')
415 			stp++;
416 		if (*stp == '\0')
417 			stp = NULL;
418 
419 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 			res = tty_driver_kref_get(p);
422 			*line = tty_line;
423 			break;
424 		}
425 	}
426 	mutex_unlock(&tty_mutex);
427 
428 	return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432 
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)433 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 				size_t count, loff_t *ppos)
435 {
436 	return 0;
437 }
438 
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)439 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 				 size_t count, loff_t *ppos)
441 {
442 	return -EIO;
443 }
444 
445 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)446 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
447 {
448 	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
449 }
450 
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)451 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 		unsigned long arg)
453 {
454 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455 }
456 
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)457 static long hung_up_tty_compat_ioctl(struct file *file,
458 				     unsigned int cmd, unsigned long arg)
459 {
460 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461 }
462 
hung_up_tty_fasync(int fd,struct file * file,int on)463 static int hung_up_tty_fasync(int fd, struct file *file, int on)
464 {
465 	return -ENOTTY;
466 }
467 
tty_show_fdinfo(struct seq_file * m,struct file * file)468 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469 {
470 	struct tty_struct *tty = file_tty(file);
471 
472 	if (tty && tty->ops && tty->ops->show_fdinfo)
473 		tty->ops->show_fdinfo(tty, m);
474 }
475 
476 static const struct file_operations tty_fops = {
477 	.llseek		= no_llseek,
478 	.read		= tty_read,
479 	.write		= tty_write,
480 	.poll		= tty_poll,
481 	.unlocked_ioctl	= tty_ioctl,
482 	.compat_ioctl	= tty_compat_ioctl,
483 	.open		= tty_open,
484 	.release	= tty_release,
485 	.fasync		= tty_fasync,
486 	.show_fdinfo	= tty_show_fdinfo,
487 };
488 
489 static const struct file_operations console_fops = {
490 	.llseek		= no_llseek,
491 	.read		= tty_read,
492 	.write		= redirected_tty_write,
493 	.poll		= tty_poll,
494 	.unlocked_ioctl	= tty_ioctl,
495 	.compat_ioctl	= tty_compat_ioctl,
496 	.open		= tty_open,
497 	.release	= tty_release,
498 	.fasync		= tty_fasync,
499 };
500 
501 static const struct file_operations hung_up_tty_fops = {
502 	.llseek		= no_llseek,
503 	.read		= hung_up_tty_read,
504 	.write		= hung_up_tty_write,
505 	.poll		= hung_up_tty_poll,
506 	.unlocked_ioctl	= hung_up_tty_ioctl,
507 	.compat_ioctl	= hung_up_tty_compat_ioctl,
508 	.release	= tty_release,
509 	.fasync		= hung_up_tty_fasync,
510 };
511 
512 static DEFINE_SPINLOCK(redirect_lock);
513 static struct file *redirect;
514 
515 extern void tty_sysctl_init(void);
516 
517 /**
518  *	tty_wakeup	-	request more data
519  *	@tty: terminal
520  *
521  *	Internal and external helper for wakeups of tty. This function
522  *	informs the line discipline if present that the driver is ready
523  *	to receive more output data.
524  */
525 
tty_wakeup(struct tty_struct * tty)526 void tty_wakeup(struct tty_struct *tty)
527 {
528 	struct tty_ldisc *ld;
529 
530 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
531 		ld = tty_ldisc_ref(tty);
532 		if (ld) {
533 			if (ld->ops->write_wakeup)
534 				ld->ops->write_wakeup(tty);
535 			tty_ldisc_deref(ld);
536 		}
537 	}
538 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
539 }
540 
541 EXPORT_SYMBOL_GPL(tty_wakeup);
542 
543 /**
544  *	__tty_hangup		-	actual handler for hangup events
545  *	@work: tty device
546  *
547  *	This can be called by a "kworker" kernel thread.  That is process
548  *	synchronous but doesn't hold any locks, so we need to make sure we
549  *	have the appropriate locks for what we're doing.
550  *
551  *	The hangup event clears any pending redirections onto the hung up
552  *	device. It ensures future writes will error and it does the needed
553  *	line discipline hangup and signal delivery. The tty object itself
554  *	remains intact.
555  *
556  *	Locking:
557  *		BTM
558  *		  redirect lock for undoing redirection
559  *		  file list lock for manipulating list of ttys
560  *		  tty_ldiscs_lock from called functions
561  *		  termios_rwsem resetting termios data
562  *		  tasklist_lock to walk task list for hangup event
563  *		    ->siglock to protect ->signal/->sighand
564  */
__tty_hangup(struct tty_struct * tty,int exit_session)565 static void __tty_hangup(struct tty_struct *tty, int exit_session)
566 {
567 	struct file *cons_filp = NULL;
568 	struct file *filp, *f = NULL;
569 	struct tty_file_private *priv;
570 	int    closecount = 0, n;
571 	int refs;
572 
573 	if (!tty)
574 		return;
575 
576 
577 	spin_lock(&redirect_lock);
578 	if (redirect && file_tty(redirect) == tty) {
579 		f = redirect;
580 		redirect = NULL;
581 	}
582 	spin_unlock(&redirect_lock);
583 
584 	tty_lock(tty);
585 
586 	if (test_bit(TTY_HUPPED, &tty->flags)) {
587 		tty_unlock(tty);
588 		return;
589 	}
590 
591 	/*
592 	 * Some console devices aren't actually hung up for technical and
593 	 * historical reasons, which can lead to indefinite interruptible
594 	 * sleep in n_tty_read().  The following explicitly tells
595 	 * n_tty_read() to abort readers.
596 	 */
597 	set_bit(TTY_HUPPING, &tty->flags);
598 
599 	/* inuse_filps is protected by the single tty lock,
600 	   this really needs to change if we want to flush the
601 	   workqueue with the lock held */
602 	check_tty_count(tty, "tty_hangup");
603 
604 	spin_lock(&tty->files_lock);
605 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
606 	list_for_each_entry(priv, &tty->tty_files, list) {
607 		filp = priv->file;
608 		if (filp->f_op->write == redirected_tty_write)
609 			cons_filp = filp;
610 		if (filp->f_op->write != tty_write)
611 			continue;
612 		closecount++;
613 		__tty_fasync(-1, filp, 0);	/* can't block */
614 		filp->f_op = &hung_up_tty_fops;
615 	}
616 	spin_unlock(&tty->files_lock);
617 
618 	refs = tty_signal_session_leader(tty, exit_session);
619 	/* Account for the p->signal references we killed */
620 	while (refs--)
621 		tty_kref_put(tty);
622 
623 	tty_ldisc_hangup(tty, cons_filp != NULL);
624 
625 	spin_lock_irq(&tty->ctrl_lock);
626 	clear_bit(TTY_THROTTLED, &tty->flags);
627 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
628 	put_pid(tty->session);
629 	put_pid(tty->pgrp);
630 	tty->session = NULL;
631 	tty->pgrp = NULL;
632 	tty->ctrl_status = 0;
633 	spin_unlock_irq(&tty->ctrl_lock);
634 
635 	/*
636 	 * If one of the devices matches a console pointer, we
637 	 * cannot just call hangup() because that will cause
638 	 * tty->count and state->count to go out of sync.
639 	 * So we just call close() the right number of times.
640 	 */
641 	if (cons_filp) {
642 		if (tty->ops->close)
643 			for (n = 0; n < closecount; n++)
644 				tty->ops->close(tty, cons_filp);
645 	} else if (tty->ops->hangup)
646 		tty->ops->hangup(tty);
647 	/*
648 	 * We don't want to have driver/ldisc interactions beyond the ones
649 	 * we did here. The driver layer expects no calls after ->hangup()
650 	 * from the ldisc side, which is now guaranteed.
651 	 */
652 	set_bit(TTY_HUPPED, &tty->flags);
653 	clear_bit(TTY_HUPPING, &tty->flags);
654 	tty_unlock(tty);
655 
656 	if (f)
657 		fput(f);
658 }
659 
do_tty_hangup(struct work_struct * work)660 static void do_tty_hangup(struct work_struct *work)
661 {
662 	struct tty_struct *tty =
663 		container_of(work, struct tty_struct, hangup_work);
664 
665 	__tty_hangup(tty, 0);
666 }
667 
668 /**
669  *	tty_hangup		-	trigger a hangup event
670  *	@tty: tty to hangup
671  *
672  *	A carrier loss (virtual or otherwise) has occurred on this like
673  *	schedule a hangup sequence to run after this event.
674  */
675 
tty_hangup(struct tty_struct * tty)676 void tty_hangup(struct tty_struct *tty)
677 {
678 	tty_debug_hangup(tty, "hangup\n");
679 	schedule_work(&tty->hangup_work);
680 }
681 
682 EXPORT_SYMBOL(tty_hangup);
683 
684 /**
685  *	tty_vhangup		-	process vhangup
686  *	@tty: tty to hangup
687  *
688  *	The user has asked via system call for the terminal to be hung up.
689  *	We do this synchronously so that when the syscall returns the process
690  *	is complete. That guarantee is necessary for security reasons.
691  */
692 
tty_vhangup(struct tty_struct * tty)693 void tty_vhangup(struct tty_struct *tty)
694 {
695 	tty_debug_hangup(tty, "vhangup\n");
696 	__tty_hangup(tty, 0);
697 }
698 
699 EXPORT_SYMBOL(tty_vhangup);
700 
701 
702 /**
703  *	tty_vhangup_self	-	process vhangup for own ctty
704  *
705  *	Perform a vhangup on the current controlling tty
706  */
707 
tty_vhangup_self(void)708 void tty_vhangup_self(void)
709 {
710 	struct tty_struct *tty;
711 
712 	tty = get_current_tty();
713 	if (tty) {
714 		tty_vhangup(tty);
715 		tty_kref_put(tty);
716 	}
717 }
718 
719 /**
720  *	tty_vhangup_session		-	hangup session leader exit
721  *	@tty: tty to hangup
722  *
723  *	The session leader is exiting and hanging up its controlling terminal.
724  *	Every process in the foreground process group is signalled SIGHUP.
725  *
726  *	We do this synchronously so that when the syscall returns the process
727  *	is complete. That guarantee is necessary for security reasons.
728  */
729 
tty_vhangup_session(struct tty_struct * tty)730 void tty_vhangup_session(struct tty_struct *tty)
731 {
732 	tty_debug_hangup(tty, "session hangup\n");
733 	__tty_hangup(tty, 1);
734 }
735 
736 /**
737  *	tty_hung_up_p		-	was tty hung up
738  *	@filp: file pointer of tty
739  *
740  *	Return true if the tty has been subject to a vhangup or a carrier
741  *	loss
742  */
743 
tty_hung_up_p(struct file * filp)744 int tty_hung_up_p(struct file *filp)
745 {
746 	return (filp && filp->f_op == &hung_up_tty_fops);
747 }
748 
749 EXPORT_SYMBOL(tty_hung_up_p);
750 
751 /**
752  *	stop_tty	-	propagate flow control
753  *	@tty: tty to stop
754  *
755  *	Perform flow control to the driver. May be called
756  *	on an already stopped device and will not re-call the driver
757  *	method.
758  *
759  *	This functionality is used by both the line disciplines for
760  *	halting incoming flow and by the driver. It may therefore be
761  *	called from any context, may be under the tty atomic_write_lock
762  *	but not always.
763  *
764  *	Locking:
765  *		flow_lock
766  */
767 
__stop_tty(struct tty_struct * tty)768 void __stop_tty(struct tty_struct *tty)
769 {
770 	if (tty->stopped)
771 		return;
772 	tty->stopped = 1;
773 	if (tty->ops->stop)
774 		tty->ops->stop(tty);
775 }
776 
stop_tty(struct tty_struct * tty)777 void stop_tty(struct tty_struct *tty)
778 {
779 	unsigned long flags;
780 
781 	spin_lock_irqsave(&tty->flow_lock, flags);
782 	__stop_tty(tty);
783 	spin_unlock_irqrestore(&tty->flow_lock, flags);
784 }
785 EXPORT_SYMBOL(stop_tty);
786 
787 /**
788  *	start_tty	-	propagate flow control
789  *	@tty: tty to start
790  *
791  *	Start a tty that has been stopped if at all possible. If this
792  *	tty was previous stopped and is now being started, the driver
793  *	start method is invoked and the line discipline woken.
794  *
795  *	Locking:
796  *		flow_lock
797  */
798 
__start_tty(struct tty_struct * tty)799 void __start_tty(struct tty_struct *tty)
800 {
801 	if (!tty->stopped || tty->flow_stopped)
802 		return;
803 	tty->stopped = 0;
804 	if (tty->ops->start)
805 		tty->ops->start(tty);
806 	tty_wakeup(tty);
807 }
808 
start_tty(struct tty_struct * tty)809 void start_tty(struct tty_struct *tty)
810 {
811 	unsigned long flags;
812 
813 	spin_lock_irqsave(&tty->flow_lock, flags);
814 	__start_tty(tty);
815 	spin_unlock_irqrestore(&tty->flow_lock, flags);
816 }
817 EXPORT_SYMBOL(start_tty);
818 
tty_update_time(struct timespec64 * time)819 static void tty_update_time(struct timespec64 *time)
820 {
821 	time64_t sec = ktime_get_real_seconds();
822 
823 	/*
824 	 * We only care if the two values differ in anything other than the
825 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
826 	 * the time of the tty device, otherwise it could be construded as a
827 	 * security leak to let userspace know the exact timing of the tty.
828 	 */
829 	if ((sec ^ time->tv_sec) & ~7)
830 		time->tv_sec = sec;
831 }
832 
833 /**
834  *	tty_read	-	read method for tty device files
835  *	@file: pointer to tty file
836  *	@buf: user buffer
837  *	@count: size of user buffer
838  *	@ppos: unused
839  *
840  *	Perform the read system call function on this terminal device. Checks
841  *	for hung up devices before calling the line discipline method.
842  *
843  *	Locking:
844  *		Locks the line discipline internally while needed. Multiple
845  *	read calls may be outstanding in parallel.
846  */
847 
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)848 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
849 			loff_t *ppos)
850 {
851 	int i;
852 	struct inode *inode = file_inode(file);
853 	struct tty_struct *tty = file_tty(file);
854 	struct tty_ldisc *ld;
855 
856 	if (tty_paranoia_check(tty, inode, "tty_read"))
857 		return -EIO;
858 	if (!tty || tty_io_error(tty))
859 		return -EIO;
860 
861 	/* We want to wait for the line discipline to sort out in this
862 	   situation */
863 	ld = tty_ldisc_ref_wait(tty);
864 	if (!ld)
865 		return hung_up_tty_read(file, buf, count, ppos);
866 	if (ld->ops->read)
867 		i = ld->ops->read(tty, file, buf, count);
868 	else
869 		i = -EIO;
870 	tty_ldisc_deref(ld);
871 
872 	if (i > 0)
873 		tty_update_time(&inode->i_atime);
874 
875 	return i;
876 }
877 
tty_write_unlock(struct tty_struct * tty)878 static void tty_write_unlock(struct tty_struct *tty)
879 {
880 	mutex_unlock(&tty->atomic_write_lock);
881 	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
882 }
883 
tty_write_lock(struct tty_struct * tty,int ndelay)884 static int tty_write_lock(struct tty_struct *tty, int ndelay)
885 {
886 	if (!mutex_trylock(&tty->atomic_write_lock)) {
887 		if (ndelay)
888 			return -EAGAIN;
889 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
890 			return -ERESTARTSYS;
891 	}
892 	return 0;
893 }
894 
895 /*
896  * Split writes up in sane blocksizes to avoid
897  * denial-of-service type attacks
898  */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)899 static inline ssize_t do_tty_write(
900 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
901 	struct tty_struct *tty,
902 	struct file *file,
903 	const char __user *buf,
904 	size_t count)
905 {
906 	ssize_t ret, written = 0;
907 	unsigned int chunk;
908 
909 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
910 	if (ret < 0)
911 		return ret;
912 
913 	/*
914 	 * We chunk up writes into a temporary buffer. This
915 	 * simplifies low-level drivers immensely, since they
916 	 * don't have locking issues and user mode accesses.
917 	 *
918 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
919 	 * big chunk-size..
920 	 *
921 	 * The default chunk-size is 2kB, because the NTTY
922 	 * layer has problems with bigger chunks. It will
923 	 * claim to be able to handle more characters than
924 	 * it actually does.
925 	 *
926 	 * FIXME: This can probably go away now except that 64K chunks
927 	 * are too likely to fail unless switched to vmalloc...
928 	 */
929 	chunk = 2048;
930 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
931 		chunk = 65536;
932 	if (count < chunk)
933 		chunk = count;
934 
935 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
936 	if (tty->write_cnt < chunk) {
937 		unsigned char *buf_chunk;
938 
939 		if (chunk < 1024)
940 			chunk = 1024;
941 
942 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
943 		if (!buf_chunk) {
944 			ret = -ENOMEM;
945 			goto out;
946 		}
947 		kfree(tty->write_buf);
948 		tty->write_cnt = chunk;
949 		tty->write_buf = buf_chunk;
950 	}
951 
952 	/* Do the write .. */
953 	for (;;) {
954 		size_t size = count;
955 		if (size > chunk)
956 			size = chunk;
957 		ret = -EFAULT;
958 		if (copy_from_user(tty->write_buf, buf, size))
959 			break;
960 		ret = write(tty, file, tty->write_buf, size);
961 		if (ret <= 0)
962 			break;
963 		written += ret;
964 		buf += ret;
965 		count -= ret;
966 		if (!count)
967 			break;
968 		ret = -ERESTARTSYS;
969 		if (signal_pending(current))
970 			break;
971 		cond_resched();
972 	}
973 	if (written) {
974 		tty_update_time(&file_inode(file)->i_mtime);
975 		ret = written;
976 	}
977 out:
978 	tty_write_unlock(tty);
979 	return ret;
980 }
981 
982 /**
983  * tty_write_message - write a message to a certain tty, not just the console.
984  * @tty: the destination tty_struct
985  * @msg: the message to write
986  *
987  * This is used for messages that need to be redirected to a specific tty.
988  * We don't put it into the syslog queue right now maybe in the future if
989  * really needed.
990  *
991  * We must still hold the BTM and test the CLOSING flag for the moment.
992  */
993 
tty_write_message(struct tty_struct * tty,char * msg)994 void tty_write_message(struct tty_struct *tty, char *msg)
995 {
996 	if (tty) {
997 		mutex_lock(&tty->atomic_write_lock);
998 		tty_lock(tty);
999 		if (tty->ops->write && tty->count > 0)
1000 			tty->ops->write(tty, msg, strlen(msg));
1001 		tty_unlock(tty);
1002 		tty_write_unlock(tty);
1003 	}
1004 	return;
1005 }
1006 
1007 
1008 /**
1009  *	tty_write		-	write method for tty device file
1010  *	@file: tty file pointer
1011  *	@buf: user data to write
1012  *	@count: bytes to write
1013  *	@ppos: unused
1014  *
1015  *	Write data to a tty device via the line discipline.
1016  *
1017  *	Locking:
1018  *		Locks the line discipline as required
1019  *		Writes to the tty driver are serialized by the atomic_write_lock
1020  *	and are then processed in chunks to the device. The line discipline
1021  *	write method will not be invoked in parallel for each device.
1022  */
1023 
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1024 static ssize_t tty_write(struct file *file, const char __user *buf,
1025 						size_t count, loff_t *ppos)
1026 {
1027 	struct tty_struct *tty = file_tty(file);
1028  	struct tty_ldisc *ld;
1029 	ssize_t ret;
1030 
1031 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1032 		return -EIO;
1033 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1034 			return -EIO;
1035 	/* Short term debug to catch buggy drivers */
1036 	if (tty->ops->write_room == NULL)
1037 		tty_err(tty, "missing write_room method\n");
1038 	ld = tty_ldisc_ref_wait(tty);
1039 	if (!ld)
1040 		return hung_up_tty_write(file, buf, count, ppos);
1041 	if (!ld->ops->write)
1042 		ret = -EIO;
1043 	else
1044 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1045 	tty_ldisc_deref(ld);
1046 	return ret;
1047 }
1048 
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1049 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1050 						size_t count, loff_t *ppos)
1051 {
1052 	struct file *p = NULL;
1053 
1054 	spin_lock(&redirect_lock);
1055 	if (redirect)
1056 		p = get_file(redirect);
1057 	spin_unlock(&redirect_lock);
1058 
1059 	if (p) {
1060 		ssize_t res;
1061 		res = vfs_write(p, buf, count, &p->f_pos);
1062 		fput(p);
1063 		return res;
1064 	}
1065 	return tty_write(file, buf, count, ppos);
1066 }
1067 
1068 /**
1069  *	tty_send_xchar	-	send priority character
1070  *
1071  *	Send a high priority character to the tty even if stopped
1072  *
1073  *	Locking: none for xchar method, write ordering for write method.
1074  */
1075 
tty_send_xchar(struct tty_struct * tty,char ch)1076 int tty_send_xchar(struct tty_struct *tty, char ch)
1077 {
1078 	int	was_stopped = tty->stopped;
1079 
1080 	if (tty->ops->send_xchar) {
1081 		down_read(&tty->termios_rwsem);
1082 		tty->ops->send_xchar(tty, ch);
1083 		up_read(&tty->termios_rwsem);
1084 		return 0;
1085 	}
1086 
1087 	if (tty_write_lock(tty, 0) < 0)
1088 		return -ERESTARTSYS;
1089 
1090 	down_read(&tty->termios_rwsem);
1091 	if (was_stopped)
1092 		start_tty(tty);
1093 	tty->ops->write(tty, &ch, 1);
1094 	if (was_stopped)
1095 		stop_tty(tty);
1096 	up_read(&tty->termios_rwsem);
1097 	tty_write_unlock(tty);
1098 	return 0;
1099 }
1100 
1101 static char ptychar[] = "pqrstuvwxyzabcde";
1102 
1103 /**
1104  *	pty_line_name	-	generate name for a pty
1105  *	@driver: the tty driver in use
1106  *	@index: the minor number
1107  *	@p: output buffer of at least 6 bytes
1108  *
1109  *	Generate a name from a driver reference and write it to the output
1110  *	buffer.
1111  *
1112  *	Locking: None
1113  */
pty_line_name(struct tty_driver * driver,int index,char * p)1114 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1115 {
1116 	int i = index + driver->name_base;
1117 	/* ->name is initialized to "ttyp", but "tty" is expected */
1118 	sprintf(p, "%s%c%x",
1119 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1120 		ptychar[i >> 4 & 0xf], i & 0xf);
1121 }
1122 
1123 /**
1124  *	tty_line_name	-	generate name for a tty
1125  *	@driver: the tty driver in use
1126  *	@index: the minor number
1127  *	@p: output buffer of at least 7 bytes
1128  *
1129  *	Generate a name from a driver reference and write it to the output
1130  *	buffer.
1131  *
1132  *	Locking: None
1133  */
tty_line_name(struct tty_driver * driver,int index,char * p)1134 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1135 {
1136 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1137 		return sprintf(p, "%s", driver->name);
1138 	else
1139 		return sprintf(p, "%s%d", driver->name,
1140 			       index + driver->name_base);
1141 }
1142 
1143 /**
1144  *	tty_driver_lookup_tty() - find an existing tty, if any
1145  *	@driver: the driver for the tty
1146  *	@idx:	 the minor number
1147  *
1148  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1149  *	driver lookup() method returns an error.
1150  *
1151  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1152  */
tty_driver_lookup_tty(struct tty_driver * driver,struct file * file,int idx)1153 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1154 		struct file *file, int idx)
1155 {
1156 	struct tty_struct *tty;
1157 
1158 	if (driver->ops->lookup)
1159 		if (!file)
1160 			tty = ERR_PTR(-EIO);
1161 		else
1162 			tty = driver->ops->lookup(driver, file, idx);
1163 	else
1164 		tty = driver->ttys[idx];
1165 
1166 	if (!IS_ERR(tty))
1167 		tty_kref_get(tty);
1168 	return tty;
1169 }
1170 
1171 /**
1172  *	tty_init_termios	-  helper for termios setup
1173  *	@tty: the tty to set up
1174  *
1175  *	Initialise the termios structures for this tty. Thus runs under
1176  *	the tty_mutex currently so we can be relaxed about ordering.
1177  */
1178 
tty_init_termios(struct tty_struct * tty)1179 void tty_init_termios(struct tty_struct *tty)
1180 {
1181 	struct ktermios *tp;
1182 	int idx = tty->index;
1183 
1184 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1185 		tty->termios = tty->driver->init_termios;
1186 	else {
1187 		/* Check for lazy saved data */
1188 		tp = tty->driver->termios[idx];
1189 		if (tp != NULL) {
1190 			tty->termios = *tp;
1191 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1192 		} else
1193 			tty->termios = tty->driver->init_termios;
1194 	}
1195 	/* Compatibility until drivers always set this */
1196 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1197 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1198 }
1199 EXPORT_SYMBOL_GPL(tty_init_termios);
1200 
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1201 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1202 {
1203 	tty_init_termios(tty);
1204 	tty_driver_kref_get(driver);
1205 	tty->count++;
1206 	driver->ttys[tty->index] = tty;
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(tty_standard_install);
1210 
1211 /**
1212  *	tty_driver_install_tty() - install a tty entry in the driver
1213  *	@driver: the driver for the tty
1214  *	@tty: the tty
1215  *
1216  *	Install a tty object into the driver tables. The tty->index field
1217  *	will be set by the time this is called. This method is responsible
1218  *	for ensuring any need additional structures are allocated and
1219  *	configured.
1220  *
1221  *	Locking: tty_mutex for now
1222  */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1223 static int tty_driver_install_tty(struct tty_driver *driver,
1224 						struct tty_struct *tty)
1225 {
1226 	return driver->ops->install ? driver->ops->install(driver, tty) :
1227 		tty_standard_install(driver, tty);
1228 }
1229 
1230 /**
1231  *	tty_driver_remove_tty() - remove a tty from the driver tables
1232  *	@driver: the driver for the tty
1233  *	@idx:	 the minor number
1234  *
1235  *	Remvoe a tty object from the driver tables. The tty->index field
1236  *	will be set by the time this is called.
1237  *
1238  *	Locking: tty_mutex for now
1239  */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1240 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1241 {
1242 	if (driver->ops->remove)
1243 		driver->ops->remove(driver, tty);
1244 	else
1245 		driver->ttys[tty->index] = NULL;
1246 }
1247 
1248 /*
1249  * 	tty_reopen()	- fast re-open of an open tty
1250  * 	@tty	- the tty to open
1251  *
1252  *	Return 0 on success, -errno on error.
1253  *	Re-opens on master ptys are not allowed and return -EIO.
1254  *
1255  *	Locking: Caller must hold tty_lock
1256  */
tty_reopen(struct tty_struct * tty)1257 static int tty_reopen(struct tty_struct *tty)
1258 {
1259 	struct tty_driver *driver = tty->driver;
1260 	struct tty_ldisc *ld;
1261 	int retval = 0;
1262 
1263 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1264 	    driver->subtype == PTY_TYPE_MASTER)
1265 		return -EIO;
1266 
1267 	if (!tty->count)
1268 		return -EAGAIN;
1269 
1270 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1271 		return -EBUSY;
1272 
1273 	ld = tty_ldisc_ref_wait(tty);
1274 	if (ld) {
1275 		tty_ldisc_deref(ld);
1276 	} else {
1277 		retval = tty_ldisc_lock(tty, 5 * HZ);
1278 		if (retval)
1279 			return retval;
1280 
1281 		if (!tty->ldisc)
1282 			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1283 		tty_ldisc_unlock(tty);
1284 	}
1285 
1286 	if (retval == 0)
1287 		tty->count++;
1288 
1289 	return retval;
1290 }
1291 
1292 /**
1293  *	tty_init_dev		-	initialise a tty device
1294  *	@driver: tty driver we are opening a device on
1295  *	@idx: device index
1296  *	@ret_tty: returned tty structure
1297  *
1298  *	Prepare a tty device. This may not be a "new" clean device but
1299  *	could also be an active device. The pty drivers require special
1300  *	handling because of this.
1301  *
1302  *	Locking:
1303  *		The function is called under the tty_mutex, which
1304  *	protects us from the tty struct or driver itself going away.
1305  *
1306  *	On exit the tty device has the line discipline attached and
1307  *	a reference count of 1. If a pair was created for pty/tty use
1308  *	and the other was a pty master then it too has a reference count of 1.
1309  *
1310  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1311  * failed open.  The new code protects the open with a mutex, so it's
1312  * really quite straightforward.  The mutex locking can probably be
1313  * relaxed for the (most common) case of reopening a tty.
1314  */
1315 
tty_init_dev(struct tty_driver * driver,int idx)1316 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1317 {
1318 	struct tty_struct *tty;
1319 	int retval;
1320 
1321 	/*
1322 	 * First time open is complex, especially for PTY devices.
1323 	 * This code guarantees that either everything succeeds and the
1324 	 * TTY is ready for operation, or else the table slots are vacated
1325 	 * and the allocated memory released.  (Except that the termios
1326 	 * may be retained.)
1327 	 */
1328 
1329 	if (!try_module_get(driver->owner))
1330 		return ERR_PTR(-ENODEV);
1331 
1332 	tty = alloc_tty_struct(driver, idx);
1333 	if (!tty) {
1334 		retval = -ENOMEM;
1335 		goto err_module_put;
1336 	}
1337 
1338 	tty_lock(tty);
1339 	retval = tty_driver_install_tty(driver, tty);
1340 	if (retval < 0)
1341 		goto err_free_tty;
1342 
1343 	if (!tty->port)
1344 		tty->port = driver->ports[idx];
1345 
1346 	WARN_RATELIMIT(!tty->port,
1347 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1348 			__func__, tty->driver->name);
1349 
1350 	retval = tty_ldisc_lock(tty, 5 * HZ);
1351 	if (retval)
1352 		goto err_release_lock;
1353 	tty->port->itty = tty;
1354 
1355 	/*
1356 	 * Structures all installed ... call the ldisc open routines.
1357 	 * If we fail here just call release_tty to clean up.  No need
1358 	 * to decrement the use counts, as release_tty doesn't care.
1359 	 */
1360 	retval = tty_ldisc_setup(tty, tty->link);
1361 	if (retval)
1362 		goto err_release_tty;
1363 	tty_ldisc_unlock(tty);
1364 	/* Return the tty locked so that it cannot vanish under the caller */
1365 	return tty;
1366 
1367 err_free_tty:
1368 	tty_unlock(tty);
1369 	free_tty_struct(tty);
1370 err_module_put:
1371 	module_put(driver->owner);
1372 	return ERR_PTR(retval);
1373 
1374 	/* call the tty release_tty routine to clean out this slot */
1375 err_release_tty:
1376 	tty_ldisc_unlock(tty);
1377 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1378 			     retval, idx);
1379 err_release_lock:
1380 	tty_unlock(tty);
1381 	release_tty(tty, idx);
1382 	return ERR_PTR(retval);
1383 }
1384 
1385 /**
1386  * tty_save_termios() - save tty termios data in driver table
1387  * @tty: tty whose termios data to save
1388  *
1389  * Locking: Caller guarantees serialisation with tty_init_termios().
1390  */
tty_save_termios(struct tty_struct * tty)1391 void tty_save_termios(struct tty_struct *tty)
1392 {
1393 	struct ktermios *tp;
1394 	int idx = tty->index;
1395 
1396 	/* If the port is going to reset then it has no termios to save */
1397 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398 		return;
1399 
1400 	/* Stash the termios data */
1401 	tp = tty->driver->termios[idx];
1402 	if (tp == NULL) {
1403 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1404 		if (tp == NULL)
1405 			return;
1406 		tty->driver->termios[idx] = tp;
1407 	}
1408 	*tp = tty->termios;
1409 }
1410 EXPORT_SYMBOL_GPL(tty_save_termios);
1411 
1412 /**
1413  *	tty_flush_works		-	flush all works of a tty/pty pair
1414  *	@tty: tty device to flush works for (or either end of a pty pair)
1415  *
1416  *	Sync flush all works belonging to @tty (and the 'other' tty).
1417  */
tty_flush_works(struct tty_struct * tty)1418 static void tty_flush_works(struct tty_struct *tty)
1419 {
1420 	flush_work(&tty->SAK_work);
1421 	flush_work(&tty->hangup_work);
1422 	if (tty->link) {
1423 		flush_work(&tty->link->SAK_work);
1424 		flush_work(&tty->link->hangup_work);
1425 	}
1426 }
1427 
1428 /**
1429  *	release_one_tty		-	release tty structure memory
1430  *	@kref: kref of tty we are obliterating
1431  *
1432  *	Releases memory associated with a tty structure, and clears out the
1433  *	driver table slots. This function is called when a device is no longer
1434  *	in use. It also gets called when setup of a device fails.
1435  *
1436  *	Locking:
1437  *		takes the file list lock internally when working on the list
1438  *	of ttys that the driver keeps.
1439  *
1440  *	This method gets called from a work queue so that the driver private
1441  *	cleanup ops can sleep (needed for USB at least)
1442  */
release_one_tty(struct work_struct * work)1443 static void release_one_tty(struct work_struct *work)
1444 {
1445 	struct tty_struct *tty =
1446 		container_of(work, struct tty_struct, hangup_work);
1447 	struct tty_driver *driver = tty->driver;
1448 	struct module *owner = driver->owner;
1449 
1450 	if (tty->ops->cleanup)
1451 		tty->ops->cleanup(tty);
1452 
1453 	tty->magic = 0;
1454 	tty_driver_kref_put(driver);
1455 	module_put(owner);
1456 
1457 	spin_lock(&tty->files_lock);
1458 	list_del_init(&tty->tty_files);
1459 	spin_unlock(&tty->files_lock);
1460 
1461 	put_pid(tty->pgrp);
1462 	put_pid(tty->session);
1463 	free_tty_struct(tty);
1464 }
1465 
queue_release_one_tty(struct kref * kref)1466 static void queue_release_one_tty(struct kref *kref)
1467 {
1468 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1469 
1470 	/* The hangup queue is now free so we can reuse it rather than
1471 	   waste a chunk of memory for each port */
1472 	INIT_WORK(&tty->hangup_work, release_one_tty);
1473 	schedule_work(&tty->hangup_work);
1474 }
1475 
1476 /**
1477  *	tty_kref_put		-	release a tty kref
1478  *	@tty: tty device
1479  *
1480  *	Release a reference to a tty device and if need be let the kref
1481  *	layer destruct the object for us
1482  */
1483 
tty_kref_put(struct tty_struct * tty)1484 void tty_kref_put(struct tty_struct *tty)
1485 {
1486 	if (tty)
1487 		kref_put(&tty->kref, queue_release_one_tty);
1488 }
1489 EXPORT_SYMBOL(tty_kref_put);
1490 
1491 /**
1492  *	release_tty		-	release tty structure memory
1493  *
1494  *	Release both @tty and a possible linked partner (think pty pair),
1495  *	and decrement the refcount of the backing module.
1496  *
1497  *	Locking:
1498  *		tty_mutex
1499  *		takes the file list lock internally when working on the list
1500  *	of ttys that the driver keeps.
1501  *
1502  */
release_tty(struct tty_struct * tty,int idx)1503 static void release_tty(struct tty_struct *tty, int idx)
1504 {
1505 	/* This should always be true but check for the moment */
1506 	WARN_ON(tty->index != idx);
1507 	WARN_ON(!mutex_is_locked(&tty_mutex));
1508 	if (tty->ops->shutdown)
1509 		tty->ops->shutdown(tty);
1510 	tty_save_termios(tty);
1511 	tty_driver_remove_tty(tty->driver, tty);
1512 	tty->port->itty = NULL;
1513 	if (tty->link)
1514 		tty->link->port->itty = NULL;
1515 	tty_buffer_cancel_work(tty->port);
1516 	if (tty->link)
1517 		tty_buffer_cancel_work(tty->link->port);
1518 
1519 	tty_kref_put(tty->link);
1520 	tty_kref_put(tty);
1521 }
1522 
1523 /**
1524  *	tty_release_checks - check a tty before real release
1525  *	@tty: tty to check
1526  *	@o_tty: link of @tty (if any)
1527  *	@idx: index of the tty
1528  *
1529  *	Performs some paranoid checking before true release of the @tty.
1530  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1531  */
tty_release_checks(struct tty_struct * tty,int idx)1532 static int tty_release_checks(struct tty_struct *tty, int idx)
1533 {
1534 #ifdef TTY_PARANOIA_CHECK
1535 	if (idx < 0 || idx >= tty->driver->num) {
1536 		tty_debug(tty, "bad idx %d\n", idx);
1537 		return -1;
1538 	}
1539 
1540 	/* not much to check for devpts */
1541 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1542 		return 0;
1543 
1544 	if (tty != tty->driver->ttys[idx]) {
1545 		tty_debug(tty, "bad driver table[%d] = %p\n",
1546 			  idx, tty->driver->ttys[idx]);
1547 		return -1;
1548 	}
1549 	if (tty->driver->other) {
1550 		struct tty_struct *o_tty = tty->link;
1551 
1552 		if (o_tty != tty->driver->other->ttys[idx]) {
1553 			tty_debug(tty, "bad other table[%d] = %p\n",
1554 				  idx, tty->driver->other->ttys[idx]);
1555 			return -1;
1556 		}
1557 		if (o_tty->link != tty) {
1558 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1559 			return -1;
1560 		}
1561 	}
1562 #endif
1563 	return 0;
1564 }
1565 
1566 /**
1567  *      tty_kclose      -       closes tty opened by tty_kopen
1568  *      @tty: tty device
1569  *
1570  *      Performs the final steps to release and free a tty device. It is the
1571  *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1572  *      flag on tty->port.
1573  */
tty_kclose(struct tty_struct * tty)1574 void tty_kclose(struct tty_struct *tty)
1575 {
1576 	/*
1577 	 * Ask the line discipline code to release its structures
1578 	 */
1579 	tty_ldisc_release(tty);
1580 
1581 	/* Wait for pending work before tty destruction commmences */
1582 	tty_flush_works(tty);
1583 
1584 	tty_debug_hangup(tty, "freeing structure\n");
1585 	/*
1586 	 * The release_tty function takes care of the details of clearing
1587 	 * the slots and preserving the termios structure. The tty_unlock_pair
1588 	 * should be safe as we keep a kref while the tty is locked (so the
1589 	 * unlock never unlocks a freed tty).
1590 	 */
1591 	mutex_lock(&tty_mutex);
1592 	tty_port_set_kopened(tty->port, 0);
1593 	release_tty(tty, tty->index);
1594 	mutex_unlock(&tty_mutex);
1595 }
1596 EXPORT_SYMBOL_GPL(tty_kclose);
1597 
1598 /**
1599  *	tty_release_struct	-	release a tty struct
1600  *	@tty: tty device
1601  *	@idx: index of the tty
1602  *
1603  *	Performs the final steps to release and free a tty device. It is
1604  *	roughly the reverse of tty_init_dev.
1605  */
tty_release_struct(struct tty_struct * tty,int idx)1606 void tty_release_struct(struct tty_struct *tty, int idx)
1607 {
1608 	/*
1609 	 * Ask the line discipline code to release its structures
1610 	 */
1611 	tty_ldisc_release(tty);
1612 
1613 	/* Wait for pending work before tty destruction commmences */
1614 	tty_flush_works(tty);
1615 
1616 	tty_debug_hangup(tty, "freeing structure\n");
1617 	/*
1618 	 * The release_tty function takes care of the details of clearing
1619 	 * the slots and preserving the termios structure. The tty_unlock_pair
1620 	 * should be safe as we keep a kref while the tty is locked (so the
1621 	 * unlock never unlocks a freed tty).
1622 	 */
1623 	mutex_lock(&tty_mutex);
1624 	release_tty(tty, idx);
1625 	mutex_unlock(&tty_mutex);
1626 }
1627 EXPORT_SYMBOL_GPL(tty_release_struct);
1628 
1629 /**
1630  *	tty_release		-	vfs callback for close
1631  *	@inode: inode of tty
1632  *	@filp: file pointer for handle to tty
1633  *
1634  *	Called the last time each file handle is closed that references
1635  *	this tty. There may however be several such references.
1636  *
1637  *	Locking:
1638  *		Takes bkl. See tty_release_dev
1639  *
1640  * Even releasing the tty structures is a tricky business.. We have
1641  * to be very careful that the structures are all released at the
1642  * same time, as interrupts might otherwise get the wrong pointers.
1643  *
1644  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1645  * lead to double frees or releasing memory still in use.
1646  */
1647 
tty_release(struct inode * inode,struct file * filp)1648 int tty_release(struct inode *inode, struct file *filp)
1649 {
1650 	struct tty_struct *tty = file_tty(filp);
1651 	struct tty_struct *o_tty = NULL;
1652 	int	do_sleep, final;
1653 	int	idx;
1654 	long	timeout = 0;
1655 	int	once = 1;
1656 
1657 	if (tty_paranoia_check(tty, inode, __func__))
1658 		return 0;
1659 
1660 	tty_lock(tty);
1661 	check_tty_count(tty, __func__);
1662 
1663 	__tty_fasync(-1, filp, 0);
1664 
1665 	idx = tty->index;
1666 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1667 	    tty->driver->subtype == PTY_TYPE_MASTER)
1668 		o_tty = tty->link;
1669 
1670 	if (tty_release_checks(tty, idx)) {
1671 		tty_unlock(tty);
1672 		return 0;
1673 	}
1674 
1675 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1676 
1677 	if (tty->ops->close)
1678 		tty->ops->close(tty, filp);
1679 
1680 	/* If tty is pty master, lock the slave pty (stable lock order) */
1681 	tty_lock_slave(o_tty);
1682 
1683 	/*
1684 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1685 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1686 	 * wait queues and kick everyone out _before_ actually starting to
1687 	 * close.  This ensures that we won't block while releasing the tty
1688 	 * structure.
1689 	 *
1690 	 * The test for the o_tty closing is necessary, since the master and
1691 	 * slave sides may close in any order.  If the slave side closes out
1692 	 * first, its count will be one, since the master side holds an open.
1693 	 * Thus this test wouldn't be triggered at the time the slave closed,
1694 	 * so we do it now.
1695 	 */
1696 	while (1) {
1697 		do_sleep = 0;
1698 
1699 		if (tty->count <= 1) {
1700 			if (waitqueue_active(&tty->read_wait)) {
1701 				wake_up_poll(&tty->read_wait, EPOLLIN);
1702 				do_sleep++;
1703 			}
1704 			if (waitqueue_active(&tty->write_wait)) {
1705 				wake_up_poll(&tty->write_wait, EPOLLOUT);
1706 				do_sleep++;
1707 			}
1708 		}
1709 		if (o_tty && o_tty->count <= 1) {
1710 			if (waitqueue_active(&o_tty->read_wait)) {
1711 				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1712 				do_sleep++;
1713 			}
1714 			if (waitqueue_active(&o_tty->write_wait)) {
1715 				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1716 				do_sleep++;
1717 			}
1718 		}
1719 		if (!do_sleep)
1720 			break;
1721 
1722 		if (once) {
1723 			once = 0;
1724 			tty_warn(tty, "read/write wait queue active!\n");
1725 		}
1726 		schedule_timeout_killable(timeout);
1727 		if (timeout < 120 * HZ)
1728 			timeout = 2 * timeout + 1;
1729 		else
1730 			timeout = MAX_SCHEDULE_TIMEOUT;
1731 	}
1732 
1733 	if (o_tty) {
1734 		if (--o_tty->count < 0) {
1735 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1736 			o_tty->count = 0;
1737 		}
1738 	}
1739 	if (--tty->count < 0) {
1740 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1741 		tty->count = 0;
1742 	}
1743 
1744 	/*
1745 	 * We've decremented tty->count, so we need to remove this file
1746 	 * descriptor off the tty->tty_files list; this serves two
1747 	 * purposes:
1748 	 *  - check_tty_count sees the correct number of file descriptors
1749 	 *    associated with this tty.
1750 	 *  - do_tty_hangup no longer sees this file descriptor as
1751 	 *    something that needs to be handled for hangups.
1752 	 */
1753 	tty_del_file(filp);
1754 
1755 	/*
1756 	 * Perform some housekeeping before deciding whether to return.
1757 	 *
1758 	 * If _either_ side is closing, make sure there aren't any
1759 	 * processes that still think tty or o_tty is their controlling
1760 	 * tty.
1761 	 */
1762 	if (!tty->count) {
1763 		read_lock(&tasklist_lock);
1764 		session_clear_tty(tty->session);
1765 		if (o_tty)
1766 			session_clear_tty(o_tty->session);
1767 		read_unlock(&tasklist_lock);
1768 	}
1769 
1770 	/* check whether both sides are closing ... */
1771 	final = !tty->count && !(o_tty && o_tty->count);
1772 
1773 	tty_unlock_slave(o_tty);
1774 	tty_unlock(tty);
1775 
1776 	/* At this point, the tty->count == 0 should ensure a dead tty
1777 	   cannot be re-opened by a racing opener */
1778 
1779 	if (!final)
1780 		return 0;
1781 
1782 	tty_debug_hangup(tty, "final close\n");
1783 
1784 	tty_release_struct(tty, idx);
1785 	return 0;
1786 }
1787 
1788 /**
1789  *	tty_open_current_tty - get locked tty of current task
1790  *	@device: device number
1791  *	@filp: file pointer to tty
1792  *	@return: locked tty of the current task iff @device is /dev/tty
1793  *
1794  *	Performs a re-open of the current task's controlling tty.
1795  *
1796  *	We cannot return driver and index like for the other nodes because
1797  *	devpts will not work then. It expects inodes to be from devpts FS.
1798  */
tty_open_current_tty(dev_t device,struct file * filp)1799 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1800 {
1801 	struct tty_struct *tty;
1802 	int retval;
1803 
1804 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1805 		return NULL;
1806 
1807 	tty = get_current_tty();
1808 	if (!tty)
1809 		return ERR_PTR(-ENXIO);
1810 
1811 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1812 	/* noctty = 1; */
1813 	tty_lock(tty);
1814 	tty_kref_put(tty);	/* safe to drop the kref now */
1815 
1816 	retval = tty_reopen(tty);
1817 	if (retval < 0) {
1818 		tty_unlock(tty);
1819 		tty = ERR_PTR(retval);
1820 	}
1821 	return tty;
1822 }
1823 
1824 /**
1825  *	tty_lookup_driver - lookup a tty driver for a given device file
1826  *	@device: device number
1827  *	@filp: file pointer to tty
1828  *	@index: index for the device in the @return driver
1829  *	@return: driver for this inode (with increased refcount)
1830  *
1831  * 	If @return is not erroneous, the caller is responsible to decrement the
1832  * 	refcount by tty_driver_kref_put.
1833  *
1834  *	Locking: tty_mutex protects get_tty_driver
1835  */
tty_lookup_driver(dev_t device,struct file * filp,int * index)1836 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1837 		int *index)
1838 {
1839 	struct tty_driver *driver;
1840 
1841 	switch (device) {
1842 #ifdef CONFIG_VT
1843 	case MKDEV(TTY_MAJOR, 0): {
1844 		extern struct tty_driver *console_driver;
1845 		driver = tty_driver_kref_get(console_driver);
1846 		*index = fg_console;
1847 		break;
1848 	}
1849 #endif
1850 	case MKDEV(TTYAUX_MAJOR, 1): {
1851 		struct tty_driver *console_driver = console_device(index);
1852 		if (console_driver) {
1853 			driver = tty_driver_kref_get(console_driver);
1854 			if (driver && filp) {
1855 				/* Don't let /dev/console block */
1856 				filp->f_flags |= O_NONBLOCK;
1857 				break;
1858 			}
1859 		}
1860 		return ERR_PTR(-ENODEV);
1861 	}
1862 	default:
1863 		driver = get_tty_driver(device, index);
1864 		if (!driver)
1865 			return ERR_PTR(-ENODEV);
1866 		break;
1867 	}
1868 	return driver;
1869 }
1870 
1871 /**
1872  *	tty_kopen	-	open a tty device for kernel
1873  *	@device: dev_t of device to open
1874  *
1875  *	Opens tty exclusively for kernel. Performs the driver lookup,
1876  *	makes sure it's not already opened and performs the first-time
1877  *	tty initialization.
1878  *
1879  *	Returns the locked initialized &tty_struct
1880  *
1881  *	Claims the global tty_mutex to serialize:
1882  *	  - concurrent first-time tty initialization
1883  *	  - concurrent tty driver removal w/ lookup
1884  *	  - concurrent tty removal from driver table
1885  */
tty_kopen(dev_t device)1886 struct tty_struct *tty_kopen(dev_t device)
1887 {
1888 	struct tty_struct *tty;
1889 	struct tty_driver *driver = NULL;
1890 	int index = -1;
1891 
1892 	mutex_lock(&tty_mutex);
1893 	driver = tty_lookup_driver(device, NULL, &index);
1894 	if (IS_ERR(driver)) {
1895 		mutex_unlock(&tty_mutex);
1896 		return ERR_CAST(driver);
1897 	}
1898 
1899 	/* check whether we're reopening an existing tty */
1900 	tty = tty_driver_lookup_tty(driver, NULL, index);
1901 	if (IS_ERR(tty))
1902 		goto out;
1903 
1904 	if (tty) {
1905 		/* drop kref from tty_driver_lookup_tty() */
1906 		tty_kref_put(tty);
1907 		tty = ERR_PTR(-EBUSY);
1908 	} else { /* tty_init_dev returns tty with the tty_lock held */
1909 		tty = tty_init_dev(driver, index);
1910 		if (IS_ERR(tty))
1911 			goto out;
1912 		tty_port_set_kopened(tty->port, 1);
1913 	}
1914 out:
1915 	mutex_unlock(&tty_mutex);
1916 	tty_driver_kref_put(driver);
1917 	return tty;
1918 }
1919 EXPORT_SYMBOL_GPL(tty_kopen);
1920 
1921 /**
1922  *	tty_open_by_driver	-	open a tty device
1923  *	@device: dev_t of device to open
1924  *	@inode: inode of device file
1925  *	@filp: file pointer to tty
1926  *
1927  *	Performs the driver lookup, checks for a reopen, or otherwise
1928  *	performs the first-time tty initialization.
1929  *
1930  *	Returns the locked initialized or re-opened &tty_struct
1931  *
1932  *	Claims the global tty_mutex to serialize:
1933  *	  - concurrent first-time tty initialization
1934  *	  - concurrent tty driver removal w/ lookup
1935  *	  - concurrent tty removal from driver table
1936  */
tty_open_by_driver(dev_t device,struct inode * inode,struct file * filp)1937 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1938 					     struct file *filp)
1939 {
1940 	struct tty_struct *tty;
1941 	struct tty_driver *driver = NULL;
1942 	int index = -1;
1943 	int retval;
1944 
1945 	mutex_lock(&tty_mutex);
1946 	driver = tty_lookup_driver(device, filp, &index);
1947 	if (IS_ERR(driver)) {
1948 		mutex_unlock(&tty_mutex);
1949 		return ERR_CAST(driver);
1950 	}
1951 
1952 	/* check whether we're reopening an existing tty */
1953 	tty = tty_driver_lookup_tty(driver, filp, index);
1954 	if (IS_ERR(tty)) {
1955 		mutex_unlock(&tty_mutex);
1956 		goto out;
1957 	}
1958 
1959 	if (tty) {
1960 		if (tty_port_kopened(tty->port)) {
1961 			tty_kref_put(tty);
1962 			mutex_unlock(&tty_mutex);
1963 			tty = ERR_PTR(-EBUSY);
1964 			goto out;
1965 		}
1966 		mutex_unlock(&tty_mutex);
1967 		retval = tty_lock_interruptible(tty);
1968 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1969 		if (retval) {
1970 			if (retval == -EINTR)
1971 				retval = -ERESTARTSYS;
1972 			tty = ERR_PTR(retval);
1973 			goto out;
1974 		}
1975 		retval = tty_reopen(tty);
1976 		if (retval < 0) {
1977 			tty_unlock(tty);
1978 			tty = ERR_PTR(retval);
1979 		}
1980 	} else { /* Returns with the tty_lock held for now */
1981 		tty = tty_init_dev(driver, index);
1982 		mutex_unlock(&tty_mutex);
1983 	}
1984 out:
1985 	tty_driver_kref_put(driver);
1986 	return tty;
1987 }
1988 
1989 /**
1990  *	tty_open		-	open a tty device
1991  *	@inode: inode of device file
1992  *	@filp: file pointer to tty
1993  *
1994  *	tty_open and tty_release keep up the tty count that contains the
1995  *	number of opens done on a tty. We cannot use the inode-count, as
1996  *	different inodes might point to the same tty.
1997  *
1998  *	Open-counting is needed for pty masters, as well as for keeping
1999  *	track of serial lines: DTR is dropped when the last close happens.
2000  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2001  *
2002  *	The termios state of a pty is reset on first open so that
2003  *	settings don't persist across reuse.
2004  *
2005  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2006  *		 tty->count should protect the rest.
2007  *		 ->siglock protects ->signal/->sighand
2008  *
2009  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2010  *	tty_mutex
2011  */
2012 
tty_open(struct inode * inode,struct file * filp)2013 static int tty_open(struct inode *inode, struct file *filp)
2014 {
2015 	struct tty_struct *tty;
2016 	int noctty, retval;
2017 	dev_t device = inode->i_rdev;
2018 	unsigned saved_flags = filp->f_flags;
2019 
2020 	nonseekable_open(inode, filp);
2021 
2022 retry_open:
2023 	retval = tty_alloc_file(filp);
2024 	if (retval)
2025 		return -ENOMEM;
2026 
2027 	tty = tty_open_current_tty(device, filp);
2028 	if (!tty)
2029 		tty = tty_open_by_driver(device, inode, filp);
2030 
2031 	if (IS_ERR(tty)) {
2032 		tty_free_file(filp);
2033 		retval = PTR_ERR(tty);
2034 		if (retval != -EAGAIN || signal_pending(current))
2035 			return retval;
2036 		schedule();
2037 		goto retry_open;
2038 	}
2039 
2040 	tty_add_file(tty, filp);
2041 
2042 	check_tty_count(tty, __func__);
2043 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2044 
2045 	if (tty->ops->open)
2046 		retval = tty->ops->open(tty, filp);
2047 	else
2048 		retval = -ENODEV;
2049 	filp->f_flags = saved_flags;
2050 
2051 	if (retval) {
2052 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2053 
2054 		tty_unlock(tty); /* need to call tty_release without BTM */
2055 		tty_release(inode, filp);
2056 		if (retval != -ERESTARTSYS)
2057 			return retval;
2058 
2059 		if (signal_pending(current))
2060 			return retval;
2061 
2062 		schedule();
2063 		/*
2064 		 * Need to reset f_op in case a hangup happened.
2065 		 */
2066 		if (tty_hung_up_p(filp))
2067 			filp->f_op = &tty_fops;
2068 		goto retry_open;
2069 	}
2070 	clear_bit(TTY_HUPPED, &tty->flags);
2071 
2072 	noctty = (filp->f_flags & O_NOCTTY) ||
2073 		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2074 		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2075 		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2076 		  tty->driver->subtype == PTY_TYPE_MASTER);
2077 	if (!noctty)
2078 		tty_open_proc_set_tty(filp, tty);
2079 	tty_unlock(tty);
2080 	return 0;
2081 }
2082 
2083 
2084 
2085 /**
2086  *	tty_poll	-	check tty status
2087  *	@filp: file being polled
2088  *	@wait: poll wait structures to update
2089  *
2090  *	Call the line discipline polling method to obtain the poll
2091  *	status of the device.
2092  *
2093  *	Locking: locks called line discipline but ldisc poll method
2094  *	may be re-entered freely by other callers.
2095  */
2096 
tty_poll(struct file * filp,poll_table * wait)2097 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2098 {
2099 	struct tty_struct *tty = file_tty(filp);
2100 	struct tty_ldisc *ld;
2101 	__poll_t ret = 0;
2102 
2103 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2104 		return 0;
2105 
2106 	ld = tty_ldisc_ref_wait(tty);
2107 	if (!ld)
2108 		return hung_up_tty_poll(filp, wait);
2109 	if (ld->ops->poll)
2110 		ret = ld->ops->poll(tty, filp, wait);
2111 	tty_ldisc_deref(ld);
2112 	return ret;
2113 }
2114 
__tty_fasync(int fd,struct file * filp,int on)2115 static int __tty_fasync(int fd, struct file *filp, int on)
2116 {
2117 	struct tty_struct *tty = file_tty(filp);
2118 	unsigned long flags;
2119 	int retval = 0;
2120 
2121 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2122 		goto out;
2123 
2124 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2125 	if (retval <= 0)
2126 		goto out;
2127 
2128 	if (on) {
2129 		enum pid_type type;
2130 		struct pid *pid;
2131 
2132 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2133 		if (tty->pgrp) {
2134 			pid = tty->pgrp;
2135 			type = PIDTYPE_PGID;
2136 		} else {
2137 			pid = task_pid(current);
2138 			type = PIDTYPE_TGID;
2139 		}
2140 		get_pid(pid);
2141 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2142 		__f_setown(filp, pid, type, 0);
2143 		put_pid(pid);
2144 		retval = 0;
2145 	}
2146 out:
2147 	return retval;
2148 }
2149 
tty_fasync(int fd,struct file * filp,int on)2150 static int tty_fasync(int fd, struct file *filp, int on)
2151 {
2152 	struct tty_struct *tty = file_tty(filp);
2153 	int retval = -ENOTTY;
2154 
2155 	tty_lock(tty);
2156 	if (!tty_hung_up_p(filp))
2157 		retval = __tty_fasync(fd, filp, on);
2158 	tty_unlock(tty);
2159 
2160 	return retval;
2161 }
2162 
2163 /**
2164  *	tiocsti			-	fake input character
2165  *	@tty: tty to fake input into
2166  *	@p: pointer to character
2167  *
2168  *	Fake input to a tty device. Does the necessary locking and
2169  *	input management.
2170  *
2171  *	FIXME: does not honour flow control ??
2172  *
2173  *	Locking:
2174  *		Called functions take tty_ldiscs_lock
2175  *		current->signal->tty check is safe without locks
2176  *
2177  *	FIXME: may race normal receive processing
2178  */
2179 
tiocsti(struct tty_struct * tty,char __user * p)2180 static int tiocsti(struct tty_struct *tty, char __user *p)
2181 {
2182 	char ch, mbz = 0;
2183 	struct tty_ldisc *ld;
2184 
2185 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2186 		return -EPERM;
2187 	if (get_user(ch, p))
2188 		return -EFAULT;
2189 	tty_audit_tiocsti(tty, ch);
2190 	ld = tty_ldisc_ref_wait(tty);
2191 	if (!ld)
2192 		return -EIO;
2193 	if (ld->ops->receive_buf)
2194 		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2195 	tty_ldisc_deref(ld);
2196 	return 0;
2197 }
2198 
2199 /**
2200  *	tiocgwinsz		-	implement window query ioctl
2201  *	@tty; tty
2202  *	@arg: user buffer for result
2203  *
2204  *	Copies the kernel idea of the window size into the user buffer.
2205  *
2206  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2207  *		is consistent.
2208  */
2209 
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2210 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2211 {
2212 	int err;
2213 
2214 	mutex_lock(&tty->winsize_mutex);
2215 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2216 	mutex_unlock(&tty->winsize_mutex);
2217 
2218 	return err ? -EFAULT: 0;
2219 }
2220 
2221 /**
2222  *	tty_do_resize		-	resize event
2223  *	@tty: tty being resized
2224  *	@rows: rows (character)
2225  *	@cols: cols (character)
2226  *
2227  *	Update the termios variables and send the necessary signals to
2228  *	peform a terminal resize correctly
2229  */
2230 
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2231 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2232 {
2233 	struct pid *pgrp;
2234 
2235 	/* Lock the tty */
2236 	mutex_lock(&tty->winsize_mutex);
2237 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2238 		goto done;
2239 
2240 	/* Signal the foreground process group */
2241 	pgrp = tty_get_pgrp(tty);
2242 	if (pgrp)
2243 		kill_pgrp(pgrp, SIGWINCH, 1);
2244 	put_pid(pgrp);
2245 
2246 	tty->winsize = *ws;
2247 done:
2248 	mutex_unlock(&tty->winsize_mutex);
2249 	return 0;
2250 }
2251 EXPORT_SYMBOL(tty_do_resize);
2252 
2253 /**
2254  *	tiocswinsz		-	implement window size set ioctl
2255  *	@tty; tty side of tty
2256  *	@arg: user buffer for result
2257  *
2258  *	Copies the user idea of the window size to the kernel. Traditionally
2259  *	this is just advisory information but for the Linux console it
2260  *	actually has driver level meaning and triggers a VC resize.
2261  *
2262  *	Locking:
2263  *		Driver dependent. The default do_resize method takes the
2264  *	tty termios mutex and ctrl_lock. The console takes its own lock
2265  *	then calls into the default method.
2266  */
2267 
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2268 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2269 {
2270 	struct winsize tmp_ws;
2271 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2272 		return -EFAULT;
2273 
2274 	if (tty->ops->resize)
2275 		return tty->ops->resize(tty, &tmp_ws);
2276 	else
2277 		return tty_do_resize(tty, &tmp_ws);
2278 }
2279 
2280 /**
2281  *	tioccons	-	allow admin to move logical console
2282  *	@file: the file to become console
2283  *
2284  *	Allow the administrator to move the redirected console device
2285  *
2286  *	Locking: uses redirect_lock to guard the redirect information
2287  */
2288 
tioccons(struct file * file)2289 static int tioccons(struct file *file)
2290 {
2291 	if (!capable(CAP_SYS_ADMIN))
2292 		return -EPERM;
2293 	if (file->f_op->write == redirected_tty_write) {
2294 		struct file *f;
2295 		spin_lock(&redirect_lock);
2296 		f = redirect;
2297 		redirect = NULL;
2298 		spin_unlock(&redirect_lock);
2299 		if (f)
2300 			fput(f);
2301 		return 0;
2302 	}
2303 	spin_lock(&redirect_lock);
2304 	if (redirect) {
2305 		spin_unlock(&redirect_lock);
2306 		return -EBUSY;
2307 	}
2308 	redirect = get_file(file);
2309 	spin_unlock(&redirect_lock);
2310 	return 0;
2311 }
2312 
2313 /**
2314  *	fionbio		-	non blocking ioctl
2315  *	@file: file to set blocking value
2316  *	@p: user parameter
2317  *
2318  *	Historical tty interfaces had a blocking control ioctl before
2319  *	the generic functionality existed. This piece of history is preserved
2320  *	in the expected tty API of posix OS's.
2321  *
2322  *	Locking: none, the open file handle ensures it won't go away.
2323  */
2324 
fionbio(struct file * file,int __user * p)2325 static int fionbio(struct file *file, int __user *p)
2326 {
2327 	int nonblock;
2328 
2329 	if (get_user(nonblock, p))
2330 		return -EFAULT;
2331 
2332 	spin_lock(&file->f_lock);
2333 	if (nonblock)
2334 		file->f_flags |= O_NONBLOCK;
2335 	else
2336 		file->f_flags &= ~O_NONBLOCK;
2337 	spin_unlock(&file->f_lock);
2338 	return 0;
2339 }
2340 
2341 /**
2342  *	tiocsetd	-	set line discipline
2343  *	@tty: tty device
2344  *	@p: pointer to user data
2345  *
2346  *	Set the line discipline according to user request.
2347  *
2348  *	Locking: see tty_set_ldisc, this function is just a helper
2349  */
2350 
tiocsetd(struct tty_struct * tty,int __user * p)2351 static int tiocsetd(struct tty_struct *tty, int __user *p)
2352 {
2353 	int disc;
2354 	int ret;
2355 
2356 	if (get_user(disc, p))
2357 		return -EFAULT;
2358 
2359 	ret = tty_set_ldisc(tty, disc);
2360 
2361 	return ret;
2362 }
2363 
2364 /**
2365  *	tiocgetd	-	get line discipline
2366  *	@tty: tty device
2367  *	@p: pointer to user data
2368  *
2369  *	Retrieves the line discipline id directly from the ldisc.
2370  *
2371  *	Locking: waits for ldisc reference (in case the line discipline
2372  *		is changing or the tty is being hungup)
2373  */
2374 
tiocgetd(struct tty_struct * tty,int __user * p)2375 static int tiocgetd(struct tty_struct *tty, int __user *p)
2376 {
2377 	struct tty_ldisc *ld;
2378 	int ret;
2379 
2380 	ld = tty_ldisc_ref_wait(tty);
2381 	if (!ld)
2382 		return -EIO;
2383 	ret = put_user(ld->ops->num, p);
2384 	tty_ldisc_deref(ld);
2385 	return ret;
2386 }
2387 
2388 /**
2389  *	send_break	-	performed time break
2390  *	@tty: device to break on
2391  *	@duration: timeout in mS
2392  *
2393  *	Perform a timed break on hardware that lacks its own driver level
2394  *	timed break functionality.
2395  *
2396  *	Locking:
2397  *		atomic_write_lock serializes
2398  *
2399  */
2400 
send_break(struct tty_struct * tty,unsigned int duration)2401 static int send_break(struct tty_struct *tty, unsigned int duration)
2402 {
2403 	int retval;
2404 
2405 	if (tty->ops->break_ctl == NULL)
2406 		return 0;
2407 
2408 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2409 		retval = tty->ops->break_ctl(tty, duration);
2410 	else {
2411 		/* Do the work ourselves */
2412 		if (tty_write_lock(tty, 0) < 0)
2413 			return -EINTR;
2414 		retval = tty->ops->break_ctl(tty, -1);
2415 		if (retval)
2416 			goto out;
2417 		if (!signal_pending(current))
2418 			msleep_interruptible(duration);
2419 		retval = tty->ops->break_ctl(tty, 0);
2420 out:
2421 		tty_write_unlock(tty);
2422 		if (signal_pending(current))
2423 			retval = -EINTR;
2424 	}
2425 	return retval;
2426 }
2427 
2428 /**
2429  *	tty_tiocmget		-	get modem status
2430  *	@tty: tty device
2431  *	@file: user file pointer
2432  *	@p: pointer to result
2433  *
2434  *	Obtain the modem status bits from the tty driver if the feature
2435  *	is supported. Return -EINVAL if it is not available.
2436  *
2437  *	Locking: none (up to the driver)
2438  */
2439 
tty_tiocmget(struct tty_struct * tty,int __user * p)2440 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2441 {
2442 	int retval = -EINVAL;
2443 
2444 	if (tty->ops->tiocmget) {
2445 		retval = tty->ops->tiocmget(tty);
2446 
2447 		if (retval >= 0)
2448 			retval = put_user(retval, p);
2449 	}
2450 	return retval;
2451 }
2452 
2453 /**
2454  *	tty_tiocmset		-	set modem status
2455  *	@tty: tty device
2456  *	@cmd: command - clear bits, set bits or set all
2457  *	@p: pointer to desired bits
2458  *
2459  *	Set the modem status bits from the tty driver if the feature
2460  *	is supported. Return -EINVAL if it is not available.
2461  *
2462  *	Locking: none (up to the driver)
2463  */
2464 
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2465 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2466 	     unsigned __user *p)
2467 {
2468 	int retval;
2469 	unsigned int set, clear, val;
2470 
2471 	if (tty->ops->tiocmset == NULL)
2472 		return -EINVAL;
2473 
2474 	retval = get_user(val, p);
2475 	if (retval)
2476 		return retval;
2477 	set = clear = 0;
2478 	switch (cmd) {
2479 	case TIOCMBIS:
2480 		set = val;
2481 		break;
2482 	case TIOCMBIC:
2483 		clear = val;
2484 		break;
2485 	case TIOCMSET:
2486 		set = val;
2487 		clear = ~val;
2488 		break;
2489 	}
2490 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2491 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2492 	return tty->ops->tiocmset(tty, set, clear);
2493 }
2494 
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2495 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2496 {
2497 	int retval = -EINVAL;
2498 	struct serial_icounter_struct icount;
2499 	memset(&icount, 0, sizeof(icount));
2500 	if (tty->ops->get_icount)
2501 		retval = tty->ops->get_icount(tty, &icount);
2502 	if (retval != 0)
2503 		return retval;
2504 	if (copy_to_user(arg, &icount, sizeof(icount)))
2505 		return -EFAULT;
2506 	return 0;
2507 }
2508 
tty_warn_deprecated_flags(struct serial_struct __user * ss)2509 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2510 {
2511 	static DEFINE_RATELIMIT_STATE(depr_flags,
2512 			DEFAULT_RATELIMIT_INTERVAL,
2513 			DEFAULT_RATELIMIT_BURST);
2514 	char comm[TASK_COMM_LEN];
2515 	int flags;
2516 
2517 	if (get_user(flags, &ss->flags))
2518 		return;
2519 
2520 	flags &= ASYNC_DEPRECATED;
2521 
2522 	if (flags && __ratelimit(&depr_flags))
2523 		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2524 			__func__, get_task_comm(comm, current), flags);
2525 }
2526 
2527 /*
2528  * if pty, return the slave side (real_tty)
2529  * otherwise, return self
2530  */
tty_pair_get_tty(struct tty_struct * tty)2531 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2532 {
2533 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2534 	    tty->driver->subtype == PTY_TYPE_MASTER)
2535 		tty = tty->link;
2536 	return tty;
2537 }
2538 
2539 /*
2540  * Split this up, as gcc can choke on it otherwise..
2541  */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2542 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2543 {
2544 	struct tty_struct *tty = file_tty(file);
2545 	struct tty_struct *real_tty;
2546 	void __user *p = (void __user *)arg;
2547 	int retval;
2548 	struct tty_ldisc *ld;
2549 
2550 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2551 		return -EINVAL;
2552 
2553 	real_tty = tty_pair_get_tty(tty);
2554 
2555 	/*
2556 	 * Factor out some common prep work
2557 	 */
2558 	switch (cmd) {
2559 	case TIOCSETD:
2560 	case TIOCSBRK:
2561 	case TIOCCBRK:
2562 	case TCSBRK:
2563 	case TCSBRKP:
2564 		retval = tty_check_change(tty);
2565 		if (retval)
2566 			return retval;
2567 		if (cmd != TIOCCBRK) {
2568 			tty_wait_until_sent(tty, 0);
2569 			if (signal_pending(current))
2570 				return -EINTR;
2571 		}
2572 		break;
2573 	}
2574 
2575 	/*
2576 	 *	Now do the stuff.
2577 	 */
2578 	switch (cmd) {
2579 	case TIOCSTI:
2580 		return tiocsti(tty, p);
2581 	case TIOCGWINSZ:
2582 		return tiocgwinsz(real_tty, p);
2583 	case TIOCSWINSZ:
2584 		return tiocswinsz(real_tty, p);
2585 	case TIOCCONS:
2586 		return real_tty != tty ? -EINVAL : tioccons(file);
2587 	case FIONBIO:
2588 		return fionbio(file, p);
2589 	case TIOCEXCL:
2590 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2591 		return 0;
2592 	case TIOCNXCL:
2593 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2594 		return 0;
2595 	case TIOCGEXCL:
2596 	{
2597 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2598 		return put_user(excl, (int __user *)p);
2599 	}
2600 	case TIOCGETD:
2601 		return tiocgetd(tty, p);
2602 	case TIOCSETD:
2603 		return tiocsetd(tty, p);
2604 	case TIOCVHANGUP:
2605 		if (!capable(CAP_SYS_ADMIN))
2606 			return -EPERM;
2607 		tty_vhangup(tty);
2608 		return 0;
2609 	case TIOCGDEV:
2610 	{
2611 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2612 		return put_user(ret, (unsigned int __user *)p);
2613 	}
2614 	/*
2615 	 * Break handling
2616 	 */
2617 	case TIOCSBRK:	/* Turn break on, unconditionally */
2618 		if (tty->ops->break_ctl)
2619 			return tty->ops->break_ctl(tty, -1);
2620 		return 0;
2621 	case TIOCCBRK:	/* Turn break off, unconditionally */
2622 		if (tty->ops->break_ctl)
2623 			return tty->ops->break_ctl(tty, 0);
2624 		return 0;
2625 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2626 		/* non-zero arg means wait for all output data
2627 		 * to be sent (performed above) but don't send break.
2628 		 * This is used by the tcdrain() termios function.
2629 		 */
2630 		if (!arg)
2631 			return send_break(tty, 250);
2632 		return 0;
2633 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2634 		return send_break(tty, arg ? arg*100 : 250);
2635 
2636 	case TIOCMGET:
2637 		return tty_tiocmget(tty, p);
2638 	case TIOCMSET:
2639 	case TIOCMBIC:
2640 	case TIOCMBIS:
2641 		return tty_tiocmset(tty, cmd, p);
2642 	case TIOCGICOUNT:
2643 		retval = tty_tiocgicount(tty, p);
2644 		/* For the moment allow fall through to the old method */
2645         	if (retval != -EINVAL)
2646 			return retval;
2647 		break;
2648 	case TCFLSH:
2649 		switch (arg) {
2650 		case TCIFLUSH:
2651 		case TCIOFLUSH:
2652 		/* flush tty buffer and allow ldisc to process ioctl */
2653 			tty_buffer_flush(tty, NULL);
2654 			break;
2655 		}
2656 		break;
2657 	case TIOCSSERIAL:
2658 		tty_warn_deprecated_flags(p);
2659 		break;
2660 	case TIOCGPTPEER:
2661 		/* Special because the struct file is needed */
2662 		return ptm_open_peer(file, tty, (int)arg);
2663 	default:
2664 		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2665 		if (retval != -ENOIOCTLCMD)
2666 			return retval;
2667 	}
2668 	if (tty->ops->ioctl) {
2669 		retval = tty->ops->ioctl(tty, cmd, arg);
2670 		if (retval != -ENOIOCTLCMD)
2671 			return retval;
2672 	}
2673 	ld = tty_ldisc_ref_wait(tty);
2674 	if (!ld)
2675 		return hung_up_tty_ioctl(file, cmd, arg);
2676 	retval = -EINVAL;
2677 	if (ld->ops->ioctl) {
2678 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2679 		if (retval == -ENOIOCTLCMD)
2680 			retval = -ENOTTY;
2681 	}
2682 	tty_ldisc_deref(ld);
2683 	return retval;
2684 }
2685 
2686 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2687 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2688 				unsigned long arg)
2689 {
2690 	struct tty_struct *tty = file_tty(file);
2691 	struct tty_ldisc *ld;
2692 	int retval = -ENOIOCTLCMD;
2693 
2694 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2695 		return -EINVAL;
2696 
2697 	if (tty->ops->compat_ioctl) {
2698 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2699 		if (retval != -ENOIOCTLCMD)
2700 			return retval;
2701 	}
2702 
2703 	ld = tty_ldisc_ref_wait(tty);
2704 	if (!ld)
2705 		return hung_up_tty_compat_ioctl(file, cmd, arg);
2706 	if (ld->ops->compat_ioctl)
2707 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2708 	else
2709 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2710 	tty_ldisc_deref(ld);
2711 
2712 	return retval;
2713 }
2714 #endif
2715 
this_tty(const void * t,struct file * file,unsigned fd)2716 static int this_tty(const void *t, struct file *file, unsigned fd)
2717 {
2718 	if (likely(file->f_op->read != tty_read))
2719 		return 0;
2720 	return file_tty(file) != t ? 0 : fd + 1;
2721 }
2722 
2723 /*
2724  * This implements the "Secure Attention Key" ---  the idea is to
2725  * prevent trojan horses by killing all processes associated with this
2726  * tty when the user hits the "Secure Attention Key".  Required for
2727  * super-paranoid applications --- see the Orange Book for more details.
2728  *
2729  * This code could be nicer; ideally it should send a HUP, wait a few
2730  * seconds, then send a INT, and then a KILL signal.  But you then
2731  * have to coordinate with the init process, since all processes associated
2732  * with the current tty must be dead before the new getty is allowed
2733  * to spawn.
2734  *
2735  * Now, if it would be correct ;-/ The current code has a nasty hole -
2736  * it doesn't catch files in flight. We may send the descriptor to ourselves
2737  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2738  *
2739  * Nasty bug: do_SAK is being called in interrupt context.  This can
2740  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2741  */
__do_SAK(struct tty_struct * tty)2742 void __do_SAK(struct tty_struct *tty)
2743 {
2744 #ifdef TTY_SOFT_SAK
2745 	tty_hangup(tty);
2746 #else
2747 	struct task_struct *g, *p;
2748 	struct pid *session;
2749 	int		i;
2750 	unsigned long flags;
2751 
2752 	if (!tty)
2753 		return;
2754 
2755 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2756 	session = get_pid(tty->session);
2757 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2758 
2759 	tty_ldisc_flush(tty);
2760 
2761 	tty_driver_flush_buffer(tty);
2762 
2763 	read_lock(&tasklist_lock);
2764 	/* Kill the entire session */
2765 	do_each_pid_task(session, PIDTYPE_SID, p) {
2766 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2767 			   task_pid_nr(p), p->comm);
2768 		send_sig(SIGKILL, p, 1);
2769 	} while_each_pid_task(session, PIDTYPE_SID, p);
2770 
2771 	/* Now kill any processes that happen to have the tty open */
2772 	do_each_thread(g, p) {
2773 		if (p->signal->tty == tty) {
2774 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2775 				   task_pid_nr(p), p->comm);
2776 			send_sig(SIGKILL, p, 1);
2777 			continue;
2778 		}
2779 		task_lock(p);
2780 		i = iterate_fd(p->files, 0, this_tty, tty);
2781 		if (i != 0) {
2782 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2783 				   task_pid_nr(p), p->comm, i - 1);
2784 			force_sig(SIGKILL, p);
2785 		}
2786 		task_unlock(p);
2787 	} while_each_thread(g, p);
2788 	read_unlock(&tasklist_lock);
2789 	put_pid(session);
2790 #endif
2791 }
2792 
do_SAK_work(struct work_struct * work)2793 static void do_SAK_work(struct work_struct *work)
2794 {
2795 	struct tty_struct *tty =
2796 		container_of(work, struct tty_struct, SAK_work);
2797 	__do_SAK(tty);
2798 }
2799 
2800 /*
2801  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2802  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2803  * the values which we write to it will be identical to the values which it
2804  * already has. --akpm
2805  */
do_SAK(struct tty_struct * tty)2806 void do_SAK(struct tty_struct *tty)
2807 {
2808 	if (!tty)
2809 		return;
2810 	schedule_work(&tty->SAK_work);
2811 }
2812 
2813 EXPORT_SYMBOL(do_SAK);
2814 
dev_match_devt(struct device * dev,const void * data)2815 static int dev_match_devt(struct device *dev, const void *data)
2816 {
2817 	const dev_t *devt = data;
2818 	return dev->devt == *devt;
2819 }
2820 
2821 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)2822 static struct device *tty_get_device(struct tty_struct *tty)
2823 {
2824 	dev_t devt = tty_devnum(tty);
2825 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2826 }
2827 
2828 
2829 /**
2830  *	alloc_tty_struct
2831  *
2832  *	This subroutine allocates and initializes a tty structure.
2833  *
2834  *	Locking: none - tty in question is not exposed at this point
2835  */
2836 
alloc_tty_struct(struct tty_driver * driver,int idx)2837 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2838 {
2839 	struct tty_struct *tty;
2840 
2841 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2842 	if (!tty)
2843 		return NULL;
2844 
2845 	kref_init(&tty->kref);
2846 	tty->magic = TTY_MAGIC;
2847 	if (tty_ldisc_init(tty)) {
2848 		kfree(tty);
2849 		return NULL;
2850 	}
2851 	tty->session = NULL;
2852 	tty->pgrp = NULL;
2853 	mutex_init(&tty->legacy_mutex);
2854 	mutex_init(&tty->throttle_mutex);
2855 	init_rwsem(&tty->termios_rwsem);
2856 	mutex_init(&tty->winsize_mutex);
2857 	init_ldsem(&tty->ldisc_sem);
2858 	init_waitqueue_head(&tty->write_wait);
2859 	init_waitqueue_head(&tty->read_wait);
2860 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2861 	mutex_init(&tty->atomic_write_lock);
2862 	spin_lock_init(&tty->ctrl_lock);
2863 	spin_lock_init(&tty->flow_lock);
2864 	spin_lock_init(&tty->files_lock);
2865 	INIT_LIST_HEAD(&tty->tty_files);
2866 	INIT_WORK(&tty->SAK_work, do_SAK_work);
2867 
2868 	tty->driver = driver;
2869 	tty->ops = driver->ops;
2870 	tty->index = idx;
2871 	tty_line_name(driver, idx, tty->name);
2872 	tty->dev = tty_get_device(tty);
2873 
2874 	return tty;
2875 }
2876 
2877 /**
2878  *	tty_put_char	-	write one character to a tty
2879  *	@tty: tty
2880  *	@ch: character
2881  *
2882  *	Write one byte to the tty using the provided put_char method
2883  *	if present. Returns the number of characters successfully output.
2884  *
2885  *	Note: the specific put_char operation in the driver layer may go
2886  *	away soon. Don't call it directly, use this method
2887  */
2888 
tty_put_char(struct tty_struct * tty,unsigned char ch)2889 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2890 {
2891 	if (tty->ops->put_char)
2892 		return tty->ops->put_char(tty, ch);
2893 	return tty->ops->write(tty, &ch, 1);
2894 }
2895 EXPORT_SYMBOL_GPL(tty_put_char);
2896 
2897 struct class *tty_class;
2898 
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)2899 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2900 		unsigned int index, unsigned int count)
2901 {
2902 	int err;
2903 
2904 	/* init here, since reused cdevs cause crashes */
2905 	driver->cdevs[index] = cdev_alloc();
2906 	if (!driver->cdevs[index])
2907 		return -ENOMEM;
2908 	driver->cdevs[index]->ops = &tty_fops;
2909 	driver->cdevs[index]->owner = driver->owner;
2910 	err = cdev_add(driver->cdevs[index], dev, count);
2911 	if (err)
2912 		kobject_put(&driver->cdevs[index]->kobj);
2913 	return err;
2914 }
2915 
2916 /**
2917  *	tty_register_device - register a tty device
2918  *	@driver: the tty driver that describes the tty device
2919  *	@index: the index in the tty driver for this tty device
2920  *	@device: a struct device that is associated with this tty device.
2921  *		This field is optional, if there is no known struct device
2922  *		for this tty device it can be set to NULL safely.
2923  *
2924  *	Returns a pointer to the struct device for this tty device
2925  *	(or ERR_PTR(-EFOO) on error).
2926  *
2927  *	This call is required to be made to register an individual tty device
2928  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2929  *	that bit is not set, this function should not be called by a tty
2930  *	driver.
2931  *
2932  *	Locking: ??
2933  */
2934 
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)2935 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2936 				   struct device *device)
2937 {
2938 	return tty_register_device_attr(driver, index, device, NULL, NULL);
2939 }
2940 EXPORT_SYMBOL(tty_register_device);
2941 
tty_device_create_release(struct device * dev)2942 static void tty_device_create_release(struct device *dev)
2943 {
2944 	dev_dbg(dev, "releasing...\n");
2945 	kfree(dev);
2946 }
2947 
2948 /**
2949  *	tty_register_device_attr - register a tty device
2950  *	@driver: the tty driver that describes the tty device
2951  *	@index: the index in the tty driver for this tty device
2952  *	@device: a struct device that is associated with this tty device.
2953  *		This field is optional, if there is no known struct device
2954  *		for this tty device it can be set to NULL safely.
2955  *	@drvdata: Driver data to be set to device.
2956  *	@attr_grp: Attribute group to be set on device.
2957  *
2958  *	Returns a pointer to the struct device for this tty device
2959  *	(or ERR_PTR(-EFOO) on error).
2960  *
2961  *	This call is required to be made to register an individual tty device
2962  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2963  *	that bit is not set, this function should not be called by a tty
2964  *	driver.
2965  *
2966  *	Locking: ??
2967  */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)2968 struct device *tty_register_device_attr(struct tty_driver *driver,
2969 				   unsigned index, struct device *device,
2970 				   void *drvdata,
2971 				   const struct attribute_group **attr_grp)
2972 {
2973 	char name[64];
2974 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2975 	struct ktermios *tp;
2976 	struct device *dev;
2977 	int retval;
2978 
2979 	if (index >= driver->num) {
2980 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2981 		       driver->name, index);
2982 		return ERR_PTR(-EINVAL);
2983 	}
2984 
2985 	if (driver->type == TTY_DRIVER_TYPE_PTY)
2986 		pty_line_name(driver, index, name);
2987 	else
2988 		tty_line_name(driver, index, name);
2989 
2990 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2991 	if (!dev)
2992 		return ERR_PTR(-ENOMEM);
2993 
2994 	dev->devt = devt;
2995 	dev->class = tty_class;
2996 	dev->parent = device;
2997 	dev->release = tty_device_create_release;
2998 	dev_set_name(dev, "%s", name);
2999 	dev->groups = attr_grp;
3000 	dev_set_drvdata(dev, drvdata);
3001 
3002 	dev_set_uevent_suppress(dev, 1);
3003 
3004 	retval = device_register(dev);
3005 	if (retval)
3006 		goto err_put;
3007 
3008 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3009 		/*
3010 		 * Free any saved termios data so that the termios state is
3011 		 * reset when reusing a minor number.
3012 		 */
3013 		tp = driver->termios[index];
3014 		if (tp) {
3015 			driver->termios[index] = NULL;
3016 			kfree(tp);
3017 		}
3018 
3019 		retval = tty_cdev_add(driver, devt, index, 1);
3020 		if (retval)
3021 			goto err_del;
3022 	}
3023 
3024 	dev_set_uevent_suppress(dev, 0);
3025 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3026 
3027 	return dev;
3028 
3029 err_del:
3030 	device_del(dev);
3031 err_put:
3032 	put_device(dev);
3033 
3034 	return ERR_PTR(retval);
3035 }
3036 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3037 
3038 /**
3039  * 	tty_unregister_device - unregister a tty device
3040  * 	@driver: the tty driver that describes the tty device
3041  * 	@index: the index in the tty driver for this tty device
3042  *
3043  * 	If a tty device is registered with a call to tty_register_device() then
3044  *	this function must be called when the tty device is gone.
3045  *
3046  *	Locking: ??
3047  */
3048 
tty_unregister_device(struct tty_driver * driver,unsigned index)3049 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3050 {
3051 	device_destroy(tty_class,
3052 		MKDEV(driver->major, driver->minor_start) + index);
3053 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3054 		cdev_del(driver->cdevs[index]);
3055 		driver->cdevs[index] = NULL;
3056 	}
3057 }
3058 EXPORT_SYMBOL(tty_unregister_device);
3059 
3060 /**
3061  * __tty_alloc_driver -- allocate tty driver
3062  * @lines: count of lines this driver can handle at most
3063  * @owner: module which is responsible for this driver
3064  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3065  *
3066  * This should not be called directly, some of the provided macros should be
3067  * used instead. Use IS_ERR and friends on @retval.
3068  */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3069 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3070 		unsigned long flags)
3071 {
3072 	struct tty_driver *driver;
3073 	unsigned int cdevs = 1;
3074 	int err;
3075 
3076 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3077 		return ERR_PTR(-EINVAL);
3078 
3079 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3080 	if (!driver)
3081 		return ERR_PTR(-ENOMEM);
3082 
3083 	kref_init(&driver->kref);
3084 	driver->magic = TTY_DRIVER_MAGIC;
3085 	driver->num = lines;
3086 	driver->owner = owner;
3087 	driver->flags = flags;
3088 
3089 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3090 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3091 				GFP_KERNEL);
3092 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3093 				GFP_KERNEL);
3094 		if (!driver->ttys || !driver->termios) {
3095 			err = -ENOMEM;
3096 			goto err_free_all;
3097 		}
3098 	}
3099 
3100 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3101 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3102 				GFP_KERNEL);
3103 		if (!driver->ports) {
3104 			err = -ENOMEM;
3105 			goto err_free_all;
3106 		}
3107 		cdevs = lines;
3108 	}
3109 
3110 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3111 	if (!driver->cdevs) {
3112 		err = -ENOMEM;
3113 		goto err_free_all;
3114 	}
3115 
3116 	return driver;
3117 err_free_all:
3118 	kfree(driver->ports);
3119 	kfree(driver->ttys);
3120 	kfree(driver->termios);
3121 	kfree(driver->cdevs);
3122 	kfree(driver);
3123 	return ERR_PTR(err);
3124 }
3125 EXPORT_SYMBOL(__tty_alloc_driver);
3126 
destruct_tty_driver(struct kref * kref)3127 static void destruct_tty_driver(struct kref *kref)
3128 {
3129 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3130 	int i;
3131 	struct ktermios *tp;
3132 
3133 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3134 		for (i = 0; i < driver->num; i++) {
3135 			tp = driver->termios[i];
3136 			if (tp) {
3137 				driver->termios[i] = NULL;
3138 				kfree(tp);
3139 			}
3140 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3141 				tty_unregister_device(driver, i);
3142 		}
3143 		proc_tty_unregister_driver(driver);
3144 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3145 			cdev_del(driver->cdevs[0]);
3146 	}
3147 	kfree(driver->cdevs);
3148 	kfree(driver->ports);
3149 	kfree(driver->termios);
3150 	kfree(driver->ttys);
3151 	kfree(driver);
3152 }
3153 
tty_driver_kref_put(struct tty_driver * driver)3154 void tty_driver_kref_put(struct tty_driver *driver)
3155 {
3156 	kref_put(&driver->kref, destruct_tty_driver);
3157 }
3158 EXPORT_SYMBOL(tty_driver_kref_put);
3159 
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3160 void tty_set_operations(struct tty_driver *driver,
3161 			const struct tty_operations *op)
3162 {
3163 	driver->ops = op;
3164 };
3165 EXPORT_SYMBOL(tty_set_operations);
3166 
put_tty_driver(struct tty_driver * d)3167 void put_tty_driver(struct tty_driver *d)
3168 {
3169 	tty_driver_kref_put(d);
3170 }
3171 EXPORT_SYMBOL(put_tty_driver);
3172 
3173 /*
3174  * Called by a tty driver to register itself.
3175  */
tty_register_driver(struct tty_driver * driver)3176 int tty_register_driver(struct tty_driver *driver)
3177 {
3178 	int error;
3179 	int i;
3180 	dev_t dev;
3181 	struct device *d;
3182 
3183 	if (!driver->major) {
3184 		error = alloc_chrdev_region(&dev, driver->minor_start,
3185 						driver->num, driver->name);
3186 		if (!error) {
3187 			driver->major = MAJOR(dev);
3188 			driver->minor_start = MINOR(dev);
3189 		}
3190 	} else {
3191 		dev = MKDEV(driver->major, driver->minor_start);
3192 		error = register_chrdev_region(dev, driver->num, driver->name);
3193 	}
3194 	if (error < 0)
3195 		goto err;
3196 
3197 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3198 		error = tty_cdev_add(driver, dev, 0, driver->num);
3199 		if (error)
3200 			goto err_unreg_char;
3201 	}
3202 
3203 	mutex_lock(&tty_mutex);
3204 	list_add(&driver->tty_drivers, &tty_drivers);
3205 	mutex_unlock(&tty_mutex);
3206 
3207 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3208 		for (i = 0; i < driver->num; i++) {
3209 			d = tty_register_device(driver, i, NULL);
3210 			if (IS_ERR(d)) {
3211 				error = PTR_ERR(d);
3212 				goto err_unreg_devs;
3213 			}
3214 		}
3215 	}
3216 	proc_tty_register_driver(driver);
3217 	driver->flags |= TTY_DRIVER_INSTALLED;
3218 	return 0;
3219 
3220 err_unreg_devs:
3221 	for (i--; i >= 0; i--)
3222 		tty_unregister_device(driver, i);
3223 
3224 	mutex_lock(&tty_mutex);
3225 	list_del(&driver->tty_drivers);
3226 	mutex_unlock(&tty_mutex);
3227 
3228 err_unreg_char:
3229 	unregister_chrdev_region(dev, driver->num);
3230 err:
3231 	return error;
3232 }
3233 EXPORT_SYMBOL(tty_register_driver);
3234 
3235 /*
3236  * Called by a tty driver to unregister itself.
3237  */
tty_unregister_driver(struct tty_driver * driver)3238 int tty_unregister_driver(struct tty_driver *driver)
3239 {
3240 #if 0
3241 	/* FIXME */
3242 	if (driver->refcount)
3243 		return -EBUSY;
3244 #endif
3245 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3246 				driver->num);
3247 	mutex_lock(&tty_mutex);
3248 	list_del(&driver->tty_drivers);
3249 	mutex_unlock(&tty_mutex);
3250 	return 0;
3251 }
3252 
3253 EXPORT_SYMBOL(tty_unregister_driver);
3254 
tty_devnum(struct tty_struct * tty)3255 dev_t tty_devnum(struct tty_struct *tty)
3256 {
3257 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3258 }
3259 EXPORT_SYMBOL(tty_devnum);
3260 
tty_default_fops(struct file_operations * fops)3261 void tty_default_fops(struct file_operations *fops)
3262 {
3263 	*fops = tty_fops;
3264 }
3265 
tty_devnode(struct device * dev,umode_t * mode)3266 static char *tty_devnode(struct device *dev, umode_t *mode)
3267 {
3268 	if (!mode)
3269 		return NULL;
3270 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3271 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3272 		*mode = 0666;
3273 	return NULL;
3274 }
3275 
tty_class_init(void)3276 static int __init tty_class_init(void)
3277 {
3278 	tty_class = class_create(THIS_MODULE, "tty");
3279 	if (IS_ERR(tty_class))
3280 		return PTR_ERR(tty_class);
3281 	tty_class->devnode = tty_devnode;
3282 	return 0;
3283 }
3284 
3285 postcore_initcall(tty_class_init);
3286 
3287 /* 3/2004 jmc: why do these devices exist? */
3288 static struct cdev tty_cdev, console_cdev;
3289 
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3290 static ssize_t show_cons_active(struct device *dev,
3291 				struct device_attribute *attr, char *buf)
3292 {
3293 	struct console *cs[16];
3294 	int i = 0;
3295 	struct console *c;
3296 	ssize_t count = 0;
3297 
3298 	console_lock();
3299 	for_each_console(c) {
3300 		if (!c->device)
3301 			continue;
3302 		if (!c->write)
3303 			continue;
3304 		if ((c->flags & CON_ENABLED) == 0)
3305 			continue;
3306 		cs[i++] = c;
3307 		if (i >= ARRAY_SIZE(cs))
3308 			break;
3309 	}
3310 	while (i--) {
3311 		int index = cs[i]->index;
3312 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3313 
3314 		/* don't resolve tty0 as some programs depend on it */
3315 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3316 			count += tty_line_name(drv, index, buf + count);
3317 		else
3318 			count += sprintf(buf + count, "%s%d",
3319 					 cs[i]->name, cs[i]->index);
3320 
3321 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3322 	}
3323 	console_unlock();
3324 
3325 	return count;
3326 }
3327 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3328 
3329 static struct attribute *cons_dev_attrs[] = {
3330 	&dev_attr_active.attr,
3331 	NULL
3332 };
3333 
3334 ATTRIBUTE_GROUPS(cons_dev);
3335 
3336 static struct device *consdev;
3337 
console_sysfs_notify(void)3338 void console_sysfs_notify(void)
3339 {
3340 	if (consdev)
3341 		sysfs_notify(&consdev->kobj, NULL, "active");
3342 }
3343 
3344 /*
3345  * Ok, now we can initialize the rest of the tty devices and can count
3346  * on memory allocations, interrupts etc..
3347  */
tty_init(void)3348 int __init tty_init(void)
3349 {
3350 	tty_sysctl_init();
3351 	cdev_init(&tty_cdev, &tty_fops);
3352 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3353 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3354 		panic("Couldn't register /dev/tty driver\n");
3355 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3356 
3357 	cdev_init(&console_cdev, &console_fops);
3358 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3359 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3360 		panic("Couldn't register /dev/console driver\n");
3361 	consdev = device_create_with_groups(tty_class, NULL,
3362 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3363 					    cons_dev_groups, "console");
3364 	if (IS_ERR(consdev))
3365 		consdev = NULL;
3366 
3367 #ifdef CONFIG_VT
3368 	vty_init(&console_fops);
3369 #endif
3370 	return 0;
3371 }
3372 
3373