• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * message.c - synchronous message handling
4  *
5  * Released under the GPLv2 only.
6  */
7 
8 #include <linux/pci.h>	/* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h>	/* for usbcore internals */
21 #include <linux/usb/of.h>
22 #include <asm/byteorder.h>
23 
24 #include "usb.h"
25 
26 static void cancel_async_set_config(struct usb_device *udev);
27 
28 struct api_context {
29 	struct completion	done;
30 	int			status;
31 };
32 
usb_api_blocking_completion(struct urb * urb)33 static void usb_api_blocking_completion(struct urb *urb)
34 {
35 	struct api_context *ctx = urb->context;
36 
37 	ctx->status = urb->status;
38 	complete(&ctx->done);
39 }
40 
41 
42 /*
43  * Starts urb and waits for completion or timeout. Note that this call
44  * is NOT interruptible. Many device driver i/o requests should be
45  * interruptible and therefore these drivers should implement their
46  * own interruptible routines.
47  */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49 {
50 	struct api_context ctx;
51 	unsigned long expire;
52 	int retval;
53 
54 	init_completion(&ctx.done);
55 	urb->context = &ctx;
56 	urb->actual_length = 0;
57 	retval = usb_submit_urb(urb, GFP_NOIO);
58 	if (unlikely(retval))
59 		goto out;
60 
61 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 		usb_kill_urb(urb);
64 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65 
66 		dev_dbg(&urb->dev->dev,
67 			"%s timed out on ep%d%s len=%u/%u\n",
68 			current->comm,
69 			usb_endpoint_num(&urb->ep->desc),
70 			usb_urb_dir_in(urb) ? "in" : "out",
71 			urb->actual_length,
72 			urb->transfer_buffer_length);
73 	} else
74 		retval = ctx.status;
75 out:
76 	if (actual_length)
77 		*actual_length = urb->actual_length;
78 
79 	usb_free_urb(urb);
80 	return retval;
81 }
82 
83 /*-------------------------------------------------------------------*/
84 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)85 static int usb_internal_control_msg(struct usb_device *usb_dev,
86 				    unsigned int pipe,
87 				    struct usb_ctrlrequest *cmd,
88 				    void *data, int len, int timeout)
89 {
90 	struct urb *urb;
91 	int retv;
92 	int length;
93 
94 	urb = usb_alloc_urb(0, GFP_NOIO);
95 	if (!urb)
96 		return -ENOMEM;
97 
98 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 			     len, usb_api_blocking_completion, NULL);
100 
101 	retv = usb_start_wait_urb(urb, timeout, &length);
102 	if (retv < 0)
103 		return retv;
104 	else
105 		return length;
106 }
107 
108 /**
109  * usb_control_msg - Builds a control urb, sends it off and waits for completion
110  * @dev: pointer to the usb device to send the message to
111  * @pipe: endpoint "pipe" to send the message to
112  * @request: USB message request value
113  * @requesttype: USB message request type value
114  * @value: USB message value
115  * @index: USB message index value
116  * @data: pointer to the data to send
117  * @size: length in bytes of the data to send
118  * @timeout: time in msecs to wait for the message to complete before timing
119  *	out (if 0 the wait is forever)
120  *
121  * Context: !in_interrupt ()
122  *
123  * This function sends a simple control message to a specified endpoint and
124  * waits for the message to complete, or timeout.
125  *
126  * Don't use this function from within an interrupt context. If you need
127  * an asynchronous message, or need to send a message from within interrupt
128  * context, use usb_submit_urb(). If a thread in your driver uses this call,
129  * make sure your disconnect() method can wait for it to complete. Since you
130  * don't have a handle on the URB used, you can't cancel the request.
131  *
132  * Return: If successful, the number of bytes transferred. Otherwise, a negative
133  * error number.
134  */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 		    __u8 requesttype, __u16 value, __u16 index, void *data,
137 		    __u16 size, int timeout)
138 {
139 	struct usb_ctrlrequest *dr;
140 	int ret;
141 
142 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 	if (!dr)
144 		return -ENOMEM;
145 
146 	dr->bRequestType = requesttype;
147 	dr->bRequest = request;
148 	dr->wValue = cpu_to_le16(value);
149 	dr->wIndex = cpu_to_le16(index);
150 	dr->wLength = cpu_to_le16(size);
151 
152 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 
154 	/* Linger a bit, prior to the next control message. */
155 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
156 		msleep(200);
157 
158 	kfree(dr);
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(usb_control_msg);
163 
164 /**
165  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
166  * @usb_dev: pointer to the usb device to send the message to
167  * @pipe: endpoint "pipe" to send the message to
168  * @data: pointer to the data to send
169  * @len: length in bytes of the data to send
170  * @actual_length: pointer to a location to put the actual length transferred
171  *	in bytes
172  * @timeout: time in msecs to wait for the message to complete before
173  *	timing out (if 0 the wait is forever)
174  *
175  * Context: !in_interrupt ()
176  *
177  * This function sends a simple interrupt message to a specified endpoint and
178  * waits for the message to complete, or timeout.
179  *
180  * Don't use this function from within an interrupt context. If you need
181  * an asynchronous message, or need to send a message from within interrupt
182  * context, use usb_submit_urb() If a thread in your driver uses this call,
183  * make sure your disconnect() method can wait for it to complete. Since you
184  * don't have a handle on the URB used, you can't cancel the request.
185  *
186  * Return:
187  * If successful, 0. Otherwise a negative error number. The number of actual
188  * bytes transferred will be stored in the @actual_length parameter.
189  */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)190 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
191 		      void *data, int len, int *actual_length, int timeout)
192 {
193 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
194 }
195 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
196 
197 /**
198  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
199  * @usb_dev: pointer to the usb device to send the message to
200  * @pipe: endpoint "pipe" to send the message to
201  * @data: pointer to the data to send
202  * @len: length in bytes of the data to send
203  * @actual_length: pointer to a location to put the actual length transferred
204  *	in bytes
205  * @timeout: time in msecs to wait for the message to complete before
206  *	timing out (if 0 the wait is forever)
207  *
208  * Context: !in_interrupt ()
209  *
210  * This function sends a simple bulk message to a specified endpoint
211  * and waits for the message to complete, or timeout.
212  *
213  * Don't use this function from within an interrupt context. If you need
214  * an asynchronous message, or need to send a message from within interrupt
215  * context, use usb_submit_urb() If a thread in your driver uses this call,
216  * make sure your disconnect() method can wait for it to complete. Since you
217  * don't have a handle on the URB used, you can't cancel the request.
218  *
219  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
220  * users are forced to abuse this routine by using it to submit URBs for
221  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
222  * (with the default interval) if the target is an interrupt endpoint.
223  *
224  * Return:
225  * If successful, 0. Otherwise a negative error number. The number of actual
226  * bytes transferred will be stored in the @actual_length parameter.
227  *
228  */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)229 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
230 		 void *data, int len, int *actual_length, int timeout)
231 {
232 	struct urb *urb;
233 	struct usb_host_endpoint *ep;
234 
235 	ep = usb_pipe_endpoint(usb_dev, pipe);
236 	if (!ep || len < 0)
237 		return -EINVAL;
238 
239 	urb = usb_alloc_urb(0, GFP_KERNEL);
240 	if (!urb)
241 		return -ENOMEM;
242 
243 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
244 			USB_ENDPOINT_XFER_INT) {
245 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
246 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
247 				usb_api_blocking_completion, NULL,
248 				ep->desc.bInterval);
249 	} else
250 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
251 				usb_api_blocking_completion, NULL);
252 
253 	return usb_start_wait_urb(urb, timeout, actual_length);
254 }
255 EXPORT_SYMBOL_GPL(usb_bulk_msg);
256 
257 /*-------------------------------------------------------------------*/
258 
sg_clean(struct usb_sg_request * io)259 static void sg_clean(struct usb_sg_request *io)
260 {
261 	if (io->urbs) {
262 		while (io->entries--)
263 			usb_free_urb(io->urbs[io->entries]);
264 		kfree(io->urbs);
265 		io->urbs = NULL;
266 	}
267 	io->dev = NULL;
268 }
269 
sg_complete(struct urb * urb)270 static void sg_complete(struct urb *urb)
271 {
272 	unsigned long flags;
273 	struct usb_sg_request *io = urb->context;
274 	int status = urb->status;
275 
276 	spin_lock_irqsave(&io->lock, flags);
277 
278 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
279 	 * reports, until the completion callback (this!) returns.  That lets
280 	 * device driver code (like this routine) unlink queued urbs first,
281 	 * if it needs to, since the HC won't work on them at all.  So it's
282 	 * not possible for page N+1 to overwrite page N, and so on.
283 	 *
284 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
285 	 * complete before the HCD can get requests away from hardware,
286 	 * though never during cleanup after a hard fault.
287 	 */
288 	if (io->status
289 			&& (io->status != -ECONNRESET
290 				|| status != -ECONNRESET)
291 			&& urb->actual_length) {
292 		dev_err(io->dev->bus->controller,
293 			"dev %s ep%d%s scatterlist error %d/%d\n",
294 			io->dev->devpath,
295 			usb_endpoint_num(&urb->ep->desc),
296 			usb_urb_dir_in(urb) ? "in" : "out",
297 			status, io->status);
298 		/* BUG (); */
299 	}
300 
301 	if (io->status == 0 && status && status != -ECONNRESET) {
302 		int i, found, retval;
303 
304 		io->status = status;
305 
306 		/* the previous urbs, and this one, completed already.
307 		 * unlink pending urbs so they won't rx/tx bad data.
308 		 * careful: unlink can sometimes be synchronous...
309 		 */
310 		spin_unlock_irqrestore(&io->lock, flags);
311 		for (i = 0, found = 0; i < io->entries; i++) {
312 			if (!io->urbs[i])
313 				continue;
314 			if (found) {
315 				usb_block_urb(io->urbs[i]);
316 				retval = usb_unlink_urb(io->urbs[i]);
317 				if (retval != -EINPROGRESS &&
318 				    retval != -ENODEV &&
319 				    retval != -EBUSY &&
320 				    retval != -EIDRM)
321 					dev_err(&io->dev->dev,
322 						"%s, unlink --> %d\n",
323 						__func__, retval);
324 			} else if (urb == io->urbs[i])
325 				found = 1;
326 		}
327 		spin_lock_irqsave(&io->lock, flags);
328 	}
329 
330 	/* on the last completion, signal usb_sg_wait() */
331 	io->bytes += urb->actual_length;
332 	io->count--;
333 	if (!io->count)
334 		complete(&io->complete);
335 
336 	spin_unlock_irqrestore(&io->lock, flags);
337 }
338 
339 
340 /**
341  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
342  * @io: request block being initialized.  until usb_sg_wait() returns,
343  *	treat this as a pointer to an opaque block of memory,
344  * @dev: the usb device that will send or receive the data
345  * @pipe: endpoint "pipe" used to transfer the data
346  * @period: polling rate for interrupt endpoints, in frames or
347  * 	(for high speed endpoints) microframes; ignored for bulk
348  * @sg: scatterlist entries
349  * @nents: how many entries in the scatterlist
350  * @length: how many bytes to send from the scatterlist, or zero to
351  * 	send every byte identified in the list.
352  * @mem_flags: SLAB_* flags affecting memory allocations in this call
353  *
354  * This initializes a scatter/gather request, allocating resources such as
355  * I/O mappings and urb memory (except maybe memory used by USB controller
356  * drivers).
357  *
358  * The request must be issued using usb_sg_wait(), which waits for the I/O to
359  * complete (or to be canceled) and then cleans up all resources allocated by
360  * usb_sg_init().
361  *
362  * The request may be canceled with usb_sg_cancel(), either before or after
363  * usb_sg_wait() is called.
364  *
365  * Return: Zero for success, else a negative errno value.
366  */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)367 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
368 		unsigned pipe, unsigned	period, struct scatterlist *sg,
369 		int nents, size_t length, gfp_t mem_flags)
370 {
371 	int i;
372 	int urb_flags;
373 	int use_sg;
374 
375 	if (!io || !dev || !sg
376 			|| usb_pipecontrol(pipe)
377 			|| usb_pipeisoc(pipe)
378 			|| nents <= 0)
379 		return -EINVAL;
380 
381 	spin_lock_init(&io->lock);
382 	io->dev = dev;
383 	io->pipe = pipe;
384 
385 	if (dev->bus->sg_tablesize > 0) {
386 		use_sg = true;
387 		io->entries = 1;
388 	} else {
389 		use_sg = false;
390 		io->entries = nents;
391 	}
392 
393 	/* initialize all the urbs we'll use */
394 	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
395 	if (!io->urbs)
396 		goto nomem;
397 
398 	urb_flags = URB_NO_INTERRUPT;
399 	if (usb_pipein(pipe))
400 		urb_flags |= URB_SHORT_NOT_OK;
401 
402 	for_each_sg(sg, sg, io->entries, i) {
403 		struct urb *urb;
404 		unsigned len;
405 
406 		urb = usb_alloc_urb(0, mem_flags);
407 		if (!urb) {
408 			io->entries = i;
409 			goto nomem;
410 		}
411 		io->urbs[i] = urb;
412 
413 		urb->dev = NULL;
414 		urb->pipe = pipe;
415 		urb->interval = period;
416 		urb->transfer_flags = urb_flags;
417 		urb->complete = sg_complete;
418 		urb->context = io;
419 		urb->sg = sg;
420 
421 		if (use_sg) {
422 			/* There is no single transfer buffer */
423 			urb->transfer_buffer = NULL;
424 			urb->num_sgs = nents;
425 
426 			/* A length of zero means transfer the whole sg list */
427 			len = length;
428 			if (len == 0) {
429 				struct scatterlist	*sg2;
430 				int			j;
431 
432 				for_each_sg(sg, sg2, nents, j)
433 					len += sg2->length;
434 			}
435 		} else {
436 			/*
437 			 * Some systems can't use DMA; they use PIO instead.
438 			 * For their sakes, transfer_buffer is set whenever
439 			 * possible.
440 			 */
441 			if (!PageHighMem(sg_page(sg)))
442 				urb->transfer_buffer = sg_virt(sg);
443 			else
444 				urb->transfer_buffer = NULL;
445 
446 			len = sg->length;
447 			if (length) {
448 				len = min_t(size_t, len, length);
449 				length -= len;
450 				if (length == 0)
451 					io->entries = i + 1;
452 			}
453 		}
454 		urb->transfer_buffer_length = len;
455 	}
456 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
457 
458 	/* transaction state */
459 	io->count = io->entries;
460 	io->status = 0;
461 	io->bytes = 0;
462 	init_completion(&io->complete);
463 	return 0;
464 
465 nomem:
466 	sg_clean(io);
467 	return -ENOMEM;
468 }
469 EXPORT_SYMBOL_GPL(usb_sg_init);
470 
471 /**
472  * usb_sg_wait - synchronously execute scatter/gather request
473  * @io: request block handle, as initialized with usb_sg_init().
474  * 	some fields become accessible when this call returns.
475  * Context: !in_interrupt ()
476  *
477  * This function blocks until the specified I/O operation completes.  It
478  * leverages the grouping of the related I/O requests to get good transfer
479  * rates, by queueing the requests.  At higher speeds, such queuing can
480  * significantly improve USB throughput.
481  *
482  * There are three kinds of completion for this function.
483  *
484  * (1) success, where io->status is zero.  The number of io->bytes
485  *     transferred is as requested.
486  * (2) error, where io->status is a negative errno value.  The number
487  *     of io->bytes transferred before the error is usually less
488  *     than requested, and can be nonzero.
489  * (3) cancellation, a type of error with status -ECONNRESET that
490  *     is initiated by usb_sg_cancel().
491  *
492  * When this function returns, all memory allocated through usb_sg_init() or
493  * this call will have been freed.  The request block parameter may still be
494  * passed to usb_sg_cancel(), or it may be freed.  It could also be
495  * reinitialized and then reused.
496  *
497  * Data Transfer Rates:
498  *
499  * Bulk transfers are valid for full or high speed endpoints.
500  * The best full speed data rate is 19 packets of 64 bytes each
501  * per frame, or 1216 bytes per millisecond.
502  * The best high speed data rate is 13 packets of 512 bytes each
503  * per microframe, or 52 KBytes per millisecond.
504  *
505  * The reason to use interrupt transfers through this API would most likely
506  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
507  * could be transferred.  That capability is less useful for low or full
508  * speed interrupt endpoints, which allow at most one packet per millisecond,
509  * of at most 8 or 64 bytes (respectively).
510  *
511  * It is not necessary to call this function to reserve bandwidth for devices
512  * under an xHCI host controller, as the bandwidth is reserved when the
513  * configuration or interface alt setting is selected.
514  */
usb_sg_wait(struct usb_sg_request * io)515 void usb_sg_wait(struct usb_sg_request *io)
516 {
517 	int i;
518 	int entries = io->entries;
519 
520 	/* queue the urbs.  */
521 	spin_lock_irq(&io->lock);
522 	i = 0;
523 	while (i < entries && !io->status) {
524 		int retval;
525 
526 		io->urbs[i]->dev = io->dev;
527 		spin_unlock_irq(&io->lock);
528 
529 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
530 
531 		switch (retval) {
532 			/* maybe we retrying will recover */
533 		case -ENXIO:	/* hc didn't queue this one */
534 		case -EAGAIN:
535 		case -ENOMEM:
536 			retval = 0;
537 			yield();
538 			break;
539 
540 			/* no error? continue immediately.
541 			 *
542 			 * NOTE: to work better with UHCI (4K I/O buffer may
543 			 * need 3K of TDs) it may be good to limit how many
544 			 * URBs are queued at once; N milliseconds?
545 			 */
546 		case 0:
547 			++i;
548 			cpu_relax();
549 			break;
550 
551 			/* fail any uncompleted urbs */
552 		default:
553 			io->urbs[i]->status = retval;
554 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
555 				__func__, retval);
556 			usb_sg_cancel(io);
557 		}
558 		spin_lock_irq(&io->lock);
559 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
560 			io->status = retval;
561 	}
562 	io->count -= entries - i;
563 	if (io->count == 0)
564 		complete(&io->complete);
565 	spin_unlock_irq(&io->lock);
566 
567 	/* OK, yes, this could be packaged as non-blocking.
568 	 * So could the submit loop above ... but it's easier to
569 	 * solve neither problem than to solve both!
570 	 */
571 	wait_for_completion(&io->complete);
572 
573 	sg_clean(io);
574 }
575 EXPORT_SYMBOL_GPL(usb_sg_wait);
576 
577 /**
578  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
579  * @io: request block, initialized with usb_sg_init()
580  *
581  * This stops a request after it has been started by usb_sg_wait().
582  * It can also prevents one initialized by usb_sg_init() from starting,
583  * so that call just frees resources allocated to the request.
584  */
usb_sg_cancel(struct usb_sg_request * io)585 void usb_sg_cancel(struct usb_sg_request *io)
586 {
587 	unsigned long flags;
588 	int i, retval;
589 
590 	spin_lock_irqsave(&io->lock, flags);
591 	if (io->status || io->count == 0) {
592 		spin_unlock_irqrestore(&io->lock, flags);
593 		return;
594 	}
595 	/* shut everything down */
596 	io->status = -ECONNRESET;
597 	io->count++;		/* Keep the request alive until we're done */
598 	spin_unlock_irqrestore(&io->lock, flags);
599 
600 	for (i = io->entries - 1; i >= 0; --i) {
601 		usb_block_urb(io->urbs[i]);
602 
603 		retval = usb_unlink_urb(io->urbs[i]);
604 		if (retval != -EINPROGRESS
605 		    && retval != -ENODEV
606 		    && retval != -EBUSY
607 		    && retval != -EIDRM)
608 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
609 				 __func__, retval);
610 	}
611 
612 	spin_lock_irqsave(&io->lock, flags);
613 	io->count--;
614 	if (!io->count)
615 		complete(&io->complete);
616 	spin_unlock_irqrestore(&io->lock, flags);
617 }
618 EXPORT_SYMBOL_GPL(usb_sg_cancel);
619 
620 /*-------------------------------------------------------------------*/
621 
622 /**
623  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
624  * @dev: the device whose descriptor is being retrieved
625  * @type: the descriptor type (USB_DT_*)
626  * @index: the number of the descriptor
627  * @buf: where to put the descriptor
628  * @size: how big is "buf"?
629  * Context: !in_interrupt ()
630  *
631  * Gets a USB descriptor.  Convenience functions exist to simplify
632  * getting some types of descriptors.  Use
633  * usb_get_string() or usb_string() for USB_DT_STRING.
634  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
635  * are part of the device structure.
636  * In addition to a number of USB-standard descriptors, some
637  * devices also use class-specific or vendor-specific descriptors.
638  *
639  * This call is synchronous, and may not be used in an interrupt context.
640  *
641  * Return: The number of bytes received on success, or else the status code
642  * returned by the underlying usb_control_msg() call.
643  */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)644 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
645 		       unsigned char index, void *buf, int size)
646 {
647 	int i;
648 	int result;
649 
650 	memset(buf, 0, size);	/* Make sure we parse really received data */
651 
652 	for (i = 0; i < 3; ++i) {
653 		/* retry on length 0 or error; some devices are flakey */
654 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
655 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
656 				(type << 8) + index, 0, buf, size,
657 				USB_CTRL_GET_TIMEOUT);
658 		if (result <= 0 && result != -ETIMEDOUT)
659 			continue;
660 		if (result > 1 && ((u8 *)buf)[1] != type) {
661 			result = -ENODATA;
662 			continue;
663 		}
664 		break;
665 	}
666 	return result;
667 }
668 EXPORT_SYMBOL_GPL(usb_get_descriptor);
669 
670 /**
671  * usb_get_string - gets a string descriptor
672  * @dev: the device whose string descriptor is being retrieved
673  * @langid: code for language chosen (from string descriptor zero)
674  * @index: the number of the descriptor
675  * @buf: where to put the string
676  * @size: how big is "buf"?
677  * Context: !in_interrupt ()
678  *
679  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
680  * in little-endian byte order).
681  * The usb_string() function will often be a convenient way to turn
682  * these strings into kernel-printable form.
683  *
684  * Strings may be referenced in device, configuration, interface, or other
685  * descriptors, and could also be used in vendor-specific ways.
686  *
687  * This call is synchronous, and may not be used in an interrupt context.
688  *
689  * Return: The number of bytes received on success, or else the status code
690  * returned by the underlying usb_control_msg() call.
691  */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)692 static int usb_get_string(struct usb_device *dev, unsigned short langid,
693 			  unsigned char index, void *buf, int size)
694 {
695 	int i;
696 	int result;
697 
698 	for (i = 0; i < 3; ++i) {
699 		/* retry on length 0 or stall; some devices are flakey */
700 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
701 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
702 			(USB_DT_STRING << 8) + index, langid, buf, size,
703 			USB_CTRL_GET_TIMEOUT);
704 		if (result == 0 || result == -EPIPE)
705 			continue;
706 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
707 			result = -ENODATA;
708 			continue;
709 		}
710 		break;
711 	}
712 	return result;
713 }
714 
usb_try_string_workarounds(unsigned char * buf,int * length)715 static void usb_try_string_workarounds(unsigned char *buf, int *length)
716 {
717 	int newlength, oldlength = *length;
718 
719 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
720 		if (!isprint(buf[newlength]) || buf[newlength + 1])
721 			break;
722 
723 	if (newlength > 2) {
724 		buf[0] = newlength;
725 		*length = newlength;
726 	}
727 }
728 
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)729 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
730 			  unsigned int index, unsigned char *buf)
731 {
732 	int rc;
733 
734 	/* Try to read the string descriptor by asking for the maximum
735 	 * possible number of bytes */
736 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
737 		rc = -EIO;
738 	else
739 		rc = usb_get_string(dev, langid, index, buf, 255);
740 
741 	/* If that failed try to read the descriptor length, then
742 	 * ask for just that many bytes */
743 	if (rc < 2) {
744 		rc = usb_get_string(dev, langid, index, buf, 2);
745 		if (rc == 2)
746 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
747 	}
748 
749 	if (rc >= 2) {
750 		if (!buf[0] && !buf[1])
751 			usb_try_string_workarounds(buf, &rc);
752 
753 		/* There might be extra junk at the end of the descriptor */
754 		if (buf[0] < rc)
755 			rc = buf[0];
756 
757 		rc = rc - (rc & 1); /* force a multiple of two */
758 	}
759 
760 	if (rc < 2)
761 		rc = (rc < 0 ? rc : -EINVAL);
762 
763 	return rc;
764 }
765 
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)766 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
767 {
768 	int err;
769 
770 	if (dev->have_langid)
771 		return 0;
772 
773 	if (dev->string_langid < 0)
774 		return -EPIPE;
775 
776 	err = usb_string_sub(dev, 0, 0, tbuf);
777 
778 	/* If the string was reported but is malformed, default to english
779 	 * (0x0409) */
780 	if (err == -ENODATA || (err > 0 && err < 4)) {
781 		dev->string_langid = 0x0409;
782 		dev->have_langid = 1;
783 		dev_err(&dev->dev,
784 			"language id specifier not provided by device, defaulting to English\n");
785 		return 0;
786 	}
787 
788 	/* In case of all other errors, we assume the device is not able to
789 	 * deal with strings at all. Set string_langid to -1 in order to
790 	 * prevent any string to be retrieved from the device */
791 	if (err < 0) {
792 		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
793 					err);
794 		dev->string_langid = -1;
795 		return -EPIPE;
796 	}
797 
798 	/* always use the first langid listed */
799 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
800 	dev->have_langid = 1;
801 	dev_dbg(&dev->dev, "default language 0x%04x\n",
802 				dev->string_langid);
803 	return 0;
804 }
805 
806 /**
807  * usb_string - returns UTF-8 version of a string descriptor
808  * @dev: the device whose string descriptor is being retrieved
809  * @index: the number of the descriptor
810  * @buf: where to put the string
811  * @size: how big is "buf"?
812  * Context: !in_interrupt ()
813  *
814  * This converts the UTF-16LE encoded strings returned by devices, from
815  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
816  * that are more usable in most kernel contexts.  Note that this function
817  * chooses strings in the first language supported by the device.
818  *
819  * This call is synchronous, and may not be used in an interrupt context.
820  *
821  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
822  */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)823 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
824 {
825 	unsigned char *tbuf;
826 	int err;
827 
828 	if (dev->state == USB_STATE_SUSPENDED)
829 		return -EHOSTUNREACH;
830 	if (size <= 0 || !buf)
831 		return -EINVAL;
832 	buf[0] = 0;
833 	if (index <= 0 || index >= 256)
834 		return -EINVAL;
835 	tbuf = kmalloc(256, GFP_NOIO);
836 	if (!tbuf)
837 		return -ENOMEM;
838 
839 	err = usb_get_langid(dev, tbuf);
840 	if (err < 0)
841 		goto errout;
842 
843 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
844 	if (err < 0)
845 		goto errout;
846 
847 	size--;		/* leave room for trailing NULL char in output buffer */
848 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
849 			UTF16_LITTLE_ENDIAN, buf, size);
850 	buf[err] = 0;
851 
852 	if (tbuf[1] != USB_DT_STRING)
853 		dev_dbg(&dev->dev,
854 			"wrong descriptor type %02x for string %d (\"%s\")\n",
855 			tbuf[1], index, buf);
856 
857  errout:
858 	kfree(tbuf);
859 	return err;
860 }
861 EXPORT_SYMBOL_GPL(usb_string);
862 
863 /* one UTF-8-encoded 16-bit character has at most three bytes */
864 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
865 
866 /**
867  * usb_cache_string - read a string descriptor and cache it for later use
868  * @udev: the device whose string descriptor is being read
869  * @index: the descriptor index
870  *
871  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
872  * or %NULL if the index is 0 or the string could not be read.
873  */
usb_cache_string(struct usb_device * udev,int index)874 char *usb_cache_string(struct usb_device *udev, int index)
875 {
876 	char *buf;
877 	char *smallbuf = NULL;
878 	int len;
879 
880 	if (index <= 0)
881 		return NULL;
882 
883 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
884 	if (buf) {
885 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
886 		if (len > 0) {
887 			smallbuf = kmalloc(++len, GFP_NOIO);
888 			if (!smallbuf)
889 				return buf;
890 			memcpy(smallbuf, buf, len);
891 		}
892 		kfree(buf);
893 	}
894 	return smallbuf;
895 }
896 
897 /*
898  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
899  * @dev: the device whose device descriptor is being updated
900  * @size: how much of the descriptor to read
901  * Context: !in_interrupt ()
902  *
903  * Updates the copy of the device descriptor stored in the device structure,
904  * which dedicates space for this purpose.
905  *
906  * Not exported, only for use by the core.  If drivers really want to read
907  * the device descriptor directly, they can call usb_get_descriptor() with
908  * type = USB_DT_DEVICE and index = 0.
909  *
910  * This call is synchronous, and may not be used in an interrupt context.
911  *
912  * Return: The number of bytes received on success, or else the status code
913  * returned by the underlying usb_control_msg() call.
914  */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)915 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
916 {
917 	struct usb_device_descriptor *desc;
918 	int ret;
919 
920 	if (size > sizeof(*desc))
921 		return -EINVAL;
922 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
923 	if (!desc)
924 		return -ENOMEM;
925 
926 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
927 	if (ret >= 0)
928 		memcpy(&dev->descriptor, desc, size);
929 	kfree(desc);
930 	return ret;
931 }
932 
933 /*
934  * usb_set_isoch_delay - informs the device of the packet transmit delay
935  * @dev: the device whose delay is to be informed
936  * Context: !in_interrupt()
937  *
938  * Since this is an optional request, we don't bother if it fails.
939  */
usb_set_isoch_delay(struct usb_device * dev)940 int usb_set_isoch_delay(struct usb_device *dev)
941 {
942 	/* skip hub devices */
943 	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
944 		return 0;
945 
946 	/* skip non-SS/non-SSP devices */
947 	if (dev->speed < USB_SPEED_SUPER)
948 		return 0;
949 
950 	return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
951 			USB_REQ_SET_ISOCH_DELAY,
952 			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
953 			dev->hub_delay, 0, NULL, 0,
954 			USB_CTRL_SET_TIMEOUT);
955 }
956 
957 /**
958  * usb_get_status - issues a GET_STATUS call
959  * @dev: the device whose status is being checked
960  * @recip: USB_RECIP_*; for device, interface, or endpoint
961  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
962  * @target: zero (for device), else interface or endpoint number
963  * @data: pointer to two bytes of bitmap data
964  * Context: !in_interrupt ()
965  *
966  * Returns device, interface, or endpoint status.  Normally only of
967  * interest to see if the device is self powered, or has enabled the
968  * remote wakeup facility; or whether a bulk or interrupt endpoint
969  * is halted ("stalled").
970  *
971  * Bits in these status bitmaps are set using the SET_FEATURE request,
972  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
973  * function should be used to clear halt ("stall") status.
974  *
975  * This call is synchronous, and may not be used in an interrupt context.
976  *
977  * Returns 0 and the status value in *@data (in host byte order) on success,
978  * or else the status code from the underlying usb_control_msg() call.
979  */
usb_get_status(struct usb_device * dev,int recip,int type,int target,void * data)980 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
981 		void *data)
982 {
983 	int ret;
984 	void *status;
985 	int length;
986 
987 	switch (type) {
988 	case USB_STATUS_TYPE_STANDARD:
989 		length = 2;
990 		break;
991 	case USB_STATUS_TYPE_PTM:
992 		if (recip != USB_RECIP_DEVICE)
993 			return -EINVAL;
994 
995 		length = 4;
996 		break;
997 	default:
998 		return -EINVAL;
999 	}
1000 
1001 	status =  kmalloc(length, GFP_KERNEL);
1002 	if (!status)
1003 		return -ENOMEM;
1004 
1005 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1006 		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1007 		target, status, length, USB_CTRL_GET_TIMEOUT);
1008 
1009 	switch (ret) {
1010 	case 4:
1011 		if (type != USB_STATUS_TYPE_PTM) {
1012 			ret = -EIO;
1013 			break;
1014 		}
1015 
1016 		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1017 		ret = 0;
1018 		break;
1019 	case 2:
1020 		if (type != USB_STATUS_TYPE_STANDARD) {
1021 			ret = -EIO;
1022 			break;
1023 		}
1024 
1025 		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
1026 		ret = 0;
1027 		break;
1028 	default:
1029 		ret = -EIO;
1030 	}
1031 
1032 	kfree(status);
1033 	return ret;
1034 }
1035 EXPORT_SYMBOL_GPL(usb_get_status);
1036 
1037 /**
1038  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1039  * @dev: device whose endpoint is halted
1040  * @pipe: endpoint "pipe" being cleared
1041  * Context: !in_interrupt ()
1042  *
1043  * This is used to clear halt conditions for bulk and interrupt endpoints,
1044  * as reported by URB completion status.  Endpoints that are halted are
1045  * sometimes referred to as being "stalled".  Such endpoints are unable
1046  * to transmit or receive data until the halt status is cleared.  Any URBs
1047  * queued for such an endpoint should normally be unlinked by the driver
1048  * before clearing the halt condition, as described in sections 5.7.5
1049  * and 5.8.5 of the USB 2.0 spec.
1050  *
1051  * Note that control and isochronous endpoints don't halt, although control
1052  * endpoints report "protocol stall" (for unsupported requests) using the
1053  * same status code used to report a true stall.
1054  *
1055  * This call is synchronous, and may not be used in an interrupt context.
1056  *
1057  * Return: Zero on success, or else the status code returned by the
1058  * underlying usb_control_msg() call.
1059  */
usb_clear_halt(struct usb_device * dev,int pipe)1060 int usb_clear_halt(struct usb_device *dev, int pipe)
1061 {
1062 	int result;
1063 	int endp = usb_pipeendpoint(pipe);
1064 
1065 	if (usb_pipein(pipe))
1066 		endp |= USB_DIR_IN;
1067 
1068 	/* we don't care if it wasn't halted first. in fact some devices
1069 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1070 	 * this request for iso endpoints, which can't halt!
1071 	 */
1072 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1073 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1074 		USB_ENDPOINT_HALT, endp, NULL, 0,
1075 		USB_CTRL_SET_TIMEOUT);
1076 
1077 	/* don't un-halt or force to DATA0 except on success */
1078 	if (result < 0)
1079 		return result;
1080 
1081 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1082 	 * the clear "took", so some devices could lock up if you check...
1083 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1084 	 *
1085 	 * NOTE:  make sure the logic here doesn't diverge much from
1086 	 * the copy in usb-storage, for as long as we need two copies.
1087 	 */
1088 
1089 	usb_reset_endpoint(dev, endp);
1090 
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(usb_clear_halt);
1094 
create_intf_ep_devs(struct usb_interface * intf)1095 static int create_intf_ep_devs(struct usb_interface *intf)
1096 {
1097 	struct usb_device *udev = interface_to_usbdev(intf);
1098 	struct usb_host_interface *alt = intf->cur_altsetting;
1099 	int i;
1100 
1101 	if (intf->ep_devs_created || intf->unregistering)
1102 		return 0;
1103 
1104 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1105 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1106 	intf->ep_devs_created = 1;
1107 	return 0;
1108 }
1109 
remove_intf_ep_devs(struct usb_interface * intf)1110 static void remove_intf_ep_devs(struct usb_interface *intf)
1111 {
1112 	struct usb_host_interface *alt = intf->cur_altsetting;
1113 	int i;
1114 
1115 	if (!intf->ep_devs_created)
1116 		return;
1117 
1118 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1119 		usb_remove_ep_devs(&alt->endpoint[i]);
1120 	intf->ep_devs_created = 0;
1121 }
1122 
1123 /**
1124  * usb_disable_endpoint -- Disable an endpoint by address
1125  * @dev: the device whose endpoint is being disabled
1126  * @epaddr: the endpoint's address.  Endpoint number for output,
1127  *	endpoint number + USB_DIR_IN for input
1128  * @reset_hardware: flag to erase any endpoint state stored in the
1129  *	controller hardware
1130  *
1131  * Disables the endpoint for URB submission and nukes all pending URBs.
1132  * If @reset_hardware is set then also deallocates hcd/hardware state
1133  * for the endpoint.
1134  */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1135 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1136 		bool reset_hardware)
1137 {
1138 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1139 	struct usb_host_endpoint *ep;
1140 
1141 	if (!dev)
1142 		return;
1143 
1144 	if (usb_endpoint_out(epaddr)) {
1145 		ep = dev->ep_out[epnum];
1146 		if (reset_hardware && epnum != 0)
1147 			dev->ep_out[epnum] = NULL;
1148 	} else {
1149 		ep = dev->ep_in[epnum];
1150 		if (reset_hardware && epnum != 0)
1151 			dev->ep_in[epnum] = NULL;
1152 	}
1153 	if (ep) {
1154 		ep->enabled = 0;
1155 		usb_hcd_flush_endpoint(dev, ep);
1156 		if (reset_hardware)
1157 			usb_hcd_disable_endpoint(dev, ep);
1158 	}
1159 }
1160 
1161 /**
1162  * usb_reset_endpoint - Reset an endpoint's state.
1163  * @dev: the device whose endpoint is to be reset
1164  * @epaddr: the endpoint's address.  Endpoint number for output,
1165  *	endpoint number + USB_DIR_IN for input
1166  *
1167  * Resets any host-side endpoint state such as the toggle bit,
1168  * sequence number or current window.
1169  */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1170 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1171 {
1172 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1173 	struct usb_host_endpoint *ep;
1174 
1175 	if (usb_endpoint_out(epaddr))
1176 		ep = dev->ep_out[epnum];
1177 	else
1178 		ep = dev->ep_in[epnum];
1179 	if (ep)
1180 		usb_hcd_reset_endpoint(dev, ep);
1181 }
1182 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1183 
1184 
1185 /**
1186  * usb_disable_interface -- Disable all endpoints for an interface
1187  * @dev: the device whose interface is being disabled
1188  * @intf: pointer to the interface descriptor
1189  * @reset_hardware: flag to erase any endpoint state stored in the
1190  *	controller hardware
1191  *
1192  * Disables all the endpoints for the interface's current altsetting.
1193  */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1194 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1195 		bool reset_hardware)
1196 {
1197 	struct usb_host_interface *alt = intf->cur_altsetting;
1198 	int i;
1199 
1200 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1201 		usb_disable_endpoint(dev,
1202 				alt->endpoint[i].desc.bEndpointAddress,
1203 				reset_hardware);
1204 	}
1205 }
1206 
1207 /*
1208  * usb_disable_device_endpoints -- Disable all endpoints for a device
1209  * @dev: the device whose endpoints are being disabled
1210  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1211  */
usb_disable_device_endpoints(struct usb_device * dev,int skip_ep0)1212 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1213 {
1214 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1215 	int i;
1216 
1217 	if (hcd->driver->check_bandwidth) {
1218 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1219 		for (i = skip_ep0; i < 16; ++i) {
1220 			usb_disable_endpoint(dev, i, false);
1221 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1222 		}
1223 		/* Remove endpoints from the host controller internal state */
1224 		mutex_lock(hcd->bandwidth_mutex);
1225 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1226 		mutex_unlock(hcd->bandwidth_mutex);
1227 	}
1228 	/* Second pass: remove endpoint pointers */
1229 	for (i = skip_ep0; i < 16; ++i) {
1230 		usb_disable_endpoint(dev, i, true);
1231 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1232 	}
1233 }
1234 
1235 /**
1236  * usb_disable_device - Disable all the endpoints for a USB device
1237  * @dev: the device whose endpoints are being disabled
1238  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1239  *
1240  * Disables all the device's endpoints, potentially including endpoint 0.
1241  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1242  * pending urbs) and usbcore state for the interfaces, so that usbcore
1243  * must usb_set_configuration() before any interfaces could be used.
1244  */
usb_disable_device(struct usb_device * dev,int skip_ep0)1245 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1246 {
1247 	int i;
1248 
1249 	/* getting rid of interfaces will disconnect
1250 	 * any drivers bound to them (a key side effect)
1251 	 */
1252 	if (dev->actconfig) {
1253 		/*
1254 		 * FIXME: In order to avoid self-deadlock involving the
1255 		 * bandwidth_mutex, we have to mark all the interfaces
1256 		 * before unregistering any of them.
1257 		 */
1258 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1259 			dev->actconfig->interface[i]->unregistering = 1;
1260 
1261 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1262 			struct usb_interface	*interface;
1263 
1264 			/* remove this interface if it has been registered */
1265 			interface = dev->actconfig->interface[i];
1266 			if (!device_is_registered(&interface->dev))
1267 				continue;
1268 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1269 				dev_name(&interface->dev));
1270 			remove_intf_ep_devs(interface);
1271 			device_del(&interface->dev);
1272 		}
1273 
1274 		/* Now that the interfaces are unbound, nobody should
1275 		 * try to access them.
1276 		 */
1277 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1278 			put_device(&dev->actconfig->interface[i]->dev);
1279 			dev->actconfig->interface[i] = NULL;
1280 		}
1281 
1282 		usb_disable_usb2_hardware_lpm(dev);
1283 		usb_unlocked_disable_lpm(dev);
1284 		usb_disable_ltm(dev);
1285 
1286 		dev->actconfig = NULL;
1287 		if (dev->state == USB_STATE_CONFIGURED)
1288 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1289 	}
1290 
1291 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1292 		skip_ep0 ? "non-ep0" : "all");
1293 
1294 	usb_disable_device_endpoints(dev, skip_ep0);
1295 }
1296 
1297 /**
1298  * usb_enable_endpoint - Enable an endpoint for USB communications
1299  * @dev: the device whose interface is being enabled
1300  * @ep: the endpoint
1301  * @reset_ep: flag to reset the endpoint state
1302  *
1303  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1304  * For control endpoints, both the input and output sides are handled.
1305  */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1306 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1307 		bool reset_ep)
1308 {
1309 	int epnum = usb_endpoint_num(&ep->desc);
1310 	int is_out = usb_endpoint_dir_out(&ep->desc);
1311 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1312 
1313 	if (reset_ep)
1314 		usb_hcd_reset_endpoint(dev, ep);
1315 	if (is_out || is_control)
1316 		dev->ep_out[epnum] = ep;
1317 	if (!is_out || is_control)
1318 		dev->ep_in[epnum] = ep;
1319 	ep->enabled = 1;
1320 }
1321 
1322 /**
1323  * usb_enable_interface - Enable all the endpoints for an interface
1324  * @dev: the device whose interface is being enabled
1325  * @intf: pointer to the interface descriptor
1326  * @reset_eps: flag to reset the endpoints' state
1327  *
1328  * Enables all the endpoints for the interface's current altsetting.
1329  */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1330 void usb_enable_interface(struct usb_device *dev,
1331 		struct usb_interface *intf, bool reset_eps)
1332 {
1333 	struct usb_host_interface *alt = intf->cur_altsetting;
1334 	int i;
1335 
1336 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1337 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1338 }
1339 
1340 /**
1341  * usb_set_interface - Makes a particular alternate setting be current
1342  * @dev: the device whose interface is being updated
1343  * @interface: the interface being updated
1344  * @alternate: the setting being chosen.
1345  * Context: !in_interrupt ()
1346  *
1347  * This is used to enable data transfers on interfaces that may not
1348  * be enabled by default.  Not all devices support such configurability.
1349  * Only the driver bound to an interface may change its setting.
1350  *
1351  * Within any given configuration, each interface may have several
1352  * alternative settings.  These are often used to control levels of
1353  * bandwidth consumption.  For example, the default setting for a high
1354  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1355  * while interrupt transfers of up to 3KBytes per microframe are legal.
1356  * Also, isochronous endpoints may never be part of an
1357  * interface's default setting.  To access such bandwidth, alternate
1358  * interface settings must be made current.
1359  *
1360  * Note that in the Linux USB subsystem, bandwidth associated with
1361  * an endpoint in a given alternate setting is not reserved until an URB
1362  * is submitted that needs that bandwidth.  Some other operating systems
1363  * allocate bandwidth early, when a configuration is chosen.
1364  *
1365  * xHCI reserves bandwidth and configures the alternate setting in
1366  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1367  * may be disabled. Drivers cannot rely on any particular alternate
1368  * setting being in effect after a failure.
1369  *
1370  * This call is synchronous, and may not be used in an interrupt context.
1371  * Also, drivers must not change altsettings while urbs are scheduled for
1372  * endpoints in that interface; all such urbs must first be completed
1373  * (perhaps forced by unlinking).
1374  *
1375  * Return: Zero on success, or else the status code returned by the
1376  * underlying usb_control_msg() call.
1377  */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1378 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1379 {
1380 	struct usb_interface *iface;
1381 	struct usb_host_interface *alt;
1382 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1383 	int i, ret, manual = 0;
1384 	unsigned int epaddr;
1385 	unsigned int pipe;
1386 
1387 	if (dev->state == USB_STATE_SUSPENDED)
1388 		return -EHOSTUNREACH;
1389 
1390 	iface = usb_ifnum_to_if(dev, interface);
1391 	if (!iface) {
1392 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1393 			interface);
1394 		return -EINVAL;
1395 	}
1396 	if (iface->unregistering)
1397 		return -ENODEV;
1398 
1399 	alt = usb_altnum_to_altsetting(iface, alternate);
1400 	if (!alt) {
1401 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1402 			 alternate);
1403 		return -EINVAL;
1404 	}
1405 	/*
1406 	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1407 	 * including freeing dropped endpoint ring buffers.
1408 	 * Make sure the interface endpoints are flushed before that
1409 	 */
1410 	usb_disable_interface(dev, iface, false);
1411 
1412 	/* Make sure we have enough bandwidth for this alternate interface.
1413 	 * Remove the current alt setting and add the new alt setting.
1414 	 */
1415 	mutex_lock(hcd->bandwidth_mutex);
1416 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1417 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1418 	 */
1419 	if (usb_disable_lpm(dev)) {
1420 		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1421 		mutex_unlock(hcd->bandwidth_mutex);
1422 		return -ENOMEM;
1423 	}
1424 	/* Changing alt-setting also frees any allocated streams */
1425 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1426 		iface->cur_altsetting->endpoint[i].streams = 0;
1427 
1428 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1429 	if (ret < 0) {
1430 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1431 				alternate);
1432 		usb_enable_lpm(dev);
1433 		mutex_unlock(hcd->bandwidth_mutex);
1434 		return ret;
1435 	}
1436 
1437 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1438 		ret = -EPIPE;
1439 	else
1440 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1441 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1442 				   alternate, interface, NULL, 0, 5000);
1443 
1444 	/* 9.4.10 says devices don't need this and are free to STALL the
1445 	 * request if the interface only has one alternate setting.
1446 	 */
1447 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1448 		dev_dbg(&dev->dev,
1449 			"manual set_interface for iface %d, alt %d\n",
1450 			interface, alternate);
1451 		manual = 1;
1452 	} else if (ret < 0) {
1453 		/* Re-instate the old alt setting */
1454 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1455 		usb_enable_lpm(dev);
1456 		mutex_unlock(hcd->bandwidth_mutex);
1457 		return ret;
1458 	}
1459 	mutex_unlock(hcd->bandwidth_mutex);
1460 
1461 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1462 	 * when they implement async or easily-killable versions of this or
1463 	 * other "should-be-internal" functions (like clear_halt).
1464 	 * should hcd+usbcore postprocess control requests?
1465 	 */
1466 
1467 	/* prevent submissions using previous endpoint settings */
1468 	if (iface->cur_altsetting != alt) {
1469 		remove_intf_ep_devs(iface);
1470 		usb_remove_sysfs_intf_files(iface);
1471 	}
1472 	usb_disable_interface(dev, iface, true);
1473 
1474 	iface->cur_altsetting = alt;
1475 
1476 	/* Now that the interface is installed, re-enable LPM. */
1477 	usb_unlocked_enable_lpm(dev);
1478 
1479 	/* If the interface only has one altsetting and the device didn't
1480 	 * accept the request, we attempt to carry out the equivalent action
1481 	 * by manually clearing the HALT feature for each endpoint in the
1482 	 * new altsetting.
1483 	 */
1484 	if (manual) {
1485 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1486 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1487 			pipe = __create_pipe(dev,
1488 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1489 					(usb_endpoint_out(epaddr) ?
1490 					USB_DIR_OUT : USB_DIR_IN);
1491 
1492 			usb_clear_halt(dev, pipe);
1493 		}
1494 	}
1495 
1496 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1497 	 *
1498 	 * Note:
1499 	 * Despite EP0 is always present in all interfaces/AS, the list of
1500 	 * endpoints from the descriptor does not contain EP0. Due to its
1501 	 * omnipresence one might expect EP0 being considered "affected" by
1502 	 * any SetInterface request and hence assume toggles need to be reset.
1503 	 * However, EP0 toggles are re-synced for every individual transfer
1504 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1505 	 * (Likewise, EP0 never "halts" on well designed devices.)
1506 	 */
1507 	usb_enable_interface(dev, iface, true);
1508 	if (device_is_registered(&iface->dev)) {
1509 		usb_create_sysfs_intf_files(iface);
1510 		create_intf_ep_devs(iface);
1511 	}
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(usb_set_interface);
1515 
1516 /**
1517  * usb_reset_configuration - lightweight device reset
1518  * @dev: the device whose configuration is being reset
1519  *
1520  * This issues a standard SET_CONFIGURATION request to the device using
1521  * the current configuration.  The effect is to reset most USB-related
1522  * state in the device, including interface altsettings (reset to zero),
1523  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1524  * endpoints).  Other usbcore state is unchanged, including bindings of
1525  * usb device drivers to interfaces.
1526  *
1527  * Because this affects multiple interfaces, avoid using this with composite
1528  * (multi-interface) devices.  Instead, the driver for each interface may
1529  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1530  * some devices don't support the SET_INTERFACE request, and others won't
1531  * reset all the interface state (notably endpoint state).  Resetting the whole
1532  * configuration would affect other drivers' interfaces.
1533  *
1534  * The caller must own the device lock.
1535  *
1536  * Return: Zero on success, else a negative error code.
1537  *
1538  * If this routine fails the device will probably be in an unusable state
1539  * with endpoints disabled, and interfaces only partially enabled.
1540  */
usb_reset_configuration(struct usb_device * dev)1541 int usb_reset_configuration(struct usb_device *dev)
1542 {
1543 	int			i, retval;
1544 	struct usb_host_config	*config;
1545 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1546 
1547 	if (dev->state == USB_STATE_SUSPENDED)
1548 		return -EHOSTUNREACH;
1549 
1550 	/* caller must have locked the device and must own
1551 	 * the usb bus readlock (so driver bindings are stable);
1552 	 * calls during probe() are fine
1553 	 */
1554 
1555 	usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1556 
1557 	config = dev->actconfig;
1558 	retval = 0;
1559 	mutex_lock(hcd->bandwidth_mutex);
1560 	/* Disable LPM, and re-enable it once the configuration is reset, so
1561 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1562 	 */
1563 	if (usb_disable_lpm(dev)) {
1564 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1565 		mutex_unlock(hcd->bandwidth_mutex);
1566 		return -ENOMEM;
1567 	}
1568 
1569 	/* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1570 	retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1571 	if (retval < 0) {
1572 		usb_enable_lpm(dev);
1573 		mutex_unlock(hcd->bandwidth_mutex);
1574 		return retval;
1575 	}
1576 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1577 			USB_REQ_SET_CONFIGURATION, 0,
1578 			config->desc.bConfigurationValue, 0,
1579 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1580 	if (retval < 0) {
1581 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1582 		usb_enable_lpm(dev);
1583 		mutex_unlock(hcd->bandwidth_mutex);
1584 		return retval;
1585 	}
1586 	mutex_unlock(hcd->bandwidth_mutex);
1587 
1588 	/* re-init hc/hcd interface/endpoint state */
1589 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1590 		struct usb_interface *intf = config->interface[i];
1591 		struct usb_host_interface *alt;
1592 
1593 		alt = usb_altnum_to_altsetting(intf, 0);
1594 
1595 		/* No altsetting 0?  We'll assume the first altsetting.
1596 		 * We could use a GetInterface call, but if a device is
1597 		 * so non-compliant that it doesn't have altsetting 0
1598 		 * then I wouldn't trust its reply anyway.
1599 		 */
1600 		if (!alt)
1601 			alt = &intf->altsetting[0];
1602 
1603 		if (alt != intf->cur_altsetting) {
1604 			remove_intf_ep_devs(intf);
1605 			usb_remove_sysfs_intf_files(intf);
1606 		}
1607 		intf->cur_altsetting = alt;
1608 		usb_enable_interface(dev, intf, true);
1609 		if (device_is_registered(&intf->dev)) {
1610 			usb_create_sysfs_intf_files(intf);
1611 			create_intf_ep_devs(intf);
1612 		}
1613 	}
1614 	/* Now that the interfaces are installed, re-enable LPM. */
1615 	usb_unlocked_enable_lpm(dev);
1616 	return 0;
1617 }
1618 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1619 
usb_release_interface(struct device * dev)1620 static void usb_release_interface(struct device *dev)
1621 {
1622 	struct usb_interface *intf = to_usb_interface(dev);
1623 	struct usb_interface_cache *intfc =
1624 			altsetting_to_usb_interface_cache(intf->altsetting);
1625 
1626 	kref_put(&intfc->ref, usb_release_interface_cache);
1627 	usb_put_dev(interface_to_usbdev(intf));
1628 	of_node_put(dev->of_node);
1629 	kfree(intf);
1630 }
1631 
1632 /*
1633  * usb_deauthorize_interface - deauthorize an USB interface
1634  *
1635  * @intf: USB interface structure
1636  */
usb_deauthorize_interface(struct usb_interface * intf)1637 void usb_deauthorize_interface(struct usb_interface *intf)
1638 {
1639 	struct device *dev = &intf->dev;
1640 
1641 	device_lock(dev->parent);
1642 
1643 	if (intf->authorized) {
1644 		device_lock(dev);
1645 		intf->authorized = 0;
1646 		device_unlock(dev);
1647 
1648 		usb_forced_unbind_intf(intf);
1649 	}
1650 
1651 	device_unlock(dev->parent);
1652 }
1653 
1654 /*
1655  * usb_authorize_interface - authorize an USB interface
1656  *
1657  * @intf: USB interface structure
1658  */
usb_authorize_interface(struct usb_interface * intf)1659 void usb_authorize_interface(struct usb_interface *intf)
1660 {
1661 	struct device *dev = &intf->dev;
1662 
1663 	if (!intf->authorized) {
1664 		device_lock(dev);
1665 		intf->authorized = 1; /* authorize interface */
1666 		device_unlock(dev);
1667 	}
1668 }
1669 
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1670 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1671 {
1672 	struct usb_device *usb_dev;
1673 	struct usb_interface *intf;
1674 	struct usb_host_interface *alt;
1675 
1676 	intf = to_usb_interface(dev);
1677 	usb_dev = interface_to_usbdev(intf);
1678 	alt = intf->cur_altsetting;
1679 
1680 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1681 		   alt->desc.bInterfaceClass,
1682 		   alt->desc.bInterfaceSubClass,
1683 		   alt->desc.bInterfaceProtocol))
1684 		return -ENOMEM;
1685 
1686 	if (add_uevent_var(env,
1687 		   "MODALIAS=usb:"
1688 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1689 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1690 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1691 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1692 		   usb_dev->descriptor.bDeviceClass,
1693 		   usb_dev->descriptor.bDeviceSubClass,
1694 		   usb_dev->descriptor.bDeviceProtocol,
1695 		   alt->desc.bInterfaceClass,
1696 		   alt->desc.bInterfaceSubClass,
1697 		   alt->desc.bInterfaceProtocol,
1698 		   alt->desc.bInterfaceNumber))
1699 		return -ENOMEM;
1700 
1701 	return 0;
1702 }
1703 
1704 struct device_type usb_if_device_type = {
1705 	.name =		"usb_interface",
1706 	.release =	usb_release_interface,
1707 	.uevent =	usb_if_uevent,
1708 };
1709 
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1710 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1711 						struct usb_host_config *config,
1712 						u8 inum)
1713 {
1714 	struct usb_interface_assoc_descriptor *retval = NULL;
1715 	struct usb_interface_assoc_descriptor *intf_assoc;
1716 	int first_intf;
1717 	int last_intf;
1718 	int i;
1719 
1720 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1721 		intf_assoc = config->intf_assoc[i];
1722 		if (intf_assoc->bInterfaceCount == 0)
1723 			continue;
1724 
1725 		first_intf = intf_assoc->bFirstInterface;
1726 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1727 		if (inum >= first_intf && inum <= last_intf) {
1728 			if (!retval)
1729 				retval = intf_assoc;
1730 			else
1731 				dev_err(&dev->dev, "Interface #%d referenced"
1732 					" by multiple IADs\n", inum);
1733 		}
1734 	}
1735 
1736 	return retval;
1737 }
1738 
1739 
1740 /*
1741  * Internal function to queue a device reset
1742  * See usb_queue_reset_device() for more details
1743  */
__usb_queue_reset_device(struct work_struct * ws)1744 static void __usb_queue_reset_device(struct work_struct *ws)
1745 {
1746 	int rc;
1747 	struct usb_interface *iface =
1748 		container_of(ws, struct usb_interface, reset_ws);
1749 	struct usb_device *udev = interface_to_usbdev(iface);
1750 
1751 	rc = usb_lock_device_for_reset(udev, iface);
1752 	if (rc >= 0) {
1753 		usb_reset_device(udev);
1754 		usb_unlock_device(udev);
1755 	}
1756 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1757 }
1758 
1759 
1760 /*
1761  * usb_set_configuration - Makes a particular device setting be current
1762  * @dev: the device whose configuration is being updated
1763  * @configuration: the configuration being chosen.
1764  * Context: !in_interrupt(), caller owns the device lock
1765  *
1766  * This is used to enable non-default device modes.  Not all devices
1767  * use this kind of configurability; many devices only have one
1768  * configuration.
1769  *
1770  * @configuration is the value of the configuration to be installed.
1771  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1772  * must be non-zero; a value of zero indicates that the device in
1773  * unconfigured.  However some devices erroneously use 0 as one of their
1774  * configuration values.  To help manage such devices, this routine will
1775  * accept @configuration = -1 as indicating the device should be put in
1776  * an unconfigured state.
1777  *
1778  * USB device configurations may affect Linux interoperability,
1779  * power consumption and the functionality available.  For example,
1780  * the default configuration is limited to using 100mA of bus power,
1781  * so that when certain device functionality requires more power,
1782  * and the device is bus powered, that functionality should be in some
1783  * non-default device configuration.  Other device modes may also be
1784  * reflected as configuration options, such as whether two ISDN
1785  * channels are available independently; and choosing between open
1786  * standard device protocols (like CDC) or proprietary ones.
1787  *
1788  * Note that a non-authorized device (dev->authorized == 0) will only
1789  * be put in unconfigured mode.
1790  *
1791  * Note that USB has an additional level of device configurability,
1792  * associated with interfaces.  That configurability is accessed using
1793  * usb_set_interface().
1794  *
1795  * This call is synchronous. The calling context must be able to sleep,
1796  * must own the device lock, and must not hold the driver model's USB
1797  * bus mutex; usb interface driver probe() methods cannot use this routine.
1798  *
1799  * Returns zero on success, or else the status code returned by the
1800  * underlying call that failed.  On successful completion, each interface
1801  * in the original device configuration has been destroyed, and each one
1802  * in the new configuration has been probed by all relevant usb device
1803  * drivers currently known to the kernel.
1804  */
usb_set_configuration(struct usb_device * dev,int configuration)1805 int usb_set_configuration(struct usb_device *dev, int configuration)
1806 {
1807 	int i, ret;
1808 	struct usb_host_config *cp = NULL;
1809 	struct usb_interface **new_interfaces = NULL;
1810 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1811 	int n, nintf;
1812 
1813 	if (dev->authorized == 0 || configuration == -1)
1814 		configuration = 0;
1815 	else {
1816 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1817 			if (dev->config[i].desc.bConfigurationValue ==
1818 					configuration) {
1819 				cp = &dev->config[i];
1820 				break;
1821 			}
1822 		}
1823 	}
1824 	if ((!cp && configuration != 0))
1825 		return -EINVAL;
1826 
1827 	/* The USB spec says configuration 0 means unconfigured.
1828 	 * But if a device includes a configuration numbered 0,
1829 	 * we will accept it as a correctly configured state.
1830 	 * Use -1 if you really want to unconfigure the device.
1831 	 */
1832 	if (cp && configuration == 0)
1833 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1834 
1835 	/* Allocate memory for new interfaces before doing anything else,
1836 	 * so that if we run out then nothing will have changed. */
1837 	n = nintf = 0;
1838 	if (cp) {
1839 		nintf = cp->desc.bNumInterfaces;
1840 		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1841 					       GFP_NOIO);
1842 		if (!new_interfaces)
1843 			return -ENOMEM;
1844 
1845 		for (; n < nintf; ++n) {
1846 			new_interfaces[n] = kzalloc(
1847 					sizeof(struct usb_interface),
1848 					GFP_NOIO);
1849 			if (!new_interfaces[n]) {
1850 				ret = -ENOMEM;
1851 free_interfaces:
1852 				while (--n >= 0)
1853 					kfree(new_interfaces[n]);
1854 				kfree(new_interfaces);
1855 				return ret;
1856 			}
1857 		}
1858 
1859 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1860 		if (i < 0)
1861 			dev_warn(&dev->dev, "new config #%d exceeds power "
1862 					"limit by %dmA\n",
1863 					configuration, -i);
1864 	}
1865 
1866 	/* Wake up the device so we can send it the Set-Config request */
1867 	ret = usb_autoresume_device(dev);
1868 	if (ret)
1869 		goto free_interfaces;
1870 
1871 	/* if it's already configured, clear out old state first.
1872 	 * getting rid of old interfaces means unbinding their drivers.
1873 	 */
1874 	if (dev->state != USB_STATE_ADDRESS)
1875 		usb_disable_device(dev, 1);	/* Skip ep0 */
1876 
1877 	/* Get rid of pending async Set-Config requests for this device */
1878 	cancel_async_set_config(dev);
1879 
1880 	/* Make sure we have bandwidth (and available HCD resources) for this
1881 	 * configuration.  Remove endpoints from the schedule if we're dropping
1882 	 * this configuration to set configuration 0.  After this point, the
1883 	 * host controller will not allow submissions to dropped endpoints.  If
1884 	 * this call fails, the device state is unchanged.
1885 	 */
1886 	mutex_lock(hcd->bandwidth_mutex);
1887 	/* Disable LPM, and re-enable it once the new configuration is
1888 	 * installed, so that the xHCI driver can recalculate the U1/U2
1889 	 * timeouts.
1890 	 */
1891 	if (dev->actconfig && usb_disable_lpm(dev)) {
1892 		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1893 		mutex_unlock(hcd->bandwidth_mutex);
1894 		ret = -ENOMEM;
1895 		goto free_interfaces;
1896 	}
1897 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1898 	if (ret < 0) {
1899 		if (dev->actconfig)
1900 			usb_enable_lpm(dev);
1901 		mutex_unlock(hcd->bandwidth_mutex);
1902 		usb_autosuspend_device(dev);
1903 		goto free_interfaces;
1904 	}
1905 
1906 	/*
1907 	 * Initialize the new interface structures and the
1908 	 * hc/hcd/usbcore interface/endpoint state.
1909 	 */
1910 	for (i = 0; i < nintf; ++i) {
1911 		struct usb_interface_cache *intfc;
1912 		struct usb_interface *intf;
1913 		struct usb_host_interface *alt;
1914 		u8 ifnum;
1915 
1916 		cp->interface[i] = intf = new_interfaces[i];
1917 		intfc = cp->intf_cache[i];
1918 		intf->altsetting = intfc->altsetting;
1919 		intf->num_altsetting = intfc->num_altsetting;
1920 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1921 		kref_get(&intfc->ref);
1922 
1923 		alt = usb_altnum_to_altsetting(intf, 0);
1924 
1925 		/* No altsetting 0?  We'll assume the first altsetting.
1926 		 * We could use a GetInterface call, but if a device is
1927 		 * so non-compliant that it doesn't have altsetting 0
1928 		 * then I wouldn't trust its reply anyway.
1929 		 */
1930 		if (!alt)
1931 			alt = &intf->altsetting[0];
1932 
1933 		ifnum = alt->desc.bInterfaceNumber;
1934 		intf->intf_assoc = find_iad(dev, cp, ifnum);
1935 		intf->cur_altsetting = alt;
1936 		usb_enable_interface(dev, intf, true);
1937 		intf->dev.parent = &dev->dev;
1938 		if (usb_of_has_combined_node(dev)) {
1939 			device_set_of_node_from_dev(&intf->dev, &dev->dev);
1940 		} else {
1941 			intf->dev.of_node = usb_of_get_interface_node(dev,
1942 					configuration, ifnum);
1943 		}
1944 		intf->dev.driver = NULL;
1945 		intf->dev.bus = &usb_bus_type;
1946 		intf->dev.type = &usb_if_device_type;
1947 		intf->dev.groups = usb_interface_groups;
1948 		/*
1949 		 * Please refer to usb_alloc_dev() to see why we set
1950 		 * dma_mask and dma_pfn_offset.
1951 		 */
1952 		intf->dev.dma_mask = dev->dev.dma_mask;
1953 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1954 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1955 		intf->minor = -1;
1956 		device_initialize(&intf->dev);
1957 		pm_runtime_no_callbacks(&intf->dev);
1958 		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1959 				dev->devpath, configuration, ifnum);
1960 		usb_get_dev(dev);
1961 	}
1962 	kfree(new_interfaces);
1963 
1964 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1965 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1966 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1967 	if (ret < 0 && cp) {
1968 		/*
1969 		 * All the old state is gone, so what else can we do?
1970 		 * The device is probably useless now anyway.
1971 		 */
1972 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1973 		for (i = 0; i < nintf; ++i) {
1974 			usb_disable_interface(dev, cp->interface[i], true);
1975 			put_device(&cp->interface[i]->dev);
1976 			cp->interface[i] = NULL;
1977 		}
1978 		cp = NULL;
1979 	}
1980 
1981 	dev->actconfig = cp;
1982 	mutex_unlock(hcd->bandwidth_mutex);
1983 
1984 	if (!cp) {
1985 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1986 
1987 		/* Leave LPM disabled while the device is unconfigured. */
1988 		usb_autosuspend_device(dev);
1989 		return ret;
1990 	}
1991 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1992 
1993 	if (cp->string == NULL &&
1994 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1995 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1996 
1997 	/* Now that the interfaces are installed, re-enable LPM. */
1998 	usb_unlocked_enable_lpm(dev);
1999 	/* Enable LTM if it was turned off by usb_disable_device. */
2000 	usb_enable_ltm(dev);
2001 
2002 	/* Now that all the interfaces are set up, register them
2003 	 * to trigger binding of drivers to interfaces.  probe()
2004 	 * routines may install different altsettings and may
2005 	 * claim() any interfaces not yet bound.  Many class drivers
2006 	 * need that: CDC, audio, video, etc.
2007 	 */
2008 	for (i = 0; i < nintf; ++i) {
2009 		struct usb_interface *intf = cp->interface[i];
2010 
2011 		dev_dbg(&dev->dev,
2012 			"adding %s (config #%d, interface %d)\n",
2013 			dev_name(&intf->dev), configuration,
2014 			intf->cur_altsetting->desc.bInterfaceNumber);
2015 		device_enable_async_suspend(&intf->dev);
2016 		ret = device_add(&intf->dev);
2017 		if (ret != 0) {
2018 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2019 				dev_name(&intf->dev), ret);
2020 			continue;
2021 		}
2022 		create_intf_ep_devs(intf);
2023 	}
2024 
2025 	usb_autosuspend_device(dev);
2026 	return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(usb_set_configuration);
2029 
2030 static LIST_HEAD(set_config_list);
2031 static DEFINE_SPINLOCK(set_config_lock);
2032 
2033 struct set_config_request {
2034 	struct usb_device	*udev;
2035 	int			config;
2036 	struct work_struct	work;
2037 	struct list_head	node;
2038 };
2039 
2040 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)2041 static void driver_set_config_work(struct work_struct *work)
2042 {
2043 	struct set_config_request *req =
2044 		container_of(work, struct set_config_request, work);
2045 	struct usb_device *udev = req->udev;
2046 
2047 	usb_lock_device(udev);
2048 	spin_lock(&set_config_lock);
2049 	list_del(&req->node);
2050 	spin_unlock(&set_config_lock);
2051 
2052 	if (req->config >= -1)		/* Is req still valid? */
2053 		usb_set_configuration(udev, req->config);
2054 	usb_unlock_device(udev);
2055 	usb_put_dev(udev);
2056 	kfree(req);
2057 }
2058 
2059 /* Cancel pending Set-Config requests for a device whose configuration
2060  * was just changed
2061  */
cancel_async_set_config(struct usb_device * udev)2062 static void cancel_async_set_config(struct usb_device *udev)
2063 {
2064 	struct set_config_request *req;
2065 
2066 	spin_lock(&set_config_lock);
2067 	list_for_each_entry(req, &set_config_list, node) {
2068 		if (req->udev == udev)
2069 			req->config = -999;	/* Mark as cancelled */
2070 	}
2071 	spin_unlock(&set_config_lock);
2072 }
2073 
2074 /**
2075  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2076  * @udev: the device whose configuration is being updated
2077  * @config: the configuration being chosen.
2078  * Context: In process context, must be able to sleep
2079  *
2080  * Device interface drivers are not allowed to change device configurations.
2081  * This is because changing configurations will destroy the interface the
2082  * driver is bound to and create new ones; it would be like a floppy-disk
2083  * driver telling the computer to replace the floppy-disk drive with a
2084  * tape drive!
2085  *
2086  * Still, in certain specialized circumstances the need may arise.  This
2087  * routine gets around the normal restrictions by using a work thread to
2088  * submit the change-config request.
2089  *
2090  * Return: 0 if the request was successfully queued, error code otherwise.
2091  * The caller has no way to know whether the queued request will eventually
2092  * succeed.
2093  */
usb_driver_set_configuration(struct usb_device * udev,int config)2094 int usb_driver_set_configuration(struct usb_device *udev, int config)
2095 {
2096 	struct set_config_request *req;
2097 
2098 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2099 	if (!req)
2100 		return -ENOMEM;
2101 	req->udev = udev;
2102 	req->config = config;
2103 	INIT_WORK(&req->work, driver_set_config_work);
2104 
2105 	spin_lock(&set_config_lock);
2106 	list_add(&req->node, &set_config_list);
2107 	spin_unlock(&set_config_lock);
2108 
2109 	usb_get_dev(udev);
2110 	schedule_work(&req->work);
2111 	return 0;
2112 }
2113 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2114 
2115 /**
2116  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2117  * @hdr: the place to put the results of the parsing
2118  * @intf: the interface for which parsing is requested
2119  * @buffer: pointer to the extra headers to be parsed
2120  * @buflen: length of the extra headers
2121  *
2122  * This evaluates the extra headers present in CDC devices which
2123  * bind the interfaces for data and control and provide details
2124  * about the capabilities of the device.
2125  *
2126  * Return: number of descriptors parsed or -EINVAL
2127  * if the header is contradictory beyond salvage
2128  */
2129 
cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr,struct usb_interface * intf,u8 * buffer,int buflen)2130 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2131 				struct usb_interface *intf,
2132 				u8 *buffer,
2133 				int buflen)
2134 {
2135 	/* duplicates are ignored */
2136 	struct usb_cdc_union_desc *union_header = NULL;
2137 
2138 	/* duplicates are not tolerated */
2139 	struct usb_cdc_header_desc *header = NULL;
2140 	struct usb_cdc_ether_desc *ether = NULL;
2141 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2142 	struct usb_cdc_mdlm_desc *desc = NULL;
2143 
2144 	unsigned int elength;
2145 	int cnt = 0;
2146 
2147 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2148 	hdr->phonet_magic_present = false;
2149 	while (buflen > 0) {
2150 		elength = buffer[0];
2151 		if (!elength) {
2152 			dev_err(&intf->dev, "skipping garbage byte\n");
2153 			elength = 1;
2154 			goto next_desc;
2155 		}
2156 		if ((buflen < elength) || (elength < 3)) {
2157 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2158 			break;
2159 		}
2160 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2161 			dev_err(&intf->dev, "skipping garbage\n");
2162 			goto next_desc;
2163 		}
2164 
2165 		switch (buffer[2]) {
2166 		case USB_CDC_UNION_TYPE: /* we've found it */
2167 			if (elength < sizeof(struct usb_cdc_union_desc))
2168 				goto next_desc;
2169 			if (union_header) {
2170 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2171 				goto next_desc;
2172 			}
2173 			union_header = (struct usb_cdc_union_desc *)buffer;
2174 			break;
2175 		case USB_CDC_COUNTRY_TYPE:
2176 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2177 				goto next_desc;
2178 			hdr->usb_cdc_country_functional_desc =
2179 				(struct usb_cdc_country_functional_desc *)buffer;
2180 			break;
2181 		case USB_CDC_HEADER_TYPE:
2182 			if (elength != sizeof(struct usb_cdc_header_desc))
2183 				goto next_desc;
2184 			if (header)
2185 				return -EINVAL;
2186 			header = (struct usb_cdc_header_desc *)buffer;
2187 			break;
2188 		case USB_CDC_ACM_TYPE:
2189 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2190 				goto next_desc;
2191 			hdr->usb_cdc_acm_descriptor =
2192 				(struct usb_cdc_acm_descriptor *)buffer;
2193 			break;
2194 		case USB_CDC_ETHERNET_TYPE:
2195 			if (elength != sizeof(struct usb_cdc_ether_desc))
2196 				goto next_desc;
2197 			if (ether)
2198 				return -EINVAL;
2199 			ether = (struct usb_cdc_ether_desc *)buffer;
2200 			break;
2201 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2202 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2203 				goto next_desc;
2204 			hdr->usb_cdc_call_mgmt_descriptor =
2205 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2206 			break;
2207 		case USB_CDC_DMM_TYPE:
2208 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2209 				goto next_desc;
2210 			hdr->usb_cdc_dmm_desc =
2211 				(struct usb_cdc_dmm_desc *)buffer;
2212 			break;
2213 		case USB_CDC_MDLM_TYPE:
2214 			if (elength < sizeof(struct usb_cdc_mdlm_desc))
2215 				goto next_desc;
2216 			if (desc)
2217 				return -EINVAL;
2218 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2219 			break;
2220 		case USB_CDC_MDLM_DETAIL_TYPE:
2221 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2222 				goto next_desc;
2223 			if (detail)
2224 				return -EINVAL;
2225 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2226 			break;
2227 		case USB_CDC_NCM_TYPE:
2228 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2229 				goto next_desc;
2230 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2231 			break;
2232 		case USB_CDC_MBIM_TYPE:
2233 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2234 				goto next_desc;
2235 
2236 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2237 			break;
2238 		case USB_CDC_MBIM_EXTENDED_TYPE:
2239 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2240 				break;
2241 			hdr->usb_cdc_mbim_extended_desc =
2242 				(struct usb_cdc_mbim_extended_desc *)buffer;
2243 			break;
2244 		case CDC_PHONET_MAGIC_NUMBER:
2245 			hdr->phonet_magic_present = true;
2246 			break;
2247 		default:
2248 			/*
2249 			 * there are LOTS more CDC descriptors that
2250 			 * could legitimately be found here.
2251 			 */
2252 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2253 					buffer[2], elength);
2254 			goto next_desc;
2255 		}
2256 		cnt++;
2257 next_desc:
2258 		buflen -= elength;
2259 		buffer += elength;
2260 	}
2261 	hdr->usb_cdc_union_desc = union_header;
2262 	hdr->usb_cdc_header_desc = header;
2263 	hdr->usb_cdc_mdlm_detail_desc = detail;
2264 	hdr->usb_cdc_mdlm_desc = desc;
2265 	hdr->usb_cdc_ether_desc = ether;
2266 	return cnt;
2267 }
2268 
2269 EXPORT_SYMBOL(cdc_parse_cdc_header);
2270