1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/sched/signal.h>
23 #include <linux/uio.h>
24 #include <asm/unaligned.h>
25
26 #include <linux/usb/composite.h>
27 #include <linux/usb/functionfs.h>
28
29 #include <linux/aio.h>
30 #include <linux/mmu_context.h>
31 #include <linux/poll.h>
32 #include <linux/eventfd.h>
33
34 #include "u_fs.h"
35 #include "u_f.h"
36 #include "u_os_desc.h"
37 #include "configfs.h"
38
39 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
40
41 /* Reference counter handling */
42 static void ffs_data_get(struct ffs_data *ffs);
43 static void ffs_data_put(struct ffs_data *ffs);
44 /* Creates new ffs_data object. */
45 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
46 __attribute__((malloc));
47
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57
58
59 /* The function structure ***************************************************/
60
61 struct ffs_ep;
62
63 struct ffs_function {
64 struct usb_configuration *conf;
65 struct usb_gadget *gadget;
66 struct ffs_data *ffs;
67
68 struct ffs_ep *eps;
69 u8 eps_revmap[16];
70 short *interfaces_nums;
71
72 struct usb_function function;
73 };
74
75
ffs_func_from_usb(struct usb_function * f)76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 return container_of(f, struct ffs_function, function);
79 }
80
81
82 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 return (enum ffs_setup_state)
86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88
89
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92
93 static int ffs_func_bind(struct usb_configuration *,
94 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 const struct usb_ctrlrequest *);
99 static bool ffs_func_req_match(struct usb_function *,
100 const struct usb_ctrlrequest *,
101 bool config0);
102 static void ffs_func_suspend(struct usb_function *);
103 static void ffs_func_resume(struct usb_function *);
104
105
106 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
107 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
108
109
110 /* The endpoints structures *************************************************/
111
112 struct ffs_ep {
113 struct usb_ep *ep; /* P: ffs->eps_lock */
114 struct usb_request *req; /* P: epfile->mutex */
115
116 /* [0]: full speed, [1]: high speed, [2]: super speed */
117 struct usb_endpoint_descriptor *descs[3];
118
119 u8 num;
120
121 int status; /* P: epfile->mutex */
122 };
123
124 struct ffs_epfile {
125 /* Protects ep->ep and ep->req. */
126 struct mutex mutex;
127
128 struct ffs_data *ffs;
129 struct ffs_ep *ep; /* P: ffs->eps_lock */
130
131 struct dentry *dentry;
132
133 /*
134 * Buffer for holding data from partial reads which may happen since
135 * we’re rounding user read requests to a multiple of a max packet size.
136 *
137 * The pointer is initialised with NULL value and may be set by
138 * __ffs_epfile_read_data function to point to a temporary buffer.
139 *
140 * In normal operation, calls to __ffs_epfile_read_buffered will consume
141 * data from said buffer and eventually free it. Importantly, while the
142 * function is using the buffer, it sets the pointer to NULL. This is
143 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
144 * can never run concurrently (they are synchronised by epfile->mutex)
145 * so the latter will not assign a new value to the pointer.
146 *
147 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
148 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
149 * value is crux of the synchronisation between ffs_func_eps_disable and
150 * __ffs_epfile_read_data.
151 *
152 * Once __ffs_epfile_read_data is about to finish it will try to set the
153 * pointer back to its old value (as described above), but seeing as the
154 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
155 * the buffer.
156 *
157 * == State transitions ==
158 *
159 * • ptr == NULL: (initial state)
160 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
161 * ◦ __ffs_epfile_read_buffered: nop
162 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
163 * ◦ reading finishes: n/a, not in ‘and reading’ state
164 * • ptr == DROP:
165 * ◦ __ffs_epfile_read_buffer_free: nop
166 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
167 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
168 * ◦ reading finishes: n/a, not in ‘and reading’ state
169 * • ptr == buf:
170 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
172 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
173 * is always called first
174 * ◦ reading finishes: n/a, not in ‘and reading’ state
175 * • ptr == NULL and reading:
176 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
177 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
178 * ◦ __ffs_epfile_read_data: n/a, mutex is held
179 * ◦ reading finishes and …
180 * … all data read: free buf, go to ptr == NULL
181 * … otherwise: go to ptr == buf and reading
182 * • ptr == DROP and reading:
183 * ◦ __ffs_epfile_read_buffer_free: nop
184 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
185 * ◦ __ffs_epfile_read_data: n/a, mutex is held
186 * ◦ reading finishes: free buf, go to ptr == DROP
187 */
188 struct ffs_buffer *read_buffer;
189 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
190
191 char name[5];
192
193 unsigned char in; /* P: ffs->eps_lock */
194 unsigned char isoc; /* P: ffs->eps_lock */
195
196 unsigned char _pad;
197 };
198
199 struct ffs_buffer {
200 size_t length;
201 char *data;
202 char storage[];
203 };
204
205 /* ffs_io_data structure ***************************************************/
206
207 struct ffs_io_data {
208 bool aio;
209 bool read;
210
211 struct kiocb *kiocb;
212 struct iov_iter data;
213 const void *to_free;
214 char *buf;
215
216 struct mm_struct *mm;
217 struct work_struct work;
218
219 struct usb_ep *ep;
220 struct usb_request *req;
221
222 struct ffs_data *ffs;
223 };
224
225 struct ffs_desc_helper {
226 struct ffs_data *ffs;
227 unsigned interfaces_count;
228 unsigned eps_count;
229 };
230
231 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
232 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
233
234 static struct dentry *
235 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
236 const struct file_operations *fops);
237
238 /* Devices management *******************************************************/
239
240 DEFINE_MUTEX(ffs_lock);
241 EXPORT_SYMBOL_GPL(ffs_lock);
242
243 static struct ffs_dev *_ffs_find_dev(const char *name);
244 static struct ffs_dev *_ffs_alloc_dev(void);
245 static void _ffs_free_dev(struct ffs_dev *dev);
246 static void *ffs_acquire_dev(const char *dev_name);
247 static void ffs_release_dev(struct ffs_data *ffs_data);
248 static int ffs_ready(struct ffs_data *ffs);
249 static void ffs_closed(struct ffs_data *ffs);
250
251 /* Misc helper functions ****************************************************/
252
253 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
254 __attribute__((warn_unused_result, nonnull));
255 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
256 __attribute__((warn_unused_result, nonnull));
257
258
259 /* Control file aka ep0 *****************************************************/
260
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)261 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
262 {
263 struct ffs_data *ffs = req->context;
264
265 complete(&ffs->ep0req_completion);
266 }
267
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)268 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
269 __releases(&ffs->ev.waitq.lock)
270 {
271 struct usb_request *req = ffs->ep0req;
272 int ret;
273
274 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
275
276 spin_unlock_irq(&ffs->ev.waitq.lock);
277
278 req->buf = data;
279 req->length = len;
280
281 /*
282 * UDC layer requires to provide a buffer even for ZLP, but should
283 * not use it at all. Let's provide some poisoned pointer to catch
284 * possible bug in the driver.
285 */
286 if (req->buf == NULL)
287 req->buf = (void *)0xDEADBABE;
288
289 reinit_completion(&ffs->ep0req_completion);
290
291 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
292 if (unlikely(ret < 0))
293 return ret;
294
295 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
296 if (unlikely(ret)) {
297 usb_ep_dequeue(ffs->gadget->ep0, req);
298 return -EINTR;
299 }
300
301 ffs->setup_state = FFS_NO_SETUP;
302 return req->status ? req->status : req->actual;
303 }
304
__ffs_ep0_stall(struct ffs_data * ffs)305 static int __ffs_ep0_stall(struct ffs_data *ffs)
306 {
307 if (ffs->ev.can_stall) {
308 pr_vdebug("ep0 stall\n");
309 usb_ep_set_halt(ffs->gadget->ep0);
310 ffs->setup_state = FFS_NO_SETUP;
311 return -EL2HLT;
312 } else {
313 pr_debug("bogus ep0 stall!\n");
314 return -ESRCH;
315 }
316 }
317
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)318 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
319 size_t len, loff_t *ptr)
320 {
321 struct ffs_data *ffs = file->private_data;
322 ssize_t ret;
323 char *data;
324
325 ENTER();
326
327 /* Fast check if setup was canceled */
328 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
329 return -EIDRM;
330
331 /* Acquire mutex */
332 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
333 if (unlikely(ret < 0))
334 return ret;
335
336 /* Check state */
337 switch (ffs->state) {
338 case FFS_READ_DESCRIPTORS:
339 case FFS_READ_STRINGS:
340 /* Copy data */
341 if (unlikely(len < 16)) {
342 ret = -EINVAL;
343 break;
344 }
345
346 data = ffs_prepare_buffer(buf, len);
347 if (IS_ERR(data)) {
348 ret = PTR_ERR(data);
349 break;
350 }
351
352 /* Handle data */
353 if (ffs->state == FFS_READ_DESCRIPTORS) {
354 pr_info("read descriptors\n");
355 ret = __ffs_data_got_descs(ffs, data, len);
356 if (unlikely(ret < 0))
357 break;
358
359 ffs->state = FFS_READ_STRINGS;
360 ret = len;
361 } else {
362 pr_info("read strings\n");
363 ret = __ffs_data_got_strings(ffs, data, len);
364 if (unlikely(ret < 0))
365 break;
366
367 ret = ffs_epfiles_create(ffs);
368 if (unlikely(ret)) {
369 ffs->state = FFS_CLOSING;
370 break;
371 }
372
373 ffs->state = FFS_ACTIVE;
374 mutex_unlock(&ffs->mutex);
375
376 ret = ffs_ready(ffs);
377 if (unlikely(ret < 0)) {
378 ffs->state = FFS_CLOSING;
379 return ret;
380 }
381
382 return len;
383 }
384 break;
385
386 case FFS_ACTIVE:
387 data = NULL;
388 /*
389 * We're called from user space, we can use _irq
390 * rather then _irqsave
391 */
392 spin_lock_irq(&ffs->ev.waitq.lock);
393 switch (ffs_setup_state_clear_cancelled(ffs)) {
394 case FFS_SETUP_CANCELLED:
395 ret = -EIDRM;
396 goto done_spin;
397
398 case FFS_NO_SETUP:
399 ret = -ESRCH;
400 goto done_spin;
401
402 case FFS_SETUP_PENDING:
403 break;
404 }
405
406 /* FFS_SETUP_PENDING */
407 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
408 spin_unlock_irq(&ffs->ev.waitq.lock);
409 ret = __ffs_ep0_stall(ffs);
410 break;
411 }
412
413 /* FFS_SETUP_PENDING and not stall */
414 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
415
416 spin_unlock_irq(&ffs->ev.waitq.lock);
417
418 data = ffs_prepare_buffer(buf, len);
419 if (IS_ERR(data)) {
420 ret = PTR_ERR(data);
421 break;
422 }
423
424 spin_lock_irq(&ffs->ev.waitq.lock);
425
426 /*
427 * We are guaranteed to be still in FFS_ACTIVE state
428 * but the state of setup could have changed from
429 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
430 * to check for that. If that happened we copied data
431 * from user space in vain but it's unlikely.
432 *
433 * For sure we are not in FFS_NO_SETUP since this is
434 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
435 * transition can be performed and it's protected by
436 * mutex.
437 */
438 if (ffs_setup_state_clear_cancelled(ffs) ==
439 FFS_SETUP_CANCELLED) {
440 ret = -EIDRM;
441 done_spin:
442 spin_unlock_irq(&ffs->ev.waitq.lock);
443 } else {
444 /* unlocks spinlock */
445 ret = __ffs_ep0_queue_wait(ffs, data, len);
446 }
447 kfree(data);
448 break;
449
450 default:
451 ret = -EBADFD;
452 break;
453 }
454
455 mutex_unlock(&ffs->mutex);
456 return ret;
457 }
458
459 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)460 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
461 size_t n)
462 __releases(&ffs->ev.waitq.lock)
463 {
464 /*
465 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
466 * size of ffs->ev.types array (which is four) so that's how much space
467 * we reserve.
468 */
469 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
470 const size_t size = n * sizeof *events;
471 unsigned i = 0;
472
473 memset(events, 0, size);
474
475 do {
476 events[i].type = ffs->ev.types[i];
477 if (events[i].type == FUNCTIONFS_SETUP) {
478 events[i].u.setup = ffs->ev.setup;
479 ffs->setup_state = FFS_SETUP_PENDING;
480 }
481 } while (++i < n);
482
483 ffs->ev.count -= n;
484 if (ffs->ev.count)
485 memmove(ffs->ev.types, ffs->ev.types + n,
486 ffs->ev.count * sizeof *ffs->ev.types);
487
488 spin_unlock_irq(&ffs->ev.waitq.lock);
489 mutex_unlock(&ffs->mutex);
490
491 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
492 }
493
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)494 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
495 size_t len, loff_t *ptr)
496 {
497 struct ffs_data *ffs = file->private_data;
498 char *data = NULL;
499 size_t n;
500 int ret;
501
502 ENTER();
503
504 /* Fast check if setup was canceled */
505 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
506 return -EIDRM;
507
508 /* Acquire mutex */
509 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
510 if (unlikely(ret < 0))
511 return ret;
512
513 /* Check state */
514 if (ffs->state != FFS_ACTIVE) {
515 ret = -EBADFD;
516 goto done_mutex;
517 }
518
519 /*
520 * We're called from user space, we can use _irq rather then
521 * _irqsave
522 */
523 spin_lock_irq(&ffs->ev.waitq.lock);
524
525 switch (ffs_setup_state_clear_cancelled(ffs)) {
526 case FFS_SETUP_CANCELLED:
527 ret = -EIDRM;
528 break;
529
530 case FFS_NO_SETUP:
531 n = len / sizeof(struct usb_functionfs_event);
532 if (unlikely(!n)) {
533 ret = -EINVAL;
534 break;
535 }
536
537 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
538 ret = -EAGAIN;
539 break;
540 }
541
542 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
543 ffs->ev.count)) {
544 ret = -EINTR;
545 break;
546 }
547
548 /* unlocks spinlock */
549 return __ffs_ep0_read_events(ffs, buf,
550 min(n, (size_t)ffs->ev.count));
551
552 case FFS_SETUP_PENDING:
553 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
554 spin_unlock_irq(&ffs->ev.waitq.lock);
555 ret = __ffs_ep0_stall(ffs);
556 goto done_mutex;
557 }
558
559 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
560
561 spin_unlock_irq(&ffs->ev.waitq.lock);
562
563 if (likely(len)) {
564 data = kmalloc(len, GFP_KERNEL);
565 if (unlikely(!data)) {
566 ret = -ENOMEM;
567 goto done_mutex;
568 }
569 }
570
571 spin_lock_irq(&ffs->ev.waitq.lock);
572
573 /* See ffs_ep0_write() */
574 if (ffs_setup_state_clear_cancelled(ffs) ==
575 FFS_SETUP_CANCELLED) {
576 ret = -EIDRM;
577 break;
578 }
579
580 /* unlocks spinlock */
581 ret = __ffs_ep0_queue_wait(ffs, data, len);
582 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
583 ret = -EFAULT;
584 goto done_mutex;
585
586 default:
587 ret = -EBADFD;
588 break;
589 }
590
591 spin_unlock_irq(&ffs->ev.waitq.lock);
592 done_mutex:
593 mutex_unlock(&ffs->mutex);
594 kfree(data);
595 return ret;
596 }
597
ffs_ep0_open(struct inode * inode,struct file * file)598 static int ffs_ep0_open(struct inode *inode, struct file *file)
599 {
600 struct ffs_data *ffs = inode->i_private;
601
602 ENTER();
603
604 if (unlikely(ffs->state == FFS_CLOSING))
605 return -EBUSY;
606
607 file->private_data = ffs;
608 ffs_data_opened(ffs);
609
610 return 0;
611 }
612
ffs_ep0_release(struct inode * inode,struct file * file)613 static int ffs_ep0_release(struct inode *inode, struct file *file)
614 {
615 struct ffs_data *ffs = file->private_data;
616
617 ENTER();
618
619 ffs_data_closed(ffs);
620
621 return 0;
622 }
623
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)624 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
625 {
626 struct ffs_data *ffs = file->private_data;
627 struct usb_gadget *gadget = ffs->gadget;
628 long ret;
629
630 ENTER();
631
632 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
633 struct ffs_function *func = ffs->func;
634 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
635 } else if (gadget && gadget->ops->ioctl) {
636 ret = gadget->ops->ioctl(gadget, code, value);
637 } else {
638 ret = -ENOTTY;
639 }
640
641 return ret;
642 }
643
ffs_ep0_poll(struct file * file,poll_table * wait)644 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
645 {
646 struct ffs_data *ffs = file->private_data;
647 __poll_t mask = EPOLLWRNORM;
648 int ret;
649
650 poll_wait(file, &ffs->ev.waitq, wait);
651
652 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
653 if (unlikely(ret < 0))
654 return mask;
655
656 switch (ffs->state) {
657 case FFS_READ_DESCRIPTORS:
658 case FFS_READ_STRINGS:
659 mask |= EPOLLOUT;
660 break;
661
662 case FFS_ACTIVE:
663 switch (ffs->setup_state) {
664 case FFS_NO_SETUP:
665 if (ffs->ev.count)
666 mask |= EPOLLIN;
667 break;
668
669 case FFS_SETUP_PENDING:
670 case FFS_SETUP_CANCELLED:
671 mask |= (EPOLLIN | EPOLLOUT);
672 break;
673 }
674 case FFS_CLOSING:
675 break;
676 case FFS_DEACTIVATED:
677 break;
678 }
679
680 mutex_unlock(&ffs->mutex);
681
682 return mask;
683 }
684
685 static const struct file_operations ffs_ep0_operations = {
686 .llseek = no_llseek,
687
688 .open = ffs_ep0_open,
689 .write = ffs_ep0_write,
690 .read = ffs_ep0_read,
691 .release = ffs_ep0_release,
692 .unlocked_ioctl = ffs_ep0_ioctl,
693 .poll = ffs_ep0_poll,
694 };
695
696
697 /* "Normal" endpoints operations ********************************************/
698
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)699 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
700 {
701 ENTER();
702 if (likely(req->context)) {
703 struct ffs_ep *ep = _ep->driver_data;
704 ep->status = req->status ? req->status : req->actual;
705 complete(req->context);
706 }
707 }
708
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)709 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
710 {
711 ssize_t ret = copy_to_iter(data, data_len, iter);
712 if (likely(ret == data_len))
713 return ret;
714
715 if (unlikely(iov_iter_count(iter)))
716 return -EFAULT;
717
718 /*
719 * Dear user space developer!
720 *
721 * TL;DR: To stop getting below error message in your kernel log, change
722 * user space code using functionfs to align read buffers to a max
723 * packet size.
724 *
725 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
726 * packet size. When unaligned buffer is passed to functionfs, it
727 * internally uses a larger, aligned buffer so that such UDCs are happy.
728 *
729 * Unfortunately, this means that host may send more data than was
730 * requested in read(2) system call. f_fs doesn’t know what to do with
731 * that excess data so it simply drops it.
732 *
733 * Was the buffer aligned in the first place, no such problem would
734 * happen.
735 *
736 * Data may be dropped only in AIO reads. Synchronous reads are handled
737 * by splitting a request into multiple parts. This splitting may still
738 * be a problem though so it’s likely best to align the buffer
739 * regardless of it being AIO or not..
740 *
741 * This only affects OUT endpoints, i.e. reading data with a read(2),
742 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
743 * affected.
744 */
745 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
746 "Align read buffer size to max packet size to avoid the problem.\n",
747 data_len, ret);
748
749 return ret;
750 }
751
ffs_user_copy_worker(struct work_struct * work)752 static void ffs_user_copy_worker(struct work_struct *work)
753 {
754 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
755 work);
756 int ret = io_data->req->status ? io_data->req->status :
757 io_data->req->actual;
758 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
759
760 if (io_data->read && ret > 0) {
761 mm_segment_t oldfs = get_fs();
762
763 set_fs(USER_DS);
764 use_mm(io_data->mm);
765 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
766 unuse_mm(io_data->mm);
767 set_fs(oldfs);
768 }
769
770 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
771
772 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
773 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
774
775 usb_ep_free_request(io_data->ep, io_data->req);
776
777 if (io_data->read)
778 kfree(io_data->to_free);
779 kfree(io_data->buf);
780 kfree(io_data);
781 }
782
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)783 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
784 struct usb_request *req)
785 {
786 struct ffs_io_data *io_data = req->context;
787 struct ffs_data *ffs = io_data->ffs;
788
789 ENTER();
790
791 INIT_WORK(&io_data->work, ffs_user_copy_worker);
792 queue_work(ffs->io_completion_wq, &io_data->work);
793 }
794
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)795 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
796 {
797 /*
798 * See comment in struct ffs_epfile for full read_buffer pointer
799 * synchronisation story.
800 */
801 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
802 if (buf && buf != READ_BUFFER_DROP)
803 kfree(buf);
804 }
805
806 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)807 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
808 struct iov_iter *iter)
809 {
810 /*
811 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
812 * the buffer while we are using it. See comment in struct ffs_epfile
813 * for full read_buffer pointer synchronisation story.
814 */
815 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
816 ssize_t ret;
817 if (!buf || buf == READ_BUFFER_DROP)
818 return 0;
819
820 ret = copy_to_iter(buf->data, buf->length, iter);
821 if (buf->length == ret) {
822 kfree(buf);
823 return ret;
824 }
825
826 if (unlikely(iov_iter_count(iter))) {
827 ret = -EFAULT;
828 } else {
829 buf->length -= ret;
830 buf->data += ret;
831 }
832
833 if (cmpxchg(&epfile->read_buffer, NULL, buf))
834 kfree(buf);
835
836 return ret;
837 }
838
839 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)840 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
841 void *data, int data_len,
842 struct iov_iter *iter)
843 {
844 struct ffs_buffer *buf;
845
846 ssize_t ret = copy_to_iter(data, data_len, iter);
847 if (likely(data_len == ret))
848 return ret;
849
850 if (unlikely(iov_iter_count(iter)))
851 return -EFAULT;
852
853 /* See ffs_copy_to_iter for more context. */
854 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
855 data_len, ret);
856
857 data_len -= ret;
858 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
859 if (!buf)
860 return -ENOMEM;
861 buf->length = data_len;
862 buf->data = buf->storage;
863 memcpy(buf->storage, data + ret, data_len);
864
865 /*
866 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
867 * ffs_func_eps_disable has been called in the meanwhile). See comment
868 * in struct ffs_epfile for full read_buffer pointer synchronisation
869 * story.
870 */
871 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
872 kfree(buf);
873
874 return ret;
875 }
876
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)877 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
878 {
879 struct ffs_epfile *epfile = file->private_data;
880 struct usb_request *req;
881 struct ffs_ep *ep;
882 char *data = NULL;
883 ssize_t ret, data_len = -EINVAL;
884 int halt;
885
886 /* Are we still active? */
887 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
888 return -ENODEV;
889
890 /* Wait for endpoint to be enabled */
891 ep = epfile->ep;
892 if (!ep) {
893 if (file->f_flags & O_NONBLOCK)
894 return -EAGAIN;
895
896 ret = wait_event_interruptible(
897 epfile->ffs->wait, (ep = epfile->ep));
898 if (ret)
899 return -EINTR;
900 }
901
902 /* Do we halt? */
903 halt = (!io_data->read == !epfile->in);
904 if (halt && epfile->isoc)
905 return -EINVAL;
906
907 /* We will be using request and read_buffer */
908 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
909 if (unlikely(ret))
910 goto error;
911
912 /* Allocate & copy */
913 if (!halt) {
914 struct usb_gadget *gadget;
915
916 /*
917 * Do we have buffered data from previous partial read? Check
918 * that for synchronous case only because we do not have
919 * facility to ‘wake up’ a pending asynchronous read and push
920 * buffered data to it which we would need to make things behave
921 * consistently.
922 */
923 if (!io_data->aio && io_data->read) {
924 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
925 if (ret)
926 goto error_mutex;
927 }
928
929 /*
930 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
931 * before the waiting completes, so do not assign to 'gadget'
932 * earlier
933 */
934 gadget = epfile->ffs->gadget;
935
936 spin_lock_irq(&epfile->ffs->eps_lock);
937 /* In the meantime, endpoint got disabled or changed. */
938 if (epfile->ep != ep) {
939 ret = -ESHUTDOWN;
940 goto error_lock;
941 }
942 data_len = iov_iter_count(&io_data->data);
943 /*
944 * Controller may require buffer size to be aligned to
945 * maxpacketsize of an out endpoint.
946 */
947 if (io_data->read)
948 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
949 spin_unlock_irq(&epfile->ffs->eps_lock);
950
951 data = kmalloc(data_len, GFP_KERNEL);
952 if (unlikely(!data)) {
953 ret = -ENOMEM;
954 goto error_mutex;
955 }
956 if (!io_data->read &&
957 !copy_from_iter_full(data, data_len, &io_data->data)) {
958 ret = -EFAULT;
959 goto error_mutex;
960 }
961 }
962
963 spin_lock_irq(&epfile->ffs->eps_lock);
964
965 if (epfile->ep != ep) {
966 /* In the meantime, endpoint got disabled or changed. */
967 ret = -ESHUTDOWN;
968 } else if (halt) {
969 ret = usb_ep_set_halt(ep->ep);
970 if (!ret)
971 ret = -EBADMSG;
972 } else if (unlikely(data_len == -EINVAL)) {
973 /*
974 * Sanity Check: even though data_len can't be used
975 * uninitialized at the time I write this comment, some
976 * compilers complain about this situation.
977 * In order to keep the code clean from warnings, data_len is
978 * being initialized to -EINVAL during its declaration, which
979 * means we can't rely on compiler anymore to warn no future
980 * changes won't result in data_len being used uninitialized.
981 * For such reason, we're adding this redundant sanity check
982 * here.
983 */
984 WARN(1, "%s: data_len == -EINVAL\n", __func__);
985 ret = -EINVAL;
986 } else if (!io_data->aio) {
987 DECLARE_COMPLETION_ONSTACK(done);
988 bool interrupted = false;
989
990 req = ep->req;
991 req->buf = data;
992 req->length = data_len;
993
994 req->context = &done;
995 req->complete = ffs_epfile_io_complete;
996
997 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
998 if (unlikely(ret < 0))
999 goto error_lock;
1000
1001 spin_unlock_irq(&epfile->ffs->eps_lock);
1002
1003 if (unlikely(wait_for_completion_interruptible(&done))) {
1004 /*
1005 * To avoid race condition with ffs_epfile_io_complete,
1006 * dequeue the request first then check
1007 * status. usb_ep_dequeue API should guarantee no race
1008 * condition with req->complete callback.
1009 */
1010 usb_ep_dequeue(ep->ep, req);
1011 wait_for_completion(&done);
1012 interrupted = ep->status < 0;
1013 }
1014
1015 if (interrupted)
1016 ret = -EINTR;
1017 else if (io_data->read && ep->status > 0)
1018 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1019 &io_data->data);
1020 else
1021 ret = ep->status;
1022 goto error_mutex;
1023 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1024 ret = -ENOMEM;
1025 } else {
1026 req->buf = data;
1027 req->length = data_len;
1028
1029 io_data->buf = data;
1030 io_data->ep = ep->ep;
1031 io_data->req = req;
1032 io_data->ffs = epfile->ffs;
1033
1034 req->context = io_data;
1035 req->complete = ffs_epfile_async_io_complete;
1036
1037 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1038 if (unlikely(ret)) {
1039 io_data->req = NULL;
1040 usb_ep_free_request(ep->ep, req);
1041 goto error_lock;
1042 }
1043
1044 ret = -EIOCBQUEUED;
1045 /*
1046 * Do not kfree the buffer in this function. It will be freed
1047 * by ffs_user_copy_worker.
1048 */
1049 data = NULL;
1050 }
1051
1052 error_lock:
1053 spin_unlock_irq(&epfile->ffs->eps_lock);
1054 error_mutex:
1055 mutex_unlock(&epfile->mutex);
1056 error:
1057 kfree(data);
1058 return ret;
1059 }
1060
1061 static int
ffs_epfile_open(struct inode * inode,struct file * file)1062 ffs_epfile_open(struct inode *inode, struct file *file)
1063 {
1064 struct ffs_epfile *epfile = inode->i_private;
1065
1066 ENTER();
1067
1068 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1069 return -ENODEV;
1070
1071 file->private_data = epfile;
1072 ffs_data_opened(epfile->ffs);
1073
1074 return 0;
1075 }
1076
ffs_aio_cancel(struct kiocb * kiocb)1077 static int ffs_aio_cancel(struct kiocb *kiocb)
1078 {
1079 struct ffs_io_data *io_data = kiocb->private;
1080 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1081 unsigned long flags;
1082 int value;
1083
1084 ENTER();
1085
1086 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1087
1088 if (likely(io_data && io_data->ep && io_data->req))
1089 value = usb_ep_dequeue(io_data->ep, io_data->req);
1090 else
1091 value = -EINVAL;
1092
1093 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1094
1095 return value;
1096 }
1097
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1098 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1099 {
1100 struct ffs_io_data io_data, *p = &io_data;
1101 ssize_t res;
1102
1103 ENTER();
1104
1105 if (!is_sync_kiocb(kiocb)) {
1106 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1107 if (unlikely(!p))
1108 return -ENOMEM;
1109 p->aio = true;
1110 } else {
1111 memset(p, 0, sizeof(*p));
1112 p->aio = false;
1113 }
1114
1115 p->read = false;
1116 p->kiocb = kiocb;
1117 p->data = *from;
1118 p->mm = current->mm;
1119
1120 kiocb->private = p;
1121
1122 if (p->aio)
1123 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1124
1125 res = ffs_epfile_io(kiocb->ki_filp, p);
1126 if (res == -EIOCBQUEUED)
1127 return res;
1128 if (p->aio)
1129 kfree(p);
1130 else
1131 *from = p->data;
1132 return res;
1133 }
1134
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1135 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1136 {
1137 struct ffs_io_data io_data, *p = &io_data;
1138 ssize_t res;
1139
1140 ENTER();
1141
1142 if (!is_sync_kiocb(kiocb)) {
1143 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1144 if (unlikely(!p))
1145 return -ENOMEM;
1146 p->aio = true;
1147 } else {
1148 memset(p, 0, sizeof(*p));
1149 p->aio = false;
1150 }
1151
1152 p->read = true;
1153 p->kiocb = kiocb;
1154 if (p->aio) {
1155 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1156 if (!p->to_free) {
1157 kfree(p);
1158 return -ENOMEM;
1159 }
1160 } else {
1161 p->data = *to;
1162 p->to_free = NULL;
1163 }
1164 p->mm = current->mm;
1165
1166 kiocb->private = p;
1167
1168 if (p->aio)
1169 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1170
1171 res = ffs_epfile_io(kiocb->ki_filp, p);
1172 if (res == -EIOCBQUEUED)
1173 return res;
1174
1175 if (p->aio) {
1176 kfree(p->to_free);
1177 kfree(p);
1178 } else {
1179 *to = p->data;
1180 }
1181 return res;
1182 }
1183
1184 static int
ffs_epfile_release(struct inode * inode,struct file * file)1185 ffs_epfile_release(struct inode *inode, struct file *file)
1186 {
1187 struct ffs_epfile *epfile = inode->i_private;
1188
1189 ENTER();
1190
1191 __ffs_epfile_read_buffer_free(epfile);
1192 ffs_data_closed(epfile->ffs);
1193
1194 return 0;
1195 }
1196
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1197 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1198 unsigned long value)
1199 {
1200 struct ffs_epfile *epfile = file->private_data;
1201 struct ffs_ep *ep;
1202 int ret;
1203
1204 ENTER();
1205
1206 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1207 return -ENODEV;
1208
1209 /* Wait for endpoint to be enabled */
1210 ep = epfile->ep;
1211 if (!ep) {
1212 if (file->f_flags & O_NONBLOCK)
1213 return -EAGAIN;
1214
1215 ret = wait_event_interruptible(
1216 epfile->ffs->wait, (ep = epfile->ep));
1217 if (ret)
1218 return -EINTR;
1219 }
1220
1221 spin_lock_irq(&epfile->ffs->eps_lock);
1222
1223 /* In the meantime, endpoint got disabled or changed. */
1224 if (epfile->ep != ep) {
1225 spin_unlock_irq(&epfile->ffs->eps_lock);
1226 return -ESHUTDOWN;
1227 }
1228
1229 switch (code) {
1230 case FUNCTIONFS_FIFO_STATUS:
1231 ret = usb_ep_fifo_status(epfile->ep->ep);
1232 break;
1233 case FUNCTIONFS_FIFO_FLUSH:
1234 usb_ep_fifo_flush(epfile->ep->ep);
1235 ret = 0;
1236 break;
1237 case FUNCTIONFS_CLEAR_HALT:
1238 ret = usb_ep_clear_halt(epfile->ep->ep);
1239 break;
1240 case FUNCTIONFS_ENDPOINT_REVMAP:
1241 ret = epfile->ep->num;
1242 break;
1243 case FUNCTIONFS_ENDPOINT_DESC:
1244 {
1245 int desc_idx;
1246 struct usb_endpoint_descriptor *desc;
1247
1248 switch (epfile->ffs->gadget->speed) {
1249 case USB_SPEED_SUPER:
1250 desc_idx = 2;
1251 break;
1252 case USB_SPEED_HIGH:
1253 desc_idx = 1;
1254 break;
1255 default:
1256 desc_idx = 0;
1257 }
1258 desc = epfile->ep->descs[desc_idx];
1259
1260 spin_unlock_irq(&epfile->ffs->eps_lock);
1261 ret = copy_to_user((void __user *)value, desc, desc->bLength);
1262 if (ret)
1263 ret = -EFAULT;
1264 return ret;
1265 }
1266 default:
1267 ret = -ENOTTY;
1268 }
1269 spin_unlock_irq(&epfile->ffs->eps_lock);
1270
1271 return ret;
1272 }
1273
1274 #ifdef CONFIG_COMPAT
ffs_epfile_compat_ioctl(struct file * file,unsigned code,unsigned long value)1275 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1276 unsigned long value)
1277 {
1278 return ffs_epfile_ioctl(file, code, value);
1279 }
1280 #endif
1281
1282 static const struct file_operations ffs_epfile_operations = {
1283 .llseek = no_llseek,
1284
1285 .open = ffs_epfile_open,
1286 .write_iter = ffs_epfile_write_iter,
1287 .read_iter = ffs_epfile_read_iter,
1288 .release = ffs_epfile_release,
1289 .unlocked_ioctl = ffs_epfile_ioctl,
1290 #ifdef CONFIG_COMPAT
1291 .compat_ioctl = ffs_epfile_compat_ioctl,
1292 #endif
1293 };
1294
1295
1296 /* File system and super block operations ***********************************/
1297
1298 /*
1299 * Mounting the file system creates a controller file, used first for
1300 * function configuration then later for event monitoring.
1301 */
1302
1303 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1304 ffs_sb_make_inode(struct super_block *sb, void *data,
1305 const struct file_operations *fops,
1306 const struct inode_operations *iops,
1307 struct ffs_file_perms *perms)
1308 {
1309 struct inode *inode;
1310
1311 ENTER();
1312
1313 inode = new_inode(sb);
1314
1315 if (likely(inode)) {
1316 struct timespec64 ts = current_time(inode);
1317
1318 inode->i_ino = get_next_ino();
1319 inode->i_mode = perms->mode;
1320 inode->i_uid = perms->uid;
1321 inode->i_gid = perms->gid;
1322 inode->i_atime = ts;
1323 inode->i_mtime = ts;
1324 inode->i_ctime = ts;
1325 inode->i_private = data;
1326 if (fops)
1327 inode->i_fop = fops;
1328 if (iops)
1329 inode->i_op = iops;
1330 }
1331
1332 return inode;
1333 }
1334
1335 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1336 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1337 const char *name, void *data,
1338 const struct file_operations *fops)
1339 {
1340 struct ffs_data *ffs = sb->s_fs_info;
1341 struct dentry *dentry;
1342 struct inode *inode;
1343
1344 ENTER();
1345
1346 dentry = d_alloc_name(sb->s_root, name);
1347 if (unlikely(!dentry))
1348 return NULL;
1349
1350 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1351 if (unlikely(!inode)) {
1352 dput(dentry);
1353 return NULL;
1354 }
1355
1356 d_add(dentry, inode);
1357 return dentry;
1358 }
1359
1360 /* Super block */
1361 static const struct super_operations ffs_sb_operations = {
1362 .statfs = simple_statfs,
1363 .drop_inode = generic_delete_inode,
1364 };
1365
1366 struct ffs_sb_fill_data {
1367 struct ffs_file_perms perms;
1368 umode_t root_mode;
1369 const char *dev_name;
1370 bool no_disconnect;
1371 struct ffs_data *ffs_data;
1372 };
1373
ffs_sb_fill(struct super_block * sb,void * _data,int silent)1374 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1375 {
1376 struct ffs_sb_fill_data *data = _data;
1377 struct inode *inode;
1378 struct ffs_data *ffs = data->ffs_data;
1379
1380 ENTER();
1381
1382 ffs->sb = sb;
1383 data->ffs_data = NULL;
1384 sb->s_fs_info = ffs;
1385 sb->s_blocksize = PAGE_SIZE;
1386 sb->s_blocksize_bits = PAGE_SHIFT;
1387 sb->s_magic = FUNCTIONFS_MAGIC;
1388 sb->s_op = &ffs_sb_operations;
1389 sb->s_time_gran = 1;
1390
1391 /* Root inode */
1392 data->perms.mode = data->root_mode;
1393 inode = ffs_sb_make_inode(sb, NULL,
1394 &simple_dir_operations,
1395 &simple_dir_inode_operations,
1396 &data->perms);
1397 sb->s_root = d_make_root(inode);
1398 if (unlikely(!sb->s_root))
1399 return -ENOMEM;
1400
1401 /* EP0 file */
1402 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1403 &ffs_ep0_operations)))
1404 return -ENOMEM;
1405
1406 return 0;
1407 }
1408
ffs_fs_parse_opts(struct ffs_sb_fill_data * data,char * opts)1409 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1410 {
1411 ENTER();
1412
1413 if (!opts || !*opts)
1414 return 0;
1415
1416 for (;;) {
1417 unsigned long value;
1418 char *eq, *comma;
1419
1420 /* Option limit */
1421 comma = strchr(opts, ',');
1422 if (comma)
1423 *comma = 0;
1424
1425 /* Value limit */
1426 eq = strchr(opts, '=');
1427 if (unlikely(!eq)) {
1428 pr_err("'=' missing in %s\n", opts);
1429 return -EINVAL;
1430 }
1431 *eq = 0;
1432
1433 /* Parse value */
1434 if (kstrtoul(eq + 1, 0, &value)) {
1435 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1436 return -EINVAL;
1437 }
1438
1439 /* Interpret option */
1440 switch (eq - opts) {
1441 case 13:
1442 if (!memcmp(opts, "no_disconnect", 13))
1443 data->no_disconnect = !!value;
1444 else
1445 goto invalid;
1446 break;
1447 case 5:
1448 if (!memcmp(opts, "rmode", 5))
1449 data->root_mode = (value & 0555) | S_IFDIR;
1450 else if (!memcmp(opts, "fmode", 5))
1451 data->perms.mode = (value & 0666) | S_IFREG;
1452 else
1453 goto invalid;
1454 break;
1455
1456 case 4:
1457 if (!memcmp(opts, "mode", 4)) {
1458 data->root_mode = (value & 0555) | S_IFDIR;
1459 data->perms.mode = (value & 0666) | S_IFREG;
1460 } else {
1461 goto invalid;
1462 }
1463 break;
1464
1465 case 3:
1466 if (!memcmp(opts, "uid", 3)) {
1467 data->perms.uid = make_kuid(current_user_ns(), value);
1468 if (!uid_valid(data->perms.uid)) {
1469 pr_err("%s: unmapped value: %lu\n", opts, value);
1470 return -EINVAL;
1471 }
1472 } else if (!memcmp(opts, "gid", 3)) {
1473 data->perms.gid = make_kgid(current_user_ns(), value);
1474 if (!gid_valid(data->perms.gid)) {
1475 pr_err("%s: unmapped value: %lu\n", opts, value);
1476 return -EINVAL;
1477 }
1478 } else {
1479 goto invalid;
1480 }
1481 break;
1482
1483 default:
1484 invalid:
1485 pr_err("%s: invalid option\n", opts);
1486 return -EINVAL;
1487 }
1488
1489 /* Next iteration */
1490 if (!comma)
1491 break;
1492 opts = comma + 1;
1493 }
1494
1495 return 0;
1496 }
1497
1498 /* "mount -t functionfs dev_name /dev/function" ends up here */
1499
1500 static struct dentry *
ffs_fs_mount(struct file_system_type * t,int flags,const char * dev_name,void * opts)1501 ffs_fs_mount(struct file_system_type *t, int flags,
1502 const char *dev_name, void *opts)
1503 {
1504 struct ffs_sb_fill_data data = {
1505 .perms = {
1506 .mode = S_IFREG | 0600,
1507 .uid = GLOBAL_ROOT_UID,
1508 .gid = GLOBAL_ROOT_GID,
1509 },
1510 .root_mode = S_IFDIR | 0500,
1511 .no_disconnect = false,
1512 };
1513 struct dentry *rv;
1514 int ret;
1515 void *ffs_dev;
1516 struct ffs_data *ffs;
1517
1518 ENTER();
1519
1520 ret = ffs_fs_parse_opts(&data, opts);
1521 if (unlikely(ret < 0))
1522 return ERR_PTR(ret);
1523
1524 ffs = ffs_data_new(dev_name);
1525 if (unlikely(!ffs))
1526 return ERR_PTR(-ENOMEM);
1527 ffs->file_perms = data.perms;
1528 ffs->no_disconnect = data.no_disconnect;
1529
1530 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1531 if (unlikely(!ffs->dev_name)) {
1532 ffs_data_put(ffs);
1533 return ERR_PTR(-ENOMEM);
1534 }
1535
1536 ffs_dev = ffs_acquire_dev(dev_name);
1537 if (IS_ERR(ffs_dev)) {
1538 ffs_data_put(ffs);
1539 return ERR_CAST(ffs_dev);
1540 }
1541 ffs->private_data = ffs_dev;
1542 data.ffs_data = ffs;
1543
1544 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1545 if (IS_ERR(rv) && data.ffs_data) {
1546 ffs_release_dev(data.ffs_data);
1547 ffs_data_put(data.ffs_data);
1548 }
1549 return rv;
1550 }
1551
1552 static void
ffs_fs_kill_sb(struct super_block * sb)1553 ffs_fs_kill_sb(struct super_block *sb)
1554 {
1555 ENTER();
1556
1557 kill_litter_super(sb);
1558 if (sb->s_fs_info) {
1559 ffs_release_dev(sb->s_fs_info);
1560 ffs_data_closed(sb->s_fs_info);
1561 }
1562 }
1563
1564 static struct file_system_type ffs_fs_type = {
1565 .owner = THIS_MODULE,
1566 .name = "functionfs",
1567 .mount = ffs_fs_mount,
1568 .kill_sb = ffs_fs_kill_sb,
1569 };
1570 MODULE_ALIAS_FS("functionfs");
1571
1572
1573 /* Driver's main init/cleanup functions *************************************/
1574
functionfs_init(void)1575 static int functionfs_init(void)
1576 {
1577 int ret;
1578
1579 ENTER();
1580
1581 ret = register_filesystem(&ffs_fs_type);
1582 if (likely(!ret))
1583 pr_info("file system registered\n");
1584 else
1585 pr_err("failed registering file system (%d)\n", ret);
1586
1587 return ret;
1588 }
1589
functionfs_cleanup(void)1590 static void functionfs_cleanup(void)
1591 {
1592 ENTER();
1593
1594 pr_info("unloading\n");
1595 unregister_filesystem(&ffs_fs_type);
1596 }
1597
1598
1599 /* ffs_data and ffs_function construction and destruction code **************/
1600
1601 static void ffs_data_clear(struct ffs_data *ffs);
1602 static void ffs_data_reset(struct ffs_data *ffs);
1603
ffs_data_get(struct ffs_data * ffs)1604 static void ffs_data_get(struct ffs_data *ffs)
1605 {
1606 ENTER();
1607
1608 refcount_inc(&ffs->ref);
1609 }
1610
ffs_data_opened(struct ffs_data * ffs)1611 static void ffs_data_opened(struct ffs_data *ffs)
1612 {
1613 ENTER();
1614
1615 refcount_inc(&ffs->ref);
1616 if (atomic_add_return(1, &ffs->opened) == 1 &&
1617 ffs->state == FFS_DEACTIVATED) {
1618 ffs->state = FFS_CLOSING;
1619 ffs_data_reset(ffs);
1620 }
1621 }
1622
ffs_data_put(struct ffs_data * ffs)1623 static void ffs_data_put(struct ffs_data *ffs)
1624 {
1625 ENTER();
1626
1627 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1628 pr_info("%s(): freeing\n", __func__);
1629 ffs_data_clear(ffs);
1630 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1631 waitqueue_active(&ffs->ep0req_completion.wait) ||
1632 waitqueue_active(&ffs->wait));
1633 destroy_workqueue(ffs->io_completion_wq);
1634 kfree(ffs->dev_name);
1635 kfree(ffs);
1636 }
1637 }
1638
ffs_data_closed(struct ffs_data * ffs)1639 static void ffs_data_closed(struct ffs_data *ffs)
1640 {
1641 ENTER();
1642
1643 if (atomic_dec_and_test(&ffs->opened)) {
1644 if (ffs->no_disconnect) {
1645 ffs->state = FFS_DEACTIVATED;
1646 if (ffs->epfiles) {
1647 ffs_epfiles_destroy(ffs->epfiles,
1648 ffs->eps_count);
1649 ffs->epfiles = NULL;
1650 }
1651 if (ffs->setup_state == FFS_SETUP_PENDING)
1652 __ffs_ep0_stall(ffs);
1653 } else {
1654 ffs->state = FFS_CLOSING;
1655 ffs_data_reset(ffs);
1656 }
1657 }
1658 if (atomic_read(&ffs->opened) < 0) {
1659 ffs->state = FFS_CLOSING;
1660 ffs_data_reset(ffs);
1661 }
1662
1663 ffs_data_put(ffs);
1664 }
1665
ffs_data_new(const char * dev_name)1666 static struct ffs_data *ffs_data_new(const char *dev_name)
1667 {
1668 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1669 if (unlikely(!ffs))
1670 return NULL;
1671
1672 ENTER();
1673
1674 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1675 if (!ffs->io_completion_wq) {
1676 kfree(ffs);
1677 return NULL;
1678 }
1679
1680 refcount_set(&ffs->ref, 1);
1681 atomic_set(&ffs->opened, 0);
1682 ffs->state = FFS_READ_DESCRIPTORS;
1683 mutex_init(&ffs->mutex);
1684 spin_lock_init(&ffs->eps_lock);
1685 init_waitqueue_head(&ffs->ev.waitq);
1686 init_waitqueue_head(&ffs->wait);
1687 init_completion(&ffs->ep0req_completion);
1688
1689 /* XXX REVISIT need to update it in some places, or do we? */
1690 ffs->ev.can_stall = 1;
1691
1692 return ffs;
1693 }
1694
ffs_data_clear(struct ffs_data * ffs)1695 static void ffs_data_clear(struct ffs_data *ffs)
1696 {
1697 ENTER();
1698
1699 ffs_closed(ffs);
1700
1701 BUG_ON(ffs->gadget);
1702
1703 if (ffs->epfiles)
1704 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1705
1706 if (ffs->ffs_eventfd)
1707 eventfd_ctx_put(ffs->ffs_eventfd);
1708
1709 kfree(ffs->raw_descs_data);
1710 kfree(ffs->raw_strings);
1711 kfree(ffs->stringtabs);
1712 }
1713
ffs_data_reset(struct ffs_data * ffs)1714 static void ffs_data_reset(struct ffs_data *ffs)
1715 {
1716 ENTER();
1717
1718 ffs_data_clear(ffs);
1719
1720 ffs->epfiles = NULL;
1721 ffs->raw_descs_data = NULL;
1722 ffs->raw_descs = NULL;
1723 ffs->raw_strings = NULL;
1724 ffs->stringtabs = NULL;
1725
1726 ffs->raw_descs_length = 0;
1727 ffs->fs_descs_count = 0;
1728 ffs->hs_descs_count = 0;
1729 ffs->ss_descs_count = 0;
1730
1731 ffs->strings_count = 0;
1732 ffs->interfaces_count = 0;
1733 ffs->eps_count = 0;
1734
1735 ffs->ev.count = 0;
1736
1737 ffs->state = FFS_READ_DESCRIPTORS;
1738 ffs->setup_state = FFS_NO_SETUP;
1739 ffs->flags = 0;
1740
1741 ffs->ms_os_descs_ext_prop_count = 0;
1742 ffs->ms_os_descs_ext_prop_name_len = 0;
1743 ffs->ms_os_descs_ext_prop_data_len = 0;
1744 }
1745
1746
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1747 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1748 {
1749 struct usb_gadget_strings **lang;
1750 int first_id;
1751
1752 ENTER();
1753
1754 if (WARN_ON(ffs->state != FFS_ACTIVE
1755 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1756 return -EBADFD;
1757
1758 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1759 if (unlikely(first_id < 0))
1760 return first_id;
1761
1762 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1763 if (unlikely(!ffs->ep0req))
1764 return -ENOMEM;
1765 ffs->ep0req->complete = ffs_ep0_complete;
1766 ffs->ep0req->context = ffs;
1767
1768 lang = ffs->stringtabs;
1769 if (lang) {
1770 for (; *lang; ++lang) {
1771 struct usb_string *str = (*lang)->strings;
1772 int id = first_id;
1773 for (; str->s; ++id, ++str)
1774 str->id = id;
1775 }
1776 }
1777
1778 ffs->gadget = cdev->gadget;
1779 ffs_data_get(ffs);
1780 return 0;
1781 }
1782
functionfs_unbind(struct ffs_data * ffs)1783 static void functionfs_unbind(struct ffs_data *ffs)
1784 {
1785 ENTER();
1786
1787 if (!WARN_ON(!ffs->gadget)) {
1788 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1789 ffs->ep0req = NULL;
1790 ffs->gadget = NULL;
1791 clear_bit(FFS_FL_BOUND, &ffs->flags);
1792 ffs_data_put(ffs);
1793 }
1794 }
1795
ffs_epfiles_create(struct ffs_data * ffs)1796 static int ffs_epfiles_create(struct ffs_data *ffs)
1797 {
1798 struct ffs_epfile *epfile, *epfiles;
1799 unsigned i, count;
1800
1801 ENTER();
1802
1803 count = ffs->eps_count;
1804 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1805 if (!epfiles)
1806 return -ENOMEM;
1807
1808 epfile = epfiles;
1809 for (i = 1; i <= count; ++i, ++epfile) {
1810 epfile->ffs = ffs;
1811 mutex_init(&epfile->mutex);
1812 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1813 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1814 else
1815 sprintf(epfile->name, "ep%u", i);
1816 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1817 epfile,
1818 &ffs_epfile_operations);
1819 if (unlikely(!epfile->dentry)) {
1820 ffs_epfiles_destroy(epfiles, i - 1);
1821 return -ENOMEM;
1822 }
1823 }
1824
1825 ffs->epfiles = epfiles;
1826 return 0;
1827 }
1828
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1829 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1830 {
1831 struct ffs_epfile *epfile = epfiles;
1832
1833 ENTER();
1834
1835 for (; count; --count, ++epfile) {
1836 BUG_ON(mutex_is_locked(&epfile->mutex));
1837 if (epfile->dentry) {
1838 d_delete(epfile->dentry);
1839 dput(epfile->dentry);
1840 epfile->dentry = NULL;
1841 }
1842 }
1843
1844 kfree(epfiles);
1845 }
1846
ffs_func_eps_disable(struct ffs_function * func)1847 static void ffs_func_eps_disable(struct ffs_function *func)
1848 {
1849 struct ffs_ep *ep = func->eps;
1850 struct ffs_epfile *epfile = func->ffs->epfiles;
1851 unsigned count = func->ffs->eps_count;
1852 unsigned long flags;
1853
1854 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1855 while (count--) {
1856 /* pending requests get nuked */
1857 if (likely(ep->ep))
1858 usb_ep_disable(ep->ep);
1859 ++ep;
1860
1861 if (epfile) {
1862 epfile->ep = NULL;
1863 __ffs_epfile_read_buffer_free(epfile);
1864 ++epfile;
1865 }
1866 }
1867 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1868 }
1869
ffs_func_eps_enable(struct ffs_function * func)1870 static int ffs_func_eps_enable(struct ffs_function *func)
1871 {
1872 struct ffs_data *ffs = func->ffs;
1873 struct ffs_ep *ep = func->eps;
1874 struct ffs_epfile *epfile = ffs->epfiles;
1875 unsigned count = ffs->eps_count;
1876 unsigned long flags;
1877 int ret = 0;
1878
1879 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1880 while(count--) {
1881 ep->ep->driver_data = ep;
1882
1883 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1884 if (ret) {
1885 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1886 __func__, ep->ep->name, ret);
1887 break;
1888 }
1889
1890 ret = usb_ep_enable(ep->ep);
1891 if (likely(!ret)) {
1892 epfile->ep = ep;
1893 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1894 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1895 } else {
1896 break;
1897 }
1898
1899 ++ep;
1900 ++epfile;
1901 }
1902
1903 wake_up_interruptible(&ffs->wait);
1904 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1905
1906 return ret;
1907 }
1908
1909
1910 /* Parsing and building descriptors and strings *****************************/
1911
1912 /*
1913 * This validates if data pointed by data is a valid USB descriptor as
1914 * well as record how many interfaces, endpoints and strings are
1915 * required by given configuration. Returns address after the
1916 * descriptor or NULL if data is invalid.
1917 */
1918
1919 enum ffs_entity_type {
1920 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1921 };
1922
1923 enum ffs_os_desc_type {
1924 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1925 };
1926
1927 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1928 u8 *valuep,
1929 struct usb_descriptor_header *desc,
1930 void *priv);
1931
1932 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1933 struct usb_os_desc_header *h, void *data,
1934 unsigned len, void *priv);
1935
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv)1936 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1937 ffs_entity_callback entity,
1938 void *priv)
1939 {
1940 struct usb_descriptor_header *_ds = (void *)data;
1941 u8 length;
1942 int ret;
1943
1944 ENTER();
1945
1946 /* At least two bytes are required: length and type */
1947 if (len < 2) {
1948 pr_vdebug("descriptor too short\n");
1949 return -EINVAL;
1950 }
1951
1952 /* If we have at least as many bytes as the descriptor takes? */
1953 length = _ds->bLength;
1954 if (len < length) {
1955 pr_vdebug("descriptor longer then available data\n");
1956 return -EINVAL;
1957 }
1958
1959 #define __entity_check_INTERFACE(val) 1
1960 #define __entity_check_STRING(val) (val)
1961 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
1962 #define __entity(type, val) do { \
1963 pr_vdebug("entity " #type "(%02x)\n", (val)); \
1964 if (unlikely(!__entity_check_ ##type(val))) { \
1965 pr_vdebug("invalid entity's value\n"); \
1966 return -EINVAL; \
1967 } \
1968 ret = entity(FFS_ ##type, &val, _ds, priv); \
1969 if (unlikely(ret < 0)) { \
1970 pr_debug("entity " #type "(%02x); ret = %d\n", \
1971 (val), ret); \
1972 return ret; \
1973 } \
1974 } while (0)
1975
1976 /* Parse descriptor depending on type. */
1977 switch (_ds->bDescriptorType) {
1978 case USB_DT_DEVICE:
1979 case USB_DT_CONFIG:
1980 case USB_DT_STRING:
1981 case USB_DT_DEVICE_QUALIFIER:
1982 /* function can't have any of those */
1983 pr_vdebug("descriptor reserved for gadget: %d\n",
1984 _ds->bDescriptorType);
1985 return -EINVAL;
1986
1987 case USB_DT_INTERFACE: {
1988 struct usb_interface_descriptor *ds = (void *)_ds;
1989 pr_vdebug("interface descriptor\n");
1990 if (length != sizeof *ds)
1991 goto inv_length;
1992
1993 __entity(INTERFACE, ds->bInterfaceNumber);
1994 if (ds->iInterface)
1995 __entity(STRING, ds->iInterface);
1996 }
1997 break;
1998
1999 case USB_DT_ENDPOINT: {
2000 struct usb_endpoint_descriptor *ds = (void *)_ds;
2001 pr_vdebug("endpoint descriptor\n");
2002 if (length != USB_DT_ENDPOINT_SIZE &&
2003 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2004 goto inv_length;
2005 __entity(ENDPOINT, ds->bEndpointAddress);
2006 }
2007 break;
2008
2009 case HID_DT_HID:
2010 pr_vdebug("hid descriptor\n");
2011 if (length != sizeof(struct hid_descriptor))
2012 goto inv_length;
2013 break;
2014
2015 case USB_DT_OTG:
2016 if (length != sizeof(struct usb_otg_descriptor))
2017 goto inv_length;
2018 break;
2019
2020 case USB_DT_INTERFACE_ASSOCIATION: {
2021 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2022 pr_vdebug("interface association descriptor\n");
2023 if (length != sizeof *ds)
2024 goto inv_length;
2025 if (ds->iFunction)
2026 __entity(STRING, ds->iFunction);
2027 }
2028 break;
2029
2030 case USB_DT_SS_ENDPOINT_COMP:
2031 pr_vdebug("EP SS companion descriptor\n");
2032 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2033 goto inv_length;
2034 break;
2035
2036 case USB_DT_OTHER_SPEED_CONFIG:
2037 case USB_DT_INTERFACE_POWER:
2038 case USB_DT_DEBUG:
2039 case USB_DT_SECURITY:
2040 case USB_DT_CS_RADIO_CONTROL:
2041 /* TODO */
2042 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2043 return -EINVAL;
2044
2045 default:
2046 /* We should never be here */
2047 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2048 return -EINVAL;
2049
2050 inv_length:
2051 pr_vdebug("invalid length: %d (descriptor %d)\n",
2052 _ds->bLength, _ds->bDescriptorType);
2053 return -EINVAL;
2054 }
2055
2056 #undef __entity
2057 #undef __entity_check_DESCRIPTOR
2058 #undef __entity_check_INTERFACE
2059 #undef __entity_check_STRING
2060 #undef __entity_check_ENDPOINT
2061
2062 return length;
2063 }
2064
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2065 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2066 ffs_entity_callback entity, void *priv)
2067 {
2068 const unsigned _len = len;
2069 unsigned long num = 0;
2070
2071 ENTER();
2072
2073 for (;;) {
2074 int ret;
2075
2076 if (num == count)
2077 data = NULL;
2078
2079 /* Record "descriptor" entity */
2080 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2081 if (unlikely(ret < 0)) {
2082 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2083 num, ret);
2084 return ret;
2085 }
2086
2087 if (!data)
2088 return _len - len;
2089
2090 ret = ffs_do_single_desc(data, len, entity, priv);
2091 if (unlikely(ret < 0)) {
2092 pr_debug("%s returns %d\n", __func__, ret);
2093 return ret;
2094 }
2095
2096 len -= ret;
2097 data += ret;
2098 ++num;
2099 }
2100 }
2101
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2102 static int __ffs_data_do_entity(enum ffs_entity_type type,
2103 u8 *valuep, struct usb_descriptor_header *desc,
2104 void *priv)
2105 {
2106 struct ffs_desc_helper *helper = priv;
2107 struct usb_endpoint_descriptor *d;
2108
2109 ENTER();
2110
2111 switch (type) {
2112 case FFS_DESCRIPTOR:
2113 break;
2114
2115 case FFS_INTERFACE:
2116 /*
2117 * Interfaces are indexed from zero so if we
2118 * encountered interface "n" then there are at least
2119 * "n+1" interfaces.
2120 */
2121 if (*valuep >= helper->interfaces_count)
2122 helper->interfaces_count = *valuep + 1;
2123 break;
2124
2125 case FFS_STRING:
2126 /*
2127 * Strings are indexed from 1 (0 is reserved
2128 * for languages list)
2129 */
2130 if (*valuep > helper->ffs->strings_count)
2131 helper->ffs->strings_count = *valuep;
2132 break;
2133
2134 case FFS_ENDPOINT:
2135 d = (void *)desc;
2136 helper->eps_count++;
2137 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2138 return -EINVAL;
2139 /* Check if descriptors for any speed were already parsed */
2140 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2141 helper->ffs->eps_addrmap[helper->eps_count] =
2142 d->bEndpointAddress;
2143 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2144 d->bEndpointAddress)
2145 return -EINVAL;
2146 break;
2147 }
2148
2149 return 0;
2150 }
2151
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2152 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2153 struct usb_os_desc_header *desc)
2154 {
2155 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2156 u16 w_index = le16_to_cpu(desc->wIndex);
2157
2158 if (bcd_version != 1) {
2159 pr_vdebug("unsupported os descriptors version: %d",
2160 bcd_version);
2161 return -EINVAL;
2162 }
2163 switch (w_index) {
2164 case 0x4:
2165 *next_type = FFS_OS_DESC_EXT_COMPAT;
2166 break;
2167 case 0x5:
2168 *next_type = FFS_OS_DESC_EXT_PROP;
2169 break;
2170 default:
2171 pr_vdebug("unsupported os descriptor type: %d", w_index);
2172 return -EINVAL;
2173 }
2174
2175 return sizeof(*desc);
2176 }
2177
2178 /*
2179 * Process all extended compatibility/extended property descriptors
2180 * of a feature descriptor
2181 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2182 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2183 enum ffs_os_desc_type type,
2184 u16 feature_count,
2185 ffs_os_desc_callback entity,
2186 void *priv,
2187 struct usb_os_desc_header *h)
2188 {
2189 int ret;
2190 const unsigned _len = len;
2191
2192 ENTER();
2193
2194 /* loop over all ext compat/ext prop descriptors */
2195 while (feature_count--) {
2196 ret = entity(type, h, data, len, priv);
2197 if (unlikely(ret < 0)) {
2198 pr_debug("bad OS descriptor, type: %d\n", type);
2199 return ret;
2200 }
2201 data += ret;
2202 len -= ret;
2203 }
2204 return _len - len;
2205 }
2206
2207 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2208 static int __must_check ffs_do_os_descs(unsigned count,
2209 char *data, unsigned len,
2210 ffs_os_desc_callback entity, void *priv)
2211 {
2212 const unsigned _len = len;
2213 unsigned long num = 0;
2214
2215 ENTER();
2216
2217 for (num = 0; num < count; ++num) {
2218 int ret;
2219 enum ffs_os_desc_type type;
2220 u16 feature_count;
2221 struct usb_os_desc_header *desc = (void *)data;
2222
2223 if (len < sizeof(*desc))
2224 return -EINVAL;
2225
2226 /*
2227 * Record "descriptor" entity.
2228 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2229 * Move the data pointer to the beginning of extended
2230 * compatibilities proper or extended properties proper
2231 * portions of the data
2232 */
2233 if (le32_to_cpu(desc->dwLength) > len)
2234 return -EINVAL;
2235
2236 ret = __ffs_do_os_desc_header(&type, desc);
2237 if (unlikely(ret < 0)) {
2238 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2239 num, ret);
2240 return ret;
2241 }
2242 /*
2243 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2244 */
2245 feature_count = le16_to_cpu(desc->wCount);
2246 if (type == FFS_OS_DESC_EXT_COMPAT &&
2247 (feature_count > 255 || desc->Reserved))
2248 return -EINVAL;
2249 len -= ret;
2250 data += ret;
2251
2252 /*
2253 * Process all function/property descriptors
2254 * of this Feature Descriptor
2255 */
2256 ret = ffs_do_single_os_desc(data, len, type,
2257 feature_count, entity, priv, desc);
2258 if (unlikely(ret < 0)) {
2259 pr_debug("%s returns %d\n", __func__, ret);
2260 return ret;
2261 }
2262
2263 len -= ret;
2264 data += ret;
2265 }
2266 return _len - len;
2267 }
2268
2269 /**
2270 * Validate contents of the buffer from userspace related to OS descriptors.
2271 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2272 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2273 struct usb_os_desc_header *h, void *data,
2274 unsigned len, void *priv)
2275 {
2276 struct ffs_data *ffs = priv;
2277 u8 length;
2278
2279 ENTER();
2280
2281 switch (type) {
2282 case FFS_OS_DESC_EXT_COMPAT: {
2283 struct usb_ext_compat_desc *d = data;
2284 int i;
2285
2286 if (len < sizeof(*d) ||
2287 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2288 return -EINVAL;
2289 if (d->Reserved1 != 1) {
2290 /*
2291 * According to the spec, Reserved1 must be set to 1
2292 * but older kernels incorrectly rejected non-zero
2293 * values. We fix it here to avoid returning EINVAL
2294 * in response to values we used to accept.
2295 */
2296 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2297 d->Reserved1 = 1;
2298 }
2299 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2300 if (d->Reserved2[i])
2301 return -EINVAL;
2302
2303 length = sizeof(struct usb_ext_compat_desc);
2304 }
2305 break;
2306 case FFS_OS_DESC_EXT_PROP: {
2307 struct usb_ext_prop_desc *d = data;
2308 u32 type, pdl;
2309 u16 pnl;
2310
2311 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2312 return -EINVAL;
2313 length = le32_to_cpu(d->dwSize);
2314 if (len < length)
2315 return -EINVAL;
2316 type = le32_to_cpu(d->dwPropertyDataType);
2317 if (type < USB_EXT_PROP_UNICODE ||
2318 type > USB_EXT_PROP_UNICODE_MULTI) {
2319 pr_vdebug("unsupported os descriptor property type: %d",
2320 type);
2321 return -EINVAL;
2322 }
2323 pnl = le16_to_cpu(d->wPropertyNameLength);
2324 if (length < 14 + pnl) {
2325 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2326 length, pnl, type);
2327 return -EINVAL;
2328 }
2329 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2330 if (length != 14 + pnl + pdl) {
2331 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2332 length, pnl, pdl, type);
2333 return -EINVAL;
2334 }
2335 ++ffs->ms_os_descs_ext_prop_count;
2336 /* property name reported to the host as "WCHAR"s */
2337 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2338 ffs->ms_os_descs_ext_prop_data_len += pdl;
2339 }
2340 break;
2341 default:
2342 pr_vdebug("unknown descriptor: %d\n", type);
2343 return -EINVAL;
2344 }
2345 return length;
2346 }
2347
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2348 static int __ffs_data_got_descs(struct ffs_data *ffs,
2349 char *const _data, size_t len)
2350 {
2351 char *data = _data, *raw_descs;
2352 unsigned os_descs_count = 0, counts[3], flags;
2353 int ret = -EINVAL, i;
2354 struct ffs_desc_helper helper;
2355
2356 ENTER();
2357
2358 if (get_unaligned_le32(data + 4) != len)
2359 goto error;
2360
2361 switch (get_unaligned_le32(data)) {
2362 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2363 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2364 data += 8;
2365 len -= 8;
2366 break;
2367 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2368 flags = get_unaligned_le32(data + 8);
2369 ffs->user_flags = flags;
2370 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2371 FUNCTIONFS_HAS_HS_DESC |
2372 FUNCTIONFS_HAS_SS_DESC |
2373 FUNCTIONFS_HAS_MS_OS_DESC |
2374 FUNCTIONFS_VIRTUAL_ADDR |
2375 FUNCTIONFS_EVENTFD |
2376 FUNCTIONFS_ALL_CTRL_RECIP |
2377 FUNCTIONFS_CONFIG0_SETUP)) {
2378 ret = -ENOSYS;
2379 goto error;
2380 }
2381 data += 12;
2382 len -= 12;
2383 break;
2384 default:
2385 goto error;
2386 }
2387
2388 if (flags & FUNCTIONFS_EVENTFD) {
2389 if (len < 4)
2390 goto error;
2391 ffs->ffs_eventfd =
2392 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2393 if (IS_ERR(ffs->ffs_eventfd)) {
2394 ret = PTR_ERR(ffs->ffs_eventfd);
2395 ffs->ffs_eventfd = NULL;
2396 goto error;
2397 }
2398 data += 4;
2399 len -= 4;
2400 }
2401
2402 /* Read fs_count, hs_count and ss_count (if present) */
2403 for (i = 0; i < 3; ++i) {
2404 if (!(flags & (1 << i))) {
2405 counts[i] = 0;
2406 } else if (len < 4) {
2407 goto error;
2408 } else {
2409 counts[i] = get_unaligned_le32(data);
2410 data += 4;
2411 len -= 4;
2412 }
2413 }
2414 if (flags & (1 << i)) {
2415 if (len < 4) {
2416 goto error;
2417 }
2418 os_descs_count = get_unaligned_le32(data);
2419 data += 4;
2420 len -= 4;
2421 };
2422
2423 /* Read descriptors */
2424 raw_descs = data;
2425 helper.ffs = ffs;
2426 for (i = 0; i < 3; ++i) {
2427 if (!counts[i])
2428 continue;
2429 helper.interfaces_count = 0;
2430 helper.eps_count = 0;
2431 ret = ffs_do_descs(counts[i], data, len,
2432 __ffs_data_do_entity, &helper);
2433 if (ret < 0)
2434 goto error;
2435 if (!ffs->eps_count && !ffs->interfaces_count) {
2436 ffs->eps_count = helper.eps_count;
2437 ffs->interfaces_count = helper.interfaces_count;
2438 } else {
2439 if (ffs->eps_count != helper.eps_count) {
2440 ret = -EINVAL;
2441 goto error;
2442 }
2443 if (ffs->interfaces_count != helper.interfaces_count) {
2444 ret = -EINVAL;
2445 goto error;
2446 }
2447 }
2448 data += ret;
2449 len -= ret;
2450 }
2451 if (os_descs_count) {
2452 ret = ffs_do_os_descs(os_descs_count, data, len,
2453 __ffs_data_do_os_desc, ffs);
2454 if (ret < 0)
2455 goto error;
2456 data += ret;
2457 len -= ret;
2458 }
2459
2460 if (raw_descs == data || len) {
2461 ret = -EINVAL;
2462 goto error;
2463 }
2464
2465 ffs->raw_descs_data = _data;
2466 ffs->raw_descs = raw_descs;
2467 ffs->raw_descs_length = data - raw_descs;
2468 ffs->fs_descs_count = counts[0];
2469 ffs->hs_descs_count = counts[1];
2470 ffs->ss_descs_count = counts[2];
2471 ffs->ms_os_descs_count = os_descs_count;
2472
2473 return 0;
2474
2475 error:
2476 kfree(_data);
2477 return ret;
2478 }
2479
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2480 static int __ffs_data_got_strings(struct ffs_data *ffs,
2481 char *const _data, size_t len)
2482 {
2483 u32 str_count, needed_count, lang_count;
2484 struct usb_gadget_strings **stringtabs, *t;
2485 const char *data = _data;
2486 struct usb_string *s;
2487
2488 ENTER();
2489
2490 if (unlikely(len < 16 ||
2491 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2492 get_unaligned_le32(data + 4) != len))
2493 goto error;
2494 str_count = get_unaligned_le32(data + 8);
2495 lang_count = get_unaligned_le32(data + 12);
2496
2497 /* if one is zero the other must be zero */
2498 if (unlikely(!str_count != !lang_count))
2499 goto error;
2500
2501 /* Do we have at least as many strings as descriptors need? */
2502 needed_count = ffs->strings_count;
2503 if (unlikely(str_count < needed_count))
2504 goto error;
2505
2506 /*
2507 * If we don't need any strings just return and free all
2508 * memory.
2509 */
2510 if (!needed_count) {
2511 kfree(_data);
2512 return 0;
2513 }
2514
2515 /* Allocate everything in one chunk so there's less maintenance. */
2516 {
2517 unsigned i = 0;
2518 vla_group(d);
2519 vla_item(d, struct usb_gadget_strings *, stringtabs,
2520 lang_count + 1);
2521 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2522 vla_item(d, struct usb_string, strings,
2523 lang_count*(needed_count+1));
2524
2525 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2526
2527 if (unlikely(!vlabuf)) {
2528 kfree(_data);
2529 return -ENOMEM;
2530 }
2531
2532 /* Initialize the VLA pointers */
2533 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2534 t = vla_ptr(vlabuf, d, stringtab);
2535 i = lang_count;
2536 do {
2537 *stringtabs++ = t++;
2538 } while (--i);
2539 *stringtabs = NULL;
2540
2541 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2542 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2543 t = vla_ptr(vlabuf, d, stringtab);
2544 s = vla_ptr(vlabuf, d, strings);
2545 }
2546
2547 /* For each language */
2548 data += 16;
2549 len -= 16;
2550
2551 do { /* lang_count > 0 so we can use do-while */
2552 unsigned needed = needed_count;
2553
2554 if (unlikely(len < 3))
2555 goto error_free;
2556 t->language = get_unaligned_le16(data);
2557 t->strings = s;
2558 ++t;
2559
2560 data += 2;
2561 len -= 2;
2562
2563 /* For each string */
2564 do { /* str_count > 0 so we can use do-while */
2565 size_t length = strnlen(data, len);
2566
2567 if (unlikely(length == len))
2568 goto error_free;
2569
2570 /*
2571 * User may provide more strings then we need,
2572 * if that's the case we simply ignore the
2573 * rest
2574 */
2575 if (likely(needed)) {
2576 /*
2577 * s->id will be set while adding
2578 * function to configuration so for
2579 * now just leave garbage here.
2580 */
2581 s->s = data;
2582 --needed;
2583 ++s;
2584 }
2585
2586 data += length + 1;
2587 len -= length + 1;
2588 } while (--str_count);
2589
2590 s->id = 0; /* terminator */
2591 s->s = NULL;
2592 ++s;
2593
2594 } while (--lang_count);
2595
2596 /* Some garbage left? */
2597 if (unlikely(len))
2598 goto error_free;
2599
2600 /* Done! */
2601 ffs->stringtabs = stringtabs;
2602 ffs->raw_strings = _data;
2603
2604 return 0;
2605
2606 error_free:
2607 kfree(stringtabs);
2608 error:
2609 kfree(_data);
2610 return -EINVAL;
2611 }
2612
2613
2614 /* Events handling and management *******************************************/
2615
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2616 static void __ffs_event_add(struct ffs_data *ffs,
2617 enum usb_functionfs_event_type type)
2618 {
2619 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2620 int neg = 0;
2621
2622 /*
2623 * Abort any unhandled setup
2624 *
2625 * We do not need to worry about some cmpxchg() changing value
2626 * of ffs->setup_state without holding the lock because when
2627 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2628 * the source does nothing.
2629 */
2630 if (ffs->setup_state == FFS_SETUP_PENDING)
2631 ffs->setup_state = FFS_SETUP_CANCELLED;
2632
2633 /*
2634 * Logic of this function guarantees that there are at most four pending
2635 * evens on ffs->ev.types queue. This is important because the queue
2636 * has space for four elements only and __ffs_ep0_read_events function
2637 * depends on that limit as well. If more event types are added, those
2638 * limits have to be revisited or guaranteed to still hold.
2639 */
2640 switch (type) {
2641 case FUNCTIONFS_RESUME:
2642 rem_type2 = FUNCTIONFS_SUSPEND;
2643 /* FALL THROUGH */
2644 case FUNCTIONFS_SUSPEND:
2645 case FUNCTIONFS_SETUP:
2646 rem_type1 = type;
2647 /* Discard all similar events */
2648 break;
2649
2650 case FUNCTIONFS_BIND:
2651 case FUNCTIONFS_UNBIND:
2652 case FUNCTIONFS_DISABLE:
2653 case FUNCTIONFS_ENABLE:
2654 /* Discard everything other then power management. */
2655 rem_type1 = FUNCTIONFS_SUSPEND;
2656 rem_type2 = FUNCTIONFS_RESUME;
2657 neg = 1;
2658 break;
2659
2660 default:
2661 WARN(1, "%d: unknown event, this should not happen\n", type);
2662 return;
2663 }
2664
2665 {
2666 u8 *ev = ffs->ev.types, *out = ev;
2667 unsigned n = ffs->ev.count;
2668 for (; n; --n, ++ev)
2669 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2670 *out++ = *ev;
2671 else
2672 pr_vdebug("purging event %d\n", *ev);
2673 ffs->ev.count = out - ffs->ev.types;
2674 }
2675
2676 pr_vdebug("adding event %d\n", type);
2677 ffs->ev.types[ffs->ev.count++] = type;
2678 wake_up_locked(&ffs->ev.waitq);
2679 if (ffs->ffs_eventfd)
2680 eventfd_signal(ffs->ffs_eventfd, 1);
2681 }
2682
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2683 static void ffs_event_add(struct ffs_data *ffs,
2684 enum usb_functionfs_event_type type)
2685 {
2686 unsigned long flags;
2687 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2688 __ffs_event_add(ffs, type);
2689 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2690 }
2691
2692 /* Bind/unbind USB function hooks *******************************************/
2693
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2694 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2695 {
2696 int i;
2697
2698 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2699 if (ffs->eps_addrmap[i] == endpoint_address)
2700 return i;
2701 return -ENOENT;
2702 }
2703
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2704 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2705 struct usb_descriptor_header *desc,
2706 void *priv)
2707 {
2708 struct usb_endpoint_descriptor *ds = (void *)desc;
2709 struct ffs_function *func = priv;
2710 struct ffs_ep *ffs_ep;
2711 unsigned ep_desc_id;
2712 int idx;
2713 static const char *speed_names[] = { "full", "high", "super" };
2714
2715 if (type != FFS_DESCRIPTOR)
2716 return 0;
2717
2718 /*
2719 * If ss_descriptors is not NULL, we are reading super speed
2720 * descriptors; if hs_descriptors is not NULL, we are reading high
2721 * speed descriptors; otherwise, we are reading full speed
2722 * descriptors.
2723 */
2724 if (func->function.ss_descriptors) {
2725 ep_desc_id = 2;
2726 func->function.ss_descriptors[(long)valuep] = desc;
2727 } else if (func->function.hs_descriptors) {
2728 ep_desc_id = 1;
2729 func->function.hs_descriptors[(long)valuep] = desc;
2730 } else {
2731 ep_desc_id = 0;
2732 func->function.fs_descriptors[(long)valuep] = desc;
2733 }
2734
2735 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2736 return 0;
2737
2738 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2739 if (idx < 0)
2740 return idx;
2741
2742 ffs_ep = func->eps + idx;
2743
2744 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2745 pr_err("two %sspeed descriptors for EP %d\n",
2746 speed_names[ep_desc_id],
2747 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2748 return -EINVAL;
2749 }
2750 ffs_ep->descs[ep_desc_id] = ds;
2751
2752 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2753 if (ffs_ep->ep) {
2754 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2755 if (!ds->wMaxPacketSize)
2756 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2757 } else {
2758 struct usb_request *req;
2759 struct usb_ep *ep;
2760 u8 bEndpointAddress;
2761
2762 /*
2763 * We back up bEndpointAddress because autoconfig overwrites
2764 * it with physical endpoint address.
2765 */
2766 bEndpointAddress = ds->bEndpointAddress;
2767 pr_vdebug("autoconfig\n");
2768 ep = usb_ep_autoconfig(func->gadget, ds);
2769 if (unlikely(!ep))
2770 return -ENOTSUPP;
2771 ep->driver_data = func->eps + idx;
2772
2773 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2774 if (unlikely(!req))
2775 return -ENOMEM;
2776
2777 ffs_ep->ep = ep;
2778 ffs_ep->req = req;
2779 func->eps_revmap[ds->bEndpointAddress &
2780 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2781 /*
2782 * If we use virtual address mapping, we restore
2783 * original bEndpointAddress value.
2784 */
2785 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2786 ds->bEndpointAddress = bEndpointAddress;
2787 }
2788 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2789
2790 return 0;
2791 }
2792
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2793 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2794 struct usb_descriptor_header *desc,
2795 void *priv)
2796 {
2797 struct ffs_function *func = priv;
2798 unsigned idx;
2799 u8 newValue;
2800
2801 switch (type) {
2802 default:
2803 case FFS_DESCRIPTOR:
2804 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2805 return 0;
2806
2807 case FFS_INTERFACE:
2808 idx = *valuep;
2809 if (func->interfaces_nums[idx] < 0) {
2810 int id = usb_interface_id(func->conf, &func->function);
2811 if (unlikely(id < 0))
2812 return id;
2813 func->interfaces_nums[idx] = id;
2814 }
2815 newValue = func->interfaces_nums[idx];
2816 break;
2817
2818 case FFS_STRING:
2819 /* String' IDs are allocated when fsf_data is bound to cdev */
2820 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2821 break;
2822
2823 case FFS_ENDPOINT:
2824 /*
2825 * USB_DT_ENDPOINT are handled in
2826 * __ffs_func_bind_do_descs().
2827 */
2828 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2829 return 0;
2830
2831 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2832 if (unlikely(!func->eps[idx].ep))
2833 return -EINVAL;
2834
2835 {
2836 struct usb_endpoint_descriptor **descs;
2837 descs = func->eps[idx].descs;
2838 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2839 }
2840 break;
2841 }
2842
2843 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2844 *valuep = newValue;
2845 return 0;
2846 }
2847
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2848 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2849 struct usb_os_desc_header *h, void *data,
2850 unsigned len, void *priv)
2851 {
2852 struct ffs_function *func = priv;
2853 u8 length = 0;
2854
2855 switch (type) {
2856 case FFS_OS_DESC_EXT_COMPAT: {
2857 struct usb_ext_compat_desc *desc = data;
2858 struct usb_os_desc_table *t;
2859
2860 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2861 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2862 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2863 ARRAY_SIZE(desc->CompatibleID) +
2864 ARRAY_SIZE(desc->SubCompatibleID));
2865 length = sizeof(*desc);
2866 }
2867 break;
2868 case FFS_OS_DESC_EXT_PROP: {
2869 struct usb_ext_prop_desc *desc = data;
2870 struct usb_os_desc_table *t;
2871 struct usb_os_desc_ext_prop *ext_prop;
2872 char *ext_prop_name;
2873 char *ext_prop_data;
2874
2875 t = &func->function.os_desc_table[h->interface];
2876 t->if_id = func->interfaces_nums[h->interface];
2877
2878 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2879 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2880
2881 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2882 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2883 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2884 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2885 length = ext_prop->name_len + ext_prop->data_len + 14;
2886
2887 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2888 func->ffs->ms_os_descs_ext_prop_name_avail +=
2889 ext_prop->name_len;
2890
2891 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2892 func->ffs->ms_os_descs_ext_prop_data_avail +=
2893 ext_prop->data_len;
2894 memcpy(ext_prop_data,
2895 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2896 ext_prop->data_len);
2897 /* unicode data reported to the host as "WCHAR"s */
2898 switch (ext_prop->type) {
2899 case USB_EXT_PROP_UNICODE:
2900 case USB_EXT_PROP_UNICODE_ENV:
2901 case USB_EXT_PROP_UNICODE_LINK:
2902 case USB_EXT_PROP_UNICODE_MULTI:
2903 ext_prop->data_len *= 2;
2904 break;
2905 }
2906 ext_prop->data = ext_prop_data;
2907
2908 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2909 ext_prop->name_len);
2910 /* property name reported to the host as "WCHAR"s */
2911 ext_prop->name_len *= 2;
2912 ext_prop->name = ext_prop_name;
2913
2914 t->os_desc->ext_prop_len +=
2915 ext_prop->name_len + ext_prop->data_len + 14;
2916 ++t->os_desc->ext_prop_count;
2917 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2918 }
2919 break;
2920 default:
2921 pr_vdebug("unknown descriptor: %d\n", type);
2922 }
2923
2924 return length;
2925 }
2926
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)2927 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2928 struct usb_configuration *c)
2929 {
2930 struct ffs_function *func = ffs_func_from_usb(f);
2931 struct f_fs_opts *ffs_opts =
2932 container_of(f->fi, struct f_fs_opts, func_inst);
2933 int ret;
2934
2935 ENTER();
2936
2937 /*
2938 * Legacy gadget triggers binding in functionfs_ready_callback,
2939 * which already uses locking; taking the same lock here would
2940 * cause a deadlock.
2941 *
2942 * Configfs-enabled gadgets however do need ffs_dev_lock.
2943 */
2944 if (!ffs_opts->no_configfs)
2945 ffs_dev_lock();
2946 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2947 func->ffs = ffs_opts->dev->ffs_data;
2948 if (!ffs_opts->no_configfs)
2949 ffs_dev_unlock();
2950 if (ret)
2951 return ERR_PTR(ret);
2952
2953 func->conf = c;
2954 func->gadget = c->cdev->gadget;
2955
2956 /*
2957 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2958 * configurations are bound in sequence with list_for_each_entry,
2959 * in each configuration its functions are bound in sequence
2960 * with list_for_each_entry, so we assume no race condition
2961 * with regard to ffs_opts->bound access
2962 */
2963 if (!ffs_opts->refcnt) {
2964 ret = functionfs_bind(func->ffs, c->cdev);
2965 if (ret)
2966 return ERR_PTR(ret);
2967 }
2968 ffs_opts->refcnt++;
2969 func->function.strings = func->ffs->stringtabs;
2970
2971 return ffs_opts;
2972 }
2973
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2974 static int _ffs_func_bind(struct usb_configuration *c,
2975 struct usb_function *f)
2976 {
2977 struct ffs_function *func = ffs_func_from_usb(f);
2978 struct ffs_data *ffs = func->ffs;
2979
2980 const int full = !!func->ffs->fs_descs_count;
2981 const int high = !!func->ffs->hs_descs_count;
2982 const int super = !!func->ffs->ss_descs_count;
2983
2984 int fs_len, hs_len, ss_len, ret, i;
2985 struct ffs_ep *eps_ptr;
2986
2987 /* Make it a single chunk, less management later on */
2988 vla_group(d);
2989 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2990 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2991 full ? ffs->fs_descs_count + 1 : 0);
2992 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2993 high ? ffs->hs_descs_count + 1 : 0);
2994 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2995 super ? ffs->ss_descs_count + 1 : 0);
2996 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2997 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2998 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2999 vla_item_with_sz(d, char[16], ext_compat,
3000 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3001 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3002 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3003 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3004 ffs->ms_os_descs_ext_prop_count);
3005 vla_item_with_sz(d, char, ext_prop_name,
3006 ffs->ms_os_descs_ext_prop_name_len);
3007 vla_item_with_sz(d, char, ext_prop_data,
3008 ffs->ms_os_descs_ext_prop_data_len);
3009 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3010 char *vlabuf;
3011
3012 ENTER();
3013
3014 /* Has descriptors only for speeds gadget does not support */
3015 if (unlikely(!(full | high | super)))
3016 return -ENOTSUPP;
3017
3018 /* Allocate a single chunk, less management later on */
3019 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3020 if (unlikely(!vlabuf))
3021 return -ENOMEM;
3022
3023 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3024 ffs->ms_os_descs_ext_prop_name_avail =
3025 vla_ptr(vlabuf, d, ext_prop_name);
3026 ffs->ms_os_descs_ext_prop_data_avail =
3027 vla_ptr(vlabuf, d, ext_prop_data);
3028
3029 /* Copy descriptors */
3030 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3031 ffs->raw_descs_length);
3032
3033 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3034 eps_ptr = vla_ptr(vlabuf, d, eps);
3035 for (i = 0; i < ffs->eps_count; i++)
3036 eps_ptr[i].num = -1;
3037
3038 /* Save pointers
3039 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3040 */
3041 func->eps = vla_ptr(vlabuf, d, eps);
3042 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3043
3044 /*
3045 * Go through all the endpoint descriptors and allocate
3046 * endpoints first, so that later we can rewrite the endpoint
3047 * numbers without worrying that it may be described later on.
3048 */
3049 if (likely(full)) {
3050 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3051 fs_len = ffs_do_descs(ffs->fs_descs_count,
3052 vla_ptr(vlabuf, d, raw_descs),
3053 d_raw_descs__sz,
3054 __ffs_func_bind_do_descs, func);
3055 if (unlikely(fs_len < 0)) {
3056 ret = fs_len;
3057 goto error;
3058 }
3059 } else {
3060 fs_len = 0;
3061 }
3062
3063 if (likely(high)) {
3064 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3065 hs_len = ffs_do_descs(ffs->hs_descs_count,
3066 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3067 d_raw_descs__sz - fs_len,
3068 __ffs_func_bind_do_descs, func);
3069 if (unlikely(hs_len < 0)) {
3070 ret = hs_len;
3071 goto error;
3072 }
3073 } else {
3074 hs_len = 0;
3075 }
3076
3077 if (likely(super)) {
3078 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3079 ss_len = ffs_do_descs(ffs->ss_descs_count,
3080 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3081 d_raw_descs__sz - fs_len - hs_len,
3082 __ffs_func_bind_do_descs, func);
3083 if (unlikely(ss_len < 0)) {
3084 ret = ss_len;
3085 goto error;
3086 }
3087 } else {
3088 ss_len = 0;
3089 }
3090
3091 /*
3092 * Now handle interface numbers allocation and interface and
3093 * endpoint numbers rewriting. We can do that in one go
3094 * now.
3095 */
3096 ret = ffs_do_descs(ffs->fs_descs_count +
3097 (high ? ffs->hs_descs_count : 0) +
3098 (super ? ffs->ss_descs_count : 0),
3099 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3100 __ffs_func_bind_do_nums, func);
3101 if (unlikely(ret < 0))
3102 goto error;
3103
3104 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3105 if (c->cdev->use_os_string) {
3106 for (i = 0; i < ffs->interfaces_count; ++i) {
3107 struct usb_os_desc *desc;
3108
3109 desc = func->function.os_desc_table[i].os_desc =
3110 vla_ptr(vlabuf, d, os_desc) +
3111 i * sizeof(struct usb_os_desc);
3112 desc->ext_compat_id =
3113 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3114 INIT_LIST_HEAD(&desc->ext_prop);
3115 }
3116 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3117 vla_ptr(vlabuf, d, raw_descs) +
3118 fs_len + hs_len + ss_len,
3119 d_raw_descs__sz - fs_len - hs_len -
3120 ss_len,
3121 __ffs_func_bind_do_os_desc, func);
3122 if (unlikely(ret < 0))
3123 goto error;
3124 }
3125 func->function.os_desc_n =
3126 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3127
3128 /* And we're done */
3129 ffs_event_add(ffs, FUNCTIONFS_BIND);
3130 return 0;
3131
3132 error:
3133 /* XXX Do we need to release all claimed endpoints here? */
3134 return ret;
3135 }
3136
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3137 static int ffs_func_bind(struct usb_configuration *c,
3138 struct usb_function *f)
3139 {
3140 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3141 struct ffs_function *func = ffs_func_from_usb(f);
3142 int ret;
3143
3144 if (IS_ERR(ffs_opts))
3145 return PTR_ERR(ffs_opts);
3146
3147 ret = _ffs_func_bind(c, f);
3148 if (ret && !--ffs_opts->refcnt)
3149 functionfs_unbind(func->ffs);
3150
3151 return ret;
3152 }
3153
3154
3155 /* Other USB function hooks *************************************************/
3156
ffs_reset_work(struct work_struct * work)3157 static void ffs_reset_work(struct work_struct *work)
3158 {
3159 struct ffs_data *ffs = container_of(work,
3160 struct ffs_data, reset_work);
3161 ffs_data_reset(ffs);
3162 }
3163
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3164 static int ffs_func_set_alt(struct usb_function *f,
3165 unsigned interface, unsigned alt)
3166 {
3167 struct ffs_function *func = ffs_func_from_usb(f);
3168 struct ffs_data *ffs = func->ffs;
3169 int ret = 0, intf;
3170
3171 if (alt != (unsigned)-1) {
3172 intf = ffs_func_revmap_intf(func, interface);
3173 if (unlikely(intf < 0))
3174 return intf;
3175 }
3176
3177 if (ffs->func)
3178 ffs_func_eps_disable(ffs->func);
3179
3180 if (ffs->state == FFS_DEACTIVATED) {
3181 ffs->state = FFS_CLOSING;
3182 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3183 schedule_work(&ffs->reset_work);
3184 return -ENODEV;
3185 }
3186
3187 if (ffs->state != FFS_ACTIVE)
3188 return -ENODEV;
3189
3190 if (alt == (unsigned)-1) {
3191 ffs->func = NULL;
3192 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3193 return 0;
3194 }
3195
3196 ffs->func = func;
3197 ret = ffs_func_eps_enable(func);
3198 if (likely(ret >= 0))
3199 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3200 return ret;
3201 }
3202
ffs_func_disable(struct usb_function * f)3203 static void ffs_func_disable(struct usb_function *f)
3204 {
3205 ffs_func_set_alt(f, 0, (unsigned)-1);
3206 }
3207
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3208 static int ffs_func_setup(struct usb_function *f,
3209 const struct usb_ctrlrequest *creq)
3210 {
3211 struct ffs_function *func = ffs_func_from_usb(f);
3212 struct ffs_data *ffs = func->ffs;
3213 unsigned long flags;
3214 int ret;
3215
3216 ENTER();
3217
3218 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3219 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3220 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3221 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3222 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3223
3224 /*
3225 * Most requests directed to interface go through here
3226 * (notable exceptions are set/get interface) so we need to
3227 * handle them. All other either handled by composite or
3228 * passed to usb_configuration->setup() (if one is set). No
3229 * matter, we will handle requests directed to endpoint here
3230 * as well (as it's straightforward). Other request recipient
3231 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3232 * is being used.
3233 */
3234 if (ffs->state != FFS_ACTIVE)
3235 return -ENODEV;
3236
3237 switch (creq->bRequestType & USB_RECIP_MASK) {
3238 case USB_RECIP_INTERFACE:
3239 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3240 if (unlikely(ret < 0))
3241 return ret;
3242 break;
3243
3244 case USB_RECIP_ENDPOINT:
3245 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3246 if (unlikely(ret < 0))
3247 return ret;
3248 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3249 ret = func->ffs->eps_addrmap[ret];
3250 break;
3251
3252 default:
3253 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3254 ret = le16_to_cpu(creq->wIndex);
3255 else
3256 return -EOPNOTSUPP;
3257 }
3258
3259 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3260 ffs->ev.setup = *creq;
3261 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3262 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3263 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3264
3265 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3266 }
3267
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3268 static bool ffs_func_req_match(struct usb_function *f,
3269 const struct usb_ctrlrequest *creq,
3270 bool config0)
3271 {
3272 struct ffs_function *func = ffs_func_from_usb(f);
3273
3274 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3275 return false;
3276
3277 switch (creq->bRequestType & USB_RECIP_MASK) {
3278 case USB_RECIP_INTERFACE:
3279 return (ffs_func_revmap_intf(func,
3280 le16_to_cpu(creq->wIndex)) >= 0);
3281 case USB_RECIP_ENDPOINT:
3282 return (ffs_func_revmap_ep(func,
3283 le16_to_cpu(creq->wIndex)) >= 0);
3284 default:
3285 return (bool) (func->ffs->user_flags &
3286 FUNCTIONFS_ALL_CTRL_RECIP);
3287 }
3288 }
3289
ffs_func_suspend(struct usb_function * f)3290 static void ffs_func_suspend(struct usb_function *f)
3291 {
3292 ENTER();
3293 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3294 }
3295
ffs_func_resume(struct usb_function * f)3296 static void ffs_func_resume(struct usb_function *f)
3297 {
3298 ENTER();
3299 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3300 }
3301
3302
3303 /* Endpoint and interface numbers reverse mapping ***************************/
3304
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3305 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3306 {
3307 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3308 return num ? num : -EDOM;
3309 }
3310
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3311 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3312 {
3313 short *nums = func->interfaces_nums;
3314 unsigned count = func->ffs->interfaces_count;
3315
3316 for (; count; --count, ++nums) {
3317 if (*nums >= 0 && *nums == intf)
3318 return nums - func->interfaces_nums;
3319 }
3320
3321 return -EDOM;
3322 }
3323
3324
3325 /* Devices management *******************************************************/
3326
3327 static LIST_HEAD(ffs_devices);
3328
_ffs_do_find_dev(const char * name)3329 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3330 {
3331 struct ffs_dev *dev;
3332
3333 if (!name)
3334 return NULL;
3335
3336 list_for_each_entry(dev, &ffs_devices, entry) {
3337 if (strcmp(dev->name, name) == 0)
3338 return dev;
3339 }
3340
3341 return NULL;
3342 }
3343
3344 /*
3345 * ffs_lock must be taken by the caller of this function
3346 */
_ffs_get_single_dev(void)3347 static struct ffs_dev *_ffs_get_single_dev(void)
3348 {
3349 struct ffs_dev *dev;
3350
3351 if (list_is_singular(&ffs_devices)) {
3352 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3353 if (dev->single)
3354 return dev;
3355 }
3356
3357 return NULL;
3358 }
3359
3360 /*
3361 * ffs_lock must be taken by the caller of this function
3362 */
_ffs_find_dev(const char * name)3363 static struct ffs_dev *_ffs_find_dev(const char *name)
3364 {
3365 struct ffs_dev *dev;
3366
3367 dev = _ffs_get_single_dev();
3368 if (dev)
3369 return dev;
3370
3371 return _ffs_do_find_dev(name);
3372 }
3373
3374 /* Configfs support *********************************************************/
3375
to_ffs_opts(struct config_item * item)3376 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3377 {
3378 return container_of(to_config_group(item), struct f_fs_opts,
3379 func_inst.group);
3380 }
3381
ffs_attr_release(struct config_item * item)3382 static void ffs_attr_release(struct config_item *item)
3383 {
3384 struct f_fs_opts *opts = to_ffs_opts(item);
3385
3386 usb_put_function_instance(&opts->func_inst);
3387 }
3388
3389 static struct configfs_item_operations ffs_item_ops = {
3390 .release = ffs_attr_release,
3391 };
3392
3393 static const struct config_item_type ffs_func_type = {
3394 .ct_item_ops = &ffs_item_ops,
3395 .ct_owner = THIS_MODULE,
3396 };
3397
3398
3399 /* Function registration interface ******************************************/
3400
ffs_free_inst(struct usb_function_instance * f)3401 static void ffs_free_inst(struct usb_function_instance *f)
3402 {
3403 struct f_fs_opts *opts;
3404
3405 opts = to_f_fs_opts(f);
3406 ffs_dev_lock();
3407 _ffs_free_dev(opts->dev);
3408 ffs_dev_unlock();
3409 kfree(opts);
3410 }
3411
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3412 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3413 {
3414 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3415 return -ENAMETOOLONG;
3416 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3417 }
3418
ffs_alloc_inst(void)3419 static struct usb_function_instance *ffs_alloc_inst(void)
3420 {
3421 struct f_fs_opts *opts;
3422 struct ffs_dev *dev;
3423
3424 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3425 if (!opts)
3426 return ERR_PTR(-ENOMEM);
3427
3428 opts->func_inst.set_inst_name = ffs_set_inst_name;
3429 opts->func_inst.free_func_inst = ffs_free_inst;
3430 ffs_dev_lock();
3431 dev = _ffs_alloc_dev();
3432 ffs_dev_unlock();
3433 if (IS_ERR(dev)) {
3434 kfree(opts);
3435 return ERR_CAST(dev);
3436 }
3437 opts->dev = dev;
3438 dev->opts = opts;
3439
3440 config_group_init_type_name(&opts->func_inst.group, "",
3441 &ffs_func_type);
3442 return &opts->func_inst;
3443 }
3444
ffs_free(struct usb_function * f)3445 static void ffs_free(struct usb_function *f)
3446 {
3447 kfree(ffs_func_from_usb(f));
3448 }
3449
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3450 static void ffs_func_unbind(struct usb_configuration *c,
3451 struct usb_function *f)
3452 {
3453 struct ffs_function *func = ffs_func_from_usb(f);
3454 struct ffs_data *ffs = func->ffs;
3455 struct f_fs_opts *opts =
3456 container_of(f->fi, struct f_fs_opts, func_inst);
3457 struct ffs_ep *ep = func->eps;
3458 unsigned count = ffs->eps_count;
3459 unsigned long flags;
3460
3461 ENTER();
3462 if (ffs->func == func) {
3463 ffs_func_eps_disable(func);
3464 ffs->func = NULL;
3465 }
3466
3467 if (!--opts->refcnt)
3468 functionfs_unbind(ffs);
3469
3470 /* cleanup after autoconfig */
3471 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3472 while (count--) {
3473 if (ep->ep && ep->req)
3474 usb_ep_free_request(ep->ep, ep->req);
3475 ep->req = NULL;
3476 ++ep;
3477 }
3478 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3479 kfree(func->eps);
3480 func->eps = NULL;
3481 /*
3482 * eps, descriptors and interfaces_nums are allocated in the
3483 * same chunk so only one free is required.
3484 */
3485 func->function.fs_descriptors = NULL;
3486 func->function.hs_descriptors = NULL;
3487 func->function.ss_descriptors = NULL;
3488 func->interfaces_nums = NULL;
3489
3490 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3491 }
3492
ffs_alloc(struct usb_function_instance * fi)3493 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3494 {
3495 struct ffs_function *func;
3496
3497 ENTER();
3498
3499 func = kzalloc(sizeof(*func), GFP_KERNEL);
3500 if (unlikely(!func))
3501 return ERR_PTR(-ENOMEM);
3502
3503 func->function.name = "Function FS Gadget";
3504
3505 func->function.bind = ffs_func_bind;
3506 func->function.unbind = ffs_func_unbind;
3507 func->function.set_alt = ffs_func_set_alt;
3508 func->function.disable = ffs_func_disable;
3509 func->function.setup = ffs_func_setup;
3510 func->function.req_match = ffs_func_req_match;
3511 func->function.suspend = ffs_func_suspend;
3512 func->function.resume = ffs_func_resume;
3513 func->function.free_func = ffs_free;
3514
3515 return &func->function;
3516 }
3517
3518 /*
3519 * ffs_lock must be taken by the caller of this function
3520 */
_ffs_alloc_dev(void)3521 static struct ffs_dev *_ffs_alloc_dev(void)
3522 {
3523 struct ffs_dev *dev;
3524 int ret;
3525
3526 if (_ffs_get_single_dev())
3527 return ERR_PTR(-EBUSY);
3528
3529 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3530 if (!dev)
3531 return ERR_PTR(-ENOMEM);
3532
3533 if (list_empty(&ffs_devices)) {
3534 ret = functionfs_init();
3535 if (ret) {
3536 kfree(dev);
3537 return ERR_PTR(ret);
3538 }
3539 }
3540
3541 list_add(&dev->entry, &ffs_devices);
3542
3543 return dev;
3544 }
3545
ffs_name_dev(struct ffs_dev * dev,const char * name)3546 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3547 {
3548 struct ffs_dev *existing;
3549 int ret = 0;
3550
3551 ffs_dev_lock();
3552
3553 existing = _ffs_do_find_dev(name);
3554 if (!existing)
3555 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3556 else if (existing != dev)
3557 ret = -EBUSY;
3558
3559 ffs_dev_unlock();
3560
3561 return ret;
3562 }
3563 EXPORT_SYMBOL_GPL(ffs_name_dev);
3564
ffs_single_dev(struct ffs_dev * dev)3565 int ffs_single_dev(struct ffs_dev *dev)
3566 {
3567 int ret;
3568
3569 ret = 0;
3570 ffs_dev_lock();
3571
3572 if (!list_is_singular(&ffs_devices))
3573 ret = -EBUSY;
3574 else
3575 dev->single = true;
3576
3577 ffs_dev_unlock();
3578 return ret;
3579 }
3580 EXPORT_SYMBOL_GPL(ffs_single_dev);
3581
3582 /*
3583 * ffs_lock must be taken by the caller of this function
3584 */
_ffs_free_dev(struct ffs_dev * dev)3585 static void _ffs_free_dev(struct ffs_dev *dev)
3586 {
3587 list_del(&dev->entry);
3588
3589 /* Clear the private_data pointer to stop incorrect dev access */
3590 if (dev->ffs_data)
3591 dev->ffs_data->private_data = NULL;
3592
3593 kfree(dev);
3594 if (list_empty(&ffs_devices))
3595 functionfs_cleanup();
3596 }
3597
ffs_acquire_dev(const char * dev_name)3598 static void *ffs_acquire_dev(const char *dev_name)
3599 {
3600 struct ffs_dev *ffs_dev;
3601
3602 ENTER();
3603 ffs_dev_lock();
3604
3605 ffs_dev = _ffs_find_dev(dev_name);
3606 if (!ffs_dev)
3607 ffs_dev = ERR_PTR(-ENOENT);
3608 else if (ffs_dev->mounted)
3609 ffs_dev = ERR_PTR(-EBUSY);
3610 else if (ffs_dev->ffs_acquire_dev_callback &&
3611 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3612 ffs_dev = ERR_PTR(-ENOENT);
3613 else
3614 ffs_dev->mounted = true;
3615
3616 ffs_dev_unlock();
3617 return ffs_dev;
3618 }
3619
ffs_release_dev(struct ffs_data * ffs_data)3620 static void ffs_release_dev(struct ffs_data *ffs_data)
3621 {
3622 struct ffs_dev *ffs_dev;
3623
3624 ENTER();
3625 ffs_dev_lock();
3626
3627 ffs_dev = ffs_data->private_data;
3628 if (ffs_dev) {
3629 ffs_dev->mounted = false;
3630
3631 if (ffs_dev->ffs_release_dev_callback)
3632 ffs_dev->ffs_release_dev_callback(ffs_dev);
3633 }
3634
3635 ffs_dev_unlock();
3636 }
3637
ffs_ready(struct ffs_data * ffs)3638 static int ffs_ready(struct ffs_data *ffs)
3639 {
3640 struct ffs_dev *ffs_obj;
3641 int ret = 0;
3642
3643 ENTER();
3644 ffs_dev_lock();
3645
3646 ffs_obj = ffs->private_data;
3647 if (!ffs_obj) {
3648 ret = -EINVAL;
3649 goto done;
3650 }
3651 if (WARN_ON(ffs_obj->desc_ready)) {
3652 ret = -EBUSY;
3653 goto done;
3654 }
3655
3656 ffs_obj->desc_ready = true;
3657 ffs_obj->ffs_data = ffs;
3658
3659 if (ffs_obj->ffs_ready_callback) {
3660 ret = ffs_obj->ffs_ready_callback(ffs);
3661 if (ret)
3662 goto done;
3663 }
3664
3665 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3666 done:
3667 ffs_dev_unlock();
3668 return ret;
3669 }
3670
ffs_closed(struct ffs_data * ffs)3671 static void ffs_closed(struct ffs_data *ffs)
3672 {
3673 struct ffs_dev *ffs_obj;
3674 struct f_fs_opts *opts;
3675 struct config_item *ci;
3676
3677 ENTER();
3678 ffs_dev_lock();
3679
3680 ffs_obj = ffs->private_data;
3681 if (!ffs_obj)
3682 goto done;
3683
3684 ffs_obj->desc_ready = false;
3685 ffs_obj->ffs_data = NULL;
3686
3687 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3688 ffs_obj->ffs_closed_callback)
3689 ffs_obj->ffs_closed_callback(ffs);
3690
3691 if (ffs_obj->opts)
3692 opts = ffs_obj->opts;
3693 else
3694 goto done;
3695
3696 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3697 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3698 goto done;
3699
3700 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3701 ffs_dev_unlock();
3702
3703 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3704 unregister_gadget_item(ci);
3705 return;
3706 done:
3707 ffs_dev_unlock();
3708 }
3709
3710 /* Misc helper functions ****************************************************/
3711
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3712 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3713 {
3714 return nonblock
3715 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3716 : mutex_lock_interruptible(mutex);
3717 }
3718
ffs_prepare_buffer(const char __user * buf,size_t len)3719 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3720 {
3721 char *data;
3722
3723 if (unlikely(!len))
3724 return NULL;
3725
3726 data = kmalloc(len, GFP_KERNEL);
3727 if (unlikely(!data))
3728 return ERR_PTR(-ENOMEM);
3729
3730 if (unlikely(copy_from_user(data, buf, len))) {
3731 kfree(data);
3732 return ERR_PTR(-EFAULT);
3733 }
3734
3735 pr_vdebug("Buffer from user space:\n");
3736 ffs_dump_mem("", data, len);
3737
3738 return data;
3739 }
3740
3741 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3742 MODULE_LICENSE("GPL");
3743 MODULE_AUTHOR("Michal Nazarewicz");
3744