• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35 
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37 
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40 
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @sequence: we track updates to the CPU page table with a sequence number
47  * @ranges: list of range being snapshotted
48  * @mirrors: list of mirrors for this mm
49  * @mmu_notifier: mmu notifier to track updates to CPU page table
50  * @mirrors_sem: read/write semaphore protecting the mirrors list
51  */
52 struct hmm {
53 	struct mm_struct	*mm;
54 	spinlock_t		lock;
55 	atomic_t		sequence;
56 	struct list_head	ranges;
57 	struct list_head	mirrors;
58 	struct mmu_notifier	mmu_notifier;
59 	struct rw_semaphore	mirrors_sem;
60 };
61 
62 /*
63  * hmm_register - register HMM against an mm (HMM internal)
64  *
65  * @mm: mm struct to attach to
66  *
67  * This is not intended to be used directly by device drivers. It allocates an
68  * HMM struct if mm does not have one, and initializes it.
69  */
hmm_register(struct mm_struct * mm)70 static struct hmm *hmm_register(struct mm_struct *mm)
71 {
72 	struct hmm *hmm = READ_ONCE(mm->hmm);
73 	bool cleanup = false;
74 
75 	/*
76 	 * The hmm struct can only be freed once the mm_struct goes away,
77 	 * hence we should always have pre-allocated an new hmm struct
78 	 * above.
79 	 */
80 	if (hmm)
81 		return hmm;
82 
83 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84 	if (!hmm)
85 		return NULL;
86 	INIT_LIST_HEAD(&hmm->mirrors);
87 	init_rwsem(&hmm->mirrors_sem);
88 	atomic_set(&hmm->sequence, 0);
89 	hmm->mmu_notifier.ops = NULL;
90 	INIT_LIST_HEAD(&hmm->ranges);
91 	spin_lock_init(&hmm->lock);
92 	hmm->mm = mm;
93 
94 	spin_lock(&mm->page_table_lock);
95 	if (!mm->hmm)
96 		mm->hmm = hmm;
97 	else
98 		cleanup = true;
99 	spin_unlock(&mm->page_table_lock);
100 
101 	if (cleanup)
102 		goto error;
103 
104 	/*
105 	 * We should only get here if hold the mmap_sem in write mode ie on
106 	 * registration of first mirror through hmm_mirror_register()
107 	 */
108 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
109 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
110 		goto error_mm;
111 
112 	return mm->hmm;
113 
114 error_mm:
115 	spin_lock(&mm->page_table_lock);
116 	if (mm->hmm == hmm)
117 		mm->hmm = NULL;
118 	spin_unlock(&mm->page_table_lock);
119 error:
120 	kfree(hmm);
121 	return NULL;
122 }
123 
hmm_mm_destroy(struct mm_struct * mm)124 void hmm_mm_destroy(struct mm_struct *mm)
125 {
126 	kfree(mm->hmm);
127 }
128 
hmm_invalidate_range(struct hmm * hmm,enum hmm_update_type action,unsigned long start,unsigned long end)129 static void hmm_invalidate_range(struct hmm *hmm,
130 				 enum hmm_update_type action,
131 				 unsigned long start,
132 				 unsigned long end)
133 {
134 	struct hmm_mirror *mirror;
135 	struct hmm_range *range;
136 
137 	spin_lock(&hmm->lock);
138 	list_for_each_entry(range, &hmm->ranges, list) {
139 		unsigned long addr, idx, npages;
140 
141 		if (end < range->start || start >= range->end)
142 			continue;
143 
144 		range->valid = false;
145 		addr = max(start, range->start);
146 		idx = (addr - range->start) >> PAGE_SHIFT;
147 		npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
148 		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
149 	}
150 	spin_unlock(&hmm->lock);
151 
152 	down_read(&hmm->mirrors_sem);
153 	list_for_each_entry(mirror, &hmm->mirrors, list)
154 		mirror->ops->sync_cpu_device_pagetables(mirror, action,
155 							start, end);
156 	up_read(&hmm->mirrors_sem);
157 }
158 
hmm_release(struct mmu_notifier * mn,struct mm_struct * mm)159 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
160 {
161 	struct hmm_mirror *mirror;
162 	struct hmm *hmm = mm->hmm;
163 
164 	down_write(&hmm->mirrors_sem);
165 	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
166 					  list);
167 	while (mirror) {
168 		list_del_init(&mirror->list);
169 		if (mirror->ops->release) {
170 			/*
171 			 * Drop mirrors_sem so callback can wait on any pending
172 			 * work that might itself trigger mmu_notifier callback
173 			 * and thus would deadlock with us.
174 			 */
175 			up_write(&hmm->mirrors_sem);
176 			mirror->ops->release(mirror);
177 			down_write(&hmm->mirrors_sem);
178 		}
179 		mirror = list_first_entry_or_null(&hmm->mirrors,
180 						  struct hmm_mirror, list);
181 	}
182 	up_write(&hmm->mirrors_sem);
183 }
184 
hmm_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end,bool blockable)185 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
186 				       struct mm_struct *mm,
187 				       unsigned long start,
188 				       unsigned long end,
189 				       bool blockable)
190 {
191 	struct hmm *hmm = mm->hmm;
192 
193 	VM_BUG_ON(!hmm);
194 
195 	atomic_inc(&hmm->sequence);
196 
197 	return 0;
198 }
199 
hmm_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)200 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
201 				     struct mm_struct *mm,
202 				     unsigned long start,
203 				     unsigned long end)
204 {
205 	struct hmm *hmm = mm->hmm;
206 
207 	VM_BUG_ON(!hmm);
208 
209 	hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
210 }
211 
212 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
213 	.release		= hmm_release,
214 	.invalidate_range_start	= hmm_invalidate_range_start,
215 	.invalidate_range_end	= hmm_invalidate_range_end,
216 };
217 
218 /*
219  * hmm_mirror_register() - register a mirror against an mm
220  *
221  * @mirror: new mirror struct to register
222  * @mm: mm to register against
223  *
224  * To start mirroring a process address space, the device driver must register
225  * an HMM mirror struct.
226  *
227  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
228  */
hmm_mirror_register(struct hmm_mirror * mirror,struct mm_struct * mm)229 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
230 {
231 	/* Sanity check */
232 	if (!mm || !mirror || !mirror->ops)
233 		return -EINVAL;
234 
235 again:
236 	mirror->hmm = hmm_register(mm);
237 	if (!mirror->hmm)
238 		return -ENOMEM;
239 
240 	down_write(&mirror->hmm->mirrors_sem);
241 	if (mirror->hmm->mm == NULL) {
242 		/*
243 		 * A racing hmm_mirror_unregister() is about to destroy the hmm
244 		 * struct. Try again to allocate a new one.
245 		 */
246 		up_write(&mirror->hmm->mirrors_sem);
247 		mirror->hmm = NULL;
248 		goto again;
249 	} else {
250 		list_add(&mirror->list, &mirror->hmm->mirrors);
251 		up_write(&mirror->hmm->mirrors_sem);
252 	}
253 
254 	return 0;
255 }
256 EXPORT_SYMBOL(hmm_mirror_register);
257 
258 /*
259  * hmm_mirror_unregister() - unregister a mirror
260  *
261  * @mirror: new mirror struct to register
262  *
263  * Stop mirroring a process address space, and cleanup.
264  */
hmm_mirror_unregister(struct hmm_mirror * mirror)265 void hmm_mirror_unregister(struct hmm_mirror *mirror)
266 {
267 	bool should_unregister = false;
268 	struct mm_struct *mm;
269 	struct hmm *hmm;
270 
271 	if (mirror->hmm == NULL)
272 		return;
273 
274 	hmm = mirror->hmm;
275 	down_write(&hmm->mirrors_sem);
276 	list_del_init(&mirror->list);
277 	should_unregister = list_empty(&hmm->mirrors);
278 	mirror->hmm = NULL;
279 	mm = hmm->mm;
280 	hmm->mm = NULL;
281 	up_write(&hmm->mirrors_sem);
282 
283 	if (!should_unregister || mm == NULL)
284 		return;
285 
286 	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
287 
288 	spin_lock(&mm->page_table_lock);
289 	if (mm->hmm == hmm)
290 		mm->hmm = NULL;
291 	spin_unlock(&mm->page_table_lock);
292 
293 	kfree(hmm);
294 }
295 EXPORT_SYMBOL(hmm_mirror_unregister);
296 
297 struct hmm_vma_walk {
298 	struct hmm_range	*range;
299 	unsigned long		last;
300 	bool			fault;
301 	bool			block;
302 };
303 
hmm_vma_do_fault(struct mm_walk * walk,unsigned long addr,bool write_fault,uint64_t * pfn)304 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
305 			    bool write_fault, uint64_t *pfn)
306 {
307 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
308 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
309 	struct hmm_range *range = hmm_vma_walk->range;
310 	struct vm_area_struct *vma = walk->vma;
311 	vm_fault_t ret;
312 
313 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
314 	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
315 	ret = handle_mm_fault(vma, addr, flags);
316 	if (ret & VM_FAULT_RETRY)
317 		return -EBUSY;
318 	if (ret & VM_FAULT_ERROR) {
319 		*pfn = range->values[HMM_PFN_ERROR];
320 		return -EFAULT;
321 	}
322 
323 	return -EAGAIN;
324 }
325 
hmm_pfns_bad(unsigned long addr,unsigned long end,struct mm_walk * walk)326 static int hmm_pfns_bad(unsigned long addr,
327 			unsigned long end,
328 			struct mm_walk *walk)
329 {
330 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
331 	struct hmm_range *range = hmm_vma_walk->range;
332 	uint64_t *pfns = range->pfns;
333 	unsigned long i;
334 
335 	i = (addr - range->start) >> PAGE_SHIFT;
336 	for (; addr < end; addr += PAGE_SIZE, i++)
337 		pfns[i] = range->values[HMM_PFN_ERROR];
338 
339 	return 0;
340 }
341 
342 /*
343  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
344  * @start: range virtual start address (inclusive)
345  * @end: range virtual end address (exclusive)
346  * @fault: should we fault or not ?
347  * @write_fault: write fault ?
348  * @walk: mm_walk structure
349  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
350  *
351  * This function will be called whenever pmd_none() or pte_none() returns true,
352  * or whenever there is no page directory covering the virtual address range.
353  */
hmm_vma_walk_hole_(unsigned long addr,unsigned long end,bool fault,bool write_fault,struct mm_walk * walk)354 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
355 			      bool fault, bool write_fault,
356 			      struct mm_walk *walk)
357 {
358 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
359 	struct hmm_range *range = hmm_vma_walk->range;
360 	uint64_t *pfns = range->pfns;
361 	unsigned long i;
362 
363 	hmm_vma_walk->last = addr;
364 	i = (addr - range->start) >> PAGE_SHIFT;
365 	for (; addr < end; addr += PAGE_SIZE, i++) {
366 		pfns[i] = range->values[HMM_PFN_NONE];
367 		if (fault || write_fault) {
368 			int ret;
369 
370 			ret = hmm_vma_do_fault(walk, addr, write_fault,
371 					       &pfns[i]);
372 			if (ret != -EAGAIN)
373 				return ret;
374 		}
375 	}
376 
377 	return (fault || write_fault) ? -EAGAIN : 0;
378 }
379 
hmm_pte_need_fault(const struct hmm_vma_walk * hmm_vma_walk,uint64_t pfns,uint64_t cpu_flags,bool * fault,bool * write_fault)380 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
381 				      uint64_t pfns, uint64_t cpu_flags,
382 				      bool *fault, bool *write_fault)
383 {
384 	struct hmm_range *range = hmm_vma_walk->range;
385 
386 	*fault = *write_fault = false;
387 	if (!hmm_vma_walk->fault)
388 		return;
389 
390 	/* We aren't ask to do anything ... */
391 	if (!(pfns & range->flags[HMM_PFN_VALID]))
392 		return;
393 	/* If this is device memory than only fault if explicitly requested */
394 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
395 		/* Do we fault on device memory ? */
396 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
397 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
398 			*fault = true;
399 		}
400 		return;
401 	}
402 
403 	/* If CPU page table is not valid then we need to fault */
404 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
405 	/* Need to write fault ? */
406 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
407 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
408 		*write_fault = true;
409 		*fault = true;
410 	}
411 }
412 
hmm_range_need_fault(const struct hmm_vma_walk * hmm_vma_walk,const uint64_t * pfns,unsigned long npages,uint64_t cpu_flags,bool * fault,bool * write_fault)413 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
414 				 const uint64_t *pfns, unsigned long npages,
415 				 uint64_t cpu_flags, bool *fault,
416 				 bool *write_fault)
417 {
418 	unsigned long i;
419 
420 	if (!hmm_vma_walk->fault) {
421 		*fault = *write_fault = false;
422 		return;
423 	}
424 
425 	for (i = 0; i < npages; ++i) {
426 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
427 				   fault, write_fault);
428 		if ((*fault) || (*write_fault))
429 			return;
430 	}
431 }
432 
hmm_vma_walk_hole(unsigned long addr,unsigned long end,struct mm_walk * walk)433 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
434 			     struct mm_walk *walk)
435 {
436 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
437 	struct hmm_range *range = hmm_vma_walk->range;
438 	bool fault, write_fault;
439 	unsigned long i, npages;
440 	uint64_t *pfns;
441 
442 	i = (addr - range->start) >> PAGE_SHIFT;
443 	npages = (end - addr) >> PAGE_SHIFT;
444 	pfns = &range->pfns[i];
445 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
446 			     0, &fault, &write_fault);
447 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
448 }
449 
pmd_to_hmm_pfn_flags(struct hmm_range * range,pmd_t pmd)450 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
451 {
452 	if (pmd_protnone(pmd))
453 		return 0;
454 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
455 				range->flags[HMM_PFN_WRITE] :
456 				range->flags[HMM_PFN_VALID];
457 }
458 
hmm_vma_handle_pmd(struct mm_walk * walk,unsigned long addr,unsigned long end,uint64_t * pfns,pmd_t pmd)459 static int hmm_vma_handle_pmd(struct mm_walk *walk,
460 			      unsigned long addr,
461 			      unsigned long end,
462 			      uint64_t *pfns,
463 			      pmd_t pmd)
464 {
465 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
466 	struct hmm_range *range = hmm_vma_walk->range;
467 	unsigned long pfn, npages, i;
468 	bool fault, write_fault;
469 	uint64_t cpu_flags;
470 
471 	npages = (end - addr) >> PAGE_SHIFT;
472 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
473 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
474 			     &fault, &write_fault);
475 
476 	if (pmd_protnone(pmd) || fault || write_fault)
477 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
478 
479 	pfn = pmd_pfn(pmd) + pte_index(addr);
480 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
481 		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
482 	hmm_vma_walk->last = end;
483 	return 0;
484 }
485 
pte_to_hmm_pfn_flags(struct hmm_range * range,pte_t pte)486 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
487 {
488 	if (pte_none(pte) || !pte_present(pte))
489 		return 0;
490 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
491 				range->flags[HMM_PFN_WRITE] :
492 				range->flags[HMM_PFN_VALID];
493 }
494 
hmm_vma_handle_pte(struct mm_walk * walk,unsigned long addr,unsigned long end,pmd_t * pmdp,pte_t * ptep,uint64_t * pfn)495 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
496 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
497 			      uint64_t *pfn)
498 {
499 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
500 	struct hmm_range *range = hmm_vma_walk->range;
501 	struct vm_area_struct *vma = walk->vma;
502 	bool fault, write_fault;
503 	uint64_t cpu_flags;
504 	pte_t pte = *ptep;
505 	uint64_t orig_pfn = *pfn;
506 
507 	*pfn = range->values[HMM_PFN_NONE];
508 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
509 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
510 			   &fault, &write_fault);
511 
512 	if (pte_none(pte)) {
513 		if (fault || write_fault)
514 			goto fault;
515 		return 0;
516 	}
517 
518 	if (!pte_present(pte)) {
519 		swp_entry_t entry = pte_to_swp_entry(pte);
520 
521 		if (!non_swap_entry(entry)) {
522 			if (fault || write_fault)
523 				goto fault;
524 			return 0;
525 		}
526 
527 		/*
528 		 * This is a special swap entry, ignore migration, use
529 		 * device and report anything else as error.
530 		 */
531 		if (is_device_private_entry(entry)) {
532 			cpu_flags = range->flags[HMM_PFN_VALID] |
533 				range->flags[HMM_PFN_DEVICE_PRIVATE];
534 			cpu_flags |= is_write_device_private_entry(entry) ?
535 				range->flags[HMM_PFN_WRITE] : 0;
536 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
537 					   &fault, &write_fault);
538 			if (fault || write_fault)
539 				goto fault;
540 			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
541 			*pfn |= cpu_flags;
542 			return 0;
543 		}
544 
545 		if (is_migration_entry(entry)) {
546 			if (fault || write_fault) {
547 				pte_unmap(ptep);
548 				hmm_vma_walk->last = addr;
549 				migration_entry_wait(vma->vm_mm,
550 						     pmdp, addr);
551 				return -EAGAIN;
552 			}
553 			return 0;
554 		}
555 
556 		/* Report error for everything else */
557 		*pfn = range->values[HMM_PFN_ERROR];
558 		return -EFAULT;
559 	}
560 
561 	if (fault || write_fault)
562 		goto fault;
563 
564 	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
565 	return 0;
566 
567 fault:
568 	pte_unmap(ptep);
569 	/* Fault any virtual address we were asked to fault */
570 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
571 }
572 
hmm_vma_walk_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)573 static int hmm_vma_walk_pmd(pmd_t *pmdp,
574 			    unsigned long start,
575 			    unsigned long end,
576 			    struct mm_walk *walk)
577 {
578 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
579 	struct hmm_range *range = hmm_vma_walk->range;
580 	uint64_t *pfns = range->pfns;
581 	unsigned long addr = start, i;
582 	pte_t *ptep;
583 
584 	i = (addr - range->start) >> PAGE_SHIFT;
585 
586 again:
587 	if (pmd_none(*pmdp))
588 		return hmm_vma_walk_hole(start, end, walk);
589 
590 	if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
591 		return hmm_pfns_bad(start, end, walk);
592 
593 	if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
594 		pmd_t pmd;
595 
596 		/*
597 		 * No need to take pmd_lock here, even if some other threads
598 		 * is splitting the huge pmd we will get that event through
599 		 * mmu_notifier callback.
600 		 *
601 		 * So just read pmd value and check again its a transparent
602 		 * huge or device mapping one and compute corresponding pfn
603 		 * values.
604 		 */
605 		pmd = pmd_read_atomic(pmdp);
606 		barrier();
607 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
608 			goto again;
609 
610 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
611 	}
612 
613 	if (pmd_bad(*pmdp))
614 		return hmm_pfns_bad(start, end, walk);
615 
616 	ptep = pte_offset_map(pmdp, addr);
617 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
618 		int r;
619 
620 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
621 		if (r) {
622 			/* hmm_vma_handle_pte() did unmap pte directory */
623 			hmm_vma_walk->last = addr;
624 			return r;
625 		}
626 	}
627 	pte_unmap(ptep - 1);
628 
629 	hmm_vma_walk->last = addr;
630 	return 0;
631 }
632 
hmm_pfns_clear(struct hmm_range * range,uint64_t * pfns,unsigned long addr,unsigned long end)633 static void hmm_pfns_clear(struct hmm_range *range,
634 			   uint64_t *pfns,
635 			   unsigned long addr,
636 			   unsigned long end)
637 {
638 	for (; addr < end; addr += PAGE_SIZE, pfns++)
639 		*pfns = range->values[HMM_PFN_NONE];
640 }
641 
hmm_pfns_special(struct hmm_range * range)642 static void hmm_pfns_special(struct hmm_range *range)
643 {
644 	unsigned long addr = range->start, i = 0;
645 
646 	for (; addr < range->end; addr += PAGE_SIZE, i++)
647 		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
648 }
649 
650 /*
651  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
652  * @range: range being snapshotted
653  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
654  *          vma permission, 0 success
655  *
656  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
657  * validity is tracked by range struct. See hmm_vma_range_done() for further
658  * information.
659  *
660  * The range struct is initialized here. It tracks the CPU page table, but only
661  * if the function returns success (0), in which case the caller must then call
662  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
663  *
664  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
665  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
666  */
hmm_vma_get_pfns(struct hmm_range * range)667 int hmm_vma_get_pfns(struct hmm_range *range)
668 {
669 	struct vm_area_struct *vma = range->vma;
670 	struct hmm_vma_walk hmm_vma_walk;
671 	struct mm_walk mm_walk;
672 	struct hmm *hmm;
673 
674 	/* Sanity check, this really should not happen ! */
675 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
676 		return -EINVAL;
677 	if (range->end < vma->vm_start || range->end > vma->vm_end)
678 		return -EINVAL;
679 
680 	hmm = hmm_register(vma->vm_mm);
681 	if (!hmm)
682 		return -ENOMEM;
683 	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
684 	if (!hmm->mmu_notifier.ops)
685 		return -EINVAL;
686 
687 	/* FIXME support hugetlb fs */
688 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
689 			vma_is_dax(vma)) {
690 		hmm_pfns_special(range);
691 		return -EINVAL;
692 	}
693 
694 	if (!(vma->vm_flags & VM_READ)) {
695 		/*
696 		 * If vma do not allow read access, then assume that it does
697 		 * not allow write access, either. Architecture that allow
698 		 * write without read access are not supported by HMM, because
699 		 * operations such has atomic access would not work.
700 		 */
701 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
702 		return -EPERM;
703 	}
704 
705 	/* Initialize range to track CPU page table update */
706 	spin_lock(&hmm->lock);
707 	range->valid = true;
708 	list_add_rcu(&range->list, &hmm->ranges);
709 	spin_unlock(&hmm->lock);
710 
711 	hmm_vma_walk.fault = false;
712 	hmm_vma_walk.range = range;
713 	mm_walk.private = &hmm_vma_walk;
714 
715 	mm_walk.vma = vma;
716 	mm_walk.mm = vma->vm_mm;
717 	mm_walk.pte_entry = NULL;
718 	mm_walk.test_walk = NULL;
719 	mm_walk.hugetlb_entry = NULL;
720 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
721 	mm_walk.pte_hole = hmm_vma_walk_hole;
722 
723 	walk_page_range(range->start, range->end, &mm_walk);
724 	return 0;
725 }
726 EXPORT_SYMBOL(hmm_vma_get_pfns);
727 
728 /*
729  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
730  * @range: range being tracked
731  * Returns: false if range data has been invalidated, true otherwise
732  *
733  * Range struct is used to track updates to the CPU page table after a call to
734  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
735  * using the data,  or wants to lock updates to the data it got from those
736  * functions, it must call the hmm_vma_range_done() function, which will then
737  * stop tracking CPU page table updates.
738  *
739  * Note that device driver must still implement general CPU page table update
740  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
741  * the mmu_notifier API directly.
742  *
743  * CPU page table update tracking done through hmm_range is only temporary and
744  * to be used while trying to duplicate CPU page table contents for a range of
745  * virtual addresses.
746  *
747  * There are two ways to use this :
748  * again:
749  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
750  *   trans = device_build_page_table_update_transaction(pfns);
751  *   device_page_table_lock();
752  *   if (!hmm_vma_range_done(range)) {
753  *     device_page_table_unlock();
754  *     goto again;
755  *   }
756  *   device_commit_transaction(trans);
757  *   device_page_table_unlock();
758  *
759  * Or:
760  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
761  *   device_page_table_lock();
762  *   hmm_vma_range_done(range);
763  *   device_update_page_table(range->pfns);
764  *   device_page_table_unlock();
765  */
hmm_vma_range_done(struct hmm_range * range)766 bool hmm_vma_range_done(struct hmm_range *range)
767 {
768 	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
769 	struct hmm *hmm;
770 
771 	if (range->end <= range->start) {
772 		BUG();
773 		return false;
774 	}
775 
776 	hmm = hmm_register(range->vma->vm_mm);
777 	if (!hmm) {
778 		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
779 		return false;
780 	}
781 
782 	spin_lock(&hmm->lock);
783 	list_del_rcu(&range->list);
784 	spin_unlock(&hmm->lock);
785 
786 	return range->valid;
787 }
788 EXPORT_SYMBOL(hmm_vma_range_done);
789 
790 /*
791  * hmm_vma_fault() - try to fault some address in a virtual address range
792  * @range: range being faulted
793  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
794  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
795  *
796  * This is similar to a regular CPU page fault except that it will not trigger
797  * any memory migration if the memory being faulted is not accessible by CPUs.
798  *
799  * On error, for one virtual address in the range, the function will mark the
800  * corresponding HMM pfn entry with an error flag.
801  *
802  * Expected use pattern:
803  * retry:
804  *   down_read(&mm->mmap_sem);
805  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
806  *   // array accordingly
807  *   ret = hmm_vma_fault(range, write, block);
808  *   switch (ret) {
809  *   case -EAGAIN:
810  *     hmm_vma_range_done(range);
811  *     // You might want to rate limit or yield to play nicely, you may
812  *     // also commit any valid pfn in the array assuming that you are
813  *     // getting true from hmm_vma_range_monitor_end()
814  *     goto retry;
815  *   case 0:
816  *     break;
817  *   case -ENOMEM:
818  *   case -EINVAL:
819  *   case -EPERM:
820  *   default:
821  *     // Handle error !
822  *     up_read(&mm->mmap_sem)
823  *     return;
824  *   }
825  *   // Take device driver lock that serialize device page table update
826  *   driver_lock_device_page_table_update();
827  *   hmm_vma_range_done(range);
828  *   // Commit pfns we got from hmm_vma_fault()
829  *   driver_unlock_device_page_table_update();
830  *   up_read(&mm->mmap_sem)
831  *
832  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
833  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
834  *
835  * YOU HAVE BEEN WARNED !
836  */
hmm_vma_fault(struct hmm_range * range,bool block)837 int hmm_vma_fault(struct hmm_range *range, bool block)
838 {
839 	struct vm_area_struct *vma = range->vma;
840 	unsigned long start = range->start;
841 	struct hmm_vma_walk hmm_vma_walk;
842 	struct mm_walk mm_walk;
843 	struct hmm *hmm;
844 	int ret;
845 
846 	/* Sanity check, this really should not happen ! */
847 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
848 		return -EINVAL;
849 	if (range->end < vma->vm_start || range->end > vma->vm_end)
850 		return -EINVAL;
851 
852 	hmm = hmm_register(vma->vm_mm);
853 	if (!hmm) {
854 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
855 		return -ENOMEM;
856 	}
857 	/* Caller must have registered a mirror using hmm_mirror_register() */
858 	if (!hmm->mmu_notifier.ops)
859 		return -EINVAL;
860 
861 	/* FIXME support hugetlb fs */
862 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
863 			vma_is_dax(vma)) {
864 		hmm_pfns_special(range);
865 		return -EINVAL;
866 	}
867 
868 	if (!(vma->vm_flags & VM_READ)) {
869 		/*
870 		 * If vma do not allow read access, then assume that it does
871 		 * not allow write access, either. Architecture that allow
872 		 * write without read access are not supported by HMM, because
873 		 * operations such has atomic access would not work.
874 		 */
875 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
876 		return -EPERM;
877 	}
878 
879 	/* Initialize range to track CPU page table update */
880 	spin_lock(&hmm->lock);
881 	range->valid = true;
882 	list_add_rcu(&range->list, &hmm->ranges);
883 	spin_unlock(&hmm->lock);
884 
885 	hmm_vma_walk.fault = true;
886 	hmm_vma_walk.block = block;
887 	hmm_vma_walk.range = range;
888 	mm_walk.private = &hmm_vma_walk;
889 	hmm_vma_walk.last = range->start;
890 
891 	mm_walk.vma = vma;
892 	mm_walk.mm = vma->vm_mm;
893 	mm_walk.pte_entry = NULL;
894 	mm_walk.test_walk = NULL;
895 	mm_walk.hugetlb_entry = NULL;
896 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
897 	mm_walk.pte_hole = hmm_vma_walk_hole;
898 
899 	do {
900 		ret = walk_page_range(start, range->end, &mm_walk);
901 		start = hmm_vma_walk.last;
902 	} while (ret == -EAGAIN);
903 
904 	if (ret) {
905 		unsigned long i;
906 
907 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
908 		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
909 			       range->end);
910 		hmm_vma_range_done(range);
911 	}
912 	return ret;
913 }
914 EXPORT_SYMBOL(hmm_vma_fault);
915 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
916 
917 
918 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
hmm_vma_alloc_locked_page(struct vm_area_struct * vma,unsigned long addr)919 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
920 				       unsigned long addr)
921 {
922 	struct page *page;
923 
924 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
925 	if (!page)
926 		return NULL;
927 	lock_page(page);
928 	return page;
929 }
930 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
931 
932 
hmm_devmem_ref_release(struct percpu_ref * ref)933 static void hmm_devmem_ref_release(struct percpu_ref *ref)
934 {
935 	struct hmm_devmem *devmem;
936 
937 	devmem = container_of(ref, struct hmm_devmem, ref);
938 	complete(&devmem->completion);
939 }
940 
hmm_devmem_ref_exit(void * data)941 static void hmm_devmem_ref_exit(void *data)
942 {
943 	struct percpu_ref *ref = data;
944 	struct hmm_devmem *devmem;
945 
946 	devmem = container_of(ref, struct hmm_devmem, ref);
947 	percpu_ref_exit(ref);
948 }
949 
hmm_devmem_ref_kill(void * data)950 static void hmm_devmem_ref_kill(void *data)
951 {
952 	struct percpu_ref *ref = data;
953 	struct hmm_devmem *devmem;
954 
955 	devmem = container_of(ref, struct hmm_devmem, ref);
956 	percpu_ref_kill(ref);
957 	wait_for_completion(&devmem->completion);
958 }
959 
hmm_devmem_fault(struct vm_area_struct * vma,unsigned long addr,const struct page * page,unsigned int flags,pmd_t * pmdp)960 static int hmm_devmem_fault(struct vm_area_struct *vma,
961 			    unsigned long addr,
962 			    const struct page *page,
963 			    unsigned int flags,
964 			    pmd_t *pmdp)
965 {
966 	struct hmm_devmem *devmem = page->pgmap->data;
967 
968 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
969 }
970 
hmm_devmem_free(struct page * page,void * data)971 static void hmm_devmem_free(struct page *page, void *data)
972 {
973 	struct hmm_devmem *devmem = data;
974 
975 	page->mapping = NULL;
976 
977 	devmem->ops->free(devmem, page);
978 }
979 
980 static DEFINE_MUTEX(hmm_devmem_lock);
981 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
982 
hmm_devmem_radix_release(struct resource * resource)983 static void hmm_devmem_radix_release(struct resource *resource)
984 {
985 	resource_size_t key;
986 
987 	mutex_lock(&hmm_devmem_lock);
988 	for (key = resource->start;
989 	     key <= resource->end;
990 	     key += PA_SECTION_SIZE)
991 		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
992 	mutex_unlock(&hmm_devmem_lock);
993 }
994 
hmm_devmem_release(void * data)995 static void hmm_devmem_release(void *data)
996 {
997 	struct hmm_devmem *devmem = data;
998 	struct resource *resource = devmem->resource;
999 	unsigned long start_pfn, npages;
1000 	struct page *page;
1001 	int nid;
1002 
1003 	/* pages are dead and unused, undo the arch mapping */
1004 	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1005 	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1006 
1007 	page = pfn_to_page(start_pfn);
1008 	nid = page_to_nid(page);
1009 
1010 	mem_hotplug_begin();
1011 	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1012 		__remove_pages(start_pfn, npages, NULL);
1013 	else
1014 		arch_remove_memory(nid, start_pfn << PAGE_SHIFT,
1015 				   npages << PAGE_SHIFT, NULL);
1016 	mem_hotplug_done();
1017 
1018 	hmm_devmem_radix_release(resource);
1019 }
1020 
hmm_devmem_pages_create(struct hmm_devmem * devmem)1021 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1022 {
1023 	resource_size_t key, align_start, align_size, align_end;
1024 	struct device *device = devmem->device;
1025 	int ret, nid, is_ram;
1026 	unsigned long pfn;
1027 
1028 	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1029 	align_size = ALIGN(devmem->resource->start +
1030 			   resource_size(devmem->resource),
1031 			   PA_SECTION_SIZE) - align_start;
1032 
1033 	is_ram = region_intersects(align_start, align_size,
1034 				   IORESOURCE_SYSTEM_RAM,
1035 				   IORES_DESC_NONE);
1036 	if (is_ram == REGION_MIXED) {
1037 		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1038 				__func__, devmem->resource);
1039 		return -ENXIO;
1040 	}
1041 	if (is_ram == REGION_INTERSECTS)
1042 		return -ENXIO;
1043 
1044 	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1045 		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1046 	else
1047 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1048 
1049 	devmem->pagemap.res = *devmem->resource;
1050 	devmem->pagemap.page_fault = hmm_devmem_fault;
1051 	devmem->pagemap.page_free = hmm_devmem_free;
1052 	devmem->pagemap.dev = devmem->device;
1053 	devmem->pagemap.ref = &devmem->ref;
1054 	devmem->pagemap.data = devmem;
1055 
1056 	mutex_lock(&hmm_devmem_lock);
1057 	align_end = align_start + align_size - 1;
1058 	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1059 		struct hmm_devmem *dup;
1060 
1061 		dup = radix_tree_lookup(&hmm_devmem_radix,
1062 					key >> PA_SECTION_SHIFT);
1063 		if (dup) {
1064 			dev_err(device, "%s: collides with mapping for %s\n",
1065 				__func__, dev_name(dup->device));
1066 			mutex_unlock(&hmm_devmem_lock);
1067 			ret = -EBUSY;
1068 			goto error;
1069 		}
1070 		ret = radix_tree_insert(&hmm_devmem_radix,
1071 					key >> PA_SECTION_SHIFT,
1072 					devmem);
1073 		if (ret) {
1074 			dev_err(device, "%s: failed: %d\n", __func__, ret);
1075 			mutex_unlock(&hmm_devmem_lock);
1076 			goto error_radix;
1077 		}
1078 	}
1079 	mutex_unlock(&hmm_devmem_lock);
1080 
1081 	nid = dev_to_node(device);
1082 	if (nid < 0)
1083 		nid = numa_mem_id();
1084 
1085 	mem_hotplug_begin();
1086 	/*
1087 	 * For device private memory we call add_pages() as we only need to
1088 	 * allocate and initialize struct page for the device memory. More-
1089 	 * over the device memory is un-accessible thus we do not want to
1090 	 * create a linear mapping for the memory like arch_add_memory()
1091 	 * would do.
1092 	 *
1093 	 * For device public memory, which is accesible by the CPU, we do
1094 	 * want the linear mapping and thus use arch_add_memory().
1095 	 */
1096 	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1097 		ret = arch_add_memory(nid, align_start, align_size, NULL,
1098 				false);
1099 	else
1100 		ret = add_pages(nid, align_start >> PAGE_SHIFT,
1101 				align_size >> PAGE_SHIFT, NULL, false);
1102 	if (ret) {
1103 		mem_hotplug_done();
1104 		goto error_add_memory;
1105 	}
1106 	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1107 				align_start >> PAGE_SHIFT,
1108 				align_size >> PAGE_SHIFT, NULL);
1109 	mem_hotplug_done();
1110 
1111 	for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1112 		struct page *page = pfn_to_page(pfn);
1113 
1114 		page->pgmap = &devmem->pagemap;
1115 	}
1116 	return 0;
1117 
1118 error_add_memory:
1119 	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1120 error_radix:
1121 	hmm_devmem_radix_release(devmem->resource);
1122 error:
1123 	return ret;
1124 }
1125 
1126 /*
1127  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1128  *
1129  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1130  * @device: device struct to bind the resource too
1131  * @size: size in bytes of the device memory to add
1132  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1133  *
1134  * This function first finds an empty range of physical address big enough to
1135  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1136  * in turn allocates struct pages. It does not do anything beyond that; all
1137  * events affecting the memory will go through the various callbacks provided
1138  * by hmm_devmem_ops struct.
1139  *
1140  * Device driver should call this function during device initialization and
1141  * is then responsible of memory management. HMM only provides helpers.
1142  */
hmm_devmem_add(const struct hmm_devmem_ops * ops,struct device * device,unsigned long size)1143 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1144 				  struct device *device,
1145 				  unsigned long size)
1146 {
1147 	struct hmm_devmem *devmem;
1148 	resource_size_t addr;
1149 	int ret;
1150 
1151 	dev_pagemap_get_ops();
1152 
1153 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1154 	if (!devmem)
1155 		return ERR_PTR(-ENOMEM);
1156 
1157 	init_completion(&devmem->completion);
1158 	devmem->pfn_first = -1UL;
1159 	devmem->pfn_last = -1UL;
1160 	devmem->resource = NULL;
1161 	devmem->device = device;
1162 	devmem->ops = ops;
1163 
1164 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1165 			      0, GFP_KERNEL);
1166 	if (ret)
1167 		return ERR_PTR(ret);
1168 
1169 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1170 	if (ret)
1171 		return ERR_PTR(ret);
1172 
1173 	size = ALIGN(size, PA_SECTION_SIZE);
1174 	addr = min((unsigned long)iomem_resource.end,
1175 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1176 	addr = addr - size + 1UL;
1177 
1178 	/*
1179 	 * FIXME add a new helper to quickly walk resource tree and find free
1180 	 * range
1181 	 *
1182 	 * FIXME what about ioport_resource resource ?
1183 	 */
1184 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1185 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1186 		if (ret != REGION_DISJOINT)
1187 			continue;
1188 
1189 		devmem->resource = devm_request_mem_region(device, addr, size,
1190 							   dev_name(device));
1191 		if (!devmem->resource)
1192 			return ERR_PTR(-ENOMEM);
1193 		break;
1194 	}
1195 	if (!devmem->resource)
1196 		return ERR_PTR(-ERANGE);
1197 
1198 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1199 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1200 	devmem->pfn_last = devmem->pfn_first +
1201 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1202 
1203 	ret = hmm_devmem_pages_create(devmem);
1204 	if (ret)
1205 		return ERR_PTR(ret);
1206 
1207 	ret = devm_add_action_or_reset(device, hmm_devmem_release, devmem);
1208 	if (ret)
1209 		return ERR_PTR(ret);
1210 
1211 	return devmem;
1212 }
1213 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1214 
hmm_devmem_add_resource(const struct hmm_devmem_ops * ops,struct device * device,struct resource * res)1215 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1216 					   struct device *device,
1217 					   struct resource *res)
1218 {
1219 	struct hmm_devmem *devmem;
1220 	int ret;
1221 
1222 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1223 		return ERR_PTR(-EINVAL);
1224 
1225 	dev_pagemap_get_ops();
1226 
1227 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1228 	if (!devmem)
1229 		return ERR_PTR(-ENOMEM);
1230 
1231 	init_completion(&devmem->completion);
1232 	devmem->pfn_first = -1UL;
1233 	devmem->pfn_last = -1UL;
1234 	devmem->resource = res;
1235 	devmem->device = device;
1236 	devmem->ops = ops;
1237 
1238 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1239 			      0, GFP_KERNEL);
1240 	if (ret)
1241 		return ERR_PTR(ret);
1242 
1243 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1244 			&devmem->ref);
1245 	if (ret)
1246 		return ERR_PTR(ret);
1247 
1248 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1249 	devmem->pfn_last = devmem->pfn_first +
1250 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1251 
1252 	ret = hmm_devmem_pages_create(devmem);
1253 	if (ret)
1254 		return ERR_PTR(ret);
1255 
1256 	ret = devm_add_action_or_reset(device, hmm_devmem_release, devmem);
1257 	if (ret)
1258 		return ERR_PTR(ret);
1259 
1260 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_kill,
1261 			&devmem->ref);
1262 	if (ret)
1263 		return ERR_PTR(ret);
1264 
1265 	return devmem;
1266 }
1267 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1268 
1269 /*
1270  * A device driver that wants to handle multiple devices memory through a
1271  * single fake device can use hmm_device to do so. This is purely a helper
1272  * and it is not needed to make use of any HMM functionality.
1273  */
1274 #define HMM_DEVICE_MAX 256
1275 
1276 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1277 static DEFINE_SPINLOCK(hmm_device_lock);
1278 static struct class *hmm_device_class;
1279 static dev_t hmm_device_devt;
1280 
hmm_device_release(struct device * device)1281 static void hmm_device_release(struct device *device)
1282 {
1283 	struct hmm_device *hmm_device;
1284 
1285 	hmm_device = container_of(device, struct hmm_device, device);
1286 	spin_lock(&hmm_device_lock);
1287 	clear_bit(hmm_device->minor, hmm_device_mask);
1288 	spin_unlock(&hmm_device_lock);
1289 
1290 	kfree(hmm_device);
1291 }
1292 
hmm_device_new(void * drvdata)1293 struct hmm_device *hmm_device_new(void *drvdata)
1294 {
1295 	struct hmm_device *hmm_device;
1296 
1297 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1298 	if (!hmm_device)
1299 		return ERR_PTR(-ENOMEM);
1300 
1301 	spin_lock(&hmm_device_lock);
1302 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1303 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1304 		spin_unlock(&hmm_device_lock);
1305 		kfree(hmm_device);
1306 		return ERR_PTR(-EBUSY);
1307 	}
1308 	set_bit(hmm_device->minor, hmm_device_mask);
1309 	spin_unlock(&hmm_device_lock);
1310 
1311 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1312 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1313 					hmm_device->minor);
1314 	hmm_device->device.release = hmm_device_release;
1315 	dev_set_drvdata(&hmm_device->device, drvdata);
1316 	hmm_device->device.class = hmm_device_class;
1317 	device_initialize(&hmm_device->device);
1318 
1319 	return hmm_device;
1320 }
1321 EXPORT_SYMBOL(hmm_device_new);
1322 
hmm_device_put(struct hmm_device * hmm_device)1323 void hmm_device_put(struct hmm_device *hmm_device)
1324 {
1325 	put_device(&hmm_device->device);
1326 }
1327 EXPORT_SYMBOL(hmm_device_put);
1328 
hmm_init(void)1329 static int __init hmm_init(void)
1330 {
1331 	int ret;
1332 
1333 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1334 				  HMM_DEVICE_MAX,
1335 				  "hmm_device");
1336 	if (ret)
1337 		return ret;
1338 
1339 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1340 	if (IS_ERR(hmm_device_class)) {
1341 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1342 		return PTR_ERR(hmm_device_class);
1343 	}
1344 	return 0;
1345 }
1346 
1347 device_initcall(hmm_init);
1348 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1349