• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
keyring_key_to_ptr(struct key * key)51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
keyring_hash(const char * desc)61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
keyring_publish_name(struct key * keyring)109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
keyring_preparse(struct key_preparsed_payload * prep)131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
keyring_free_preparse(struct key_preparsed_payload * prep)139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
mult_64x32_and_fold(u64 x,u32 y)161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
hash_key_type_and_desc(const struct keyring_index_key * index_key)171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
keyring_get_key_chunk(const void * data,int level)230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
keyring_get_object_key_chunk(const void * object,int level)272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
keyring_compare_object(const void * object,const void * data)278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
keyring_diff_objects(const void * object,const void * data)293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
keyring_free_object(void * object)360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
keyring_destroy(struct key * keyring)385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->name_link.next != NULL &&
391 		    !list_empty(&keyring->name_link))
392 			list_del(&keyring->name_link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	if (keyring->restrict_link) {
398 		struct key_restriction *keyres = keyring->restrict_link;
399 
400 		key_put(keyres->key);
401 		kfree(keyres);
402 	}
403 
404 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406 
407 /*
408  * Describe a keyring for /proc.
409  */
keyring_describe(const struct key * keyring,struct seq_file * m)410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 	if (keyring->description)
413 		seq_puts(m, keyring->description);
414 	else
415 		seq_puts(m, "[anon]");
416 
417 	if (key_is_positive(keyring)) {
418 		if (keyring->keys.nr_leaves_on_tree != 0)
419 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 		else
421 			seq_puts(m, ": empty");
422 	}
423 }
424 
425 struct keyring_read_iterator_context {
426 	size_t			buflen;
427 	size_t			count;
428 	key_serial_t __user	*buffer;
429 };
430 
keyring_read_iterator(const void * object,void * data)431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 	struct keyring_read_iterator_context *ctx = data;
434 	const struct key *key = keyring_ptr_to_key(object);
435 
436 	kenter("{%s,%d},,{%zu/%zu}",
437 	       key->type->name, key->serial, ctx->count, ctx->buflen);
438 
439 	if (ctx->count >= ctx->buflen)
440 		return 1;
441 
442 	*ctx->buffer++ = key->serial;
443 	ctx->count += sizeof(key->serial);
444 	return 0;
445 }
446 
447 /*
448  * Read a list of key IDs from the keyring's contents in binary form
449  *
450  * The keyring's semaphore is read-locked by the caller.  This prevents someone
451  * from modifying it under us - which could cause us to read key IDs multiple
452  * times.
453  */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)454 static long keyring_read(const struct key *keyring,
455 			 char __user *buffer, size_t buflen)
456 {
457 	struct keyring_read_iterator_context ctx;
458 	long ret;
459 
460 	kenter("{%d},,%zu", key_serial(keyring), buflen);
461 
462 	if (buflen & (sizeof(key_serial_t) - 1))
463 		return -EINVAL;
464 
465 	/* Copy as many key IDs as fit into the buffer */
466 	if (buffer && buflen) {
467 		ctx.buffer = (key_serial_t __user *)buffer;
468 		ctx.buflen = buflen;
469 		ctx.count = 0;
470 		ret = assoc_array_iterate(&keyring->keys,
471 					  keyring_read_iterator, &ctx);
472 		if (ret < 0) {
473 			kleave(" = %ld [iterate]", ret);
474 			return ret;
475 		}
476 	}
477 
478 	/* Return the size of the buffer needed */
479 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
480 	if (ret <= buflen)
481 		kleave("= %ld [ok]", ret);
482 	else
483 		kleave("= %ld [buffer too small]", ret);
484 	return ret;
485 }
486 
487 /*
488  * Allocate a keyring and link into the destination keyring.
489  */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link,struct key * dest)490 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
491 			  const struct cred *cred, key_perm_t perm,
492 			  unsigned long flags,
493 			  struct key_restriction *restrict_link,
494 			  struct key *dest)
495 {
496 	struct key *keyring;
497 	int ret;
498 
499 	keyring = key_alloc(&key_type_keyring, description,
500 			    uid, gid, cred, perm, flags, restrict_link);
501 	if (!IS_ERR(keyring)) {
502 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
503 		if (ret < 0) {
504 			key_put(keyring);
505 			keyring = ERR_PTR(ret);
506 		}
507 	}
508 
509 	return keyring;
510 }
511 EXPORT_SYMBOL(keyring_alloc);
512 
513 /**
514  * restrict_link_reject - Give -EPERM to restrict link
515  * @keyring: The keyring being added to.
516  * @type: The type of key being added.
517  * @payload: The payload of the key intended to be added.
518  * @data: Additional data for evaluating restriction.
519  *
520  * Reject the addition of any links to a keyring.  It can be overridden by
521  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
522  * adding a key to a keyring.
523  *
524  * This is meant to be stored in a key_restriction structure which is passed
525  * in the restrict_link parameter to keyring_alloc().
526  */
restrict_link_reject(struct key * keyring,const struct key_type * type,const union key_payload * payload,struct key * restriction_key)527 int restrict_link_reject(struct key *keyring,
528 			 const struct key_type *type,
529 			 const union key_payload *payload,
530 			 struct key *restriction_key)
531 {
532 	return -EPERM;
533 }
534 
535 /*
536  * By default, we keys found by getting an exact match on their descriptions.
537  */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)538 bool key_default_cmp(const struct key *key,
539 		     const struct key_match_data *match_data)
540 {
541 	return strcmp(key->description, match_data->raw_data) == 0;
542 }
543 
544 /*
545  * Iteration function to consider each key found.
546  */
keyring_search_iterator(const void * object,void * iterator_data)547 static int keyring_search_iterator(const void *object, void *iterator_data)
548 {
549 	struct keyring_search_context *ctx = iterator_data;
550 	const struct key *key = keyring_ptr_to_key(object);
551 	unsigned long kflags = READ_ONCE(key->flags);
552 	short state = READ_ONCE(key->state);
553 
554 	kenter("{%d}", key->serial);
555 
556 	/* ignore keys not of this type */
557 	if (key->type != ctx->index_key.type) {
558 		kleave(" = 0 [!type]");
559 		return 0;
560 	}
561 
562 	/* skip invalidated, revoked and expired keys */
563 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
564 		time64_t expiry = READ_ONCE(key->expiry);
565 
566 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
567 			      (1 << KEY_FLAG_REVOKED))) {
568 			ctx->result = ERR_PTR(-EKEYREVOKED);
569 			kleave(" = %d [invrev]", ctx->skipped_ret);
570 			goto skipped;
571 		}
572 
573 		if (expiry && ctx->now >= expiry) {
574 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
575 				ctx->result = ERR_PTR(-EKEYEXPIRED);
576 			kleave(" = %d [expire]", ctx->skipped_ret);
577 			goto skipped;
578 		}
579 	}
580 
581 	/* keys that don't match */
582 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
583 		kleave(" = 0 [!match]");
584 		return 0;
585 	}
586 
587 	/* key must have search permissions */
588 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
589 	    key_task_permission(make_key_ref(key, ctx->possessed),
590 				ctx->cred, KEY_NEED_SEARCH) < 0) {
591 		ctx->result = ERR_PTR(-EACCES);
592 		kleave(" = %d [!perm]", ctx->skipped_ret);
593 		goto skipped;
594 	}
595 
596 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
597 		/* we set a different error code if we pass a negative key */
598 		if (state < 0) {
599 			ctx->result = ERR_PTR(state);
600 			kleave(" = %d [neg]", ctx->skipped_ret);
601 			goto skipped;
602 		}
603 	}
604 
605 	/* Found */
606 	ctx->result = make_key_ref(key, ctx->possessed);
607 	kleave(" = 1 [found]");
608 	return 1;
609 
610 skipped:
611 	return ctx->skipped_ret;
612 }
613 
614 /*
615  * Search inside a keyring for a key.  We can search by walking to it
616  * directly based on its index-key or we can iterate over the entire
617  * tree looking for it, based on the match function.
618  */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)619 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
620 {
621 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
622 		const void *object;
623 
624 		object = assoc_array_find(&keyring->keys,
625 					  &keyring_assoc_array_ops,
626 					  &ctx->index_key);
627 		return object ? ctx->iterator(object, ctx) : 0;
628 	}
629 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
630 }
631 
632 /*
633  * Search a tree of keyrings that point to other keyrings up to the maximum
634  * depth.
635  */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)636 static bool search_nested_keyrings(struct key *keyring,
637 				   struct keyring_search_context *ctx)
638 {
639 	struct {
640 		struct key *keyring;
641 		struct assoc_array_node *node;
642 		int slot;
643 	} stack[KEYRING_SEARCH_MAX_DEPTH];
644 
645 	struct assoc_array_shortcut *shortcut;
646 	struct assoc_array_node *node;
647 	struct assoc_array_ptr *ptr;
648 	struct key *key;
649 	int sp = 0, slot;
650 
651 	kenter("{%d},{%s,%s}",
652 	       keyring->serial,
653 	       ctx->index_key.type->name,
654 	       ctx->index_key.description);
655 
656 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
657 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
658 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
659 
660 	/* Check to see if this top-level keyring is what we are looking for
661 	 * and whether it is valid or not.
662 	 */
663 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
664 	    keyring_compare_object(keyring, &ctx->index_key)) {
665 		ctx->skipped_ret = 2;
666 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
667 		case 1:
668 			goto found;
669 		case 2:
670 			return false;
671 		default:
672 			break;
673 		}
674 	}
675 
676 	ctx->skipped_ret = 0;
677 
678 	/* Start processing a new keyring */
679 descend_to_keyring:
680 	kdebug("descend to %d", keyring->serial);
681 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
682 			      (1 << KEY_FLAG_REVOKED)))
683 		goto not_this_keyring;
684 
685 	/* Search through the keys in this keyring before its searching its
686 	 * subtrees.
687 	 */
688 	if (search_keyring(keyring, ctx))
689 		goto found;
690 
691 	/* Then manually iterate through the keyrings nested in this one.
692 	 *
693 	 * Start from the root node of the index tree.  Because of the way the
694 	 * hash function has been set up, keyrings cluster on the leftmost
695 	 * branch of the root node (root slot 0) or in the root node itself.
696 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
697 	 * slots 1-15).
698 	 */
699 	ptr = READ_ONCE(keyring->keys.root);
700 	if (!ptr)
701 		goto not_this_keyring;
702 
703 	if (assoc_array_ptr_is_shortcut(ptr)) {
704 		/* If the root is a shortcut, either the keyring only contains
705 		 * keyring pointers (everything clusters behind root slot 0) or
706 		 * doesn't contain any keyring pointers.
707 		 */
708 		shortcut = assoc_array_ptr_to_shortcut(ptr);
709 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
710 			goto not_this_keyring;
711 
712 		ptr = READ_ONCE(shortcut->next_node);
713 		node = assoc_array_ptr_to_node(ptr);
714 		goto begin_node;
715 	}
716 
717 	node = assoc_array_ptr_to_node(ptr);
718 	ptr = node->slots[0];
719 	if (!assoc_array_ptr_is_meta(ptr))
720 		goto begin_node;
721 
722 descend_to_node:
723 	/* Descend to a more distal node in this keyring's content tree and go
724 	 * through that.
725 	 */
726 	kdebug("descend");
727 	if (assoc_array_ptr_is_shortcut(ptr)) {
728 		shortcut = assoc_array_ptr_to_shortcut(ptr);
729 		ptr = READ_ONCE(shortcut->next_node);
730 		BUG_ON(!assoc_array_ptr_is_node(ptr));
731 	}
732 	node = assoc_array_ptr_to_node(ptr);
733 
734 begin_node:
735 	kdebug("begin_node");
736 	slot = 0;
737 ascend_to_node:
738 	/* Go through the slots in a node */
739 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
740 		ptr = READ_ONCE(node->slots[slot]);
741 
742 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
743 			goto descend_to_node;
744 
745 		if (!keyring_ptr_is_keyring(ptr))
746 			continue;
747 
748 		key = keyring_ptr_to_key(ptr);
749 
750 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
751 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
752 				ctx->result = ERR_PTR(-ELOOP);
753 				return false;
754 			}
755 			goto not_this_keyring;
756 		}
757 
758 		/* Search a nested keyring */
759 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
760 		    key_task_permission(make_key_ref(key, ctx->possessed),
761 					ctx->cred, KEY_NEED_SEARCH) < 0)
762 			continue;
763 
764 		/* stack the current position */
765 		stack[sp].keyring = keyring;
766 		stack[sp].node = node;
767 		stack[sp].slot = slot;
768 		sp++;
769 
770 		/* begin again with the new keyring */
771 		keyring = key;
772 		goto descend_to_keyring;
773 	}
774 
775 	/* We've dealt with all the slots in the current node, so now we need
776 	 * to ascend to the parent and continue processing there.
777 	 */
778 	ptr = READ_ONCE(node->back_pointer);
779 	slot = node->parent_slot;
780 
781 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
782 		shortcut = assoc_array_ptr_to_shortcut(ptr);
783 		ptr = READ_ONCE(shortcut->back_pointer);
784 		slot = shortcut->parent_slot;
785 	}
786 	if (!ptr)
787 		goto not_this_keyring;
788 	node = assoc_array_ptr_to_node(ptr);
789 	slot++;
790 
791 	/* If we've ascended to the root (zero backpointer), we must have just
792 	 * finished processing the leftmost branch rather than the root slots -
793 	 * so there can't be any more keyrings for us to find.
794 	 */
795 	if (node->back_pointer) {
796 		kdebug("ascend %d", slot);
797 		goto ascend_to_node;
798 	}
799 
800 	/* The keyring we're looking at was disqualified or didn't contain a
801 	 * matching key.
802 	 */
803 not_this_keyring:
804 	kdebug("not_this_keyring %d", sp);
805 	if (sp <= 0) {
806 		kleave(" = false");
807 		return false;
808 	}
809 
810 	/* Resume the processing of a keyring higher up in the tree */
811 	sp--;
812 	keyring = stack[sp].keyring;
813 	node = stack[sp].node;
814 	slot = stack[sp].slot + 1;
815 	kdebug("ascend to %d [%d]", keyring->serial, slot);
816 	goto ascend_to_node;
817 
818 	/* We found a viable match */
819 found:
820 	key = key_ref_to_ptr(ctx->result);
821 	key_check(key);
822 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
823 		key->last_used_at = ctx->now;
824 		keyring->last_used_at = ctx->now;
825 		while (sp > 0)
826 			stack[--sp].keyring->last_used_at = ctx->now;
827 	}
828 	kleave(" = true");
829 	return true;
830 }
831 
832 /**
833  * keyring_search_aux - Search a keyring tree for a key matching some criteria
834  * @keyring_ref: A pointer to the keyring with possession indicator.
835  * @ctx: The keyring search context.
836  *
837  * Search the supplied keyring tree for a key that matches the criteria given.
838  * The root keyring and any linked keyrings must grant Search permission to the
839  * caller to be searchable and keys can only be found if they too grant Search
840  * to the caller. The possession flag on the root keyring pointer controls use
841  * of the possessor bits in permissions checking of the entire tree.  In
842  * addition, the LSM gets to forbid keyring searches and key matches.
843  *
844  * The search is performed as a breadth-then-depth search up to the prescribed
845  * limit (KEYRING_SEARCH_MAX_DEPTH).
846  *
847  * Keys are matched to the type provided and are then filtered by the match
848  * function, which is given the description to use in any way it sees fit.  The
849  * match function may use any attributes of a key that it wishes to to
850  * determine the match.  Normally the match function from the key type would be
851  * used.
852  *
853  * RCU can be used to prevent the keyring key lists from disappearing without
854  * the need to take lots of locks.
855  *
856  * Returns a pointer to the found key and increments the key usage count if
857  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
858  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
859  * specified keyring wasn't a keyring.
860  *
861  * In the case of a successful return, the possession attribute from
862  * @keyring_ref is propagated to the returned key reference.
863  */
keyring_search_aux(key_ref_t keyring_ref,struct keyring_search_context * ctx)864 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
865 			     struct keyring_search_context *ctx)
866 {
867 	struct key *keyring;
868 	long err;
869 
870 	ctx->iterator = keyring_search_iterator;
871 	ctx->possessed = is_key_possessed(keyring_ref);
872 	ctx->result = ERR_PTR(-EAGAIN);
873 
874 	keyring = key_ref_to_ptr(keyring_ref);
875 	key_check(keyring);
876 
877 	if (keyring->type != &key_type_keyring)
878 		return ERR_PTR(-ENOTDIR);
879 
880 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
881 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
882 		if (err < 0)
883 			return ERR_PTR(err);
884 	}
885 
886 	rcu_read_lock();
887 	ctx->now = ktime_get_real_seconds();
888 	if (search_nested_keyrings(keyring, ctx))
889 		__key_get(key_ref_to_ptr(ctx->result));
890 	rcu_read_unlock();
891 	return ctx->result;
892 }
893 
894 /**
895  * keyring_search - Search the supplied keyring tree for a matching key
896  * @keyring: The root of the keyring tree to be searched.
897  * @type: The type of keyring we want to find.
898  * @description: The name of the keyring we want to find.
899  *
900  * As keyring_search_aux() above, but using the current task's credentials and
901  * type's default matching function and preferred search method.
902  */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description)903 key_ref_t keyring_search(key_ref_t keyring,
904 			 struct key_type *type,
905 			 const char *description)
906 {
907 	struct keyring_search_context ctx = {
908 		.index_key.type		= type,
909 		.index_key.description	= description,
910 		.index_key.desc_len	= strlen(description),
911 		.cred			= current_cred(),
912 		.match_data.cmp		= key_default_cmp,
913 		.match_data.raw_data	= description,
914 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
915 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
916 	};
917 	key_ref_t key;
918 	int ret;
919 
920 	if (type->match_preparse) {
921 		ret = type->match_preparse(&ctx.match_data);
922 		if (ret < 0)
923 			return ERR_PTR(ret);
924 	}
925 
926 	key = keyring_search_aux(keyring, &ctx);
927 
928 	if (type->match_free)
929 		type->match_free(&ctx.match_data);
930 	return key;
931 }
932 EXPORT_SYMBOL(keyring_search);
933 
keyring_restriction_alloc(key_restrict_link_func_t check)934 static struct key_restriction *keyring_restriction_alloc(
935 	key_restrict_link_func_t check)
936 {
937 	struct key_restriction *keyres =
938 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
939 
940 	if (!keyres)
941 		return ERR_PTR(-ENOMEM);
942 
943 	keyres->check = check;
944 
945 	return keyres;
946 }
947 
948 /*
949  * Semaphore to serialise restriction setup to prevent reference count
950  * cycles through restriction key pointers.
951  */
952 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
953 
954 /*
955  * Check for restriction cycles that would prevent keyring garbage collection.
956  * keyring_serialise_restrict_sem must be held.
957  */
keyring_detect_restriction_cycle(const struct key * dest_keyring,struct key_restriction * keyres)958 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
959 					     struct key_restriction *keyres)
960 {
961 	while (keyres && keyres->key &&
962 	       keyres->key->type == &key_type_keyring) {
963 		if (keyres->key == dest_keyring)
964 			return true;
965 
966 		keyres = keyres->key->restrict_link;
967 	}
968 
969 	return false;
970 }
971 
972 /**
973  * keyring_restrict - Look up and apply a restriction to a keyring
974  *
975  * @keyring: The keyring to be restricted
976  * @restriction: The restriction options to apply to the keyring
977  */
keyring_restrict(key_ref_t keyring_ref,const char * type,const char * restriction)978 int keyring_restrict(key_ref_t keyring_ref, const char *type,
979 		     const char *restriction)
980 {
981 	struct key *keyring;
982 	struct key_type *restrict_type = NULL;
983 	struct key_restriction *restrict_link;
984 	int ret = 0;
985 
986 	keyring = key_ref_to_ptr(keyring_ref);
987 	key_check(keyring);
988 
989 	if (keyring->type != &key_type_keyring)
990 		return -ENOTDIR;
991 
992 	if (!type) {
993 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
994 	} else {
995 		restrict_type = key_type_lookup(type);
996 
997 		if (IS_ERR(restrict_type))
998 			return PTR_ERR(restrict_type);
999 
1000 		if (!restrict_type->lookup_restriction) {
1001 			ret = -ENOENT;
1002 			goto error;
1003 		}
1004 
1005 		restrict_link = restrict_type->lookup_restriction(restriction);
1006 	}
1007 
1008 	if (IS_ERR(restrict_link)) {
1009 		ret = PTR_ERR(restrict_link);
1010 		goto error;
1011 	}
1012 
1013 	down_write(&keyring->sem);
1014 	down_write(&keyring_serialise_restrict_sem);
1015 
1016 	if (keyring->restrict_link)
1017 		ret = -EEXIST;
1018 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1019 		ret = -EDEADLK;
1020 	else
1021 		keyring->restrict_link = restrict_link;
1022 
1023 	up_write(&keyring_serialise_restrict_sem);
1024 	up_write(&keyring->sem);
1025 
1026 	if (ret < 0) {
1027 		key_put(restrict_link->key);
1028 		kfree(restrict_link);
1029 	}
1030 
1031 error:
1032 	if (restrict_type)
1033 		key_type_put(restrict_type);
1034 
1035 	return ret;
1036 }
1037 EXPORT_SYMBOL(keyring_restrict);
1038 
1039 /*
1040  * Search the given keyring for a key that might be updated.
1041  *
1042  * The caller must guarantee that the keyring is a keyring and that the
1043  * permission is granted to modify the keyring as no check is made here.  The
1044  * caller must also hold a lock on the keyring semaphore.
1045  *
1046  * Returns a pointer to the found key with usage count incremented if
1047  * successful and returns NULL if not found.  Revoked and invalidated keys are
1048  * skipped over.
1049  *
1050  * If successful, the possession indicator is propagated from the keyring ref
1051  * to the returned key reference.
1052  */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)1053 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1054 			     const struct keyring_index_key *index_key)
1055 {
1056 	struct key *keyring, *key;
1057 	const void *object;
1058 
1059 	keyring = key_ref_to_ptr(keyring_ref);
1060 
1061 	kenter("{%d},{%s,%s}",
1062 	       keyring->serial, index_key->type->name, index_key->description);
1063 
1064 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1065 				  index_key);
1066 
1067 	if (object)
1068 		goto found;
1069 
1070 	kleave(" = NULL");
1071 	return NULL;
1072 
1073 found:
1074 	key = keyring_ptr_to_key(object);
1075 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1076 			  (1 << KEY_FLAG_REVOKED))) {
1077 		kleave(" = NULL [x]");
1078 		return NULL;
1079 	}
1080 	__key_get(key);
1081 	kleave(" = {%d}", key->serial);
1082 	return make_key_ref(key, is_key_possessed(keyring_ref));
1083 }
1084 
1085 /*
1086  * Find a keyring with the specified name.
1087  *
1088  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1089  * user in the current user namespace are considered.  If @uid_keyring is %true,
1090  * the keyring additionally must have been allocated as a user or user session
1091  * keyring; otherwise, it must grant Search permission directly to the caller.
1092  *
1093  * Returns a pointer to the keyring with the keyring's refcount having being
1094  * incremented on success.  -ENOKEY is returned if a key could not be found.
1095  */
find_keyring_by_name(const char * name,bool uid_keyring)1096 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1097 {
1098 	struct key *keyring;
1099 	int bucket;
1100 
1101 	if (!name)
1102 		return ERR_PTR(-EINVAL);
1103 
1104 	bucket = keyring_hash(name);
1105 
1106 	read_lock(&keyring_name_lock);
1107 
1108 	if (keyring_name_hash[bucket].next) {
1109 		/* search this hash bucket for a keyring with a matching name
1110 		 * that's readable and that hasn't been revoked */
1111 		list_for_each_entry(keyring,
1112 				    &keyring_name_hash[bucket],
1113 				    name_link
1114 				    ) {
1115 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1116 				continue;
1117 
1118 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1119 				continue;
1120 
1121 			if (strcmp(keyring->description, name) != 0)
1122 				continue;
1123 
1124 			if (uid_keyring) {
1125 				if (!test_bit(KEY_FLAG_UID_KEYRING,
1126 					      &keyring->flags))
1127 					continue;
1128 			} else {
1129 				if (key_permission(make_key_ref(keyring, 0),
1130 						   KEY_NEED_SEARCH) < 0)
1131 					continue;
1132 			}
1133 
1134 			/* we've got a match but we might end up racing with
1135 			 * key_cleanup() if the keyring is currently 'dead'
1136 			 * (ie. it has a zero usage count) */
1137 			if (!refcount_inc_not_zero(&keyring->usage))
1138 				continue;
1139 			keyring->last_used_at = ktime_get_real_seconds();
1140 			goto out;
1141 		}
1142 	}
1143 
1144 	keyring = ERR_PTR(-ENOKEY);
1145 out:
1146 	read_unlock(&keyring_name_lock);
1147 	return keyring;
1148 }
1149 
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1150 static int keyring_detect_cycle_iterator(const void *object,
1151 					 void *iterator_data)
1152 {
1153 	struct keyring_search_context *ctx = iterator_data;
1154 	const struct key *key = keyring_ptr_to_key(object);
1155 
1156 	kenter("{%d}", key->serial);
1157 
1158 	/* We might get a keyring with matching index-key that is nonetheless a
1159 	 * different keyring. */
1160 	if (key != ctx->match_data.raw_data)
1161 		return 0;
1162 
1163 	ctx->result = ERR_PTR(-EDEADLK);
1164 	return 1;
1165 }
1166 
1167 /*
1168  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1169  * tree A at the topmost level (ie: as a direct child of A).
1170  *
1171  * Since we are adding B to A at the top level, checking for cycles should just
1172  * be a matter of seeing if node A is somewhere in tree B.
1173  */
keyring_detect_cycle(struct key * A,struct key * B)1174 static int keyring_detect_cycle(struct key *A, struct key *B)
1175 {
1176 	struct keyring_search_context ctx = {
1177 		.index_key		= A->index_key,
1178 		.match_data.raw_data	= A,
1179 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1180 		.iterator		= keyring_detect_cycle_iterator,
1181 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1182 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1183 					   KEYRING_SEARCH_NO_CHECK_PERM |
1184 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1185 	};
1186 
1187 	rcu_read_lock();
1188 	search_nested_keyrings(B, &ctx);
1189 	rcu_read_unlock();
1190 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1191 }
1192 
1193 /*
1194  * Preallocate memory so that a key can be linked into to a keyring.
1195  */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1196 int __key_link_begin(struct key *keyring,
1197 		     const struct keyring_index_key *index_key,
1198 		     struct assoc_array_edit **_edit)
1199 	__acquires(&keyring->sem)
1200 	__acquires(&keyring_serialise_link_sem)
1201 {
1202 	struct assoc_array_edit *edit;
1203 	int ret;
1204 
1205 	kenter("%d,%s,%s,",
1206 	       keyring->serial, index_key->type->name, index_key->description);
1207 
1208 	BUG_ON(index_key->desc_len == 0);
1209 
1210 	if (keyring->type != &key_type_keyring)
1211 		return -ENOTDIR;
1212 
1213 	down_write(&keyring->sem);
1214 
1215 	ret = -EKEYREVOKED;
1216 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1217 		goto error_krsem;
1218 
1219 	/* serialise link/link calls to prevent parallel calls causing a cycle
1220 	 * when linking two keyring in opposite orders */
1221 	if (index_key->type == &key_type_keyring)
1222 		down_write(&keyring_serialise_link_sem);
1223 
1224 	/* Create an edit script that will insert/replace the key in the
1225 	 * keyring tree.
1226 	 */
1227 	edit = assoc_array_insert(&keyring->keys,
1228 				  &keyring_assoc_array_ops,
1229 				  index_key,
1230 				  NULL);
1231 	if (IS_ERR(edit)) {
1232 		ret = PTR_ERR(edit);
1233 		goto error_sem;
1234 	}
1235 
1236 	/* If we're not replacing a link in-place then we're going to need some
1237 	 * extra quota.
1238 	 */
1239 	if (!edit->dead_leaf) {
1240 		ret = key_payload_reserve(keyring,
1241 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1242 		if (ret < 0)
1243 			goto error_cancel;
1244 	}
1245 
1246 	*_edit = edit;
1247 	kleave(" = 0");
1248 	return 0;
1249 
1250 error_cancel:
1251 	assoc_array_cancel_edit(edit);
1252 error_sem:
1253 	if (index_key->type == &key_type_keyring)
1254 		up_write(&keyring_serialise_link_sem);
1255 error_krsem:
1256 	up_write(&keyring->sem);
1257 	kleave(" = %d", ret);
1258 	return ret;
1259 }
1260 
1261 /*
1262  * Check already instantiated keys aren't going to be a problem.
1263  *
1264  * The caller must have called __key_link_begin(). Don't need to call this for
1265  * keys that were created since __key_link_begin() was called.
1266  */
__key_link_check_live_key(struct key * keyring,struct key * key)1267 int __key_link_check_live_key(struct key *keyring, struct key *key)
1268 {
1269 	if (key->type == &key_type_keyring)
1270 		/* check that we aren't going to create a cycle by linking one
1271 		 * keyring to another */
1272 		return keyring_detect_cycle(keyring, key);
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Link a key into to a keyring.
1278  *
1279  * Must be called with __key_link_begin() having being called.  Discards any
1280  * already extant link to matching key if there is one, so that each keyring
1281  * holds at most one link to any given key of a particular type+description
1282  * combination.
1283  */
__key_link(struct key * key,struct assoc_array_edit ** _edit)1284 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1285 {
1286 	__key_get(key);
1287 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1288 	assoc_array_apply_edit(*_edit);
1289 	*_edit = NULL;
1290 }
1291 
1292 /*
1293  * Finish linking a key into to a keyring.
1294  *
1295  * Must be called with __key_link_begin() having being called.
1296  */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1297 void __key_link_end(struct key *keyring,
1298 		    const struct keyring_index_key *index_key,
1299 		    struct assoc_array_edit *edit)
1300 	__releases(&keyring->sem)
1301 	__releases(&keyring_serialise_link_sem)
1302 {
1303 	BUG_ON(index_key->type == NULL);
1304 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1305 
1306 	if (index_key->type == &key_type_keyring)
1307 		up_write(&keyring_serialise_link_sem);
1308 
1309 	if (edit) {
1310 		if (!edit->dead_leaf) {
1311 			key_payload_reserve(keyring,
1312 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1313 		}
1314 		assoc_array_cancel_edit(edit);
1315 	}
1316 	up_write(&keyring->sem);
1317 }
1318 
1319 /*
1320  * Check addition of keys to restricted keyrings.
1321  */
__key_link_check_restriction(struct key * keyring,struct key * key)1322 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1323 {
1324 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1325 		return 0;
1326 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1327 					     keyring->restrict_link->key);
1328 }
1329 
1330 /**
1331  * key_link - Link a key to a keyring
1332  * @keyring: The keyring to make the link in.
1333  * @key: The key to link to.
1334  *
1335  * Make a link in a keyring to a key, such that the keyring holds a reference
1336  * on that key and the key can potentially be found by searching that keyring.
1337  *
1338  * This function will write-lock the keyring's semaphore and will consume some
1339  * of the user's key data quota to hold the link.
1340  *
1341  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1342  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1343  * full, -EDQUOT if there is insufficient key data quota remaining to add
1344  * another link or -ENOMEM if there's insufficient memory.
1345  *
1346  * It is assumed that the caller has checked that it is permitted for a link to
1347  * be made (the keyring should have Write permission and the key Link
1348  * permission).
1349  */
key_link(struct key * keyring,struct key * key)1350 int key_link(struct key *keyring, struct key *key)
1351 {
1352 	struct assoc_array_edit *edit;
1353 	int ret;
1354 
1355 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1356 
1357 	key_check(keyring);
1358 	key_check(key);
1359 
1360 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1361 	if (ret == 0) {
1362 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1363 		ret = __key_link_check_restriction(keyring, key);
1364 		if (ret == 0)
1365 			ret = __key_link_check_live_key(keyring, key);
1366 		if (ret == 0)
1367 			__key_link(key, &edit);
1368 		__key_link_end(keyring, &key->index_key, edit);
1369 	}
1370 
1371 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1372 	return ret;
1373 }
1374 EXPORT_SYMBOL(key_link);
1375 
1376 /**
1377  * key_unlink - Unlink the first link to a key from a keyring.
1378  * @keyring: The keyring to remove the link from.
1379  * @key: The key the link is to.
1380  *
1381  * Remove a link from a keyring to a key.
1382  *
1383  * This function will write-lock the keyring's semaphore.
1384  *
1385  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1386  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1387  * memory.
1388  *
1389  * It is assumed that the caller has checked that it is permitted for a link to
1390  * be removed (the keyring should have Write permission; no permissions are
1391  * required on the key).
1392  */
key_unlink(struct key * keyring,struct key * key)1393 int key_unlink(struct key *keyring, struct key *key)
1394 {
1395 	struct assoc_array_edit *edit;
1396 	int ret;
1397 
1398 	key_check(keyring);
1399 	key_check(key);
1400 
1401 	if (keyring->type != &key_type_keyring)
1402 		return -ENOTDIR;
1403 
1404 	down_write(&keyring->sem);
1405 
1406 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1407 				  &key->index_key);
1408 	if (IS_ERR(edit)) {
1409 		ret = PTR_ERR(edit);
1410 		goto error;
1411 	}
1412 	ret = -ENOENT;
1413 	if (edit == NULL)
1414 		goto error;
1415 
1416 	assoc_array_apply_edit(edit);
1417 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1418 	ret = 0;
1419 
1420 error:
1421 	up_write(&keyring->sem);
1422 	return ret;
1423 }
1424 EXPORT_SYMBOL(key_unlink);
1425 
1426 /**
1427  * keyring_clear - Clear a keyring
1428  * @keyring: The keyring to clear.
1429  *
1430  * Clear the contents of the specified keyring.
1431  *
1432  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1433  */
keyring_clear(struct key * keyring)1434 int keyring_clear(struct key *keyring)
1435 {
1436 	struct assoc_array_edit *edit;
1437 	int ret;
1438 
1439 	if (keyring->type != &key_type_keyring)
1440 		return -ENOTDIR;
1441 
1442 	down_write(&keyring->sem);
1443 
1444 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1445 	if (IS_ERR(edit)) {
1446 		ret = PTR_ERR(edit);
1447 	} else {
1448 		if (edit)
1449 			assoc_array_apply_edit(edit);
1450 		key_payload_reserve(keyring, 0);
1451 		ret = 0;
1452 	}
1453 
1454 	up_write(&keyring->sem);
1455 	return ret;
1456 }
1457 EXPORT_SYMBOL(keyring_clear);
1458 
1459 /*
1460  * Dispose of the links from a revoked keyring.
1461  *
1462  * This is called with the key sem write-locked.
1463  */
keyring_revoke(struct key * keyring)1464 static void keyring_revoke(struct key *keyring)
1465 {
1466 	struct assoc_array_edit *edit;
1467 
1468 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1469 	if (!IS_ERR(edit)) {
1470 		if (edit)
1471 			assoc_array_apply_edit(edit);
1472 		key_payload_reserve(keyring, 0);
1473 	}
1474 }
1475 
keyring_gc_select_iterator(void * object,void * iterator_data)1476 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1477 {
1478 	struct key *key = keyring_ptr_to_key(object);
1479 	time64_t *limit = iterator_data;
1480 
1481 	if (key_is_dead(key, *limit))
1482 		return false;
1483 	key_get(key);
1484 	return true;
1485 }
1486 
keyring_gc_check_iterator(const void * object,void * iterator_data)1487 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1488 {
1489 	const struct key *key = keyring_ptr_to_key(object);
1490 	time64_t *limit = iterator_data;
1491 
1492 	key_check(key);
1493 	return key_is_dead(key, *limit);
1494 }
1495 
1496 /*
1497  * Garbage collect pointers from a keyring.
1498  *
1499  * Not called with any locks held.  The keyring's key struct will not be
1500  * deallocated under us as only our caller may deallocate it.
1501  */
keyring_gc(struct key * keyring,time64_t limit)1502 void keyring_gc(struct key *keyring, time64_t limit)
1503 {
1504 	int result;
1505 
1506 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1507 
1508 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1509 			      (1 << KEY_FLAG_REVOKED)))
1510 		goto dont_gc;
1511 
1512 	/* scan the keyring looking for dead keys */
1513 	rcu_read_lock();
1514 	result = assoc_array_iterate(&keyring->keys,
1515 				     keyring_gc_check_iterator, &limit);
1516 	rcu_read_unlock();
1517 	if (result == true)
1518 		goto do_gc;
1519 
1520 dont_gc:
1521 	kleave(" [no gc]");
1522 	return;
1523 
1524 do_gc:
1525 	down_write(&keyring->sem);
1526 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1527 		       keyring_gc_select_iterator, &limit);
1528 	up_write(&keyring->sem);
1529 	kleave(" [gc]");
1530 }
1531 
1532 /*
1533  * Garbage collect restriction pointers from a keyring.
1534  *
1535  * Keyring restrictions are associated with a key type, and must be cleaned
1536  * up if the key type is unregistered. The restriction is altered to always
1537  * reject additional keys so a keyring cannot be opened up by unregistering
1538  * a key type.
1539  *
1540  * Not called with any keyring locks held. The keyring's key struct will not
1541  * be deallocated under us as only our caller may deallocate it.
1542  *
1543  * The caller is required to hold key_types_sem and dead_type->sem. This is
1544  * fulfilled by key_gc_keytype() holding the locks on behalf of
1545  * key_garbage_collector(), which it invokes on a workqueue.
1546  */
keyring_restriction_gc(struct key * keyring,struct key_type * dead_type)1547 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1548 {
1549 	struct key_restriction *keyres;
1550 
1551 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1552 
1553 	/*
1554 	 * keyring->restrict_link is only assigned at key allocation time
1555 	 * or with the key type locked, so the only values that could be
1556 	 * concurrently assigned to keyring->restrict_link are for key
1557 	 * types other than dead_type. Given this, it's ok to check
1558 	 * the key type before acquiring keyring->sem.
1559 	 */
1560 	if (!dead_type || !keyring->restrict_link ||
1561 	    keyring->restrict_link->keytype != dead_type) {
1562 		kleave(" [no restriction gc]");
1563 		return;
1564 	}
1565 
1566 	/* Lock the keyring to ensure that a link is not in progress */
1567 	down_write(&keyring->sem);
1568 
1569 	keyres = keyring->restrict_link;
1570 
1571 	keyres->check = restrict_link_reject;
1572 
1573 	key_put(keyres->key);
1574 	keyres->key = NULL;
1575 	keyres->keytype = NULL;
1576 
1577 	up_write(&keyring->sem);
1578 
1579 	kleave(" [restriction gc]");
1580 }
1581