1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
keyring_key_to_ptr(struct key * key)51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
keyring_hash(const char * desc)61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98
99 /*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105 /*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
keyring_publish_name(struct key * keyring)109 static void keyring_publish_name(struct key *keyring)
110 {
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126 }
127
128 /*
129 * Preparse a keyring payload
130 */
keyring_preparse(struct key_preparsed_payload * prep)131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 return prep->datalen != 0 ? -EINVAL : 0;
134 }
135
136 /*
137 * Free a preparse of a user defined key payload
138 */
keyring_free_preparse(struct key_preparsed_payload * prep)139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142
143 /*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150 {
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155 }
156
157 /*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
mult_64x32_and_fold(u64 x,u32 y)161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167
168 /*
169 * Hash a key type and description.
170 */
hash_key_type_and_desc(const struct keyring_index_key * index_key)171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213 }
214
215 /*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
keyring_get_key_chunk(const void * data,int level)230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
262
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 }
268 return chunk;
269 }
270 }
271
keyring_get_object_key_chunk(const void * object,int level)272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
276 }
277
keyring_compare_object(const void * object,const void * data)278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
282
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
287 }
288
289 /*
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
292 */
keyring_diff_objects(const void * object,const void * data)293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
300
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
310 */
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
316
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
323
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
327
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 }
339
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
345 }
346
347 same:
348 return -1;
349
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
355 }
356
357 /*
358 * Free an object after stripping the keyring flag off of the pointer.
359 */
keyring_free_object(void * object)360 static void keyring_free_object(void *object)
361 {
362 key_put(keyring_ptr_to_key(object));
363 }
364
365 /*
366 * Operations for keyring management by the index-tree routines.
367 */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
374 };
375
376 /*
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
379 *
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
384 */
keyring_destroy(struct key * keyring)385 static void keyring_destroy(struct key *keyring)
386 {
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
389
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
393
394 write_unlock(&keyring_name_lock);
395 }
396
397 if (keyring->restrict_link) {
398 struct key_restriction *keyres = keyring->restrict_link;
399
400 key_put(keyres->key);
401 kfree(keyres);
402 }
403
404 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406
407 /*
408 * Describe a keyring for /proc.
409 */
keyring_describe(const struct key * keyring,struct seq_file * m)410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 if (keyring->description)
413 seq_puts(m, keyring->description);
414 else
415 seq_puts(m, "[anon]");
416
417 if (key_is_positive(keyring)) {
418 if (keyring->keys.nr_leaves_on_tree != 0)
419 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 else
421 seq_puts(m, ": empty");
422 }
423 }
424
425 struct keyring_read_iterator_context {
426 size_t buflen;
427 size_t count;
428 key_serial_t __user *buffer;
429 };
430
keyring_read_iterator(const void * object,void * data)431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 struct keyring_read_iterator_context *ctx = data;
434 const struct key *key = keyring_ptr_to_key(object);
435
436 kenter("{%s,%d},,{%zu/%zu}",
437 key->type->name, key->serial, ctx->count, ctx->buflen);
438
439 if (ctx->count >= ctx->buflen)
440 return 1;
441
442 *ctx->buffer++ = key->serial;
443 ctx->count += sizeof(key->serial);
444 return 0;
445 }
446
447 /*
448 * Read a list of key IDs from the keyring's contents in binary form
449 *
450 * The keyring's semaphore is read-locked by the caller. This prevents someone
451 * from modifying it under us - which could cause us to read key IDs multiple
452 * times.
453 */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)454 static long keyring_read(const struct key *keyring,
455 char __user *buffer, size_t buflen)
456 {
457 struct keyring_read_iterator_context ctx;
458 long ret;
459
460 kenter("{%d},,%zu", key_serial(keyring), buflen);
461
462 if (buflen & (sizeof(key_serial_t) - 1))
463 return -EINVAL;
464
465 /* Copy as many key IDs as fit into the buffer */
466 if (buffer && buflen) {
467 ctx.buffer = (key_serial_t __user *)buffer;
468 ctx.buflen = buflen;
469 ctx.count = 0;
470 ret = assoc_array_iterate(&keyring->keys,
471 keyring_read_iterator, &ctx);
472 if (ret < 0) {
473 kleave(" = %ld [iterate]", ret);
474 return ret;
475 }
476 }
477
478 /* Return the size of the buffer needed */
479 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
480 if (ret <= buflen)
481 kleave("= %ld [ok]", ret);
482 else
483 kleave("= %ld [buffer too small]", ret);
484 return ret;
485 }
486
487 /*
488 * Allocate a keyring and link into the destination keyring.
489 */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link,struct key * dest)490 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
491 const struct cred *cred, key_perm_t perm,
492 unsigned long flags,
493 struct key_restriction *restrict_link,
494 struct key *dest)
495 {
496 struct key *keyring;
497 int ret;
498
499 keyring = key_alloc(&key_type_keyring, description,
500 uid, gid, cred, perm, flags, restrict_link);
501 if (!IS_ERR(keyring)) {
502 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
503 if (ret < 0) {
504 key_put(keyring);
505 keyring = ERR_PTR(ret);
506 }
507 }
508
509 return keyring;
510 }
511 EXPORT_SYMBOL(keyring_alloc);
512
513 /**
514 * restrict_link_reject - Give -EPERM to restrict link
515 * @keyring: The keyring being added to.
516 * @type: The type of key being added.
517 * @payload: The payload of the key intended to be added.
518 * @data: Additional data for evaluating restriction.
519 *
520 * Reject the addition of any links to a keyring. It can be overridden by
521 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
522 * adding a key to a keyring.
523 *
524 * This is meant to be stored in a key_restriction structure which is passed
525 * in the restrict_link parameter to keyring_alloc().
526 */
restrict_link_reject(struct key * keyring,const struct key_type * type,const union key_payload * payload,struct key * restriction_key)527 int restrict_link_reject(struct key *keyring,
528 const struct key_type *type,
529 const union key_payload *payload,
530 struct key *restriction_key)
531 {
532 return -EPERM;
533 }
534
535 /*
536 * By default, we keys found by getting an exact match on their descriptions.
537 */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)538 bool key_default_cmp(const struct key *key,
539 const struct key_match_data *match_data)
540 {
541 return strcmp(key->description, match_data->raw_data) == 0;
542 }
543
544 /*
545 * Iteration function to consider each key found.
546 */
keyring_search_iterator(const void * object,void * iterator_data)547 static int keyring_search_iterator(const void *object, void *iterator_data)
548 {
549 struct keyring_search_context *ctx = iterator_data;
550 const struct key *key = keyring_ptr_to_key(object);
551 unsigned long kflags = READ_ONCE(key->flags);
552 short state = READ_ONCE(key->state);
553
554 kenter("{%d}", key->serial);
555
556 /* ignore keys not of this type */
557 if (key->type != ctx->index_key.type) {
558 kleave(" = 0 [!type]");
559 return 0;
560 }
561
562 /* skip invalidated, revoked and expired keys */
563 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
564 time64_t expiry = READ_ONCE(key->expiry);
565
566 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
567 (1 << KEY_FLAG_REVOKED))) {
568 ctx->result = ERR_PTR(-EKEYREVOKED);
569 kleave(" = %d [invrev]", ctx->skipped_ret);
570 goto skipped;
571 }
572
573 if (expiry && ctx->now >= expiry) {
574 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
575 ctx->result = ERR_PTR(-EKEYEXPIRED);
576 kleave(" = %d [expire]", ctx->skipped_ret);
577 goto skipped;
578 }
579 }
580
581 /* keys that don't match */
582 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
583 kleave(" = 0 [!match]");
584 return 0;
585 }
586
587 /* key must have search permissions */
588 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
589 key_task_permission(make_key_ref(key, ctx->possessed),
590 ctx->cred, KEY_NEED_SEARCH) < 0) {
591 ctx->result = ERR_PTR(-EACCES);
592 kleave(" = %d [!perm]", ctx->skipped_ret);
593 goto skipped;
594 }
595
596 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
597 /* we set a different error code if we pass a negative key */
598 if (state < 0) {
599 ctx->result = ERR_PTR(state);
600 kleave(" = %d [neg]", ctx->skipped_ret);
601 goto skipped;
602 }
603 }
604
605 /* Found */
606 ctx->result = make_key_ref(key, ctx->possessed);
607 kleave(" = 1 [found]");
608 return 1;
609
610 skipped:
611 return ctx->skipped_ret;
612 }
613
614 /*
615 * Search inside a keyring for a key. We can search by walking to it
616 * directly based on its index-key or we can iterate over the entire
617 * tree looking for it, based on the match function.
618 */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)619 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
620 {
621 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
622 const void *object;
623
624 object = assoc_array_find(&keyring->keys,
625 &keyring_assoc_array_ops,
626 &ctx->index_key);
627 return object ? ctx->iterator(object, ctx) : 0;
628 }
629 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
630 }
631
632 /*
633 * Search a tree of keyrings that point to other keyrings up to the maximum
634 * depth.
635 */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)636 static bool search_nested_keyrings(struct key *keyring,
637 struct keyring_search_context *ctx)
638 {
639 struct {
640 struct key *keyring;
641 struct assoc_array_node *node;
642 int slot;
643 } stack[KEYRING_SEARCH_MAX_DEPTH];
644
645 struct assoc_array_shortcut *shortcut;
646 struct assoc_array_node *node;
647 struct assoc_array_ptr *ptr;
648 struct key *key;
649 int sp = 0, slot;
650
651 kenter("{%d},{%s,%s}",
652 keyring->serial,
653 ctx->index_key.type->name,
654 ctx->index_key.description);
655
656 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
657 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
658 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
659
660 /* Check to see if this top-level keyring is what we are looking for
661 * and whether it is valid or not.
662 */
663 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
664 keyring_compare_object(keyring, &ctx->index_key)) {
665 ctx->skipped_ret = 2;
666 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
667 case 1:
668 goto found;
669 case 2:
670 return false;
671 default:
672 break;
673 }
674 }
675
676 ctx->skipped_ret = 0;
677
678 /* Start processing a new keyring */
679 descend_to_keyring:
680 kdebug("descend to %d", keyring->serial);
681 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
682 (1 << KEY_FLAG_REVOKED)))
683 goto not_this_keyring;
684
685 /* Search through the keys in this keyring before its searching its
686 * subtrees.
687 */
688 if (search_keyring(keyring, ctx))
689 goto found;
690
691 /* Then manually iterate through the keyrings nested in this one.
692 *
693 * Start from the root node of the index tree. Because of the way the
694 * hash function has been set up, keyrings cluster on the leftmost
695 * branch of the root node (root slot 0) or in the root node itself.
696 * Non-keyrings avoid the leftmost branch of the root entirely (root
697 * slots 1-15).
698 */
699 ptr = READ_ONCE(keyring->keys.root);
700 if (!ptr)
701 goto not_this_keyring;
702
703 if (assoc_array_ptr_is_shortcut(ptr)) {
704 /* If the root is a shortcut, either the keyring only contains
705 * keyring pointers (everything clusters behind root slot 0) or
706 * doesn't contain any keyring pointers.
707 */
708 shortcut = assoc_array_ptr_to_shortcut(ptr);
709 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
710 goto not_this_keyring;
711
712 ptr = READ_ONCE(shortcut->next_node);
713 node = assoc_array_ptr_to_node(ptr);
714 goto begin_node;
715 }
716
717 node = assoc_array_ptr_to_node(ptr);
718 ptr = node->slots[0];
719 if (!assoc_array_ptr_is_meta(ptr))
720 goto begin_node;
721
722 descend_to_node:
723 /* Descend to a more distal node in this keyring's content tree and go
724 * through that.
725 */
726 kdebug("descend");
727 if (assoc_array_ptr_is_shortcut(ptr)) {
728 shortcut = assoc_array_ptr_to_shortcut(ptr);
729 ptr = READ_ONCE(shortcut->next_node);
730 BUG_ON(!assoc_array_ptr_is_node(ptr));
731 }
732 node = assoc_array_ptr_to_node(ptr);
733
734 begin_node:
735 kdebug("begin_node");
736 slot = 0;
737 ascend_to_node:
738 /* Go through the slots in a node */
739 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
740 ptr = READ_ONCE(node->slots[slot]);
741
742 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
743 goto descend_to_node;
744
745 if (!keyring_ptr_is_keyring(ptr))
746 continue;
747
748 key = keyring_ptr_to_key(ptr);
749
750 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
751 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
752 ctx->result = ERR_PTR(-ELOOP);
753 return false;
754 }
755 goto not_this_keyring;
756 }
757
758 /* Search a nested keyring */
759 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
760 key_task_permission(make_key_ref(key, ctx->possessed),
761 ctx->cred, KEY_NEED_SEARCH) < 0)
762 continue;
763
764 /* stack the current position */
765 stack[sp].keyring = keyring;
766 stack[sp].node = node;
767 stack[sp].slot = slot;
768 sp++;
769
770 /* begin again with the new keyring */
771 keyring = key;
772 goto descend_to_keyring;
773 }
774
775 /* We've dealt with all the slots in the current node, so now we need
776 * to ascend to the parent and continue processing there.
777 */
778 ptr = READ_ONCE(node->back_pointer);
779 slot = node->parent_slot;
780
781 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
782 shortcut = assoc_array_ptr_to_shortcut(ptr);
783 ptr = READ_ONCE(shortcut->back_pointer);
784 slot = shortcut->parent_slot;
785 }
786 if (!ptr)
787 goto not_this_keyring;
788 node = assoc_array_ptr_to_node(ptr);
789 slot++;
790
791 /* If we've ascended to the root (zero backpointer), we must have just
792 * finished processing the leftmost branch rather than the root slots -
793 * so there can't be any more keyrings for us to find.
794 */
795 if (node->back_pointer) {
796 kdebug("ascend %d", slot);
797 goto ascend_to_node;
798 }
799
800 /* The keyring we're looking at was disqualified or didn't contain a
801 * matching key.
802 */
803 not_this_keyring:
804 kdebug("not_this_keyring %d", sp);
805 if (sp <= 0) {
806 kleave(" = false");
807 return false;
808 }
809
810 /* Resume the processing of a keyring higher up in the tree */
811 sp--;
812 keyring = stack[sp].keyring;
813 node = stack[sp].node;
814 slot = stack[sp].slot + 1;
815 kdebug("ascend to %d [%d]", keyring->serial, slot);
816 goto ascend_to_node;
817
818 /* We found a viable match */
819 found:
820 key = key_ref_to_ptr(ctx->result);
821 key_check(key);
822 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
823 key->last_used_at = ctx->now;
824 keyring->last_used_at = ctx->now;
825 while (sp > 0)
826 stack[--sp].keyring->last_used_at = ctx->now;
827 }
828 kleave(" = true");
829 return true;
830 }
831
832 /**
833 * keyring_search_aux - Search a keyring tree for a key matching some criteria
834 * @keyring_ref: A pointer to the keyring with possession indicator.
835 * @ctx: The keyring search context.
836 *
837 * Search the supplied keyring tree for a key that matches the criteria given.
838 * The root keyring and any linked keyrings must grant Search permission to the
839 * caller to be searchable and keys can only be found if they too grant Search
840 * to the caller. The possession flag on the root keyring pointer controls use
841 * of the possessor bits in permissions checking of the entire tree. In
842 * addition, the LSM gets to forbid keyring searches and key matches.
843 *
844 * The search is performed as a breadth-then-depth search up to the prescribed
845 * limit (KEYRING_SEARCH_MAX_DEPTH).
846 *
847 * Keys are matched to the type provided and are then filtered by the match
848 * function, which is given the description to use in any way it sees fit. The
849 * match function may use any attributes of a key that it wishes to to
850 * determine the match. Normally the match function from the key type would be
851 * used.
852 *
853 * RCU can be used to prevent the keyring key lists from disappearing without
854 * the need to take lots of locks.
855 *
856 * Returns a pointer to the found key and increments the key usage count if
857 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
858 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
859 * specified keyring wasn't a keyring.
860 *
861 * In the case of a successful return, the possession attribute from
862 * @keyring_ref is propagated to the returned key reference.
863 */
keyring_search_aux(key_ref_t keyring_ref,struct keyring_search_context * ctx)864 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
865 struct keyring_search_context *ctx)
866 {
867 struct key *keyring;
868 long err;
869
870 ctx->iterator = keyring_search_iterator;
871 ctx->possessed = is_key_possessed(keyring_ref);
872 ctx->result = ERR_PTR(-EAGAIN);
873
874 keyring = key_ref_to_ptr(keyring_ref);
875 key_check(keyring);
876
877 if (keyring->type != &key_type_keyring)
878 return ERR_PTR(-ENOTDIR);
879
880 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
881 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
882 if (err < 0)
883 return ERR_PTR(err);
884 }
885
886 rcu_read_lock();
887 ctx->now = ktime_get_real_seconds();
888 if (search_nested_keyrings(keyring, ctx))
889 __key_get(key_ref_to_ptr(ctx->result));
890 rcu_read_unlock();
891 return ctx->result;
892 }
893
894 /**
895 * keyring_search - Search the supplied keyring tree for a matching key
896 * @keyring: The root of the keyring tree to be searched.
897 * @type: The type of keyring we want to find.
898 * @description: The name of the keyring we want to find.
899 *
900 * As keyring_search_aux() above, but using the current task's credentials and
901 * type's default matching function and preferred search method.
902 */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description)903 key_ref_t keyring_search(key_ref_t keyring,
904 struct key_type *type,
905 const char *description)
906 {
907 struct keyring_search_context ctx = {
908 .index_key.type = type,
909 .index_key.description = description,
910 .index_key.desc_len = strlen(description),
911 .cred = current_cred(),
912 .match_data.cmp = key_default_cmp,
913 .match_data.raw_data = description,
914 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
915 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
916 };
917 key_ref_t key;
918 int ret;
919
920 if (type->match_preparse) {
921 ret = type->match_preparse(&ctx.match_data);
922 if (ret < 0)
923 return ERR_PTR(ret);
924 }
925
926 key = keyring_search_aux(keyring, &ctx);
927
928 if (type->match_free)
929 type->match_free(&ctx.match_data);
930 return key;
931 }
932 EXPORT_SYMBOL(keyring_search);
933
keyring_restriction_alloc(key_restrict_link_func_t check)934 static struct key_restriction *keyring_restriction_alloc(
935 key_restrict_link_func_t check)
936 {
937 struct key_restriction *keyres =
938 kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
939
940 if (!keyres)
941 return ERR_PTR(-ENOMEM);
942
943 keyres->check = check;
944
945 return keyres;
946 }
947
948 /*
949 * Semaphore to serialise restriction setup to prevent reference count
950 * cycles through restriction key pointers.
951 */
952 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
953
954 /*
955 * Check for restriction cycles that would prevent keyring garbage collection.
956 * keyring_serialise_restrict_sem must be held.
957 */
keyring_detect_restriction_cycle(const struct key * dest_keyring,struct key_restriction * keyres)958 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
959 struct key_restriction *keyres)
960 {
961 while (keyres && keyres->key &&
962 keyres->key->type == &key_type_keyring) {
963 if (keyres->key == dest_keyring)
964 return true;
965
966 keyres = keyres->key->restrict_link;
967 }
968
969 return false;
970 }
971
972 /**
973 * keyring_restrict - Look up and apply a restriction to a keyring
974 *
975 * @keyring: The keyring to be restricted
976 * @restriction: The restriction options to apply to the keyring
977 */
keyring_restrict(key_ref_t keyring_ref,const char * type,const char * restriction)978 int keyring_restrict(key_ref_t keyring_ref, const char *type,
979 const char *restriction)
980 {
981 struct key *keyring;
982 struct key_type *restrict_type = NULL;
983 struct key_restriction *restrict_link;
984 int ret = 0;
985
986 keyring = key_ref_to_ptr(keyring_ref);
987 key_check(keyring);
988
989 if (keyring->type != &key_type_keyring)
990 return -ENOTDIR;
991
992 if (!type) {
993 restrict_link = keyring_restriction_alloc(restrict_link_reject);
994 } else {
995 restrict_type = key_type_lookup(type);
996
997 if (IS_ERR(restrict_type))
998 return PTR_ERR(restrict_type);
999
1000 if (!restrict_type->lookup_restriction) {
1001 ret = -ENOENT;
1002 goto error;
1003 }
1004
1005 restrict_link = restrict_type->lookup_restriction(restriction);
1006 }
1007
1008 if (IS_ERR(restrict_link)) {
1009 ret = PTR_ERR(restrict_link);
1010 goto error;
1011 }
1012
1013 down_write(&keyring->sem);
1014 down_write(&keyring_serialise_restrict_sem);
1015
1016 if (keyring->restrict_link)
1017 ret = -EEXIST;
1018 else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1019 ret = -EDEADLK;
1020 else
1021 keyring->restrict_link = restrict_link;
1022
1023 up_write(&keyring_serialise_restrict_sem);
1024 up_write(&keyring->sem);
1025
1026 if (ret < 0) {
1027 key_put(restrict_link->key);
1028 kfree(restrict_link);
1029 }
1030
1031 error:
1032 if (restrict_type)
1033 key_type_put(restrict_type);
1034
1035 return ret;
1036 }
1037 EXPORT_SYMBOL(keyring_restrict);
1038
1039 /*
1040 * Search the given keyring for a key that might be updated.
1041 *
1042 * The caller must guarantee that the keyring is a keyring and that the
1043 * permission is granted to modify the keyring as no check is made here. The
1044 * caller must also hold a lock on the keyring semaphore.
1045 *
1046 * Returns a pointer to the found key with usage count incremented if
1047 * successful and returns NULL if not found. Revoked and invalidated keys are
1048 * skipped over.
1049 *
1050 * If successful, the possession indicator is propagated from the keyring ref
1051 * to the returned key reference.
1052 */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)1053 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1054 const struct keyring_index_key *index_key)
1055 {
1056 struct key *keyring, *key;
1057 const void *object;
1058
1059 keyring = key_ref_to_ptr(keyring_ref);
1060
1061 kenter("{%d},{%s,%s}",
1062 keyring->serial, index_key->type->name, index_key->description);
1063
1064 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1065 index_key);
1066
1067 if (object)
1068 goto found;
1069
1070 kleave(" = NULL");
1071 return NULL;
1072
1073 found:
1074 key = keyring_ptr_to_key(object);
1075 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1076 (1 << KEY_FLAG_REVOKED))) {
1077 kleave(" = NULL [x]");
1078 return NULL;
1079 }
1080 __key_get(key);
1081 kleave(" = {%d}", key->serial);
1082 return make_key_ref(key, is_key_possessed(keyring_ref));
1083 }
1084
1085 /*
1086 * Find a keyring with the specified name.
1087 *
1088 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1089 * user in the current user namespace are considered. If @uid_keyring is %true,
1090 * the keyring additionally must have been allocated as a user or user session
1091 * keyring; otherwise, it must grant Search permission directly to the caller.
1092 *
1093 * Returns a pointer to the keyring with the keyring's refcount having being
1094 * incremented on success. -ENOKEY is returned if a key could not be found.
1095 */
find_keyring_by_name(const char * name,bool uid_keyring)1096 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1097 {
1098 struct key *keyring;
1099 int bucket;
1100
1101 if (!name)
1102 return ERR_PTR(-EINVAL);
1103
1104 bucket = keyring_hash(name);
1105
1106 read_lock(&keyring_name_lock);
1107
1108 if (keyring_name_hash[bucket].next) {
1109 /* search this hash bucket for a keyring with a matching name
1110 * that's readable and that hasn't been revoked */
1111 list_for_each_entry(keyring,
1112 &keyring_name_hash[bucket],
1113 name_link
1114 ) {
1115 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1116 continue;
1117
1118 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1119 continue;
1120
1121 if (strcmp(keyring->description, name) != 0)
1122 continue;
1123
1124 if (uid_keyring) {
1125 if (!test_bit(KEY_FLAG_UID_KEYRING,
1126 &keyring->flags))
1127 continue;
1128 } else {
1129 if (key_permission(make_key_ref(keyring, 0),
1130 KEY_NEED_SEARCH) < 0)
1131 continue;
1132 }
1133
1134 /* we've got a match but we might end up racing with
1135 * key_cleanup() if the keyring is currently 'dead'
1136 * (ie. it has a zero usage count) */
1137 if (!refcount_inc_not_zero(&keyring->usage))
1138 continue;
1139 keyring->last_used_at = ktime_get_real_seconds();
1140 goto out;
1141 }
1142 }
1143
1144 keyring = ERR_PTR(-ENOKEY);
1145 out:
1146 read_unlock(&keyring_name_lock);
1147 return keyring;
1148 }
1149
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1150 static int keyring_detect_cycle_iterator(const void *object,
1151 void *iterator_data)
1152 {
1153 struct keyring_search_context *ctx = iterator_data;
1154 const struct key *key = keyring_ptr_to_key(object);
1155
1156 kenter("{%d}", key->serial);
1157
1158 /* We might get a keyring with matching index-key that is nonetheless a
1159 * different keyring. */
1160 if (key != ctx->match_data.raw_data)
1161 return 0;
1162
1163 ctx->result = ERR_PTR(-EDEADLK);
1164 return 1;
1165 }
1166
1167 /*
1168 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1169 * tree A at the topmost level (ie: as a direct child of A).
1170 *
1171 * Since we are adding B to A at the top level, checking for cycles should just
1172 * be a matter of seeing if node A is somewhere in tree B.
1173 */
keyring_detect_cycle(struct key * A,struct key * B)1174 static int keyring_detect_cycle(struct key *A, struct key *B)
1175 {
1176 struct keyring_search_context ctx = {
1177 .index_key = A->index_key,
1178 .match_data.raw_data = A,
1179 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1180 .iterator = keyring_detect_cycle_iterator,
1181 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1182 KEYRING_SEARCH_NO_UPDATE_TIME |
1183 KEYRING_SEARCH_NO_CHECK_PERM |
1184 KEYRING_SEARCH_DETECT_TOO_DEEP),
1185 };
1186
1187 rcu_read_lock();
1188 search_nested_keyrings(B, &ctx);
1189 rcu_read_unlock();
1190 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1191 }
1192
1193 /*
1194 * Preallocate memory so that a key can be linked into to a keyring.
1195 */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1196 int __key_link_begin(struct key *keyring,
1197 const struct keyring_index_key *index_key,
1198 struct assoc_array_edit **_edit)
1199 __acquires(&keyring->sem)
1200 __acquires(&keyring_serialise_link_sem)
1201 {
1202 struct assoc_array_edit *edit;
1203 int ret;
1204
1205 kenter("%d,%s,%s,",
1206 keyring->serial, index_key->type->name, index_key->description);
1207
1208 BUG_ON(index_key->desc_len == 0);
1209
1210 if (keyring->type != &key_type_keyring)
1211 return -ENOTDIR;
1212
1213 down_write(&keyring->sem);
1214
1215 ret = -EKEYREVOKED;
1216 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1217 goto error_krsem;
1218
1219 /* serialise link/link calls to prevent parallel calls causing a cycle
1220 * when linking two keyring in opposite orders */
1221 if (index_key->type == &key_type_keyring)
1222 down_write(&keyring_serialise_link_sem);
1223
1224 /* Create an edit script that will insert/replace the key in the
1225 * keyring tree.
1226 */
1227 edit = assoc_array_insert(&keyring->keys,
1228 &keyring_assoc_array_ops,
1229 index_key,
1230 NULL);
1231 if (IS_ERR(edit)) {
1232 ret = PTR_ERR(edit);
1233 goto error_sem;
1234 }
1235
1236 /* If we're not replacing a link in-place then we're going to need some
1237 * extra quota.
1238 */
1239 if (!edit->dead_leaf) {
1240 ret = key_payload_reserve(keyring,
1241 keyring->datalen + KEYQUOTA_LINK_BYTES);
1242 if (ret < 0)
1243 goto error_cancel;
1244 }
1245
1246 *_edit = edit;
1247 kleave(" = 0");
1248 return 0;
1249
1250 error_cancel:
1251 assoc_array_cancel_edit(edit);
1252 error_sem:
1253 if (index_key->type == &key_type_keyring)
1254 up_write(&keyring_serialise_link_sem);
1255 error_krsem:
1256 up_write(&keyring->sem);
1257 kleave(" = %d", ret);
1258 return ret;
1259 }
1260
1261 /*
1262 * Check already instantiated keys aren't going to be a problem.
1263 *
1264 * The caller must have called __key_link_begin(). Don't need to call this for
1265 * keys that were created since __key_link_begin() was called.
1266 */
__key_link_check_live_key(struct key * keyring,struct key * key)1267 int __key_link_check_live_key(struct key *keyring, struct key *key)
1268 {
1269 if (key->type == &key_type_keyring)
1270 /* check that we aren't going to create a cycle by linking one
1271 * keyring to another */
1272 return keyring_detect_cycle(keyring, key);
1273 return 0;
1274 }
1275
1276 /*
1277 * Link a key into to a keyring.
1278 *
1279 * Must be called with __key_link_begin() having being called. Discards any
1280 * already extant link to matching key if there is one, so that each keyring
1281 * holds at most one link to any given key of a particular type+description
1282 * combination.
1283 */
__key_link(struct key * key,struct assoc_array_edit ** _edit)1284 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1285 {
1286 __key_get(key);
1287 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1288 assoc_array_apply_edit(*_edit);
1289 *_edit = NULL;
1290 }
1291
1292 /*
1293 * Finish linking a key into to a keyring.
1294 *
1295 * Must be called with __key_link_begin() having being called.
1296 */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1297 void __key_link_end(struct key *keyring,
1298 const struct keyring_index_key *index_key,
1299 struct assoc_array_edit *edit)
1300 __releases(&keyring->sem)
1301 __releases(&keyring_serialise_link_sem)
1302 {
1303 BUG_ON(index_key->type == NULL);
1304 kenter("%d,%s,", keyring->serial, index_key->type->name);
1305
1306 if (index_key->type == &key_type_keyring)
1307 up_write(&keyring_serialise_link_sem);
1308
1309 if (edit) {
1310 if (!edit->dead_leaf) {
1311 key_payload_reserve(keyring,
1312 keyring->datalen - KEYQUOTA_LINK_BYTES);
1313 }
1314 assoc_array_cancel_edit(edit);
1315 }
1316 up_write(&keyring->sem);
1317 }
1318
1319 /*
1320 * Check addition of keys to restricted keyrings.
1321 */
__key_link_check_restriction(struct key * keyring,struct key * key)1322 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1323 {
1324 if (!keyring->restrict_link || !keyring->restrict_link->check)
1325 return 0;
1326 return keyring->restrict_link->check(keyring, key->type, &key->payload,
1327 keyring->restrict_link->key);
1328 }
1329
1330 /**
1331 * key_link - Link a key to a keyring
1332 * @keyring: The keyring to make the link in.
1333 * @key: The key to link to.
1334 *
1335 * Make a link in a keyring to a key, such that the keyring holds a reference
1336 * on that key and the key can potentially be found by searching that keyring.
1337 *
1338 * This function will write-lock the keyring's semaphore and will consume some
1339 * of the user's key data quota to hold the link.
1340 *
1341 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1342 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1343 * full, -EDQUOT if there is insufficient key data quota remaining to add
1344 * another link or -ENOMEM if there's insufficient memory.
1345 *
1346 * It is assumed that the caller has checked that it is permitted for a link to
1347 * be made (the keyring should have Write permission and the key Link
1348 * permission).
1349 */
key_link(struct key * keyring,struct key * key)1350 int key_link(struct key *keyring, struct key *key)
1351 {
1352 struct assoc_array_edit *edit;
1353 int ret;
1354
1355 kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1356
1357 key_check(keyring);
1358 key_check(key);
1359
1360 ret = __key_link_begin(keyring, &key->index_key, &edit);
1361 if (ret == 0) {
1362 kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1363 ret = __key_link_check_restriction(keyring, key);
1364 if (ret == 0)
1365 ret = __key_link_check_live_key(keyring, key);
1366 if (ret == 0)
1367 __key_link(key, &edit);
1368 __key_link_end(keyring, &key->index_key, edit);
1369 }
1370
1371 kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1372 return ret;
1373 }
1374 EXPORT_SYMBOL(key_link);
1375
1376 /**
1377 * key_unlink - Unlink the first link to a key from a keyring.
1378 * @keyring: The keyring to remove the link from.
1379 * @key: The key the link is to.
1380 *
1381 * Remove a link from a keyring to a key.
1382 *
1383 * This function will write-lock the keyring's semaphore.
1384 *
1385 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1386 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1387 * memory.
1388 *
1389 * It is assumed that the caller has checked that it is permitted for a link to
1390 * be removed (the keyring should have Write permission; no permissions are
1391 * required on the key).
1392 */
key_unlink(struct key * keyring,struct key * key)1393 int key_unlink(struct key *keyring, struct key *key)
1394 {
1395 struct assoc_array_edit *edit;
1396 int ret;
1397
1398 key_check(keyring);
1399 key_check(key);
1400
1401 if (keyring->type != &key_type_keyring)
1402 return -ENOTDIR;
1403
1404 down_write(&keyring->sem);
1405
1406 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1407 &key->index_key);
1408 if (IS_ERR(edit)) {
1409 ret = PTR_ERR(edit);
1410 goto error;
1411 }
1412 ret = -ENOENT;
1413 if (edit == NULL)
1414 goto error;
1415
1416 assoc_array_apply_edit(edit);
1417 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1418 ret = 0;
1419
1420 error:
1421 up_write(&keyring->sem);
1422 return ret;
1423 }
1424 EXPORT_SYMBOL(key_unlink);
1425
1426 /**
1427 * keyring_clear - Clear a keyring
1428 * @keyring: The keyring to clear.
1429 *
1430 * Clear the contents of the specified keyring.
1431 *
1432 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1433 */
keyring_clear(struct key * keyring)1434 int keyring_clear(struct key *keyring)
1435 {
1436 struct assoc_array_edit *edit;
1437 int ret;
1438
1439 if (keyring->type != &key_type_keyring)
1440 return -ENOTDIR;
1441
1442 down_write(&keyring->sem);
1443
1444 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1445 if (IS_ERR(edit)) {
1446 ret = PTR_ERR(edit);
1447 } else {
1448 if (edit)
1449 assoc_array_apply_edit(edit);
1450 key_payload_reserve(keyring, 0);
1451 ret = 0;
1452 }
1453
1454 up_write(&keyring->sem);
1455 return ret;
1456 }
1457 EXPORT_SYMBOL(keyring_clear);
1458
1459 /*
1460 * Dispose of the links from a revoked keyring.
1461 *
1462 * This is called with the key sem write-locked.
1463 */
keyring_revoke(struct key * keyring)1464 static void keyring_revoke(struct key *keyring)
1465 {
1466 struct assoc_array_edit *edit;
1467
1468 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1469 if (!IS_ERR(edit)) {
1470 if (edit)
1471 assoc_array_apply_edit(edit);
1472 key_payload_reserve(keyring, 0);
1473 }
1474 }
1475
keyring_gc_select_iterator(void * object,void * iterator_data)1476 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1477 {
1478 struct key *key = keyring_ptr_to_key(object);
1479 time64_t *limit = iterator_data;
1480
1481 if (key_is_dead(key, *limit))
1482 return false;
1483 key_get(key);
1484 return true;
1485 }
1486
keyring_gc_check_iterator(const void * object,void * iterator_data)1487 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1488 {
1489 const struct key *key = keyring_ptr_to_key(object);
1490 time64_t *limit = iterator_data;
1491
1492 key_check(key);
1493 return key_is_dead(key, *limit);
1494 }
1495
1496 /*
1497 * Garbage collect pointers from a keyring.
1498 *
1499 * Not called with any locks held. The keyring's key struct will not be
1500 * deallocated under us as only our caller may deallocate it.
1501 */
keyring_gc(struct key * keyring,time64_t limit)1502 void keyring_gc(struct key *keyring, time64_t limit)
1503 {
1504 int result;
1505
1506 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1507
1508 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1509 (1 << KEY_FLAG_REVOKED)))
1510 goto dont_gc;
1511
1512 /* scan the keyring looking for dead keys */
1513 rcu_read_lock();
1514 result = assoc_array_iterate(&keyring->keys,
1515 keyring_gc_check_iterator, &limit);
1516 rcu_read_unlock();
1517 if (result == true)
1518 goto do_gc;
1519
1520 dont_gc:
1521 kleave(" [no gc]");
1522 return;
1523
1524 do_gc:
1525 down_write(&keyring->sem);
1526 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1527 keyring_gc_select_iterator, &limit);
1528 up_write(&keyring->sem);
1529 kleave(" [gc]");
1530 }
1531
1532 /*
1533 * Garbage collect restriction pointers from a keyring.
1534 *
1535 * Keyring restrictions are associated with a key type, and must be cleaned
1536 * up if the key type is unregistered. The restriction is altered to always
1537 * reject additional keys so a keyring cannot be opened up by unregistering
1538 * a key type.
1539 *
1540 * Not called with any keyring locks held. The keyring's key struct will not
1541 * be deallocated under us as only our caller may deallocate it.
1542 *
1543 * The caller is required to hold key_types_sem and dead_type->sem. This is
1544 * fulfilled by key_gc_keytype() holding the locks on behalf of
1545 * key_garbage_collector(), which it invokes on a workqueue.
1546 */
keyring_restriction_gc(struct key * keyring,struct key_type * dead_type)1547 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1548 {
1549 struct key_restriction *keyres;
1550
1551 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1552
1553 /*
1554 * keyring->restrict_link is only assigned at key allocation time
1555 * or with the key type locked, so the only values that could be
1556 * concurrently assigned to keyring->restrict_link are for key
1557 * types other than dead_type. Given this, it's ok to check
1558 * the key type before acquiring keyring->sem.
1559 */
1560 if (!dead_type || !keyring->restrict_link ||
1561 keyring->restrict_link->keytype != dead_type) {
1562 kleave(" [no restriction gc]");
1563 return;
1564 }
1565
1566 /* Lock the keyring to ensure that a link is not in progress */
1567 down_write(&keyring->sem);
1568
1569 keyres = keyring->restrict_link;
1570
1571 keyres->check = restrict_link_reject;
1572
1573 key_put(keyres->key);
1574 keyres->key = NULL;
1575 keyres->keytype = NULL;
1576
1577 up_write(&keyring->sem);
1578
1579 kleave(" [restriction gc]");
1580 }
1581