• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "vmx.h"
16 #include "x86.h"
17 
18 static bool __read_mostly enable_shadow_vmcs = 1;
19 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
20 
21 static bool __read_mostly nested_early_check = 0;
22 module_param(nested_early_check, bool, S_IRUGO);
23 
24 #define CC(consistency_check)						\
25 ({									\
26 	bool failed = (consistency_check);				\
27 	if (failed)							\
28 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
29 	failed;								\
30 })
31 
32 /*
33  * Hyper-V requires all of these, so mark them as supported even though
34  * they are just treated the same as all-context.
35  */
36 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
37 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
39 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
40 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
41 
42 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
43 
44 enum {
45 	VMX_VMREAD_BITMAP,
46 	VMX_VMWRITE_BITMAP,
47 	VMX_BITMAP_NR
48 };
49 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
50 
51 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
52 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
53 
54 struct shadow_vmcs_field {
55 	u16	encoding;
56 	u16	offset;
57 };
58 static struct shadow_vmcs_field shadow_read_only_fields[] = {
59 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
60 #include "vmcs_shadow_fields.h"
61 };
62 static int max_shadow_read_only_fields =
63 	ARRAY_SIZE(shadow_read_only_fields);
64 
65 static struct shadow_vmcs_field shadow_read_write_fields[] = {
66 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
67 #include "vmcs_shadow_fields.h"
68 };
69 static int max_shadow_read_write_fields =
70 	ARRAY_SIZE(shadow_read_write_fields);
71 
init_vmcs_shadow_fields(void)72 static void init_vmcs_shadow_fields(void)
73 {
74 	int i, j;
75 
76 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
77 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
78 
79 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
80 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
81 		u16 field = entry.encoding;
82 
83 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
84 		    (i + 1 == max_shadow_read_only_fields ||
85 		     shadow_read_only_fields[i + 1].encoding != field + 1))
86 			pr_err("Missing field from shadow_read_only_field %x\n",
87 			       field + 1);
88 
89 		clear_bit(field, vmx_vmread_bitmap);
90 		if (field & 1)
91 #ifdef CONFIG_X86_64
92 			continue;
93 #else
94 			entry.offset += sizeof(u32);
95 #endif
96 		shadow_read_only_fields[j++] = entry;
97 	}
98 	max_shadow_read_only_fields = j;
99 
100 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
101 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
102 		u16 field = entry.encoding;
103 
104 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
105 		    (i + 1 == max_shadow_read_write_fields ||
106 		     shadow_read_write_fields[i + 1].encoding != field + 1))
107 			pr_err("Missing field from shadow_read_write_field %x\n",
108 			       field + 1);
109 
110 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
111 			  field <= GUEST_TR_AR_BYTES,
112 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
113 
114 		/*
115 		 * PML and the preemption timer can be emulated, but the
116 		 * processor cannot vmwrite to fields that don't exist
117 		 * on bare metal.
118 		 */
119 		switch (field) {
120 		case GUEST_PML_INDEX:
121 			if (!cpu_has_vmx_pml())
122 				continue;
123 			break;
124 		case VMX_PREEMPTION_TIMER_VALUE:
125 			if (!cpu_has_vmx_preemption_timer())
126 				continue;
127 			break;
128 		case GUEST_INTR_STATUS:
129 			if (!cpu_has_vmx_apicv())
130 				continue;
131 			break;
132 		default:
133 			break;
134 		}
135 
136 		clear_bit(field, vmx_vmwrite_bitmap);
137 		clear_bit(field, vmx_vmread_bitmap);
138 		if (field & 1)
139 #ifdef CONFIG_X86_64
140 			continue;
141 #else
142 			entry.offset += sizeof(u32);
143 #endif
144 		shadow_read_write_fields[j++] = entry;
145 	}
146 	max_shadow_read_write_fields = j;
147 }
148 
149 /*
150  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
151  * set the success or error code of an emulated VMX instruction (as specified
152  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
153  * instruction.
154  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)155 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
156 {
157 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
158 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
159 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
160 	return kvm_skip_emulated_instruction(vcpu);
161 }
162 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)163 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
164 {
165 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
166 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
167 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
168 			| X86_EFLAGS_CF);
169 	return kvm_skip_emulated_instruction(vcpu);
170 }
171 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)172 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
173 				u32 vm_instruction_error)
174 {
175 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
176 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
177 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
178 			| X86_EFLAGS_ZF);
179 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
180 	/*
181 	 * We don't need to force a shadow sync because
182 	 * VM_INSTRUCTION_ERROR is not shadowed
183 	 */
184 	return kvm_skip_emulated_instruction(vcpu);
185 }
186 
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
190 
191 	/*
192 	 * failValid writes the error number to the current VMCS, which
193 	 * can't be done if there isn't a current VMCS.
194 	 */
195 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
196 		return nested_vmx_failInvalid(vcpu);
197 
198 	return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 	/* TODO: not to reset guest simply here. */
204 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207 
vmx_control_verify(u32 control,u32 low,u32 high)208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 	return fixed_bits_valid(control, low, high);
211 }
212 
vmx_control_msr(u32 low,u32 high)213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 	return low | ((u64)high << 32);
216 }
217 
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 	vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224 
nested_release_evmcs(struct kvm_vcpu * vcpu)225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 	struct vcpu_vmx *vmx = to_vmx(vcpu);
228 
229 	if (!vmx->nested.hv_evmcs)
230 		return;
231 
232 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
233 	vmx->nested.hv_evmcs_vmptr = 0;
234 	vmx->nested.hv_evmcs = NULL;
235 }
236 
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 				     struct loaded_vmcs *prev)
239 {
240 	struct vmcs_host_state *dest, *src;
241 
242 	if (unlikely(!vmx->guest_state_loaded))
243 		return;
244 
245 	src = &prev->host_state;
246 	dest = &vmx->loaded_vmcs->host_state;
247 
248 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 	dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 	dest->ds_sel = src->ds_sel;
252 	dest->es_sel = src->es_sel;
253 #endif
254 }
255 
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
259 	struct loaded_vmcs *prev;
260 	int cpu;
261 
262 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 		return;
264 
265 	cpu = get_cpu();
266 	prev = vmx->loaded_vmcs;
267 	vmx->loaded_vmcs = vmcs;
268 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 	vmx_sync_vmcs_host_state(vmx, prev);
270 	put_cpu();
271 
272 	vmx_register_cache_reset(vcpu);
273 }
274 
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
free_nested(struct kvm_vcpu * vcpu)279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
282 
283 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285 
286 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 		return;
288 
289 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290 
291 	vmx->nested.vmxon = false;
292 	vmx->nested.smm.vmxon = false;
293 	free_vpid(vmx->nested.vpid02);
294 	vmx->nested.posted_intr_nv = -1;
295 	vmx->nested.current_vmptr = -1ull;
296 	if (enable_shadow_vmcs) {
297 		vmx_disable_shadow_vmcs(vmx);
298 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 		free_vmcs(vmx->vmcs01.shadow_vmcs);
300 		vmx->vmcs01.shadow_vmcs = NULL;
301 	}
302 	kfree(vmx->nested.cached_vmcs12);
303 	vmx->nested.cached_vmcs12 = NULL;
304 	kfree(vmx->nested.cached_shadow_vmcs12);
305 	vmx->nested.cached_shadow_vmcs12 = NULL;
306 	/* Unpin physical memory we referred to in the vmcs02 */
307 	if (vmx->nested.apic_access_page) {
308 		kvm_release_page_clean(vmx->nested.apic_access_page);
309 		vmx->nested.apic_access_page = NULL;
310 	}
311 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 	vmx->nested.pi_desc = NULL;
314 
315 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316 
317 	nested_release_evmcs(vcpu);
318 
319 	free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321 
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328 	vcpu_load(vcpu);
329 	vmx_leave_nested(vcpu);
330 	vcpu_put(vcpu);
331 }
332 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)333 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
334 		struct x86_exception *fault)
335 {
336 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
337 	struct vcpu_vmx *vmx = to_vmx(vcpu);
338 	u32 vm_exit_reason;
339 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
340 
341 	if (vmx->nested.pml_full) {
342 		vm_exit_reason = EXIT_REASON_PML_FULL;
343 		vmx->nested.pml_full = false;
344 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
345 	} else if (fault->error_code & PFERR_RSVD_MASK)
346 		vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
347 	else
348 		vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
349 
350 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
351 	vmcs12->guest_physical_address = fault->address;
352 }
353 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)354 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
355 {
356 	WARN_ON(mmu_is_nested(vcpu));
357 
358 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
359 	kvm_init_shadow_ept_mmu(vcpu,
360 			to_vmx(vcpu)->nested.msrs.ept_caps &
361 			VMX_EPT_EXECUTE_ONLY_BIT,
362 			nested_ept_ad_enabled(vcpu),
363 			nested_ept_get_eptp(vcpu));
364 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
365 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
366 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
367 
368 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
369 }
370 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)371 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
372 {
373 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
374 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
375 }
376 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)377 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
378 					    u16 error_code)
379 {
380 	bool inequality, bit;
381 
382 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
383 	inequality =
384 		(error_code & vmcs12->page_fault_error_code_mask) !=
385 		 vmcs12->page_fault_error_code_match;
386 	return inequality ^ bit;
387 }
388 
389 
390 /*
391  * KVM wants to inject page-faults which it got to the guest. This function
392  * checks whether in a nested guest, we need to inject them to L1 or L2.
393  */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)394 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
395 {
396 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
397 	unsigned int nr = vcpu->arch.exception.nr;
398 	bool has_payload = vcpu->arch.exception.has_payload;
399 	unsigned long payload = vcpu->arch.exception.payload;
400 
401 	if (nr == PF_VECTOR) {
402 		if (vcpu->arch.exception.nested_apf) {
403 			*exit_qual = vcpu->arch.apf.nested_apf_token;
404 			return 1;
405 		}
406 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
407 						    vcpu->arch.exception.error_code)) {
408 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
409 			return 1;
410 		}
411 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
412 		if (nr == DB_VECTOR) {
413 			if (!has_payload) {
414 				payload = vcpu->arch.dr6;
415 				payload &= ~(DR6_FIXED_1 | DR6_BT);
416 				payload ^= DR6_RTM;
417 			}
418 			*exit_qual = payload;
419 		} else
420 			*exit_qual = 0;
421 		return 1;
422 	}
423 
424 	return 0;
425 }
426 
427 
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)428 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
429 		struct x86_exception *fault)
430 {
431 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
432 
433 	WARN_ON(!is_guest_mode(vcpu));
434 
435 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
436 		!to_vmx(vcpu)->nested.nested_run_pending) {
437 		vmcs12->vm_exit_intr_error_code = fault->error_code;
438 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
439 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
440 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
441 				  fault->address);
442 	} else {
443 		kvm_inject_page_fault(vcpu, fault);
444 	}
445 }
446 
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)447 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
448 					       struct vmcs12 *vmcs12)
449 {
450 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
451 		return 0;
452 
453 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
454 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
455 		return -EINVAL;
456 
457 	return 0;
458 }
459 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)460 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
461 						struct vmcs12 *vmcs12)
462 {
463 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
464 		return 0;
465 
466 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
467 		return -EINVAL;
468 
469 	return 0;
470 }
471 
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)472 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
473 						struct vmcs12 *vmcs12)
474 {
475 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
476 		return 0;
477 
478 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
479 		return -EINVAL;
480 
481 	return 0;
482 }
483 
484 /*
485  * Check if MSR is intercepted for L01 MSR bitmap.
486  */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)487 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
488 {
489 	unsigned long *msr_bitmap;
490 	int f = sizeof(unsigned long);
491 
492 	if (!cpu_has_vmx_msr_bitmap())
493 		return true;
494 
495 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
496 
497 	if (msr <= 0x1fff) {
498 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
499 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
500 		msr &= 0x1fff;
501 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
502 	}
503 
504 	return true;
505 }
506 
507 /*
508  * If a msr is allowed by L0, we should check whether it is allowed by L1.
509  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
510  */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)511 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
512 					       unsigned long *msr_bitmap_nested,
513 					       u32 msr, int type)
514 {
515 	int f = sizeof(unsigned long);
516 
517 	/*
518 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
519 	 * have the write-low and read-high bitmap offsets the wrong way round.
520 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
521 	 */
522 	if (msr <= 0x1fff) {
523 		if (type & MSR_TYPE_R &&
524 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
525 			/* read-low */
526 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
527 
528 		if (type & MSR_TYPE_W &&
529 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
530 			/* write-low */
531 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
532 
533 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
534 		msr &= 0x1fff;
535 		if (type & MSR_TYPE_R &&
536 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
537 			/* read-high */
538 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
539 
540 		if (type & MSR_TYPE_W &&
541 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
542 			/* write-high */
543 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
544 
545 	}
546 }
547 
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)548 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
549 {
550 	int msr;
551 
552 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
553 		unsigned word = msr / BITS_PER_LONG;
554 
555 		msr_bitmap[word] = ~0;
556 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
557 	}
558 }
559 
560 /*
561  * Merge L0's and L1's MSR bitmap, return false to indicate that
562  * we do not use the hardware.
563  */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)564 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
565 						 struct vmcs12 *vmcs12)
566 {
567 	int msr;
568 	unsigned long *msr_bitmap_l1;
569 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
570 	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
571 
572 	/* Nothing to do if the MSR bitmap is not in use.  */
573 	if (!cpu_has_vmx_msr_bitmap() ||
574 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
575 		return false;
576 
577 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
578 		return false;
579 
580 	msr_bitmap_l1 = (unsigned long *)map->hva;
581 
582 	/*
583 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
584 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
585 	 * the x2APIC MSR range and selectively disable them below.
586 	 */
587 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
588 
589 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
590 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
591 			/*
592 			 * L0 need not intercept reads for MSRs between 0x800
593 			 * and 0x8ff, it just lets the processor take the value
594 			 * from the virtual-APIC page; take those 256 bits
595 			 * directly from the L1 bitmap.
596 			 */
597 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
598 				unsigned word = msr / BITS_PER_LONG;
599 
600 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
601 			}
602 		}
603 
604 		nested_vmx_disable_intercept_for_msr(
605 			msr_bitmap_l1, msr_bitmap_l0,
606 			X2APIC_MSR(APIC_TASKPRI),
607 			MSR_TYPE_R | MSR_TYPE_W);
608 
609 		if (nested_cpu_has_vid(vmcs12)) {
610 			nested_vmx_disable_intercept_for_msr(
611 				msr_bitmap_l1, msr_bitmap_l0,
612 				X2APIC_MSR(APIC_EOI),
613 				MSR_TYPE_W);
614 			nested_vmx_disable_intercept_for_msr(
615 				msr_bitmap_l1, msr_bitmap_l0,
616 				X2APIC_MSR(APIC_SELF_IPI),
617 				MSR_TYPE_W);
618 		}
619 	}
620 
621 	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
622 #ifdef CONFIG_X86_64
623 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624 					     MSR_FS_BASE, MSR_TYPE_RW);
625 
626 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627 					     MSR_GS_BASE, MSR_TYPE_RW);
628 
629 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
630 					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
631 #endif
632 
633 	/*
634 	 * Checking the L0->L1 bitmap is trying to verify two things:
635 	 *
636 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
637 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
638 	 *    from the L12 MSR bitmap that is too permissive.
639 	 * 2. That L1 or L2s have actually used the MSR. This avoids
640 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
641 	 *    works properly because we only update the L01 MSR bitmap lazily.
642 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
643 	 *    updated to reflect this when L1 (or its L2s) actually write to
644 	 *    the MSR.
645 	 */
646 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
647 		nested_vmx_disable_intercept_for_msr(
648 					msr_bitmap_l1, msr_bitmap_l0,
649 					MSR_IA32_SPEC_CTRL,
650 					MSR_TYPE_R | MSR_TYPE_W);
651 
652 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
653 		nested_vmx_disable_intercept_for_msr(
654 					msr_bitmap_l1, msr_bitmap_l0,
655 					MSR_IA32_PRED_CMD,
656 					MSR_TYPE_W);
657 
658 	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
659 
660 	return true;
661 }
662 
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)663 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
664 				       struct vmcs12 *vmcs12)
665 {
666 	struct kvm_host_map map;
667 	struct vmcs12 *shadow;
668 
669 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
670 	    vmcs12->vmcs_link_pointer == -1ull)
671 		return;
672 
673 	shadow = get_shadow_vmcs12(vcpu);
674 
675 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
676 		return;
677 
678 	memcpy(shadow, map.hva, VMCS12_SIZE);
679 	kvm_vcpu_unmap(vcpu, &map, false);
680 }
681 
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)682 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
683 					      struct vmcs12 *vmcs12)
684 {
685 	struct vcpu_vmx *vmx = to_vmx(vcpu);
686 
687 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
688 	    vmcs12->vmcs_link_pointer == -1ull)
689 		return;
690 
691 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
692 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
693 }
694 
695 /*
696  * In nested virtualization, check if L1 has set
697  * VM_EXIT_ACK_INTR_ON_EXIT
698  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)699 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
700 {
701 	return get_vmcs12(vcpu)->vm_exit_controls &
702 		VM_EXIT_ACK_INTR_ON_EXIT;
703 }
704 
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706 					  struct vmcs12 *vmcs12)
707 {
708 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710 		return -EINVAL;
711 	else
712 		return 0;
713 }
714 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716 					   struct vmcs12 *vmcs12)
717 {
718 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
720 	    !nested_cpu_has_vid(vmcs12) &&
721 	    !nested_cpu_has_posted_intr(vmcs12))
722 		return 0;
723 
724 	/*
725 	 * If virtualize x2apic mode is enabled,
726 	 * virtualize apic access must be disabled.
727 	 */
728 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730 		return -EINVAL;
731 
732 	/*
733 	 * If virtual interrupt delivery is enabled,
734 	 * we must exit on external interrupts.
735 	 */
736 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737 		return -EINVAL;
738 
739 	/*
740 	 * bits 15:8 should be zero in posted_intr_nv,
741 	 * the descriptor address has been already checked
742 	 * in nested_get_vmcs12_pages.
743 	 *
744 	 * bits 5:0 of posted_intr_desc_addr should be zero.
745 	 */
746 	if (nested_cpu_has_posted_intr(vmcs12) &&
747 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
748 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
749 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
750 	    CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751 	    CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752 		return -EINVAL;
753 
754 	/* tpr shadow is needed by all apicv features. */
755 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756 		return -EINVAL;
757 
758 	return 0;
759 }
760 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762 				       u32 count, u64 addr)
763 {
764 	int maxphyaddr;
765 
766 	if (count == 0)
767 		return 0;
768 	maxphyaddr = cpuid_maxphyaddr(vcpu);
769 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771 		return -EINVAL;
772 
773 	return 0;
774 }
775 
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777 						     struct vmcs12 *vmcs12)
778 {
779 	if (CC(nested_vmx_check_msr_switch(vcpu,
780 					   vmcs12->vm_exit_msr_load_count,
781 					   vmcs12->vm_exit_msr_load_addr)) ||
782 	    CC(nested_vmx_check_msr_switch(vcpu,
783 					   vmcs12->vm_exit_msr_store_count,
784 					   vmcs12->vm_exit_msr_store_addr)))
785 		return -EINVAL;
786 
787 	return 0;
788 }
789 
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793 	if (CC(nested_vmx_check_msr_switch(vcpu,
794 					   vmcs12->vm_entry_msr_load_count,
795 					   vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797 
798 	return 0;
799 }
800 
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802 					 struct vmcs12 *vmcs12)
803 {
804 	if (!nested_cpu_has_pml(vmcs12))
805 		return 0;
806 
807 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
808 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809 		return -EINVAL;
810 
811 	return 0;
812 }
813 
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815 							struct vmcs12 *vmcs12)
816 {
817 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818 	       !nested_cpu_has_ept(vmcs12)))
819 		return -EINVAL;
820 	return 0;
821 }
822 
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824 							 struct vmcs12 *vmcs12)
825 {
826 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827 	       !nested_cpu_has_ept(vmcs12)))
828 		return -EINVAL;
829 	return 0;
830 }
831 
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833 						 struct vmcs12 *vmcs12)
834 {
835 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
836 		return 0;
837 
838 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840 		return -EINVAL;
841 
842 	return 0;
843 }
844 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846 				       struct vmx_msr_entry *e)
847 {
848 	/* x2APIC MSR accesses are not allowed */
849 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850 		return -EINVAL;
851 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852 	    CC(e->index == MSR_IA32_UCODE_REV))
853 		return -EINVAL;
854 	if (CC(e->reserved != 0))
855 		return -EINVAL;
856 	return 0;
857 }
858 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860 				     struct vmx_msr_entry *e)
861 {
862 	if (CC(e->index == MSR_FS_BASE) ||
863 	    CC(e->index == MSR_GS_BASE) ||
864 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865 	    nested_vmx_msr_check_common(vcpu, e))
866 		return -EINVAL;
867 	return 0;
868 }
869 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871 				      struct vmx_msr_entry *e)
872 {
873 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874 	    nested_vmx_msr_check_common(vcpu, e))
875 		return -EINVAL;
876 	return 0;
877 }
878 
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
882 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883 				       vmx->nested.msrs.misc_high);
884 
885 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887 
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899 	u32 i;
900 	struct vmx_msr_entry e;
901 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902 
903 	for (i = 0; i < count; i++) {
904 		if (unlikely(i >= max_msr_list_size))
905 			goto fail;
906 
907 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908 					&e, sizeof(e))) {
909 			pr_debug_ratelimited(
910 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
911 				__func__, i, gpa + i * sizeof(e));
912 			goto fail;
913 		}
914 		if (nested_vmx_load_msr_check(vcpu, &e)) {
915 			pr_debug_ratelimited(
916 				"%s check failed (%u, 0x%x, 0x%x)\n",
917 				__func__, i, e.index, e.reserved);
918 			goto fail;
919 		}
920 		if (kvm_set_msr(vcpu, e.index, e.value)) {
921 			pr_debug_ratelimited(
922 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923 				__func__, i, e.index, e.value);
924 			goto fail;
925 		}
926 	}
927 	return 0;
928 fail:
929 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
930 	return i + 1;
931 }
932 
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)933 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
934 					    u32 msr_index,
935 					    u64 *data)
936 {
937 	struct vcpu_vmx *vmx = to_vmx(vcpu);
938 
939 	/*
940 	 * If the L0 hypervisor stored a more accurate value for the TSC that
941 	 * does not include the time taken for emulation of the L2->L1
942 	 * VM-exit in L0, use the more accurate value.
943 	 */
944 	if (msr_index == MSR_IA32_TSC) {
945 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
946 						    MSR_IA32_TSC);
947 
948 		if (i >= 0) {
949 			u64 val = vmx->msr_autostore.guest.val[i].value;
950 
951 			*data = kvm_read_l1_tsc(vcpu, val);
952 			return true;
953 		}
954 	}
955 
956 	if (kvm_get_msr(vcpu, msr_index, data)) {
957 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
958 			msr_index);
959 		return false;
960 	}
961 	return true;
962 }
963 
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)964 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
965 				     struct vmx_msr_entry *e)
966 {
967 	if (kvm_vcpu_read_guest(vcpu,
968 				gpa + i * sizeof(*e),
969 				e, 2 * sizeof(u32))) {
970 		pr_debug_ratelimited(
971 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
972 			__func__, i, gpa + i * sizeof(*e));
973 		return false;
974 	}
975 	if (nested_vmx_store_msr_check(vcpu, e)) {
976 		pr_debug_ratelimited(
977 			"%s check failed (%u, 0x%x, 0x%x)\n",
978 			__func__, i, e->index, e->reserved);
979 		return false;
980 	}
981 	return true;
982 }
983 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)984 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
985 {
986 	u64 data;
987 	u32 i;
988 	struct vmx_msr_entry e;
989 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
990 
991 	for (i = 0; i < count; i++) {
992 		if (unlikely(i >= max_msr_list_size))
993 			return -EINVAL;
994 
995 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
996 			return -EINVAL;
997 
998 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
999 			return -EINVAL;
1000 
1001 		if (kvm_vcpu_write_guest(vcpu,
1002 					 gpa + i * sizeof(e) +
1003 					     offsetof(struct vmx_msr_entry, value),
1004 					 &data, sizeof(data))) {
1005 			pr_debug_ratelimited(
1006 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1007 				__func__, i, e.index, data);
1008 			return -EINVAL;
1009 		}
1010 	}
1011 	return 0;
1012 }
1013 
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1014 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1015 {
1016 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1017 	u32 count = vmcs12->vm_exit_msr_store_count;
1018 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1019 	struct vmx_msr_entry e;
1020 	u32 i;
1021 
1022 	for (i = 0; i < count; i++) {
1023 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024 			return false;
1025 
1026 		if (e.index == msr_index)
1027 			return true;
1028 	}
1029 	return false;
1030 }
1031 
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1032 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1033 					   u32 msr_index)
1034 {
1035 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1036 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1037 	bool in_vmcs12_store_list;
1038 	int msr_autostore_slot;
1039 	bool in_autostore_list;
1040 	int last;
1041 
1042 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1043 	in_autostore_list = msr_autostore_slot >= 0;
1044 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1045 
1046 	if (in_vmcs12_store_list && !in_autostore_list) {
1047 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1048 			/*
1049 			 * Emulated VMEntry does not fail here.  Instead a less
1050 			 * accurate value will be returned by
1051 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1052 			 * instead of reading the value from the vmcs02 VMExit
1053 			 * MSR-store area.
1054 			 */
1055 			pr_warn_ratelimited(
1056 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1057 				msr_index);
1058 			return;
1059 		}
1060 		last = autostore->nr++;
1061 		autostore->val[last].index = msr_index;
1062 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1063 		last = --autostore->nr;
1064 		autostore->val[msr_autostore_slot] = autostore->val[last];
1065 	}
1066 }
1067 
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)1068 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1069 {
1070 	unsigned long invalid_mask;
1071 
1072 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1073 	return (val & invalid_mask) == 0;
1074 }
1075 
1076 /*
1077  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1078  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1079  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1080  * Here's why.
1081  *
1082  * If EPT is enabled by L0 a sync is never needed:
1083  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1084  *   cannot be unsync'd SPTEs for either L1 or L2.
1085  *
1086  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1087  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1088  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1089  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1090  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1091  *
1092  * If EPT is disabled by L0:
1093  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1094  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1095  *   required to invalidate linear mappings (EPT is disabled so there are
1096  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1097  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1098  *
1099  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1100  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1101  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1102  *
1103  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1104  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1105  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1106  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1107  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1108  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1109  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1110  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1111  * stale TLB entries, at which point L0 will sync L2's MMU.
1112  */
nested_vmx_transition_mmu_sync(struct kvm_vcpu * vcpu)1113 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1114 {
1115 	return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1116 }
1117 
1118 /*
1119  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1120  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1121  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1122  * @entry_failure_code.
1123  */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,enum vm_entry_failure_code * entry_failure_code)1124 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1125 			       enum vm_entry_failure_code *entry_failure_code)
1126 {
1127 	if (CC(!nested_cr3_valid(vcpu, cr3))) {
1128 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1129 		return -EINVAL;
1130 	}
1131 
1132 	/*
1133 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1134 	 * must not be dereferenced.
1135 	 */
1136 	if (!nested_ept && is_pae_paging(vcpu) &&
1137 	    (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1138 		if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1139 			*entry_failure_code = ENTRY_FAIL_PDPTE;
1140 			return -EINVAL;
1141 		}
1142 	}
1143 
1144 	/*
1145 	 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1146 	 * flushes are handled by nested_vmx_transition_tlb_flush().
1147 	 */
1148 	if (!nested_ept) {
1149 		kvm_mmu_new_pgd(vcpu, cr3, true, true);
1150 
1151 		/*
1152 		 * A TLB flush on VM-Enter/VM-Exit flushes all linear mappings
1153 		 * across all PCIDs, i.e. all PGDs need to be synchronized.
1154 		 * See nested_vmx_transition_mmu_sync() for more details.
1155 		 */
1156 		if (nested_vmx_transition_mmu_sync(vcpu))
1157 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158 	}
1159 
1160 	vcpu->arch.cr3 = cr3;
1161 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1162 
1163 	kvm_init_mmu(vcpu, false);
1164 
1165 	return 0;
1166 }
1167 
1168 /*
1169  * Returns if KVM is able to config CPU to tag TLB entries
1170  * populated by L2 differently than TLB entries populated
1171  * by L1.
1172  *
1173  * If L0 uses EPT, L1 and L2 run with different EPTP because
1174  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1175  * are tagged with different EPTP.
1176  *
1177  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1178  * with different VPID (L1 entries are tagged with vmx->vpid
1179  * while L2 entries are tagged with vmx->nested.vpid02).
1180  */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1181 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1182 {
1183 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1184 
1185 	return enable_ept ||
1186 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1187 }
1188 
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1189 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1190 					    struct vmcs12 *vmcs12,
1191 					    bool is_vmenter)
1192 {
1193 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1194 
1195 	/*
1196 	 * If VPID is disabled, linear and combined mappings are flushed on
1197 	 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1198 	 * their associated EPTP.
1199 	 */
1200 	if (!enable_vpid)
1201 		return;
1202 
1203 	/*
1204 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1205 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1206 	 *
1207 	 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1208 	 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1209 	 * a VPID for L2, flush the current context as the effective ASID is
1210 	 * common to both L1 and L2.
1211 	 *
1212 	 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1213 	 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1214 	 * redundant flushes further down the nested pipeline.
1215 	 *
1216 	 * If a TLB flush isn't required due to any of the above, and vpid12 is
1217 	 * changing then the new "virtual" VPID (vpid12) will reuse the same
1218 	 * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1219 	 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1220 	 * all nested vCPUs.
1221 	 */
1222 	if (!nested_cpu_has_vpid(vmcs12)) {
1223 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1224 	} else if (!nested_has_guest_tlb_tag(vcpu)) {
1225 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1226 	} else if (is_vmenter &&
1227 		   vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1228 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1229 		vpid_sync_context(nested_get_vpid02(vcpu));
1230 	}
1231 }
1232 
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1233 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1234 {
1235 	superset &= mask;
1236 	subset &= mask;
1237 
1238 	return (superset | subset) == superset;
1239 }
1240 
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1241 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1242 {
1243 	const u64 feature_and_reserved =
1244 		/* feature (except bit 48; see below) */
1245 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1246 		/* reserved */
1247 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1248 	u64 vmx_basic = vmx->nested.msrs.basic;
1249 
1250 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1251 		return -EINVAL;
1252 
1253 	/*
1254 	 * KVM does not emulate a version of VMX that constrains physical
1255 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1256 	 */
1257 	if (data & BIT_ULL(48))
1258 		return -EINVAL;
1259 
1260 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1261 	    vmx_basic_vmcs_revision_id(data))
1262 		return -EINVAL;
1263 
1264 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1265 		return -EINVAL;
1266 
1267 	vmx->nested.msrs.basic = data;
1268 	return 0;
1269 }
1270 
1271 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1272 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1273 {
1274 	u64 supported;
1275 	u32 *lowp, *highp;
1276 
1277 	switch (msr_index) {
1278 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1279 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1280 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1281 		break;
1282 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1283 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1284 		highp = &vmx->nested.msrs.procbased_ctls_high;
1285 		break;
1286 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1287 		lowp = &vmx->nested.msrs.exit_ctls_low;
1288 		highp = &vmx->nested.msrs.exit_ctls_high;
1289 		break;
1290 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1291 		lowp = &vmx->nested.msrs.entry_ctls_low;
1292 		highp = &vmx->nested.msrs.entry_ctls_high;
1293 		break;
1294 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1295 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1296 		highp = &vmx->nested.msrs.secondary_ctls_high;
1297 		break;
1298 	default:
1299 		BUG();
1300 	}
1301 
1302 	supported = vmx_control_msr(*lowp, *highp);
1303 
1304 	/* Check must-be-1 bits are still 1. */
1305 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1306 		return -EINVAL;
1307 
1308 	/* Check must-be-0 bits are still 0. */
1309 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1310 		return -EINVAL;
1311 
1312 	*lowp = data;
1313 	*highp = data >> 32;
1314 	return 0;
1315 }
1316 
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1317 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1318 {
1319 	const u64 feature_and_reserved_bits =
1320 		/* feature */
1321 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1322 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1323 		/* reserved */
1324 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1325 	u64 vmx_misc;
1326 
1327 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1328 				   vmx->nested.msrs.misc_high);
1329 
1330 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1331 		return -EINVAL;
1332 
1333 	if ((vmx->nested.msrs.pinbased_ctls_high &
1334 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1335 	    vmx_misc_preemption_timer_rate(data) !=
1336 	    vmx_misc_preemption_timer_rate(vmx_misc))
1337 		return -EINVAL;
1338 
1339 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1340 		return -EINVAL;
1341 
1342 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1343 		return -EINVAL;
1344 
1345 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1346 		return -EINVAL;
1347 
1348 	vmx->nested.msrs.misc_low = data;
1349 	vmx->nested.msrs.misc_high = data >> 32;
1350 
1351 	return 0;
1352 }
1353 
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1354 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1355 {
1356 	u64 vmx_ept_vpid_cap;
1357 
1358 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1359 					   vmx->nested.msrs.vpid_caps);
1360 
1361 	/* Every bit is either reserved or a feature bit. */
1362 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1363 		return -EINVAL;
1364 
1365 	vmx->nested.msrs.ept_caps = data;
1366 	vmx->nested.msrs.vpid_caps = data >> 32;
1367 	return 0;
1368 }
1369 
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1370 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1371 {
1372 	u64 *msr;
1373 
1374 	switch (msr_index) {
1375 	case MSR_IA32_VMX_CR0_FIXED0:
1376 		msr = &vmx->nested.msrs.cr0_fixed0;
1377 		break;
1378 	case MSR_IA32_VMX_CR4_FIXED0:
1379 		msr = &vmx->nested.msrs.cr4_fixed0;
1380 		break;
1381 	default:
1382 		BUG();
1383 	}
1384 
1385 	/*
1386 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1387 	 * must be 1 in the restored value.
1388 	 */
1389 	if (!is_bitwise_subset(data, *msr, -1ULL))
1390 		return -EINVAL;
1391 
1392 	*msr = data;
1393 	return 0;
1394 }
1395 
1396 /*
1397  * Called when userspace is restoring VMX MSRs.
1398  *
1399  * Returns 0 on success, non-0 otherwise.
1400  */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1401 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1402 {
1403 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1404 
1405 	/*
1406 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1407 	 * is in VMX operation.
1408 	 */
1409 	if (vmx->nested.vmxon)
1410 		return -EBUSY;
1411 
1412 	switch (msr_index) {
1413 	case MSR_IA32_VMX_BASIC:
1414 		return vmx_restore_vmx_basic(vmx, data);
1415 	case MSR_IA32_VMX_PINBASED_CTLS:
1416 	case MSR_IA32_VMX_PROCBASED_CTLS:
1417 	case MSR_IA32_VMX_EXIT_CTLS:
1418 	case MSR_IA32_VMX_ENTRY_CTLS:
1419 		/*
1420 		 * The "non-true" VMX capability MSRs are generated from the
1421 		 * "true" MSRs, so we do not support restoring them directly.
1422 		 *
1423 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1424 		 * should restore the "true" MSRs with the must-be-1 bits
1425 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1426 		 * DEFAULT SETTINGS".
1427 		 */
1428 		return -EINVAL;
1429 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1430 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1431 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1432 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1433 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1434 		return vmx_restore_control_msr(vmx, msr_index, data);
1435 	case MSR_IA32_VMX_MISC:
1436 		return vmx_restore_vmx_misc(vmx, data);
1437 	case MSR_IA32_VMX_CR0_FIXED0:
1438 	case MSR_IA32_VMX_CR4_FIXED0:
1439 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1440 	case MSR_IA32_VMX_CR0_FIXED1:
1441 	case MSR_IA32_VMX_CR4_FIXED1:
1442 		/*
1443 		 * These MSRs are generated based on the vCPU's CPUID, so we
1444 		 * do not support restoring them directly.
1445 		 */
1446 		return -EINVAL;
1447 	case MSR_IA32_VMX_EPT_VPID_CAP:
1448 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1449 	case MSR_IA32_VMX_VMCS_ENUM:
1450 		vmx->nested.msrs.vmcs_enum = data;
1451 		return 0;
1452 	case MSR_IA32_VMX_VMFUNC:
1453 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1454 			return -EINVAL;
1455 		vmx->nested.msrs.vmfunc_controls = data;
1456 		return 0;
1457 	default:
1458 		/*
1459 		 * The rest of the VMX capability MSRs do not support restore.
1460 		 */
1461 		return -EINVAL;
1462 	}
1463 }
1464 
1465 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1466 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1467 {
1468 	switch (msr_index) {
1469 	case MSR_IA32_VMX_BASIC:
1470 		*pdata = msrs->basic;
1471 		break;
1472 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1473 	case MSR_IA32_VMX_PINBASED_CTLS:
1474 		*pdata = vmx_control_msr(
1475 			msrs->pinbased_ctls_low,
1476 			msrs->pinbased_ctls_high);
1477 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1478 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1479 		break;
1480 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1481 	case MSR_IA32_VMX_PROCBASED_CTLS:
1482 		*pdata = vmx_control_msr(
1483 			msrs->procbased_ctls_low,
1484 			msrs->procbased_ctls_high);
1485 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1486 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1487 		break;
1488 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1489 	case MSR_IA32_VMX_EXIT_CTLS:
1490 		*pdata = vmx_control_msr(
1491 			msrs->exit_ctls_low,
1492 			msrs->exit_ctls_high);
1493 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1494 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1495 		break;
1496 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1497 	case MSR_IA32_VMX_ENTRY_CTLS:
1498 		*pdata = vmx_control_msr(
1499 			msrs->entry_ctls_low,
1500 			msrs->entry_ctls_high);
1501 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1502 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1503 		break;
1504 	case MSR_IA32_VMX_MISC:
1505 		*pdata = vmx_control_msr(
1506 			msrs->misc_low,
1507 			msrs->misc_high);
1508 		break;
1509 	case MSR_IA32_VMX_CR0_FIXED0:
1510 		*pdata = msrs->cr0_fixed0;
1511 		break;
1512 	case MSR_IA32_VMX_CR0_FIXED1:
1513 		*pdata = msrs->cr0_fixed1;
1514 		break;
1515 	case MSR_IA32_VMX_CR4_FIXED0:
1516 		*pdata = msrs->cr4_fixed0;
1517 		break;
1518 	case MSR_IA32_VMX_CR4_FIXED1:
1519 		*pdata = msrs->cr4_fixed1;
1520 		break;
1521 	case MSR_IA32_VMX_VMCS_ENUM:
1522 		*pdata = msrs->vmcs_enum;
1523 		break;
1524 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1525 		*pdata = vmx_control_msr(
1526 			msrs->secondary_ctls_low,
1527 			msrs->secondary_ctls_high);
1528 		break;
1529 	case MSR_IA32_VMX_EPT_VPID_CAP:
1530 		*pdata = msrs->ept_caps |
1531 			((u64)msrs->vpid_caps << 32);
1532 		break;
1533 	case MSR_IA32_VMX_VMFUNC:
1534 		*pdata = msrs->vmfunc_controls;
1535 		break;
1536 	default:
1537 		return 1;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1545  * been modified by the L1 guest.  Note, "writable" in this context means
1546  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1547  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1548  * VM-exit information fields (which are actually writable if the vCPU is
1549  * configured to support "VMWRITE to any supported field in the VMCS").
1550  */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1551 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1552 {
1553 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1554 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1555 	struct shadow_vmcs_field field;
1556 	unsigned long val;
1557 	int i;
1558 
1559 	if (WARN_ON(!shadow_vmcs))
1560 		return;
1561 
1562 	preempt_disable();
1563 
1564 	vmcs_load(shadow_vmcs);
1565 
1566 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1567 		field = shadow_read_write_fields[i];
1568 		val = __vmcs_readl(field.encoding);
1569 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1570 	}
1571 
1572 	vmcs_clear(shadow_vmcs);
1573 	vmcs_load(vmx->loaded_vmcs->vmcs);
1574 
1575 	preempt_enable();
1576 }
1577 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1578 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1579 {
1580 	const struct shadow_vmcs_field *fields[] = {
1581 		shadow_read_write_fields,
1582 		shadow_read_only_fields
1583 	};
1584 	const int max_fields[] = {
1585 		max_shadow_read_write_fields,
1586 		max_shadow_read_only_fields
1587 	};
1588 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1589 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1590 	struct shadow_vmcs_field field;
1591 	unsigned long val;
1592 	int i, q;
1593 
1594 	if (WARN_ON(!shadow_vmcs))
1595 		return;
1596 
1597 	vmcs_load(shadow_vmcs);
1598 
1599 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1600 		for (i = 0; i < max_fields[q]; i++) {
1601 			field = fields[q][i];
1602 			val = vmcs12_read_any(vmcs12, field.encoding,
1603 					      field.offset);
1604 			__vmcs_writel(field.encoding, val);
1605 		}
1606 	}
1607 
1608 	vmcs_clear(shadow_vmcs);
1609 	vmcs_load(vmx->loaded_vmcs->vmcs);
1610 }
1611 
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx)1612 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1613 {
1614 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1615 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1616 
1617 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1618 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1619 	vmcs12->guest_rip = evmcs->guest_rip;
1620 
1621 	if (unlikely(!(evmcs->hv_clean_fields &
1622 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1623 		vmcs12->guest_rsp = evmcs->guest_rsp;
1624 		vmcs12->guest_rflags = evmcs->guest_rflags;
1625 		vmcs12->guest_interruptibility_info =
1626 			evmcs->guest_interruptibility_info;
1627 	}
1628 
1629 	if (unlikely(!(evmcs->hv_clean_fields &
1630 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1631 		vmcs12->cpu_based_vm_exec_control =
1632 			evmcs->cpu_based_vm_exec_control;
1633 	}
1634 
1635 	if (unlikely(!(evmcs->hv_clean_fields &
1636 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1637 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1638 	}
1639 
1640 	if (unlikely(!(evmcs->hv_clean_fields &
1641 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1642 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1643 	}
1644 
1645 	if (unlikely(!(evmcs->hv_clean_fields &
1646 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1647 		vmcs12->vm_entry_intr_info_field =
1648 			evmcs->vm_entry_intr_info_field;
1649 		vmcs12->vm_entry_exception_error_code =
1650 			evmcs->vm_entry_exception_error_code;
1651 		vmcs12->vm_entry_instruction_len =
1652 			evmcs->vm_entry_instruction_len;
1653 	}
1654 
1655 	if (unlikely(!(evmcs->hv_clean_fields &
1656 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1657 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1658 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1659 		vmcs12->host_cr0 = evmcs->host_cr0;
1660 		vmcs12->host_cr3 = evmcs->host_cr3;
1661 		vmcs12->host_cr4 = evmcs->host_cr4;
1662 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1663 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1664 		vmcs12->host_rip = evmcs->host_rip;
1665 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1666 		vmcs12->host_es_selector = evmcs->host_es_selector;
1667 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1668 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1669 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1670 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1671 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1672 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1673 	}
1674 
1675 	if (unlikely(!(evmcs->hv_clean_fields &
1676 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1677 		vmcs12->pin_based_vm_exec_control =
1678 			evmcs->pin_based_vm_exec_control;
1679 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1680 		vmcs12->secondary_vm_exec_control =
1681 			evmcs->secondary_vm_exec_control;
1682 	}
1683 
1684 	if (unlikely(!(evmcs->hv_clean_fields &
1685 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1686 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1687 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1688 	}
1689 
1690 	if (unlikely(!(evmcs->hv_clean_fields &
1691 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1692 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1693 	}
1694 
1695 	if (unlikely(!(evmcs->hv_clean_fields &
1696 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1697 		vmcs12->guest_es_base = evmcs->guest_es_base;
1698 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1699 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1700 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1701 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1702 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1703 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1704 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1705 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1706 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1707 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1708 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1709 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1710 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1711 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1712 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1713 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1714 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1715 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1716 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1717 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1718 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1719 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1720 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1721 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1722 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1723 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1724 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1725 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1726 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1727 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1728 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1729 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1730 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1731 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1732 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1733 	}
1734 
1735 	if (unlikely(!(evmcs->hv_clean_fields &
1736 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1737 		vmcs12->tsc_offset = evmcs->tsc_offset;
1738 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1739 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1740 	}
1741 
1742 	if (unlikely(!(evmcs->hv_clean_fields &
1743 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1744 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1745 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1746 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1747 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1748 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1749 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1750 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1751 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1752 	}
1753 
1754 	if (unlikely(!(evmcs->hv_clean_fields &
1755 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1756 		vmcs12->host_fs_base = evmcs->host_fs_base;
1757 		vmcs12->host_gs_base = evmcs->host_gs_base;
1758 		vmcs12->host_tr_base = evmcs->host_tr_base;
1759 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1760 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1761 		vmcs12->host_rsp = evmcs->host_rsp;
1762 	}
1763 
1764 	if (unlikely(!(evmcs->hv_clean_fields &
1765 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1766 		vmcs12->ept_pointer = evmcs->ept_pointer;
1767 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1768 	}
1769 
1770 	if (unlikely(!(evmcs->hv_clean_fields &
1771 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1772 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1773 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1774 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1775 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1776 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1777 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1778 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1779 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1780 		vmcs12->guest_pending_dbg_exceptions =
1781 			evmcs->guest_pending_dbg_exceptions;
1782 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1783 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1784 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1785 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1786 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1787 	}
1788 
1789 	/*
1790 	 * Not used?
1791 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1792 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1793 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1794 	 * vmcs12->page_fault_error_code_mask =
1795 	 *		evmcs->page_fault_error_code_mask;
1796 	 * vmcs12->page_fault_error_code_match =
1797 	 *		evmcs->page_fault_error_code_match;
1798 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1799 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1800 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1801 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1802 	 */
1803 
1804 	/*
1805 	 * Read only fields:
1806 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1807 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1808 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1809 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1810 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1811 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1812 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1813 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1814 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1815 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1816 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1817 	 *
1818 	 * Not present in struct vmcs12:
1819 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1820 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1821 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1822 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1823 	 */
1824 
1825 	return 0;
1826 }
1827 
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1828 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1829 {
1830 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1831 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1832 
1833 	/*
1834 	 * Should not be changed by KVM:
1835 	 *
1836 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1837 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1838 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1839 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1840 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1841 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1842 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1843 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1844 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1845 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1846 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1847 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1848 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1849 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1850 	 * evmcs->host_rip = vmcs12->host_rip;
1851 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1852 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1853 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1854 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1855 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1856 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1857 	 * evmcs->host_rsp = vmcs12->host_rsp;
1858 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1859 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1860 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1861 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1862 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1863 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1864 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1865 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1866 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1867 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1868 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1869 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1870 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1871 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1872 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1873 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1874 	 * evmcs->page_fault_error_code_mask =
1875 	 *		vmcs12->page_fault_error_code_mask;
1876 	 * evmcs->page_fault_error_code_match =
1877 	 *		vmcs12->page_fault_error_code_match;
1878 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1879 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1880 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1881 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1882 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1883 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1884 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1885 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1886 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1887 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1888 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1889 	 *
1890 	 * Not present in struct vmcs12:
1891 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1892 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1893 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1894 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1895 	 */
1896 
1897 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1898 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1899 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1900 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1901 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1902 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1903 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1904 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1905 
1906 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1907 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1908 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1909 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1910 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1911 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1912 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1913 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1914 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1915 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1916 
1917 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1918 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1919 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1920 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1921 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1922 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1923 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1924 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1925 
1926 	evmcs->guest_es_base = vmcs12->guest_es_base;
1927 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1928 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1929 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1930 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1931 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1932 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1933 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1934 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1935 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1936 
1937 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1938 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1939 
1940 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1941 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1942 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1943 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1944 
1945 	evmcs->guest_pending_dbg_exceptions =
1946 		vmcs12->guest_pending_dbg_exceptions;
1947 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1948 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1949 
1950 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1951 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1952 
1953 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1954 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1955 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1956 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1957 
1958 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1959 
1960 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1961 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1962 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1963 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1964 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1965 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1966 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1967 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1968 
1969 	evmcs->exit_qualification = vmcs12->exit_qualification;
1970 
1971 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1972 	evmcs->guest_rsp = vmcs12->guest_rsp;
1973 	evmcs->guest_rflags = vmcs12->guest_rflags;
1974 
1975 	evmcs->guest_interruptibility_info =
1976 		vmcs12->guest_interruptibility_info;
1977 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1978 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1979 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1980 	evmcs->vm_entry_exception_error_code =
1981 		vmcs12->vm_entry_exception_error_code;
1982 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1983 
1984 	evmcs->guest_rip = vmcs12->guest_rip;
1985 
1986 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1987 
1988 	return 0;
1989 }
1990 
1991 /*
1992  * This is an equivalent of the nested hypervisor executing the vmptrld
1993  * instruction.
1994  */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1995 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1996 	struct kvm_vcpu *vcpu, bool from_launch)
1997 {
1998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1999 	bool evmcs_gpa_changed = false;
2000 	u64 evmcs_gpa;
2001 
2002 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
2003 		return EVMPTRLD_DISABLED;
2004 
2005 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
2006 		return EVMPTRLD_DISABLED;
2007 
2008 	if (unlikely(!vmx->nested.hv_evmcs ||
2009 		     evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2010 		if (!vmx->nested.hv_evmcs)
2011 			vmx->nested.current_vmptr = -1ull;
2012 
2013 		nested_release_evmcs(vcpu);
2014 
2015 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2016 				 &vmx->nested.hv_evmcs_map))
2017 			return EVMPTRLD_ERROR;
2018 
2019 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2020 
2021 		/*
2022 		 * Currently, KVM only supports eVMCS version 1
2023 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2024 		 * value to first u32 field of eVMCS which should specify eVMCS
2025 		 * VersionNumber.
2026 		 *
2027 		 * Guest should be aware of supported eVMCS versions by host by
2028 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2029 		 * expected to set this CPUID leaf according to the value
2030 		 * returned in vmcs_version from nested_enable_evmcs().
2031 		 *
2032 		 * However, it turns out that Microsoft Hyper-V fails to comply
2033 		 * to their own invented interface: When Hyper-V use eVMCS, it
2034 		 * just sets first u32 field of eVMCS to revision_id specified
2035 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2036 		 * which is one of the supported versions specified in
2037 		 * CPUID.0x4000000A.EAX[0:15].
2038 		 *
2039 		 * To overcome Hyper-V bug, we accept here either a supported
2040 		 * eVMCS version or VMCS12 revision_id as valid values for first
2041 		 * u32 field of eVMCS.
2042 		 */
2043 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2044 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2045 			nested_release_evmcs(vcpu);
2046 			return EVMPTRLD_VMFAIL;
2047 		}
2048 
2049 		vmx->nested.dirty_vmcs12 = true;
2050 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2051 
2052 		evmcs_gpa_changed = true;
2053 		/*
2054 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2055 		 * reloaded from guest's memory (read only fields, fields not
2056 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2057 		 * are no leftovers.
2058 		 */
2059 		if (from_launch) {
2060 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2061 			memset(vmcs12, 0, sizeof(*vmcs12));
2062 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2063 		}
2064 
2065 	}
2066 
2067 	/*
2068 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2069 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2070 	 */
2071 	if (from_launch || evmcs_gpa_changed)
2072 		vmx->nested.hv_evmcs->hv_clean_fields &=
2073 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2074 
2075 	return EVMPTRLD_SUCCEEDED;
2076 }
2077 
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2078 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2079 {
2080 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2081 
2082 	if (vmx->nested.hv_evmcs) {
2083 		copy_vmcs12_to_enlightened(vmx);
2084 		/* All fields are clean */
2085 		vmx->nested.hv_evmcs->hv_clean_fields |=
2086 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2087 	} else {
2088 		copy_vmcs12_to_shadow(vmx);
2089 	}
2090 
2091 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2092 }
2093 
vmx_preemption_timer_fn(struct hrtimer * timer)2094 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2095 {
2096 	struct vcpu_vmx *vmx =
2097 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2098 
2099 	vmx->nested.preemption_timer_expired = true;
2100 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2101 	kvm_vcpu_kick(&vmx->vcpu);
2102 
2103 	return HRTIMER_NORESTART;
2104 }
2105 
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2106 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2107 {
2108 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2109 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2110 
2111 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2112 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2113 
2114 	if (!vmx->nested.has_preemption_timer_deadline) {
2115 		vmx->nested.preemption_timer_deadline =
2116 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2117 		vmx->nested.has_preemption_timer_deadline = true;
2118 	}
2119 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2120 }
2121 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2122 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2123 					u64 preemption_timeout)
2124 {
2125 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2126 
2127 	/*
2128 	 * A timer value of zero is architecturally guaranteed to cause
2129 	 * a VMExit prior to executing any instructions in the guest.
2130 	 */
2131 	if (preemption_timeout == 0) {
2132 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2133 		return;
2134 	}
2135 
2136 	if (vcpu->arch.virtual_tsc_khz == 0)
2137 		return;
2138 
2139 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2140 	preemption_timeout *= 1000000;
2141 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2142 	hrtimer_start(&vmx->nested.preemption_timer,
2143 		      ktime_add_ns(ktime_get(), preemption_timeout),
2144 		      HRTIMER_MODE_ABS_PINNED);
2145 }
2146 
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2147 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2148 {
2149 	if (vmx->nested.nested_run_pending &&
2150 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2151 		return vmcs12->guest_ia32_efer;
2152 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2153 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2154 	else
2155 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2156 }
2157 
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2158 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2159 {
2160 	/*
2161 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2162 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2163 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2164 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2165 	 */
2166 	if (vmx->nested.vmcs02_initialized)
2167 		return;
2168 	vmx->nested.vmcs02_initialized = true;
2169 
2170 	/*
2171 	 * We don't care what the EPTP value is we just need to guarantee
2172 	 * it's valid so we don't get a false positive when doing early
2173 	 * consistency checks.
2174 	 */
2175 	if (enable_ept && nested_early_check)
2176 		vmcs_write64(EPT_POINTER,
2177 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2178 
2179 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2180 	if (cpu_has_vmx_vmfunc())
2181 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2182 
2183 	if (cpu_has_vmx_posted_intr())
2184 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2185 
2186 	if (cpu_has_vmx_msr_bitmap())
2187 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2188 
2189 	/*
2190 	 * The PML address never changes, so it is constant in vmcs02.
2191 	 * Conceptually we want to copy the PML index from vmcs01 here,
2192 	 * and then back to vmcs01 on nested vmexit.  But since we flush
2193 	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2194 	 * index is also effectively constant in vmcs02.
2195 	 */
2196 	if (enable_pml) {
2197 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2198 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2199 	}
2200 
2201 	if (cpu_has_vmx_encls_vmexit())
2202 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2203 
2204 	/*
2205 	 * Set the MSR load/store lists to match L0's settings.  Only the
2206 	 * addresses are constant (for vmcs02), the counts can change based
2207 	 * on L2's behavior, e.g. switching to/from long mode.
2208 	 */
2209 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2210 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2211 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2212 
2213 	vmx_set_constant_host_state(vmx);
2214 }
2215 
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2216 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2217 				      struct vmcs12 *vmcs12)
2218 {
2219 	prepare_vmcs02_constant_state(vmx);
2220 
2221 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
2222 
2223 	if (enable_vpid) {
2224 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2225 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2226 		else
2227 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2228 	}
2229 }
2230 
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2231 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2232 {
2233 	u32 exec_control, vmcs12_exec_ctrl;
2234 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2235 
2236 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2237 		prepare_vmcs02_early_rare(vmx, vmcs12);
2238 
2239 	/*
2240 	 * PIN CONTROLS
2241 	 */
2242 	exec_control = vmx_pin_based_exec_ctrl(vmx);
2243 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2244 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2245 
2246 	/* Posted interrupts setting is only taken from vmcs12.  */
2247 	vmx->nested.pi_pending = false;
2248 	if (nested_cpu_has_posted_intr(vmcs12))
2249 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2250 	else
2251 		exec_control &= ~PIN_BASED_POSTED_INTR;
2252 	pin_controls_set(vmx, exec_control);
2253 
2254 	/*
2255 	 * EXEC CONTROLS
2256 	 */
2257 	exec_control = vmx_exec_control(vmx); /* L0's desires */
2258 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2259 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2260 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2261 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2262 
2263 	vmx->nested.l1_tpr_threshold = -1;
2264 	if (exec_control & CPU_BASED_TPR_SHADOW)
2265 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2266 #ifdef CONFIG_X86_64
2267 	else
2268 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2269 				CPU_BASED_CR8_STORE_EXITING;
2270 #endif
2271 
2272 	/*
2273 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2274 	 * for I/O port accesses.
2275 	 */
2276 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2277 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2278 
2279 	/*
2280 	 * This bit will be computed in nested_get_vmcs12_pages, because
2281 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2282 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2283 	 * only set/clear this bit.
2284 	 */
2285 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2286 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2287 
2288 	exec_controls_set(vmx, exec_control);
2289 
2290 	/*
2291 	 * SECONDARY EXEC CONTROLS
2292 	 */
2293 	if (cpu_has_secondary_exec_ctrls()) {
2294 		exec_control = vmx->secondary_exec_control;
2295 
2296 		/* Take the following fields only from vmcs12 */
2297 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2298 				  SECONDARY_EXEC_ENABLE_INVPCID |
2299 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2300 				  SECONDARY_EXEC_XSAVES |
2301 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2302 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2303 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2304 				  SECONDARY_EXEC_ENABLE_VMFUNC);
2305 		if (nested_cpu_has(vmcs12,
2306 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2307 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2308 				~SECONDARY_EXEC_ENABLE_PML;
2309 			exec_control |= vmcs12_exec_ctrl;
2310 		}
2311 
2312 		/* VMCS shadowing for L2 is emulated for now */
2313 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2314 
2315 		/*
2316 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2317 		 * will not have to rewrite the controls just for this bit.
2318 		 */
2319 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2320 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2321 			exec_control |= SECONDARY_EXEC_DESC;
2322 
2323 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2324 			vmcs_write16(GUEST_INTR_STATUS,
2325 				vmcs12->guest_intr_status);
2326 
2327 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2328 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2329 
2330 		secondary_exec_controls_set(vmx, exec_control);
2331 	}
2332 
2333 	/*
2334 	 * ENTRY CONTROLS
2335 	 *
2336 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2337 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2338 	 * on the related bits (if supported by the CPU) in the hope that
2339 	 * we can avoid VMWrites during vmx_set_efer().
2340 	 */
2341 	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2342 			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2343 	if (cpu_has_load_ia32_efer()) {
2344 		if (guest_efer & EFER_LMA)
2345 			exec_control |= VM_ENTRY_IA32E_MODE;
2346 		if (guest_efer != host_efer)
2347 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2348 	}
2349 	vm_entry_controls_set(vmx, exec_control);
2350 
2351 	/*
2352 	 * EXIT CONTROLS
2353 	 *
2354 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2355 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2356 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2357 	 */
2358 	exec_control = vmx_vmexit_ctrl();
2359 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2360 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2361 	vm_exit_controls_set(vmx, exec_control);
2362 
2363 	/*
2364 	 * Interrupt/Exception Fields
2365 	 */
2366 	if (vmx->nested.nested_run_pending) {
2367 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2368 			     vmcs12->vm_entry_intr_info_field);
2369 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2370 			     vmcs12->vm_entry_exception_error_code);
2371 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2372 			     vmcs12->vm_entry_instruction_len);
2373 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2374 			     vmcs12->guest_interruptibility_info);
2375 		vmx->loaded_vmcs->nmi_known_unmasked =
2376 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2377 	} else {
2378 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2379 	}
2380 }
2381 
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2382 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2383 {
2384 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2385 
2386 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2387 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2388 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2389 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2390 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2391 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2392 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2393 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2394 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2395 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2396 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2397 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2398 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2399 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2400 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2401 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2402 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2403 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2404 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2405 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2406 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2407 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2408 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2409 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2410 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2411 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2412 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2413 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2414 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2415 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2416 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2417 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2418 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2419 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2420 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2421 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2422 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2423 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2424 
2425 		vmx->segment_cache.bitmask = 0;
2426 	}
2427 
2428 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2429 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2430 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2431 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2432 			    vmcs12->guest_pending_dbg_exceptions);
2433 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2434 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2435 
2436 		/*
2437 		 * L1 may access the L2's PDPTR, so save them to construct
2438 		 * vmcs12
2439 		 */
2440 		if (enable_ept) {
2441 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2442 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2443 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2444 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2445 		}
2446 
2447 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2448 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2449 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2450 	}
2451 
2452 	if (nested_cpu_has_xsaves(vmcs12))
2453 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2454 
2455 	/*
2456 	 * Whether page-faults are trapped is determined by a combination of
2457 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2458 	 * doesn't care about page faults then we should set all of these to
2459 	 * L1's desires. However, if L0 does care about (some) page faults, it
2460 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2461 	 * simply ask to exit on each and every L2 page fault. This is done by
2462 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2463 	 * Note that below we don't need special code to set EB.PF beyond the
2464 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2465 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2466 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2467 	 */
2468 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2469 		/*
2470 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2471 		 * go ahead and use it?
2472 		 */
2473 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2474 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2475 	} else {
2476 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2477 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2478 	}
2479 
2480 	if (cpu_has_vmx_apicv()) {
2481 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2482 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2483 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2484 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2485 	}
2486 
2487 	/*
2488 	 * Make sure the msr_autostore list is up to date before we set the
2489 	 * count in the vmcs02.
2490 	 */
2491 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2492 
2493 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2494 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2495 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2496 
2497 	set_cr4_guest_host_mask(vmx);
2498 }
2499 
2500 /*
2501  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2502  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2503  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2504  * guest in a way that will both be appropriate to L1's requests, and our
2505  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2506  * function also has additional necessary side-effects, like setting various
2507  * vcpu->arch fields.
2508  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2509  * is assigned to entry_failure_code on failure.
2510  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2511 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2512 			  enum vm_entry_failure_code *entry_failure_code)
2513 {
2514 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2515 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2516 	bool load_guest_pdptrs_vmcs12 = false;
2517 
2518 	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2519 		prepare_vmcs02_rare(vmx, vmcs12);
2520 		vmx->nested.dirty_vmcs12 = false;
2521 
2522 		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2523 			!(hv_evmcs->hv_clean_fields &
2524 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2525 	}
2526 
2527 	if (vmx->nested.nested_run_pending &&
2528 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2529 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2530 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2531 	} else {
2532 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2533 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2534 	}
2535 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2536 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2537 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2538 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2539 
2540 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2541 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2542 	 * trap. Note that CR0.TS also needs updating - we do this later.
2543 	 */
2544 	update_exception_bitmap(vcpu);
2545 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2546 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2547 
2548 	if (vmx->nested.nested_run_pending &&
2549 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2550 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2551 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2552 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2553 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2554 	}
2555 
2556 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2557 
2558 	if (kvm_has_tsc_control)
2559 		decache_tsc_multiplier(vmx);
2560 
2561 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2562 
2563 	if (nested_cpu_has_ept(vmcs12))
2564 		nested_ept_init_mmu_context(vcpu);
2565 
2566 	/*
2567 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2568 	 * bits which we consider mandatory enabled.
2569 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2570 	 * the specifications by L1; It's not enough to take
2571 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2572 	 * have more bits than L1 expected.
2573 	 */
2574 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2575 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2576 
2577 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2578 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2579 
2580 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2581 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2582 	vmx_set_efer(vcpu, vcpu->arch.efer);
2583 
2584 	/*
2585 	 * Guest state is invalid and unrestricted guest is disabled,
2586 	 * which means L1 attempted VMEntry to L2 with invalid state.
2587 	 * Fail the VMEntry.
2588 	 */
2589 	if (CC(!vmx_guest_state_valid(vcpu))) {
2590 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2591 		return -EINVAL;
2592 	}
2593 
2594 	/* Shadow page tables on either EPT or shadow page tables. */
2595 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2596 				entry_failure_code))
2597 		return -EINVAL;
2598 
2599 	/*
2600 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2601 	 * on nested VM-Exit, which can occur without actually running L2 and
2602 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2603 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2604 	 * transition to HLT instead of running L2.
2605 	 */
2606 	if (enable_ept)
2607 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2608 
2609 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2610 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2611 	    is_pae_paging(vcpu)) {
2612 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2613 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2614 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2615 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2616 	}
2617 
2618 	if (!enable_ept)
2619 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2620 
2621 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2622 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2623 				     vmcs12->guest_ia32_perf_global_ctrl)))
2624 		return -EINVAL;
2625 
2626 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2627 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2628 	return 0;
2629 }
2630 
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2631 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2632 {
2633 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2634 	       nested_cpu_has_virtual_nmis(vmcs12)))
2635 		return -EINVAL;
2636 
2637 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2638 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2639 		return -EINVAL;
2640 
2641 	return 0;
2642 }
2643 
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2644 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2645 {
2646 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2647 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
2648 
2649 	/* Check for memory type validity */
2650 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2651 	case VMX_EPTP_MT_UC:
2652 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2653 			return false;
2654 		break;
2655 	case VMX_EPTP_MT_WB:
2656 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2657 			return false;
2658 		break;
2659 	default:
2660 		return false;
2661 	}
2662 
2663 	/* Page-walk levels validity. */
2664 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2665 	case VMX_EPTP_PWL_5:
2666 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2667 			return false;
2668 		break;
2669 	case VMX_EPTP_PWL_4:
2670 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2671 			return false;
2672 		break;
2673 	default:
2674 		return false;
2675 	}
2676 
2677 	/* Reserved bits should not be set */
2678 	if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
2679 		return false;
2680 
2681 	/* AD, if set, should be supported */
2682 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2683 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2684 			return false;
2685 	}
2686 
2687 	return true;
2688 }
2689 
2690 /*
2691  * Checks related to VM-Execution Control Fields
2692  */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2693 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2694                                               struct vmcs12 *vmcs12)
2695 {
2696 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2697 
2698 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2699 				   vmx->nested.msrs.pinbased_ctls_low,
2700 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2701 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2702 				   vmx->nested.msrs.procbased_ctls_low,
2703 				   vmx->nested.msrs.procbased_ctls_high)))
2704 		return -EINVAL;
2705 
2706 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2707 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2708 				   vmx->nested.msrs.secondary_ctls_low,
2709 				   vmx->nested.msrs.secondary_ctls_high)))
2710 		return -EINVAL;
2711 
2712 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2713 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2714 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2715 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2716 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2717 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2718 	    nested_vmx_check_nmi_controls(vmcs12) ||
2719 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2720 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2721 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2722 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2723 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2724 		return -EINVAL;
2725 
2726 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2727 	    nested_cpu_has_save_preemption_timer(vmcs12))
2728 		return -EINVAL;
2729 
2730 	if (nested_cpu_has_ept(vmcs12) &&
2731 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2732 		return -EINVAL;
2733 
2734 	if (nested_cpu_has_vmfunc(vmcs12)) {
2735 		if (CC(vmcs12->vm_function_control &
2736 		       ~vmx->nested.msrs.vmfunc_controls))
2737 			return -EINVAL;
2738 
2739 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2740 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2741 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2742 				return -EINVAL;
2743 		}
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 /*
2750  * Checks related to VM-Exit Control Fields
2751  */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2752 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2753                                          struct vmcs12 *vmcs12)
2754 {
2755 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2756 
2757 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2758 				    vmx->nested.msrs.exit_ctls_low,
2759 				    vmx->nested.msrs.exit_ctls_high)) ||
2760 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2761 		return -EINVAL;
2762 
2763 	return 0;
2764 }
2765 
2766 /*
2767  * Checks related to VM-Entry Control Fields
2768  */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2769 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2770 					  struct vmcs12 *vmcs12)
2771 {
2772 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2773 
2774 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2775 				    vmx->nested.msrs.entry_ctls_low,
2776 				    vmx->nested.msrs.entry_ctls_high)))
2777 		return -EINVAL;
2778 
2779 	/*
2780 	 * From the Intel SDM, volume 3:
2781 	 * Fields relevant to VM-entry event injection must be set properly.
2782 	 * These fields are the VM-entry interruption-information field, the
2783 	 * VM-entry exception error code, and the VM-entry instruction length.
2784 	 */
2785 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2786 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2787 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2788 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2789 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2790 		bool should_have_error_code;
2791 		bool urg = nested_cpu_has2(vmcs12,
2792 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2793 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2794 
2795 		/* VM-entry interruption-info field: interruption type */
2796 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2797 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2798 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2799 			return -EINVAL;
2800 
2801 		/* VM-entry interruption-info field: vector */
2802 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2803 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2804 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2805 			return -EINVAL;
2806 
2807 		/* VM-entry interruption-info field: deliver error code */
2808 		should_have_error_code =
2809 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2810 			x86_exception_has_error_code(vector);
2811 		if (CC(has_error_code != should_have_error_code))
2812 			return -EINVAL;
2813 
2814 		/* VM-entry exception error code */
2815 		if (CC(has_error_code &&
2816 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2817 			return -EINVAL;
2818 
2819 		/* VM-entry interruption-info field: reserved bits */
2820 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2821 			return -EINVAL;
2822 
2823 		/* VM-entry instruction length */
2824 		switch (intr_type) {
2825 		case INTR_TYPE_SOFT_EXCEPTION:
2826 		case INTR_TYPE_SOFT_INTR:
2827 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2828 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2829 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2830 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2831 				return -EINVAL;
2832 		}
2833 	}
2834 
2835 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2836 		return -EINVAL;
2837 
2838 	return 0;
2839 }
2840 
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2841 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2842 				     struct vmcs12 *vmcs12)
2843 {
2844 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2845 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2846 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2847 		return -EINVAL;
2848 
2849 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2850 		return nested_evmcs_check_controls(vmcs12);
2851 
2852 	return 0;
2853 }
2854 
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2855 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2856 				       struct vmcs12 *vmcs12)
2857 {
2858 	bool ia32e;
2859 
2860 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2861 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2862 	    CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2863 		return -EINVAL;
2864 
2865 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2866 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2867 		return -EINVAL;
2868 
2869 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2870 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2871 		return -EINVAL;
2872 
2873 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2874 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2875 					   vmcs12->host_ia32_perf_global_ctrl)))
2876 		return -EINVAL;
2877 
2878 #ifdef CONFIG_X86_64
2879 	ia32e = !!(vcpu->arch.efer & EFER_LMA);
2880 #else
2881 	ia32e = false;
2882 #endif
2883 
2884 	if (ia32e) {
2885 		if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2886 		    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2887 			return -EINVAL;
2888 	} else {
2889 		if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2890 		    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2891 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2892 		    CC((vmcs12->host_rip) >> 32))
2893 			return -EINVAL;
2894 	}
2895 
2896 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2897 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2898 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2899 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2900 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2901 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2902 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2903 	    CC(vmcs12->host_cs_selector == 0) ||
2904 	    CC(vmcs12->host_tr_selector == 0) ||
2905 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2906 		return -EINVAL;
2907 
2908 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2909 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2910 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2911 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2912 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2913 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2914 		return -EINVAL;
2915 
2916 	/*
2917 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2918 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2919 	 * the values of the LMA and LME bits in the field must each be that of
2920 	 * the host address-space size VM-exit control.
2921 	 */
2922 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2923 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2924 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2925 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2926 			return -EINVAL;
2927 	}
2928 
2929 	return 0;
2930 }
2931 
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2932 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2933 					  struct vmcs12 *vmcs12)
2934 {
2935 	int r = 0;
2936 	struct vmcs12 *shadow;
2937 	struct kvm_host_map map;
2938 
2939 	if (vmcs12->vmcs_link_pointer == -1ull)
2940 		return 0;
2941 
2942 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2943 		return -EINVAL;
2944 
2945 	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2946 		return -EINVAL;
2947 
2948 	shadow = map.hva;
2949 
2950 	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2951 	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2952 		r = -EINVAL;
2953 
2954 	kvm_vcpu_unmap(vcpu, &map, false);
2955 	return r;
2956 }
2957 
2958 /*
2959  * Checks related to Guest Non-register State
2960  */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2961 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2962 {
2963 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2964 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2965 		return -EINVAL;
2966 
2967 	return 0;
2968 }
2969 
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2970 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2971 					struct vmcs12 *vmcs12,
2972 					enum vm_entry_failure_code *entry_failure_code)
2973 {
2974 	bool ia32e;
2975 
2976 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
2977 
2978 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2979 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2980 		return -EINVAL;
2981 
2982 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2983 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2984 		return -EINVAL;
2985 
2986 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2987 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2988 		return -EINVAL;
2989 
2990 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2991 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2992 		return -EINVAL;
2993 	}
2994 
2995 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2996 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2997 					   vmcs12->guest_ia32_perf_global_ctrl)))
2998 		return -EINVAL;
2999 
3000 	/*
3001 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3002 	 * are performed on the field for the IA32_EFER MSR:
3003 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3004 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3005 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3006 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3007 	 *   CR0.PG) is 1.
3008 	 */
3009 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3010 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3011 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3012 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3013 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3014 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3015 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3016 			return -EINVAL;
3017 	}
3018 
3019 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3020 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3021 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3022 		return -EINVAL;
3023 
3024 	if (nested_check_guest_non_reg_state(vmcs12))
3025 		return -EINVAL;
3026 
3027 	return 0;
3028 }
3029 
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3030 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3031 {
3032 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3033 	unsigned long cr3, cr4;
3034 	bool vm_fail;
3035 
3036 	if (!nested_early_check)
3037 		return 0;
3038 
3039 	if (vmx->msr_autoload.host.nr)
3040 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3041 	if (vmx->msr_autoload.guest.nr)
3042 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3043 
3044 	preempt_disable();
3045 
3046 	vmx_prepare_switch_to_guest(vcpu);
3047 
3048 	/*
3049 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3050 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3051 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3052 	 * there is no need to preserve other bits or save/restore the field.
3053 	 */
3054 	vmcs_writel(GUEST_RFLAGS, 0);
3055 
3056 	cr3 = __get_current_cr3_fast();
3057 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3058 		vmcs_writel(HOST_CR3, cr3);
3059 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3060 	}
3061 
3062 	cr4 = cr4_read_shadow();
3063 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3064 		vmcs_writel(HOST_CR4, cr4);
3065 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3066 	}
3067 
3068 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3069 				 __vmx_vcpu_run_flags(vmx));
3070 
3071 	if (vmx->msr_autoload.host.nr)
3072 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3073 	if (vmx->msr_autoload.guest.nr)
3074 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3075 
3076 	if (vm_fail) {
3077 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3078 
3079 		preempt_enable();
3080 
3081 		trace_kvm_nested_vmenter_failed(
3082 			"early hardware check VM-instruction error: ", error);
3083 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3084 		return 1;
3085 	}
3086 
3087 	/*
3088 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3089 	 */
3090 	if (hw_breakpoint_active())
3091 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3092 	local_irq_enable();
3093 	preempt_enable();
3094 
3095 	/*
3096 	 * A non-failing VMEntry means we somehow entered guest mode with
3097 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3098 	 * is no telling what memory has been modified or what state has
3099 	 * been exposed to unknown code.  Hitting this all but guarantees
3100 	 * a (very critical) hardware issue.
3101 	 */
3102 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3103 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3104 
3105 	return 0;
3106 }
3107 
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3108 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3109 {
3110 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3111 
3112 	/*
3113 	 * hv_evmcs may end up being not mapped after migration (when
3114 	 * L2 was running), map it here to make sure vmcs12 changes are
3115 	 * properly reflected.
3116 	 */
3117 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3118 		enum nested_evmptrld_status evmptrld_status =
3119 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3120 
3121 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3122 		    evmptrld_status == EVMPTRLD_ERROR)
3123 			return false;
3124 	}
3125 
3126 	return true;
3127 }
3128 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3129 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3130 {
3131 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3132 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3133 	struct kvm_host_map *map;
3134 	struct page *page;
3135 	u64 hpa;
3136 
3137 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3138 		/*
3139 		 * Translate L1 physical address to host physical
3140 		 * address for vmcs02. Keep the page pinned, so this
3141 		 * physical address remains valid. We keep a reference
3142 		 * to it so we can release it later.
3143 		 */
3144 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3145 			kvm_release_page_clean(vmx->nested.apic_access_page);
3146 			vmx->nested.apic_access_page = NULL;
3147 		}
3148 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3149 		if (!is_error_page(page)) {
3150 			vmx->nested.apic_access_page = page;
3151 			hpa = page_to_phys(vmx->nested.apic_access_page);
3152 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3153 		} else {
3154 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3155 					     __func__);
3156 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3157 			vcpu->run->internal.suberror =
3158 				KVM_INTERNAL_ERROR_EMULATION;
3159 			vcpu->run->internal.ndata = 0;
3160 			return false;
3161 		}
3162 	}
3163 
3164 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3165 		map = &vmx->nested.virtual_apic_map;
3166 
3167 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3168 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3169 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3170 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3171 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3172 			/*
3173 			 * The processor will never use the TPR shadow, simply
3174 			 * clear the bit from the execution control.  Such a
3175 			 * configuration is useless, but it happens in tests.
3176 			 * For any other configuration, failing the vm entry is
3177 			 * _not_ what the processor does but it's basically the
3178 			 * only possibility we have.
3179 			 */
3180 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3181 		} else {
3182 			/*
3183 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3184 			 * force VM-Entry to fail.
3185 			 */
3186 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3187 		}
3188 	}
3189 
3190 	if (nested_cpu_has_posted_intr(vmcs12)) {
3191 		map = &vmx->nested.pi_desc_map;
3192 
3193 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3194 			vmx->nested.pi_desc =
3195 				(struct pi_desc *)(((void *)map->hva) +
3196 				offset_in_page(vmcs12->posted_intr_desc_addr));
3197 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3198 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3199 		}
3200 	}
3201 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3202 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3203 	else
3204 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3205 
3206 	return true;
3207 }
3208 
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3209 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3210 {
3211 	if (!nested_get_evmcs_page(vcpu)) {
3212 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3213 				     __func__);
3214 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3215 		vcpu->run->internal.suberror =
3216 			KVM_INTERNAL_ERROR_EMULATION;
3217 		vcpu->run->internal.ndata = 0;
3218 
3219 		return false;
3220 	}
3221 
3222 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3223 		return false;
3224 
3225 	return true;
3226 }
3227 
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3228 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3229 {
3230 	struct vmcs12 *vmcs12;
3231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3232 	gpa_t dst;
3233 
3234 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3235 		return 0;
3236 
3237 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3238 		return 1;
3239 
3240 	/*
3241 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3242 	 * set is already checked as part of A/D emulation.
3243 	 */
3244 	vmcs12 = get_vmcs12(vcpu);
3245 	if (!nested_cpu_has_pml(vmcs12))
3246 		return 0;
3247 
3248 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3249 		vmx->nested.pml_full = true;
3250 		return 1;
3251 	}
3252 
3253 	gpa &= ~0xFFFull;
3254 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3255 
3256 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3257 				 offset_in_page(dst), sizeof(gpa)))
3258 		return 0;
3259 
3260 	vmcs12->guest_pml_index--;
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3267  * for running VMX instructions (except VMXON, whose prerequisites are
3268  * slightly different). It also specifies what exception to inject otherwise.
3269  * Note that many of these exceptions have priority over VM exits, so they
3270  * don't have to be checked again here.
3271  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3272 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3273 {
3274 	if (!to_vmx(vcpu)->nested.vmxon) {
3275 		kvm_queue_exception(vcpu, UD_VECTOR);
3276 		return 0;
3277 	}
3278 
3279 	if (vmx_get_cpl(vcpu)) {
3280 		kvm_inject_gp(vcpu, 0);
3281 		return 0;
3282 	}
3283 
3284 	return 1;
3285 }
3286 
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3287 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3288 {
3289 	u8 rvi = vmx_get_rvi();
3290 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3291 
3292 	return ((rvi & 0xf0) > (vppr & 0xf0));
3293 }
3294 
3295 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3296 				   struct vmcs12 *vmcs12);
3297 
3298 /*
3299  * If from_vmentry is false, this is being called from state restore (either RSM
3300  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3301  *
3302  * Returns:
3303  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3304  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3305  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3306  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3307  */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3308 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3309 							bool from_vmentry)
3310 {
3311 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3312 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3313 	enum vm_entry_failure_code entry_failure_code;
3314 	bool evaluate_pending_interrupts;
3315 	union vmx_exit_reason exit_reason = {
3316 		.basic = EXIT_REASON_INVALID_STATE,
3317 		.failed_vmentry = 1,
3318 	};
3319 	u32 failed_index;
3320 
3321 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3322 		kvm_vcpu_flush_tlb_current(vcpu);
3323 
3324 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3325 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3326 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3327 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3328 
3329 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3330 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3331 	if (kvm_mpx_supported() &&
3332 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3333 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3334 
3335 	/*
3336 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3337 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3338 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3339 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3340 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3341 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3342 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3343 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3344 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3345 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3346 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3347 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3348 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3349 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3350 	 */
3351 	if (!enable_ept && !nested_early_check)
3352 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3353 
3354 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3355 
3356 	prepare_vmcs02_early(vmx, vmcs12);
3357 
3358 	if (from_vmentry) {
3359 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3360 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3361 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3362 		}
3363 
3364 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3365 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3366 			return NVMX_VMENTRY_VMFAIL;
3367 		}
3368 
3369 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3370 						 &entry_failure_code)) {
3371 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3372 			vmcs12->exit_qualification = entry_failure_code;
3373 			goto vmentry_fail_vmexit;
3374 		}
3375 	}
3376 
3377 	enter_guest_mode(vcpu);
3378 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3379 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3380 
3381 	if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3382 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3383 		vmcs12->exit_qualification = entry_failure_code;
3384 		goto vmentry_fail_vmexit_guest_mode;
3385 	}
3386 
3387 	if (from_vmentry) {
3388 		failed_index = nested_vmx_load_msr(vcpu,
3389 						   vmcs12->vm_entry_msr_load_addr,
3390 						   vmcs12->vm_entry_msr_load_count);
3391 		if (failed_index) {
3392 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3393 			vmcs12->exit_qualification = failed_index;
3394 			goto vmentry_fail_vmexit_guest_mode;
3395 		}
3396 	} else {
3397 		/*
3398 		 * The MMU is not initialized to point at the right entities yet and
3399 		 * "get pages" would need to read data from the guest (i.e. we will
3400 		 * need to perform gpa to hpa translation). Request a call
3401 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3402 		 * have already been set at vmentry time and should not be reset.
3403 		 */
3404 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3405 	}
3406 
3407 	/*
3408 	 * If L1 had a pending IRQ/NMI until it executed
3409 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3410 	 * disallowed (e.g. interrupts disabled), L0 needs to
3411 	 * evaluate if this pending event should cause an exit from L2
3412 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3413 	 * intercept EXTERNAL_INTERRUPT).
3414 	 *
3415 	 * Usually this would be handled by the processor noticing an
3416 	 * IRQ/NMI window request, or checking RVI during evaluation of
3417 	 * pending virtual interrupts.  However, this setting was done
3418 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3419 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3420 	 */
3421 	if (unlikely(evaluate_pending_interrupts))
3422 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3423 
3424 	/*
3425 	 * Do not start the preemption timer hrtimer until after we know
3426 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3427 	 * the timer.
3428 	 */
3429 	vmx->nested.preemption_timer_expired = false;
3430 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3431 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3432 		vmx_start_preemption_timer(vcpu, timer_value);
3433 	}
3434 
3435 	/*
3436 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3437 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3438 	 * returned as far as L1 is concerned. It will only return (and set
3439 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3440 	 */
3441 	return NVMX_VMENTRY_SUCCESS;
3442 
3443 	/*
3444 	 * A failed consistency check that leads to a VMExit during L1's
3445 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3446 	 * 26.7 "VM-entry failures during or after loading guest state".
3447 	 */
3448 vmentry_fail_vmexit_guest_mode:
3449 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3450 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3451 	leave_guest_mode(vcpu);
3452 
3453 vmentry_fail_vmexit:
3454 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3455 
3456 	if (!from_vmentry)
3457 		return NVMX_VMENTRY_VMEXIT;
3458 
3459 	load_vmcs12_host_state(vcpu, vmcs12);
3460 	vmcs12->vm_exit_reason = exit_reason.full;
3461 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3462 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3463 	return NVMX_VMENTRY_VMEXIT;
3464 }
3465 
3466 /*
3467  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3468  * for running an L2 nested guest.
3469  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3470 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3471 {
3472 	struct vmcs12 *vmcs12;
3473 	enum nvmx_vmentry_status status;
3474 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3475 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3476 	enum nested_evmptrld_status evmptrld_status;
3477 
3478 	if (!nested_vmx_check_permission(vcpu))
3479 		return 1;
3480 
3481 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3482 	if (evmptrld_status == EVMPTRLD_ERROR) {
3483 		kvm_queue_exception(vcpu, UD_VECTOR);
3484 		return 1;
3485 	} else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3486 		return nested_vmx_failInvalid(vcpu);
3487 	}
3488 
3489 	if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3490 		return nested_vmx_failInvalid(vcpu);
3491 
3492 	vmcs12 = get_vmcs12(vcpu);
3493 
3494 	/*
3495 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3496 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3497 	 * rather than RFLAGS.ZF, and no error number is stored to the
3498 	 * VM-instruction error field.
3499 	 */
3500 	if (CC(vmcs12->hdr.shadow_vmcs))
3501 		return nested_vmx_failInvalid(vcpu);
3502 
3503 	if (vmx->nested.hv_evmcs) {
3504 		copy_enlightened_to_vmcs12(vmx);
3505 		/* Enlightened VMCS doesn't have launch state */
3506 		vmcs12->launch_state = !launch;
3507 	} else if (enable_shadow_vmcs) {
3508 		copy_shadow_to_vmcs12(vmx);
3509 	}
3510 
3511 	/*
3512 	 * The nested entry process starts with enforcing various prerequisites
3513 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3514 	 * they fail: As the SDM explains, some conditions should cause the
3515 	 * instruction to fail, while others will cause the instruction to seem
3516 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3517 	 * To speed up the normal (success) code path, we should avoid checking
3518 	 * for misconfigurations which will anyway be caught by the processor
3519 	 * when using the merged vmcs02.
3520 	 */
3521 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3522 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3523 
3524 	if (CC(vmcs12->launch_state == launch))
3525 		return nested_vmx_fail(vcpu,
3526 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3527 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3528 
3529 	if (nested_vmx_check_controls(vcpu, vmcs12))
3530 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3531 
3532 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3533 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3534 
3535 	/*
3536 	 * We're finally done with prerequisite checking, and can start with
3537 	 * the nested entry.
3538 	 */
3539 	vmx->nested.nested_run_pending = 1;
3540 	vmx->nested.has_preemption_timer_deadline = false;
3541 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3542 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3543 		goto vmentry_failed;
3544 
3545 	/* Emulate processing of posted interrupts on VM-Enter. */
3546 	if (nested_cpu_has_posted_intr(vmcs12) &&
3547 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3548 		vmx->nested.pi_pending = true;
3549 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3550 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3551 	}
3552 
3553 	/* Hide L1D cache contents from the nested guest.  */
3554 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3555 
3556 	/*
3557 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3558 	 * also be used as part of restoring nVMX state for
3559 	 * snapshot restore (migration).
3560 	 *
3561 	 * In this flow, it is assumed that vmcs12 cache was
3562 	 * trasferred as part of captured nVMX state and should
3563 	 * therefore not be read from guest memory (which may not
3564 	 * exist on destination host yet).
3565 	 */
3566 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3567 
3568 	/*
3569 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3570 	 * awakened by event injection or by an NMI-window VM-exit or
3571 	 * by an interrupt-window VM-exit, halt the vcpu.
3572 	 */
3573 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3574 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3575 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3576 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3577 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3578 		vmx->nested.nested_run_pending = 0;
3579 		return kvm_vcpu_halt(vcpu);
3580 	}
3581 	return 1;
3582 
3583 vmentry_failed:
3584 	vmx->nested.nested_run_pending = 0;
3585 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3586 		return 0;
3587 	if (status == NVMX_VMENTRY_VMEXIT)
3588 		return 1;
3589 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3590 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3591 }
3592 
3593 /*
3594  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3595  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3596  * This function returns the new value we should put in vmcs12.guest_cr0.
3597  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3598  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3599  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3600  *     didn't trap the bit, because if L1 did, so would L0).
3601  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3602  *     been modified by L2, and L1 knows it. So just leave the old value of
3603  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3604  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3605  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3606  *     changed these bits, and therefore they need to be updated, but L0
3607  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3608  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3609  */
3610 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3611 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3612 {
3613 	return
3614 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3615 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3616 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3617 			vcpu->arch.cr0_guest_owned_bits));
3618 }
3619 
3620 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3621 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3622 {
3623 	return
3624 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3625 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3626 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3627 			vcpu->arch.cr4_guest_owned_bits));
3628 }
3629 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3630 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3631 				      struct vmcs12 *vmcs12)
3632 {
3633 	u32 idt_vectoring;
3634 	unsigned int nr;
3635 
3636 	if (vcpu->arch.exception.injected) {
3637 		nr = vcpu->arch.exception.nr;
3638 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3639 
3640 		if (kvm_exception_is_soft(nr)) {
3641 			vmcs12->vm_exit_instruction_len =
3642 				vcpu->arch.event_exit_inst_len;
3643 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3644 		} else
3645 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3646 
3647 		if (vcpu->arch.exception.has_error_code) {
3648 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3649 			vmcs12->idt_vectoring_error_code =
3650 				vcpu->arch.exception.error_code;
3651 		}
3652 
3653 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3654 	} else if (vcpu->arch.nmi_injected) {
3655 		vmcs12->idt_vectoring_info_field =
3656 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3657 	} else if (vcpu->arch.interrupt.injected) {
3658 		nr = vcpu->arch.interrupt.nr;
3659 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3660 
3661 		if (vcpu->arch.interrupt.soft) {
3662 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3663 			vmcs12->vm_entry_instruction_len =
3664 				vcpu->arch.event_exit_inst_len;
3665 		} else
3666 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3667 
3668 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3669 	}
3670 }
3671 
3672 
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3673 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3674 {
3675 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3676 	gfn_t gfn;
3677 
3678 	/*
3679 	 * Don't need to mark the APIC access page dirty; it is never
3680 	 * written to by the CPU during APIC virtualization.
3681 	 */
3682 
3683 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3684 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3685 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3686 	}
3687 
3688 	if (nested_cpu_has_posted_intr(vmcs12)) {
3689 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3690 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3691 	}
3692 }
3693 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3694 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3695 {
3696 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3697 	int max_irr;
3698 	void *vapic_page;
3699 	u16 status;
3700 
3701 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3702 		return;
3703 
3704 	vmx->nested.pi_pending = false;
3705 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3706 		return;
3707 
3708 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3709 	if (max_irr != 256) {
3710 		vapic_page = vmx->nested.virtual_apic_map.hva;
3711 		if (!vapic_page)
3712 			return;
3713 
3714 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3715 			vapic_page, &max_irr);
3716 		status = vmcs_read16(GUEST_INTR_STATUS);
3717 		if ((u8)max_irr > ((u8)status & 0xff)) {
3718 			status &= ~0xff;
3719 			status |= (u8)max_irr;
3720 			vmcs_write16(GUEST_INTR_STATUS, status);
3721 		}
3722 	}
3723 
3724 	nested_mark_vmcs12_pages_dirty(vcpu);
3725 }
3726 
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3727 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3728 					       unsigned long exit_qual)
3729 {
3730 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3731 	unsigned int nr = vcpu->arch.exception.nr;
3732 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3733 
3734 	if (vcpu->arch.exception.has_error_code) {
3735 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3736 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3737 	}
3738 
3739 	if (kvm_exception_is_soft(nr))
3740 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3741 	else
3742 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3743 
3744 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3745 	    vmx_get_nmi_mask(vcpu))
3746 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3747 
3748 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3749 }
3750 
3751 /*
3752  * Returns true if a debug trap is pending delivery.
3753  *
3754  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3755  * exception may be inferred from the presence of an exception payload.
3756  */
vmx_pending_dbg_trap(struct kvm_vcpu * vcpu)3757 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3758 {
3759 	return vcpu->arch.exception.pending &&
3760 			vcpu->arch.exception.nr == DB_VECTOR &&
3761 			vcpu->arch.exception.payload;
3762 }
3763 
3764 /*
3765  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3766  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3767  * represents these debug traps with a payload that is said to be compatible
3768  * with the 'pending debug exceptions' field, write the payload to the VMCS
3769  * field if a VM-exit is delivered before the debug trap.
3770  */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3771 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3772 {
3773 	if (vmx_pending_dbg_trap(vcpu))
3774 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3775 			    vcpu->arch.exception.payload);
3776 }
3777 
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3778 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3779 {
3780 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3781 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3782 }
3783 
vmx_check_nested_events(struct kvm_vcpu * vcpu)3784 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3785 {
3786 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3787 	unsigned long exit_qual;
3788 	bool block_nested_events =
3789 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3790 	bool mtf_pending = vmx->nested.mtf_pending;
3791 	struct kvm_lapic *apic = vcpu->arch.apic;
3792 
3793 	/*
3794 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3795 	 * this state is discarded.
3796 	 */
3797 	if (!block_nested_events)
3798 		vmx->nested.mtf_pending = false;
3799 
3800 	if (lapic_in_kernel(vcpu) &&
3801 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3802 		if (block_nested_events)
3803 			return -EBUSY;
3804 		nested_vmx_update_pending_dbg(vcpu);
3805 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3806 		nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3807 		return 0;
3808 	}
3809 
3810 	/*
3811 	 * Process any exceptions that are not debug traps before MTF.
3812 	 */
3813 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3814 		if (block_nested_events)
3815 			return -EBUSY;
3816 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3817 			goto no_vmexit;
3818 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3819 		return 0;
3820 	}
3821 
3822 	if (mtf_pending) {
3823 		if (block_nested_events)
3824 			return -EBUSY;
3825 		nested_vmx_update_pending_dbg(vcpu);
3826 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3827 		return 0;
3828 	}
3829 
3830 	if (vcpu->arch.exception.pending) {
3831 		if (block_nested_events)
3832 			return -EBUSY;
3833 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3834 			goto no_vmexit;
3835 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3836 		return 0;
3837 	}
3838 
3839 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3840 		if (block_nested_events)
3841 			return -EBUSY;
3842 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3843 		return 0;
3844 	}
3845 
3846 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3847 		if (block_nested_events)
3848 			return -EBUSY;
3849 		goto no_vmexit;
3850 	}
3851 
3852 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3853 		if (block_nested_events)
3854 			return -EBUSY;
3855 		if (!nested_exit_on_nmi(vcpu))
3856 			goto no_vmexit;
3857 
3858 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3859 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3860 				  INTR_INFO_VALID_MASK, 0);
3861 		/*
3862 		 * The NMI-triggered VM exit counts as injection:
3863 		 * clear this one and block further NMIs.
3864 		 */
3865 		vcpu->arch.nmi_pending = 0;
3866 		vmx_set_nmi_mask(vcpu, true);
3867 		return 0;
3868 	}
3869 
3870 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3871 		if (block_nested_events)
3872 			return -EBUSY;
3873 		if (!nested_exit_on_intr(vcpu))
3874 			goto no_vmexit;
3875 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3876 		return 0;
3877 	}
3878 
3879 no_vmexit:
3880 	vmx_complete_nested_posted_interrupt(vcpu);
3881 	return 0;
3882 }
3883 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)3884 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3885 {
3886 	ktime_t remaining =
3887 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3888 	u64 value;
3889 
3890 	if (ktime_to_ns(remaining) <= 0)
3891 		return 0;
3892 
3893 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3894 	do_div(value, 1000000);
3895 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3896 }
3897 
is_vmcs12_ext_field(unsigned long field)3898 static bool is_vmcs12_ext_field(unsigned long field)
3899 {
3900 	switch (field) {
3901 	case GUEST_ES_SELECTOR:
3902 	case GUEST_CS_SELECTOR:
3903 	case GUEST_SS_SELECTOR:
3904 	case GUEST_DS_SELECTOR:
3905 	case GUEST_FS_SELECTOR:
3906 	case GUEST_GS_SELECTOR:
3907 	case GUEST_LDTR_SELECTOR:
3908 	case GUEST_TR_SELECTOR:
3909 	case GUEST_ES_LIMIT:
3910 	case GUEST_CS_LIMIT:
3911 	case GUEST_SS_LIMIT:
3912 	case GUEST_DS_LIMIT:
3913 	case GUEST_FS_LIMIT:
3914 	case GUEST_GS_LIMIT:
3915 	case GUEST_LDTR_LIMIT:
3916 	case GUEST_TR_LIMIT:
3917 	case GUEST_GDTR_LIMIT:
3918 	case GUEST_IDTR_LIMIT:
3919 	case GUEST_ES_AR_BYTES:
3920 	case GUEST_DS_AR_BYTES:
3921 	case GUEST_FS_AR_BYTES:
3922 	case GUEST_GS_AR_BYTES:
3923 	case GUEST_LDTR_AR_BYTES:
3924 	case GUEST_TR_AR_BYTES:
3925 	case GUEST_ES_BASE:
3926 	case GUEST_CS_BASE:
3927 	case GUEST_SS_BASE:
3928 	case GUEST_DS_BASE:
3929 	case GUEST_FS_BASE:
3930 	case GUEST_GS_BASE:
3931 	case GUEST_LDTR_BASE:
3932 	case GUEST_TR_BASE:
3933 	case GUEST_GDTR_BASE:
3934 	case GUEST_IDTR_BASE:
3935 	case GUEST_PENDING_DBG_EXCEPTIONS:
3936 	case GUEST_BNDCFGS:
3937 		return true;
3938 	default:
3939 		break;
3940 	}
3941 
3942 	return false;
3943 }
3944 
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3945 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3946 				       struct vmcs12 *vmcs12)
3947 {
3948 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3949 
3950 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3951 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3952 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3953 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3954 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3955 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3956 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3957 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3958 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3959 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3960 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3961 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3962 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3963 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3964 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3965 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3966 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3967 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3968 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3969 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3970 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3971 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3972 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3973 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3974 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3975 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3976 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3977 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3978 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3979 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3980 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3981 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3982 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3983 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3984 	vmcs12->guest_pending_dbg_exceptions =
3985 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3986 	if (kvm_mpx_supported())
3987 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3988 
3989 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3990 }
3991 
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3992 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3993 				       struct vmcs12 *vmcs12)
3994 {
3995 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3996 	int cpu;
3997 
3998 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3999 		return;
4000 
4001 
4002 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4003 
4004 	cpu = get_cpu();
4005 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4006 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4007 
4008 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4009 
4010 	vmx->loaded_vmcs = &vmx->vmcs01;
4011 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4012 	put_cpu();
4013 }
4014 
4015 /*
4016  * Update the guest state fields of vmcs12 to reflect changes that
4017  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4018  * VM-entry controls is also updated, since this is really a guest
4019  * state bit.)
4020  */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4021 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4022 {
4023 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4024 
4025 	if (vmx->nested.hv_evmcs)
4026 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4027 
4028 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4029 
4030 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4031 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4032 
4033 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4034 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4035 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4036 
4037 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4038 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4039 
4040 	vmcs12->guest_interruptibility_info =
4041 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4042 
4043 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4044 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4045 	else
4046 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4047 
4048 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4049 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4050 	    !vmx->nested.nested_run_pending)
4051 		vmcs12->vmx_preemption_timer_value =
4052 			vmx_get_preemption_timer_value(vcpu);
4053 
4054 	/*
4055 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4056 	 * own CR3 without exiting. If it has changed it, we must keep it.
4057 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4058 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4059 	 *
4060 	 * Additionally, restore L2's PDPTR to vmcs12.
4061 	 */
4062 	if (enable_ept) {
4063 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4064 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4065 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4066 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4067 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4068 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4069 		}
4070 	}
4071 
4072 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4073 
4074 	if (nested_cpu_has_vid(vmcs12))
4075 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4076 
4077 	vmcs12->vm_entry_controls =
4078 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4079 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4080 
4081 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4082 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4083 
4084 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4085 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4086 }
4087 
4088 /*
4089  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4090  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4091  * and this function updates it to reflect the changes to the guest state while
4092  * L2 was running (and perhaps made some exits which were handled directly by L0
4093  * without going back to L1), and to reflect the exit reason.
4094  * Note that we do not have to copy here all VMCS fields, just those that
4095  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4096  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4097  * which already writes to vmcs12 directly.
4098  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4099 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4100 			   u32 vm_exit_reason, u32 exit_intr_info,
4101 			   unsigned long exit_qualification)
4102 {
4103 	/* update exit information fields: */
4104 	vmcs12->vm_exit_reason = vm_exit_reason;
4105 	vmcs12->exit_qualification = exit_qualification;
4106 	vmcs12->vm_exit_intr_info = exit_intr_info;
4107 
4108 	vmcs12->idt_vectoring_info_field = 0;
4109 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4110 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4111 
4112 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4113 		vmcs12->launch_state = 1;
4114 
4115 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4116 		 * instead of reading the real value. */
4117 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4118 
4119 		/*
4120 		 * Transfer the event that L0 or L1 may wanted to inject into
4121 		 * L2 to IDT_VECTORING_INFO_FIELD.
4122 		 */
4123 		vmcs12_save_pending_event(vcpu, vmcs12);
4124 
4125 		/*
4126 		 * According to spec, there's no need to store the guest's
4127 		 * MSRs if the exit is due to a VM-entry failure that occurs
4128 		 * during or after loading the guest state. Since this exit
4129 		 * does not fall in that category, we need to save the MSRs.
4130 		 */
4131 		if (nested_vmx_store_msr(vcpu,
4132 					 vmcs12->vm_exit_msr_store_addr,
4133 					 vmcs12->vm_exit_msr_store_count))
4134 			nested_vmx_abort(vcpu,
4135 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4136 	}
4137 
4138 	/*
4139 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4140 	 * preserved above and would only end up incorrectly in L1.
4141 	 */
4142 	vcpu->arch.nmi_injected = false;
4143 	kvm_clear_exception_queue(vcpu);
4144 	kvm_clear_interrupt_queue(vcpu);
4145 }
4146 
4147 /*
4148  * A part of what we need to when the nested L2 guest exits and we want to
4149  * run its L1 parent, is to reset L1's guest state to the host state specified
4150  * in vmcs12.
4151  * This function is to be called not only on normal nested exit, but also on
4152  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4153  * Failures During or After Loading Guest State").
4154  * This function should be called when the active VMCS is L1's (vmcs01).
4155  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4156 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4157 				   struct vmcs12 *vmcs12)
4158 {
4159 	enum vm_entry_failure_code ignored;
4160 	struct kvm_segment seg;
4161 
4162 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4163 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4164 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4165 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4166 	else
4167 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4168 	vmx_set_efer(vcpu, vcpu->arch.efer);
4169 
4170 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4171 	kvm_rip_write(vcpu, vmcs12->host_rip);
4172 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4173 	vmx_set_interrupt_shadow(vcpu, 0);
4174 
4175 	/*
4176 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4177 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4178 	 *
4179 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4180 	 * (KVM doesn't change it);
4181 	 */
4182 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4183 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4184 
4185 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4186 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4187 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4188 
4189 	nested_ept_uninit_mmu_context(vcpu);
4190 
4191 	/*
4192 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4193 	 * couldn't have changed.
4194 	 */
4195 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4196 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4197 
4198 	if (!enable_ept)
4199 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4200 
4201 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4202 
4203 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4204 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4205 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4206 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4207 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4208 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4209 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4210 
4211 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4212 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4213 		vmcs_write64(GUEST_BNDCFGS, 0);
4214 
4215 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4216 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4217 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4218 	}
4219 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4220 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4221 					 vmcs12->host_ia32_perf_global_ctrl));
4222 
4223 	/* Set L1 segment info according to Intel SDM
4224 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4225 	seg = (struct kvm_segment) {
4226 		.base = 0,
4227 		.limit = 0xFFFFFFFF,
4228 		.selector = vmcs12->host_cs_selector,
4229 		.type = 11,
4230 		.present = 1,
4231 		.s = 1,
4232 		.g = 1
4233 	};
4234 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4235 		seg.l = 1;
4236 	else
4237 		seg.db = 1;
4238 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4239 	seg = (struct kvm_segment) {
4240 		.base = 0,
4241 		.limit = 0xFFFFFFFF,
4242 		.type = 3,
4243 		.present = 1,
4244 		.s = 1,
4245 		.db = 1,
4246 		.g = 1
4247 	};
4248 	seg.selector = vmcs12->host_ds_selector;
4249 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4250 	seg.selector = vmcs12->host_es_selector;
4251 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4252 	seg.selector = vmcs12->host_ss_selector;
4253 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4254 	seg.selector = vmcs12->host_fs_selector;
4255 	seg.base = vmcs12->host_fs_base;
4256 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4257 	seg.selector = vmcs12->host_gs_selector;
4258 	seg.base = vmcs12->host_gs_base;
4259 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4260 	seg = (struct kvm_segment) {
4261 		.base = vmcs12->host_tr_base,
4262 		.limit = 0x67,
4263 		.selector = vmcs12->host_tr_selector,
4264 		.type = 11,
4265 		.present = 1
4266 	};
4267 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4268 
4269 	kvm_set_dr(vcpu, 7, 0x400);
4270 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4271 
4272 	if (cpu_has_vmx_msr_bitmap())
4273 		vmx_update_msr_bitmap(vcpu);
4274 
4275 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4276 				vmcs12->vm_exit_msr_load_count))
4277 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4278 }
4279 
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4280 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4281 {
4282 	struct vmx_uret_msr *efer_msr;
4283 	unsigned int i;
4284 
4285 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4286 		return vmcs_read64(GUEST_IA32_EFER);
4287 
4288 	if (cpu_has_load_ia32_efer())
4289 		return host_efer;
4290 
4291 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4292 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4293 			return vmx->msr_autoload.guest.val[i].value;
4294 	}
4295 
4296 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4297 	if (efer_msr)
4298 		return efer_msr->data;
4299 
4300 	return host_efer;
4301 }
4302 
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4303 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4304 {
4305 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4306 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4307 	struct vmx_msr_entry g, h;
4308 	gpa_t gpa;
4309 	u32 i, j;
4310 
4311 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4312 
4313 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4314 		/*
4315 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4316 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4317 		 * and vcpu->arch.dr7 is not squirreled away before the
4318 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4319 		 */
4320 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4321 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4322 		else
4323 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4324 	}
4325 
4326 	/*
4327 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4328 	 * handle a variety of side effects to KVM's software model.
4329 	 */
4330 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4331 
4332 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4333 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4334 
4335 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4336 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4337 
4338 	nested_ept_uninit_mmu_context(vcpu);
4339 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4340 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4341 
4342 	/*
4343 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4344 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4345 	 * VMFail, like everything else we just need to ensure our
4346 	 * software model is up-to-date.
4347 	 */
4348 	if (enable_ept && is_pae_paging(vcpu))
4349 		ept_save_pdptrs(vcpu);
4350 
4351 	kvm_mmu_reset_context(vcpu);
4352 
4353 	if (cpu_has_vmx_msr_bitmap())
4354 		vmx_update_msr_bitmap(vcpu);
4355 
4356 	/*
4357 	 * This nasty bit of open coding is a compromise between blindly
4358 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4359 	 * of VMFail), leaving the nested VM's MSRs in the software model
4360 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4361 	 * expensive since the lists are unbound by hardware).  For each
4362 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4363 	 * list, reload it from the exit load list if it exists and differs
4364 	 * from the guest value.  The intent is to stuff host state as
4365 	 * silently as possible, not to fully process the exit load list.
4366 	 */
4367 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4368 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4369 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4370 			pr_debug_ratelimited(
4371 				"%s read MSR index failed (%u, 0x%08llx)\n",
4372 				__func__, i, gpa);
4373 			goto vmabort;
4374 		}
4375 
4376 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4377 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4378 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4379 				pr_debug_ratelimited(
4380 					"%s read MSR failed (%u, 0x%08llx)\n",
4381 					__func__, j, gpa);
4382 				goto vmabort;
4383 			}
4384 			if (h.index != g.index)
4385 				continue;
4386 			if (h.value == g.value)
4387 				break;
4388 
4389 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4390 				pr_debug_ratelimited(
4391 					"%s check failed (%u, 0x%x, 0x%x)\n",
4392 					__func__, j, h.index, h.reserved);
4393 				goto vmabort;
4394 			}
4395 
4396 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4397 				pr_debug_ratelimited(
4398 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4399 					__func__, j, h.index, h.value);
4400 				goto vmabort;
4401 			}
4402 		}
4403 	}
4404 
4405 	return;
4406 
4407 vmabort:
4408 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4409 }
4410 
4411 /*
4412  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4413  * and modify vmcs12 to make it see what it would expect to see there if
4414  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4415  */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4416 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4417 		       u32 exit_intr_info, unsigned long exit_qualification)
4418 {
4419 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4420 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4421 
4422 	/* trying to cancel vmlaunch/vmresume is a bug */
4423 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4424 
4425 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4426 		/*
4427 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4428 		 * Enlightened VMCS after migration and we still need to
4429 		 * do that when something is forcing L2->L1 exit prior to
4430 		 * the first L2 run.
4431 		 */
4432 		(void)nested_get_evmcs_page(vcpu);
4433 	}
4434 
4435 	/* Service the TLB flush request for L2 before switching to L1. */
4436 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4437 		kvm_vcpu_flush_tlb_current(vcpu);
4438 
4439 	/*
4440 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4441 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4442 	 * up-to-date before switching to L1.
4443 	 */
4444 	if (enable_ept && is_pae_paging(vcpu))
4445 		vmx_ept_load_pdptrs(vcpu);
4446 
4447 	leave_guest_mode(vcpu);
4448 
4449 	if (nested_cpu_has_preemption_timer(vmcs12))
4450 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4451 
4452 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4453 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4454 
4455 	if (likely(!vmx->fail)) {
4456 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4457 
4458 		if (vm_exit_reason != -1)
4459 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4460 				       exit_intr_info, exit_qualification);
4461 
4462 		/*
4463 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4464 		 * also be used to capture vmcs12 cache as part of
4465 		 * capturing nVMX state for snapshot (migration).
4466 		 *
4467 		 * Otherwise, this flush will dirty guest memory at a
4468 		 * point it is already assumed by user-space to be
4469 		 * immutable.
4470 		 */
4471 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4472 	} else {
4473 		/*
4474 		 * The only expected VM-instruction error is "VM entry with
4475 		 * invalid control field(s)." Anything else indicates a
4476 		 * problem with L0.  And we should never get here with a
4477 		 * VMFail of any type if early consistency checks are enabled.
4478 		 */
4479 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4480 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4481 		WARN_ON_ONCE(nested_early_check);
4482 	}
4483 
4484 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4485 
4486 	/*
4487 	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4488 	 * branch predictors when transitioning from L2 to L1, as L1 expects
4489 	 * hardware (KVM in this case) to provide separate predictor modes.
4490 	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4491 	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4492 	 * separate modes for L2 vs L1.
4493 	 */
4494 	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4495 		indirect_branch_prediction_barrier();
4496 
4497 	/* Update any VMCS fields that might have changed while L2 ran */
4498 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4499 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4500 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4501 	if (vmx->nested.l1_tpr_threshold != -1)
4502 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4503 
4504 	if (kvm_has_tsc_control)
4505 		decache_tsc_multiplier(vmx);
4506 
4507 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4508 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4509 		vmx_set_virtual_apic_mode(vcpu);
4510 	}
4511 
4512 	/* Unpin physical memory we referred to in vmcs02 */
4513 	if (vmx->nested.apic_access_page) {
4514 		kvm_release_page_clean(vmx->nested.apic_access_page);
4515 		vmx->nested.apic_access_page = NULL;
4516 	}
4517 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4518 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4519 	vmx->nested.pi_desc = NULL;
4520 
4521 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4522 		vmx->nested.reload_vmcs01_apic_access_page = false;
4523 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4524 	}
4525 
4526 	if ((vm_exit_reason != -1) &&
4527 	    (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4528 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4529 
4530 	/* in case we halted in L2 */
4531 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4532 
4533 	if (likely(!vmx->fail)) {
4534 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4535 		    nested_exit_intr_ack_set(vcpu)) {
4536 			int irq = kvm_cpu_get_interrupt(vcpu);
4537 			WARN_ON(irq < 0);
4538 			vmcs12->vm_exit_intr_info = irq |
4539 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4540 		}
4541 
4542 		if (vm_exit_reason != -1)
4543 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4544 						       vmcs12->exit_qualification,
4545 						       vmcs12->idt_vectoring_info_field,
4546 						       vmcs12->vm_exit_intr_info,
4547 						       vmcs12->vm_exit_intr_error_code,
4548 						       KVM_ISA_VMX);
4549 
4550 		load_vmcs12_host_state(vcpu, vmcs12);
4551 
4552 		return;
4553 	}
4554 
4555 	/*
4556 	 * After an early L2 VM-entry failure, we're now back
4557 	 * in L1 which thinks it just finished a VMLAUNCH or
4558 	 * VMRESUME instruction, so we need to set the failure
4559 	 * flag and the VM-instruction error field of the VMCS
4560 	 * accordingly, and skip the emulated instruction.
4561 	 */
4562 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4563 
4564 	/*
4565 	 * Restore L1's host state to KVM's software model.  We're here
4566 	 * because a consistency check was caught by hardware, which
4567 	 * means some amount of guest state has been propagated to KVM's
4568 	 * model and needs to be unwound to the host's state.
4569 	 */
4570 	nested_vmx_restore_host_state(vcpu);
4571 
4572 	vmx->fail = 0;
4573 }
4574 
4575 /*
4576  * Decode the memory-address operand of a vmx instruction, as recorded on an
4577  * exit caused by such an instruction (run by a guest hypervisor).
4578  * On success, returns 0. When the operand is invalid, returns 1 and throws
4579  * #UD, #GP, or #SS.
4580  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4581 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4582 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4583 {
4584 	gva_t off;
4585 	bool exn;
4586 	struct kvm_segment s;
4587 
4588 	/*
4589 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4590 	 * Execution", on an exit, vmx_instruction_info holds most of the
4591 	 * addressing components of the operand. Only the displacement part
4592 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4593 	 * For how an actual address is calculated from all these components,
4594 	 * refer to Vol. 1, "Operand Addressing".
4595 	 */
4596 	int  scaling = vmx_instruction_info & 3;
4597 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4598 	bool is_reg = vmx_instruction_info & (1u << 10);
4599 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4600 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4601 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4602 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4603 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4604 
4605 	if (is_reg) {
4606 		kvm_queue_exception(vcpu, UD_VECTOR);
4607 		return 1;
4608 	}
4609 
4610 	/* Addr = segment_base + offset */
4611 	/* offset = base + [index * scale] + displacement */
4612 	off = exit_qualification; /* holds the displacement */
4613 	if (addr_size == 1)
4614 		off = (gva_t)sign_extend64(off, 31);
4615 	else if (addr_size == 0)
4616 		off = (gva_t)sign_extend64(off, 15);
4617 	if (base_is_valid)
4618 		off += kvm_register_readl(vcpu, base_reg);
4619 	if (index_is_valid)
4620 		off += kvm_register_readl(vcpu, index_reg) << scaling;
4621 	vmx_get_segment(vcpu, &s, seg_reg);
4622 
4623 	/*
4624 	 * The effective address, i.e. @off, of a memory operand is truncated
4625 	 * based on the address size of the instruction.  Note that this is
4626 	 * the *effective address*, i.e. the address prior to accounting for
4627 	 * the segment's base.
4628 	 */
4629 	if (addr_size == 1) /* 32 bit */
4630 		off &= 0xffffffff;
4631 	else if (addr_size == 0) /* 16 bit */
4632 		off &= 0xffff;
4633 
4634 	/* Checks for #GP/#SS exceptions. */
4635 	exn = false;
4636 	if (is_long_mode(vcpu)) {
4637 		/*
4638 		 * The virtual/linear address is never truncated in 64-bit
4639 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4640 		 * address when using FS/GS with a non-zero base.
4641 		 */
4642 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4643 			*ret = s.base + off;
4644 		else
4645 			*ret = off;
4646 
4647 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4648 		 * non-canonical form. This is the only check on the memory
4649 		 * destination for long mode!
4650 		 */
4651 		exn = is_noncanonical_address(*ret, vcpu);
4652 	} else {
4653 		/*
4654 		 * When not in long mode, the virtual/linear address is
4655 		 * unconditionally truncated to 32 bits regardless of the
4656 		 * address size.
4657 		 */
4658 		*ret = (s.base + off) & 0xffffffff;
4659 
4660 		/* Protected mode: apply checks for segment validity in the
4661 		 * following order:
4662 		 * - segment type check (#GP(0) may be thrown)
4663 		 * - usability check (#GP(0)/#SS(0))
4664 		 * - limit check (#GP(0)/#SS(0))
4665 		 */
4666 		if (wr)
4667 			/* #GP(0) if the destination operand is located in a
4668 			 * read-only data segment or any code segment.
4669 			 */
4670 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4671 		else
4672 			/* #GP(0) if the source operand is located in an
4673 			 * execute-only code segment
4674 			 */
4675 			exn = ((s.type & 0xa) == 8);
4676 		if (exn) {
4677 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4678 			return 1;
4679 		}
4680 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4681 		 */
4682 		exn = (s.unusable != 0);
4683 
4684 		/*
4685 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4686 		 * outside the segment limit.  All CPUs that support VMX ignore
4687 		 * limit checks for flat segments, i.e. segments with base==0,
4688 		 * limit==0xffffffff and of type expand-up data or code.
4689 		 */
4690 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4691 		     ((s.type & 8) || !(s.type & 4))))
4692 			exn = exn || ((u64)off + len - 1 > s.limit);
4693 	}
4694 	if (exn) {
4695 		kvm_queue_exception_e(vcpu,
4696 				      seg_reg == VCPU_SREG_SS ?
4697 						SS_VECTOR : GP_VECTOR,
4698 				      0);
4699 		return 1;
4700 	}
4701 
4702 	return 0;
4703 }
4704 
nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu * vcpu)4705 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4706 {
4707 	struct vcpu_vmx *vmx;
4708 
4709 	if (!nested_vmx_allowed(vcpu))
4710 		return;
4711 
4712 	vmx = to_vmx(vcpu);
4713 	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4714 		vmx->nested.msrs.entry_ctls_high |=
4715 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4716 		vmx->nested.msrs.exit_ctls_high |=
4717 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4718 	} else {
4719 		vmx->nested.msrs.entry_ctls_high &=
4720 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4721 		vmx->nested.msrs.exit_ctls_high &=
4722 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4723 	}
4724 }
4725 
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)4726 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4727 				int *ret)
4728 {
4729 	gva_t gva;
4730 	struct x86_exception e;
4731 	int r;
4732 
4733 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4734 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4735 				sizeof(*vmpointer), &gva)) {
4736 		*ret = 1;
4737 		return -EINVAL;
4738 	}
4739 
4740 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4741 	if (r != X86EMUL_CONTINUE) {
4742 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4743 		return -EINVAL;
4744 	}
4745 
4746 	return 0;
4747 }
4748 
4749 /*
4750  * Allocate a shadow VMCS and associate it with the currently loaded
4751  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4752  * VMCS is also VMCLEARed, so that it is ready for use.
4753  */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4754 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4755 {
4756 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4757 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4758 
4759 	/*
4760 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4761 	 * executes VMXON and free it when L1 executes VMXOFF.
4762 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4763 	 * here when vmcs01 already have an allocated shadow vmcs.
4764 	 */
4765 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4766 
4767 	if (!loaded_vmcs->shadow_vmcs) {
4768 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4769 		if (loaded_vmcs->shadow_vmcs)
4770 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4771 	}
4772 	return loaded_vmcs->shadow_vmcs;
4773 }
4774 
enter_vmx_operation(struct kvm_vcpu * vcpu)4775 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4776 {
4777 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4778 	int r;
4779 
4780 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4781 	if (r < 0)
4782 		goto out_vmcs02;
4783 
4784 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4785 	if (!vmx->nested.cached_vmcs12)
4786 		goto out_cached_vmcs12;
4787 
4788 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4789 	if (!vmx->nested.cached_shadow_vmcs12)
4790 		goto out_cached_shadow_vmcs12;
4791 
4792 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4793 		goto out_shadow_vmcs;
4794 
4795 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4796 		     HRTIMER_MODE_ABS_PINNED);
4797 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4798 
4799 	vmx->nested.vpid02 = allocate_vpid();
4800 
4801 	vmx->nested.vmcs02_initialized = false;
4802 	vmx->nested.vmxon = true;
4803 
4804 	if (vmx_pt_mode_is_host_guest()) {
4805 		vmx->pt_desc.guest.ctl = 0;
4806 		pt_update_intercept_for_msr(vcpu);
4807 	}
4808 
4809 	return 0;
4810 
4811 out_shadow_vmcs:
4812 	kfree(vmx->nested.cached_shadow_vmcs12);
4813 
4814 out_cached_shadow_vmcs12:
4815 	kfree(vmx->nested.cached_vmcs12);
4816 
4817 out_cached_vmcs12:
4818 	free_loaded_vmcs(&vmx->nested.vmcs02);
4819 
4820 out_vmcs02:
4821 	return -ENOMEM;
4822 }
4823 
4824 /*
4825  * Emulate the VMXON instruction.
4826  * Currently, we just remember that VMX is active, and do not save or even
4827  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4828  * do not currently need to store anything in that guest-allocated memory
4829  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4830  * argument is different from the VMXON pointer (which the spec says they do).
4831  */
handle_vmon(struct kvm_vcpu * vcpu)4832 static int handle_vmon(struct kvm_vcpu *vcpu)
4833 {
4834 	int ret;
4835 	gpa_t vmptr;
4836 	uint32_t revision;
4837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4838 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4839 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4840 
4841 	/*
4842 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4843 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4844 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4845 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4846 	 * have already been checked by hardware, prior to the VM-exit for
4847 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4848 	 * that bit set to 1 in non-root mode.
4849 	 */
4850 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4851 		kvm_queue_exception(vcpu, UD_VECTOR);
4852 		return 1;
4853 	}
4854 
4855 	/* CPL=0 must be checked manually. */
4856 	if (vmx_get_cpl(vcpu)) {
4857 		kvm_inject_gp(vcpu, 0);
4858 		return 1;
4859 	}
4860 
4861 	if (vmx->nested.vmxon)
4862 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4863 
4864 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4865 			!= VMXON_NEEDED_FEATURES) {
4866 		kvm_inject_gp(vcpu, 0);
4867 		return 1;
4868 	}
4869 
4870 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4871 		return ret;
4872 
4873 	/*
4874 	 * SDM 3: 24.11.5
4875 	 * The first 4 bytes of VMXON region contain the supported
4876 	 * VMCS revision identifier
4877 	 *
4878 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4879 	 * which replaces physical address width with 32
4880 	 */
4881 	if (!page_address_valid(vcpu, vmptr))
4882 		return nested_vmx_failInvalid(vcpu);
4883 
4884 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4885 	    revision != VMCS12_REVISION)
4886 		return nested_vmx_failInvalid(vcpu);
4887 
4888 	vmx->nested.vmxon_ptr = vmptr;
4889 	ret = enter_vmx_operation(vcpu);
4890 	if (ret)
4891 		return ret;
4892 
4893 	return nested_vmx_succeed(vcpu);
4894 }
4895 
nested_release_vmcs12(struct kvm_vcpu * vcpu)4896 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4897 {
4898 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4899 
4900 	if (vmx->nested.current_vmptr == -1ull)
4901 		return;
4902 
4903 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4904 
4905 	if (enable_shadow_vmcs) {
4906 		/* copy to memory all shadowed fields in case
4907 		   they were modified */
4908 		copy_shadow_to_vmcs12(vmx);
4909 		vmx_disable_shadow_vmcs(vmx);
4910 	}
4911 	vmx->nested.posted_intr_nv = -1;
4912 
4913 	/* Flush VMCS12 to guest memory */
4914 	kvm_vcpu_write_guest_page(vcpu,
4915 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4916 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4917 
4918 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4919 
4920 	vmx->nested.current_vmptr = -1ull;
4921 }
4922 
4923 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)4924 static int handle_vmoff(struct kvm_vcpu *vcpu)
4925 {
4926 	if (!nested_vmx_check_permission(vcpu))
4927 		return 1;
4928 
4929 	free_nested(vcpu);
4930 
4931 	/* Process a latched INIT during time CPU was in VMX operation */
4932 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4933 
4934 	return nested_vmx_succeed(vcpu);
4935 }
4936 
4937 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)4938 static int handle_vmclear(struct kvm_vcpu *vcpu)
4939 {
4940 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4941 	u32 zero = 0;
4942 	gpa_t vmptr;
4943 	u64 evmcs_gpa;
4944 	int r;
4945 
4946 	if (!nested_vmx_check_permission(vcpu))
4947 		return 1;
4948 
4949 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4950 		return r;
4951 
4952 	if (!page_address_valid(vcpu, vmptr))
4953 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4954 
4955 	if (vmptr == vmx->nested.vmxon_ptr)
4956 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4957 
4958 	/*
4959 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
4960 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4961 	 * way to distinguish it from VMCS12) and we must not corrupt it by
4962 	 * writing to the non-existent 'launch_state' field. The area doesn't
4963 	 * have to be the currently active EVMCS on the calling CPU and there's
4964 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
4965 	 * state. It is possible that the area will stay mapped as
4966 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4967 	 */
4968 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4969 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4970 		if (vmptr == vmx->nested.current_vmptr)
4971 			nested_release_vmcs12(vcpu);
4972 
4973 		kvm_vcpu_write_guest(vcpu,
4974 				     vmptr + offsetof(struct vmcs12,
4975 						      launch_state),
4976 				     &zero, sizeof(zero));
4977 	}
4978 
4979 	return nested_vmx_succeed(vcpu);
4980 }
4981 
4982 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)4983 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4984 {
4985 	return nested_vmx_run(vcpu, true);
4986 }
4987 
4988 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)4989 static int handle_vmresume(struct kvm_vcpu *vcpu)
4990 {
4991 
4992 	return nested_vmx_run(vcpu, false);
4993 }
4994 
handle_vmread(struct kvm_vcpu * vcpu)4995 static int handle_vmread(struct kvm_vcpu *vcpu)
4996 {
4997 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4998 						    : get_vmcs12(vcpu);
4999 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5000 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5002 	struct x86_exception e;
5003 	unsigned long field;
5004 	u64 value;
5005 	gva_t gva = 0;
5006 	short offset;
5007 	int len, r;
5008 
5009 	if (!nested_vmx_check_permission(vcpu))
5010 		return 1;
5011 
5012 	/*
5013 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5014 	 * any VMREAD sets the ALU flags for VMfailInvalid.
5015 	 */
5016 	if (vmx->nested.current_vmptr == -1ull ||
5017 	    (is_guest_mode(vcpu) &&
5018 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5019 		return nested_vmx_failInvalid(vcpu);
5020 
5021 	/* Decode instruction info and find the field to read */
5022 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5023 
5024 	offset = vmcs_field_to_offset(field);
5025 	if (offset < 0)
5026 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5027 
5028 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5029 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5030 
5031 	/* Read the field, zero-extended to a u64 value */
5032 	value = vmcs12_read_any(vmcs12, field, offset);
5033 
5034 	/*
5035 	 * Now copy part of this value to register or memory, as requested.
5036 	 * Note that the number of bits actually copied is 32 or 64 depending
5037 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5038 	 */
5039 	if (instr_info & BIT(10)) {
5040 		kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
5041 	} else {
5042 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5043 		if (get_vmx_mem_address(vcpu, exit_qualification,
5044 					instr_info, true, len, &gva))
5045 			return 1;
5046 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5047 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5048 		if (r != X86EMUL_CONTINUE)
5049 			return kvm_handle_memory_failure(vcpu, r, &e);
5050 	}
5051 
5052 	return nested_vmx_succeed(vcpu);
5053 }
5054 
is_shadow_field_rw(unsigned long field)5055 static bool is_shadow_field_rw(unsigned long field)
5056 {
5057 	switch (field) {
5058 #define SHADOW_FIELD_RW(x, y) case x:
5059 #include "vmcs_shadow_fields.h"
5060 		return true;
5061 	default:
5062 		break;
5063 	}
5064 	return false;
5065 }
5066 
is_shadow_field_ro(unsigned long field)5067 static bool is_shadow_field_ro(unsigned long field)
5068 {
5069 	switch (field) {
5070 #define SHADOW_FIELD_RO(x, y) case x:
5071 #include "vmcs_shadow_fields.h"
5072 		return true;
5073 	default:
5074 		break;
5075 	}
5076 	return false;
5077 }
5078 
handle_vmwrite(struct kvm_vcpu * vcpu)5079 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5080 {
5081 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5082 						    : get_vmcs12(vcpu);
5083 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5084 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5085 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5086 	struct x86_exception e;
5087 	unsigned long field;
5088 	short offset;
5089 	gva_t gva;
5090 	int len, r;
5091 
5092 	/*
5093 	 * The value to write might be 32 or 64 bits, depending on L1's long
5094 	 * mode, and eventually we need to write that into a field of several
5095 	 * possible lengths. The code below first zero-extends the value to 64
5096 	 * bit (value), and then copies only the appropriate number of
5097 	 * bits into the vmcs12 field.
5098 	 */
5099 	u64 value = 0;
5100 
5101 	if (!nested_vmx_check_permission(vcpu))
5102 		return 1;
5103 
5104 	/*
5105 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5106 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5107 	 */
5108 	if (vmx->nested.current_vmptr == -1ull ||
5109 	    (is_guest_mode(vcpu) &&
5110 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5111 		return nested_vmx_failInvalid(vcpu);
5112 
5113 	if (instr_info & BIT(10))
5114 		value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
5115 	else {
5116 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5117 		if (get_vmx_mem_address(vcpu, exit_qualification,
5118 					instr_info, false, len, &gva))
5119 			return 1;
5120 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5121 		if (r != X86EMUL_CONTINUE)
5122 			return kvm_handle_memory_failure(vcpu, r, &e);
5123 	}
5124 
5125 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
5126 
5127 	offset = vmcs_field_to_offset(field);
5128 	if (offset < 0)
5129 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5130 
5131 	/*
5132 	 * If the vCPU supports "VMWRITE to any supported field in the
5133 	 * VMCS," then the "read-only" fields are actually read/write.
5134 	 */
5135 	if (vmcs_field_readonly(field) &&
5136 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5137 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5138 
5139 	/*
5140 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5141 	 * vmcs12, else we may crush a field or consume a stale value.
5142 	 */
5143 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5144 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5145 
5146 	/*
5147 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5148 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5149 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5150 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5151 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5152 	 * the stripped down value, L2 sees the full value as stored by KVM).
5153 	 */
5154 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5155 		value &= 0x1f0ff;
5156 
5157 	vmcs12_write_any(vmcs12, field, offset, value);
5158 
5159 	/*
5160 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5161 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5162 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5163 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5164 	 */
5165 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5166 		/*
5167 		 * L1 can read these fields without exiting, ensure the
5168 		 * shadow VMCS is up-to-date.
5169 		 */
5170 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5171 			preempt_disable();
5172 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5173 
5174 			__vmcs_writel(field, value);
5175 
5176 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5177 			vmcs_load(vmx->loaded_vmcs->vmcs);
5178 			preempt_enable();
5179 		}
5180 		vmx->nested.dirty_vmcs12 = true;
5181 	}
5182 
5183 	return nested_vmx_succeed(vcpu);
5184 }
5185 
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5186 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5187 {
5188 	vmx->nested.current_vmptr = vmptr;
5189 	if (enable_shadow_vmcs) {
5190 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5191 		vmcs_write64(VMCS_LINK_POINTER,
5192 			     __pa(vmx->vmcs01.shadow_vmcs));
5193 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5194 	}
5195 	vmx->nested.dirty_vmcs12 = true;
5196 }
5197 
5198 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5199 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5200 {
5201 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5202 	gpa_t vmptr;
5203 	int r;
5204 
5205 	if (!nested_vmx_check_permission(vcpu))
5206 		return 1;
5207 
5208 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5209 		return r;
5210 
5211 	if (!page_address_valid(vcpu, vmptr))
5212 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5213 
5214 	if (vmptr == vmx->nested.vmxon_ptr)
5215 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5216 
5217 	/* Forbid normal VMPTRLD if Enlightened version was used */
5218 	if (vmx->nested.hv_evmcs)
5219 		return 1;
5220 
5221 	if (vmx->nested.current_vmptr != vmptr) {
5222 		struct kvm_host_map map;
5223 		struct vmcs12 *new_vmcs12;
5224 
5225 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5226 			/*
5227 			 * Reads from an unbacked page return all 1s,
5228 			 * which means that the 32 bits located at the
5229 			 * given physical address won't match the required
5230 			 * VMCS12_REVISION identifier.
5231 			 */
5232 			return nested_vmx_fail(vcpu,
5233 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5234 		}
5235 
5236 		new_vmcs12 = map.hva;
5237 
5238 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5239 		    (new_vmcs12->hdr.shadow_vmcs &&
5240 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5241 			kvm_vcpu_unmap(vcpu, &map, false);
5242 			return nested_vmx_fail(vcpu,
5243 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5244 		}
5245 
5246 		nested_release_vmcs12(vcpu);
5247 
5248 		/*
5249 		 * Load VMCS12 from guest memory since it is not already
5250 		 * cached.
5251 		 */
5252 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5253 		kvm_vcpu_unmap(vcpu, &map, false);
5254 
5255 		set_current_vmptr(vmx, vmptr);
5256 	}
5257 
5258 	return nested_vmx_succeed(vcpu);
5259 }
5260 
5261 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5262 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5263 {
5264 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5265 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5266 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5267 	struct x86_exception e;
5268 	gva_t gva;
5269 	int r;
5270 
5271 	if (!nested_vmx_check_permission(vcpu))
5272 		return 1;
5273 
5274 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5275 		return 1;
5276 
5277 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5278 				true, sizeof(gpa_t), &gva))
5279 		return 1;
5280 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5281 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5282 					sizeof(gpa_t), &e);
5283 	if (r != X86EMUL_CONTINUE)
5284 		return kvm_handle_memory_failure(vcpu, r, &e);
5285 
5286 	return nested_vmx_succeed(vcpu);
5287 }
5288 
5289 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5290 
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)5291 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5292 {
5293 	return VALID_PAGE(root_hpa) &&
5294 		((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5295 }
5296 
5297 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5298 static int handle_invept(struct kvm_vcpu *vcpu)
5299 {
5300 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5301 	u32 vmx_instruction_info, types;
5302 	unsigned long type, roots_to_free;
5303 	struct kvm_mmu *mmu;
5304 	gva_t gva;
5305 	struct x86_exception e;
5306 	struct {
5307 		u64 eptp, gpa;
5308 	} operand;
5309 	int i, r;
5310 
5311 	if (!(vmx->nested.msrs.secondary_ctls_high &
5312 	      SECONDARY_EXEC_ENABLE_EPT) ||
5313 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5314 		kvm_queue_exception(vcpu, UD_VECTOR);
5315 		return 1;
5316 	}
5317 
5318 	if (!nested_vmx_check_permission(vcpu))
5319 		return 1;
5320 
5321 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5322 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5323 
5324 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5325 
5326 	if (type >= 32 || !(types & (1 << type)))
5327 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5328 
5329 	/* According to the Intel VMX instruction reference, the memory
5330 	 * operand is read even if it isn't needed (e.g., for type==global)
5331 	 */
5332 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5333 			vmx_instruction_info, false, sizeof(operand), &gva))
5334 		return 1;
5335 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5336 	if (r != X86EMUL_CONTINUE)
5337 		return kvm_handle_memory_failure(vcpu, r, &e);
5338 
5339 	/*
5340 	 * Nested EPT roots are always held through guest_mmu,
5341 	 * not root_mmu.
5342 	 */
5343 	mmu = &vcpu->arch.guest_mmu;
5344 
5345 	switch (type) {
5346 	case VMX_EPT_EXTENT_CONTEXT:
5347 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5348 			return nested_vmx_fail(vcpu,
5349 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5350 
5351 		roots_to_free = 0;
5352 		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5353 					    operand.eptp))
5354 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5355 
5356 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5357 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5358 						    mmu->prev_roots[i].pgd,
5359 						    operand.eptp))
5360 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5361 		}
5362 		break;
5363 	case VMX_EPT_EXTENT_GLOBAL:
5364 		roots_to_free = KVM_MMU_ROOTS_ALL;
5365 		break;
5366 	default:
5367 		BUG();
5368 		break;
5369 	}
5370 
5371 	if (roots_to_free)
5372 		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5373 
5374 	return nested_vmx_succeed(vcpu);
5375 }
5376 
handle_invvpid(struct kvm_vcpu * vcpu)5377 static int handle_invvpid(struct kvm_vcpu *vcpu)
5378 {
5379 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5380 	u32 vmx_instruction_info;
5381 	unsigned long type, types;
5382 	gva_t gva;
5383 	struct x86_exception e;
5384 	struct {
5385 		u64 vpid;
5386 		u64 gla;
5387 	} operand;
5388 	u16 vpid02;
5389 	int r;
5390 
5391 	if (!(vmx->nested.msrs.secondary_ctls_high &
5392 	      SECONDARY_EXEC_ENABLE_VPID) ||
5393 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5394 		kvm_queue_exception(vcpu, UD_VECTOR);
5395 		return 1;
5396 	}
5397 
5398 	if (!nested_vmx_check_permission(vcpu))
5399 		return 1;
5400 
5401 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5402 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5403 
5404 	types = (vmx->nested.msrs.vpid_caps &
5405 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5406 
5407 	if (type >= 32 || !(types & (1 << type)))
5408 		return nested_vmx_fail(vcpu,
5409 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5410 
5411 	/* according to the intel vmx instruction reference, the memory
5412 	 * operand is read even if it isn't needed (e.g., for type==global)
5413 	 */
5414 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5415 			vmx_instruction_info, false, sizeof(operand), &gva))
5416 		return 1;
5417 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5418 	if (r != X86EMUL_CONTINUE)
5419 		return kvm_handle_memory_failure(vcpu, r, &e);
5420 
5421 	if (operand.vpid >> 16)
5422 		return nested_vmx_fail(vcpu,
5423 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5424 
5425 	vpid02 = nested_get_vpid02(vcpu);
5426 	switch (type) {
5427 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5428 		if (!operand.vpid ||
5429 		    is_noncanonical_address(operand.gla, vcpu))
5430 			return nested_vmx_fail(vcpu,
5431 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5432 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5433 		break;
5434 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5435 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5436 		if (!operand.vpid)
5437 			return nested_vmx_fail(vcpu,
5438 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5439 		vpid_sync_context(vpid02);
5440 		break;
5441 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5442 		vpid_sync_context(vpid02);
5443 		break;
5444 	default:
5445 		WARN_ON_ONCE(1);
5446 		return kvm_skip_emulated_instruction(vcpu);
5447 	}
5448 
5449 	/*
5450 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5451 	 * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5452 	 * VPIDs are not tracked in the MMU role.
5453 	 *
5454 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5455 	 * an MMU when EPT is disabled.
5456 	 *
5457 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5458 	 */
5459 	if (!enable_ept)
5460 		kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5461 				   KVM_MMU_ROOTS_ALL);
5462 
5463 	return nested_vmx_succeed(vcpu);
5464 }
5465 
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5466 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5467 				     struct vmcs12 *vmcs12)
5468 {
5469 	u32 index = kvm_rcx_read(vcpu);
5470 	u64 new_eptp;
5471 
5472 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
5473 	    !nested_cpu_has_ept(vmcs12))
5474 		return 1;
5475 
5476 	if (index >= VMFUNC_EPTP_ENTRIES)
5477 		return 1;
5478 
5479 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5480 				     &new_eptp, index * 8, 8))
5481 		return 1;
5482 
5483 	/*
5484 	 * If the (L2) guest does a vmfunc to the currently
5485 	 * active ept pointer, we don't have to do anything else
5486 	 */
5487 	if (vmcs12->ept_pointer != new_eptp) {
5488 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5489 			return 1;
5490 
5491 		vmcs12->ept_pointer = new_eptp;
5492 
5493 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
5494 	}
5495 
5496 	return 0;
5497 }
5498 
handle_vmfunc(struct kvm_vcpu * vcpu)5499 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5500 {
5501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5502 	struct vmcs12 *vmcs12;
5503 	u32 function = kvm_rax_read(vcpu);
5504 
5505 	/*
5506 	 * VMFUNC is only supported for nested guests, but we always enable the
5507 	 * secondary control for simplicity; for non-nested mode, fake that we
5508 	 * didn't by injecting #UD.
5509 	 */
5510 	if (!is_guest_mode(vcpu)) {
5511 		kvm_queue_exception(vcpu, UD_VECTOR);
5512 		return 1;
5513 	}
5514 
5515 	vmcs12 = get_vmcs12(vcpu);
5516 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5517 		goto fail;
5518 
5519 	switch (function) {
5520 	case 0:
5521 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5522 			goto fail;
5523 		break;
5524 	default:
5525 		goto fail;
5526 	}
5527 	return kvm_skip_emulated_instruction(vcpu);
5528 
5529 fail:
5530 	/*
5531 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5532 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5533 	 * EXIT_REASON_VMFUNC as the exit reason.
5534 	 */
5535 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5536 			  vmx_get_intr_info(vcpu),
5537 			  vmx_get_exit_qual(vcpu));
5538 	return 1;
5539 }
5540 
5541 /*
5542  * Return true if an IO instruction with the specified port and size should cause
5543  * a VM-exit into L1.
5544  */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5545 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5546 				 int size)
5547 {
5548 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5549 	gpa_t bitmap, last_bitmap;
5550 	u8 b;
5551 
5552 	last_bitmap = (gpa_t)-1;
5553 	b = -1;
5554 
5555 	while (size > 0) {
5556 		if (port < 0x8000)
5557 			bitmap = vmcs12->io_bitmap_a;
5558 		else if (port < 0x10000)
5559 			bitmap = vmcs12->io_bitmap_b;
5560 		else
5561 			return true;
5562 		bitmap += (port & 0x7fff) / 8;
5563 
5564 		if (last_bitmap != bitmap)
5565 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5566 				return true;
5567 		if (b & (1 << (port & 7)))
5568 			return true;
5569 
5570 		port++;
5571 		size--;
5572 		last_bitmap = bitmap;
5573 	}
5574 
5575 	return false;
5576 }
5577 
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5578 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5579 				       struct vmcs12 *vmcs12)
5580 {
5581 	unsigned long exit_qualification;
5582 	unsigned short port;
5583 	int size;
5584 
5585 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5586 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5587 
5588 	exit_qualification = vmx_get_exit_qual(vcpu);
5589 
5590 	port = exit_qualification >> 16;
5591 	size = (exit_qualification & 7) + 1;
5592 
5593 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5594 }
5595 
5596 /*
5597  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5598  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5599  * disinterest in the current event (read or write a specific MSR) by using an
5600  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5601  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5602 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5603 					struct vmcs12 *vmcs12,
5604 					union vmx_exit_reason exit_reason)
5605 {
5606 	u32 msr_index = kvm_rcx_read(vcpu);
5607 	gpa_t bitmap;
5608 
5609 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5610 		return true;
5611 
5612 	/*
5613 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5614 	 * for the four combinations of read/write and low/high MSR numbers.
5615 	 * First we need to figure out which of the four to use:
5616 	 */
5617 	bitmap = vmcs12->msr_bitmap;
5618 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5619 		bitmap += 2048;
5620 	if (msr_index >= 0xc0000000) {
5621 		msr_index -= 0xc0000000;
5622 		bitmap += 1024;
5623 	}
5624 
5625 	/* Then read the msr_index'th bit from this bitmap: */
5626 	if (msr_index < 1024*8) {
5627 		unsigned char b;
5628 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5629 			return true;
5630 		return 1 & (b >> (msr_index & 7));
5631 	} else
5632 		return true; /* let L1 handle the wrong parameter */
5633 }
5634 
5635 /*
5636  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5637  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5638  * intercept (via guest_host_mask etc.) the current event.
5639  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5640 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5641 	struct vmcs12 *vmcs12)
5642 {
5643 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5644 	int cr = exit_qualification & 15;
5645 	int reg;
5646 	unsigned long val;
5647 
5648 	switch ((exit_qualification >> 4) & 3) {
5649 	case 0: /* mov to cr */
5650 		reg = (exit_qualification >> 8) & 15;
5651 		val = kvm_register_readl(vcpu, reg);
5652 		switch (cr) {
5653 		case 0:
5654 			if (vmcs12->cr0_guest_host_mask &
5655 			    (val ^ vmcs12->cr0_read_shadow))
5656 				return true;
5657 			break;
5658 		case 3:
5659 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5660 				return true;
5661 			break;
5662 		case 4:
5663 			if (vmcs12->cr4_guest_host_mask &
5664 			    (vmcs12->cr4_read_shadow ^ val))
5665 				return true;
5666 			break;
5667 		case 8:
5668 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5669 				return true;
5670 			break;
5671 		}
5672 		break;
5673 	case 2: /* clts */
5674 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5675 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5676 			return true;
5677 		break;
5678 	case 1: /* mov from cr */
5679 		switch (cr) {
5680 		case 3:
5681 			if (vmcs12->cpu_based_vm_exec_control &
5682 			    CPU_BASED_CR3_STORE_EXITING)
5683 				return true;
5684 			break;
5685 		case 8:
5686 			if (vmcs12->cpu_based_vm_exec_control &
5687 			    CPU_BASED_CR8_STORE_EXITING)
5688 				return true;
5689 			break;
5690 		}
5691 		break;
5692 	case 3: /* lmsw */
5693 		/*
5694 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5695 		 * cr0. Other attempted changes are ignored, with no exit.
5696 		 */
5697 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5698 		if (vmcs12->cr0_guest_host_mask & 0xe &
5699 		    (val ^ vmcs12->cr0_read_shadow))
5700 			return true;
5701 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5702 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5703 		    (val & 0x1))
5704 			return true;
5705 		break;
5706 	}
5707 	return false;
5708 }
5709 
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5710 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5711 	struct vmcs12 *vmcs12, gpa_t bitmap)
5712 {
5713 	u32 vmx_instruction_info;
5714 	unsigned long field;
5715 	u8 b;
5716 
5717 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5718 		return true;
5719 
5720 	/* Decode instruction info and find the field to access */
5721 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5722 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5723 
5724 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5725 	if (field >> 15)
5726 		return true;
5727 
5728 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5729 		return true;
5730 
5731 	return 1 & (b >> (field & 7));
5732 }
5733 
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)5734 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5735 {
5736 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5737 
5738 	if (nested_cpu_has_mtf(vmcs12))
5739 		return true;
5740 
5741 	/*
5742 	 * An MTF VM-exit may be injected into the guest by setting the
5743 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5744 	 * is the case regardless of the 'monitor trap flag' VM-execution
5745 	 * control.
5746 	 */
5747 	return entry_intr_info == (INTR_INFO_VALID_MASK
5748 				   | INTR_TYPE_OTHER_EVENT);
5749 }
5750 
5751 /*
5752  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5753  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5754  */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5755 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5756 				     union vmx_exit_reason exit_reason)
5757 {
5758 	u32 intr_info;
5759 
5760 	switch ((u16)exit_reason.basic) {
5761 	case EXIT_REASON_EXCEPTION_NMI:
5762 		intr_info = vmx_get_intr_info(vcpu);
5763 		if (is_nmi(intr_info))
5764 			return true;
5765 		else if (is_page_fault(intr_info))
5766 			return vcpu->arch.apf.host_apf_flags ||
5767 			       vmx_need_pf_intercept(vcpu);
5768 		else if (is_debug(intr_info) &&
5769 			 vcpu->guest_debug &
5770 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5771 			return true;
5772 		else if (is_breakpoint(intr_info) &&
5773 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5774 			return true;
5775 		else if (is_alignment_check(intr_info) &&
5776 			 !vmx_guest_inject_ac(vcpu))
5777 			return true;
5778 		return false;
5779 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5780 		return true;
5781 	case EXIT_REASON_MCE_DURING_VMENTRY:
5782 		return true;
5783 	case EXIT_REASON_EPT_VIOLATION:
5784 		/*
5785 		 * L0 always deals with the EPT violation. If nested EPT is
5786 		 * used, and the nested mmu code discovers that the address is
5787 		 * missing in the guest EPT table (EPT12), the EPT violation
5788 		 * will be injected with nested_ept_inject_page_fault()
5789 		 */
5790 		return true;
5791 	case EXIT_REASON_EPT_MISCONFIG:
5792 		/*
5793 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5794 		 * table (shadow on EPT) or a merged EPT table that L0 built
5795 		 * (EPT on EPT). So any problems with the structure of the
5796 		 * table is L0's fault.
5797 		 */
5798 		return true;
5799 	case EXIT_REASON_PREEMPTION_TIMER:
5800 		return true;
5801 	case EXIT_REASON_PML_FULL:
5802 		/* We emulate PML support to L1. */
5803 		return true;
5804 	case EXIT_REASON_VMFUNC:
5805 		/* VM functions are emulated through L2->L0 vmexits. */
5806 		return true;
5807 	case EXIT_REASON_ENCLS:
5808 		/* SGX is never exposed to L1 */
5809 		return true;
5810 	default:
5811 		break;
5812 	}
5813 	return false;
5814 }
5815 
5816 /*
5817  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5818  * is_guest_mode (L2).
5819  */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5820 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5821 				     union vmx_exit_reason exit_reason)
5822 {
5823 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5824 	u32 intr_info;
5825 
5826 	switch ((u16)exit_reason.basic) {
5827 	case EXIT_REASON_EXCEPTION_NMI:
5828 		intr_info = vmx_get_intr_info(vcpu);
5829 		if (is_nmi(intr_info))
5830 			return true;
5831 		else if (is_page_fault(intr_info))
5832 			return true;
5833 		return vmcs12->exception_bitmap &
5834 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5835 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5836 		return nested_exit_on_intr(vcpu);
5837 	case EXIT_REASON_TRIPLE_FAULT:
5838 		return true;
5839 	case EXIT_REASON_INTERRUPT_WINDOW:
5840 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5841 	case EXIT_REASON_NMI_WINDOW:
5842 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5843 	case EXIT_REASON_TASK_SWITCH:
5844 		return true;
5845 	case EXIT_REASON_CPUID:
5846 		return true;
5847 	case EXIT_REASON_HLT:
5848 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5849 	case EXIT_REASON_INVD:
5850 		return true;
5851 	case EXIT_REASON_INVLPG:
5852 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5853 	case EXIT_REASON_RDPMC:
5854 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5855 	case EXIT_REASON_RDRAND:
5856 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5857 	case EXIT_REASON_RDSEED:
5858 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5859 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5860 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5861 	case EXIT_REASON_VMREAD:
5862 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5863 			vmcs12->vmread_bitmap);
5864 	case EXIT_REASON_VMWRITE:
5865 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5866 			vmcs12->vmwrite_bitmap);
5867 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5868 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5869 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5870 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5871 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5872 		/*
5873 		 * VMX instructions trap unconditionally. This allows L1 to
5874 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5875 		 */
5876 		return true;
5877 	case EXIT_REASON_CR_ACCESS:
5878 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5879 	case EXIT_REASON_DR_ACCESS:
5880 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5881 	case EXIT_REASON_IO_INSTRUCTION:
5882 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5883 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5884 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5885 	case EXIT_REASON_MSR_READ:
5886 	case EXIT_REASON_MSR_WRITE:
5887 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5888 	case EXIT_REASON_INVALID_STATE:
5889 		return true;
5890 	case EXIT_REASON_MWAIT_INSTRUCTION:
5891 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5892 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5893 		return nested_vmx_exit_handled_mtf(vmcs12);
5894 	case EXIT_REASON_MONITOR_INSTRUCTION:
5895 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5896 	case EXIT_REASON_PAUSE_INSTRUCTION:
5897 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5898 			nested_cpu_has2(vmcs12,
5899 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5900 	case EXIT_REASON_MCE_DURING_VMENTRY:
5901 		return true;
5902 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5903 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5904 	case EXIT_REASON_APIC_ACCESS:
5905 	case EXIT_REASON_APIC_WRITE:
5906 	case EXIT_REASON_EOI_INDUCED:
5907 		/*
5908 		 * The controls for "virtualize APIC accesses," "APIC-
5909 		 * register virtualization," and "virtual-interrupt
5910 		 * delivery" only come from vmcs12.
5911 		 */
5912 		return true;
5913 	case EXIT_REASON_INVPCID:
5914 		return
5915 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5916 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5917 	case EXIT_REASON_WBINVD:
5918 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5919 	case EXIT_REASON_XSETBV:
5920 		return true;
5921 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5922 		/*
5923 		 * This should never happen, since it is not possible to
5924 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5925 		 * If if it were, XSS would have to be checked against
5926 		 * the XSS exit bitmap in vmcs12.
5927 		 */
5928 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5929 	case EXIT_REASON_UMWAIT:
5930 	case EXIT_REASON_TPAUSE:
5931 		return nested_cpu_has2(vmcs12,
5932 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5933 	default:
5934 		return true;
5935 	}
5936 }
5937 
5938 /*
5939  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5940  * reflected into L1.
5941  */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)5942 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5943 {
5944 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5945 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5946 	unsigned long exit_qual;
5947 	u32 exit_intr_info;
5948 
5949 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5950 
5951 	/*
5952 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5953 	 * has already loaded L2's state.
5954 	 */
5955 	if (unlikely(vmx->fail)) {
5956 		trace_kvm_nested_vmenter_failed(
5957 			"hardware VM-instruction error: ",
5958 			vmcs_read32(VM_INSTRUCTION_ERROR));
5959 		exit_intr_info = 0;
5960 		exit_qual = 0;
5961 		goto reflect_vmexit;
5962 	}
5963 
5964 	trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
5965 
5966 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
5967 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
5968 		return false;
5969 
5970 	/* If L1 doesn't want the exit, handle it in L0. */
5971 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
5972 		return false;
5973 
5974 	/*
5975 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
5976 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
5977 	 * need to be synthesized by querying the in-kernel LAPIC, but external
5978 	 * interrupts are never reflected to L1 so it's a non-issue.
5979 	 */
5980 	exit_intr_info = vmx_get_intr_info(vcpu);
5981 	if (is_exception_with_error_code(exit_intr_info)) {
5982 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5983 
5984 		vmcs12->vm_exit_intr_error_code =
5985 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5986 	}
5987 	exit_qual = vmx_get_exit_qual(vcpu);
5988 
5989 reflect_vmexit:
5990 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
5991 	return true;
5992 }
5993 
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)5994 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5995 				struct kvm_nested_state __user *user_kvm_nested_state,
5996 				u32 user_data_size)
5997 {
5998 	struct vcpu_vmx *vmx;
5999 	struct vmcs12 *vmcs12;
6000 	struct kvm_nested_state kvm_state = {
6001 		.flags = 0,
6002 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6003 		.size = sizeof(kvm_state),
6004 		.hdr.vmx.flags = 0,
6005 		.hdr.vmx.vmxon_pa = -1ull,
6006 		.hdr.vmx.vmcs12_pa = -1ull,
6007 		.hdr.vmx.preemption_timer_deadline = 0,
6008 	};
6009 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6010 		&user_kvm_nested_state->data.vmx[0];
6011 
6012 	if (!vcpu)
6013 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6014 
6015 	vmx = to_vmx(vcpu);
6016 	vmcs12 = get_vmcs12(vcpu);
6017 
6018 	if (nested_vmx_allowed(vcpu) &&
6019 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6020 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6021 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6022 
6023 		if (vmx_has_valid_vmcs12(vcpu)) {
6024 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6025 
6026 			if (vmx->nested.hv_evmcs)
6027 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6028 
6029 			if (is_guest_mode(vcpu) &&
6030 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6031 			    vmcs12->vmcs_link_pointer != -1ull)
6032 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6033 		}
6034 
6035 		if (vmx->nested.smm.vmxon)
6036 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6037 
6038 		if (vmx->nested.smm.guest_mode)
6039 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6040 
6041 		if (is_guest_mode(vcpu)) {
6042 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6043 
6044 			if (vmx->nested.nested_run_pending)
6045 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6046 
6047 			if (vmx->nested.mtf_pending)
6048 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6049 
6050 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6051 			    vmx->nested.has_preemption_timer_deadline) {
6052 				kvm_state.hdr.vmx.flags |=
6053 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6054 				kvm_state.hdr.vmx.preemption_timer_deadline =
6055 					vmx->nested.preemption_timer_deadline;
6056 			}
6057 		}
6058 	}
6059 
6060 	if (user_data_size < kvm_state.size)
6061 		goto out;
6062 
6063 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6064 		return -EFAULT;
6065 
6066 	if (!vmx_has_valid_vmcs12(vcpu))
6067 		goto out;
6068 
6069 	/*
6070 	 * When running L2, the authoritative vmcs12 state is in the
6071 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6072 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6073 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6074 	 * vmcs12 state is in the vmcs12 already.
6075 	 */
6076 	if (is_guest_mode(vcpu)) {
6077 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6078 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6079 	} else  {
6080 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6081 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6082 			if (vmx->nested.hv_evmcs)
6083 				copy_enlightened_to_vmcs12(vmx);
6084 			else if (enable_shadow_vmcs)
6085 				copy_shadow_to_vmcs12(vmx);
6086 		}
6087 	}
6088 
6089 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6090 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6091 
6092 	/*
6093 	 * Copy over the full allocated size of vmcs12 rather than just the size
6094 	 * of the struct.
6095 	 */
6096 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6097 		return -EFAULT;
6098 
6099 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6100 	    vmcs12->vmcs_link_pointer != -1ull) {
6101 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6102 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6103 			return -EFAULT;
6104 	}
6105 out:
6106 	return kvm_state.size;
6107 }
6108 
6109 /*
6110  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6111  */
vmx_leave_nested(struct kvm_vcpu * vcpu)6112 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6113 {
6114 	if (is_guest_mode(vcpu)) {
6115 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6116 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6117 	}
6118 	free_nested(vcpu);
6119 }
6120 
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6121 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6122 				struct kvm_nested_state __user *user_kvm_nested_state,
6123 				struct kvm_nested_state *kvm_state)
6124 {
6125 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6126 	struct vmcs12 *vmcs12;
6127 	enum vm_entry_failure_code ignored;
6128 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6129 		&user_kvm_nested_state->data.vmx[0];
6130 	int ret;
6131 
6132 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6133 		return -EINVAL;
6134 
6135 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6136 		if (kvm_state->hdr.vmx.smm.flags)
6137 			return -EINVAL;
6138 
6139 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6140 			return -EINVAL;
6141 
6142 		/*
6143 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6144 		 * enable eVMCS capability on vCPU. However, since then
6145 		 * code was changed such that flag signals vmcs12 should
6146 		 * be copied into eVMCS in guest memory.
6147 		 *
6148 		 * To preserve backwards compatability, allow user
6149 		 * to set this flag even when there is no VMXON region.
6150 		 */
6151 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6152 			return -EINVAL;
6153 	} else {
6154 		if (!nested_vmx_allowed(vcpu))
6155 			return -EINVAL;
6156 
6157 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6158 			return -EINVAL;
6159 	}
6160 
6161 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6162 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6163 		return -EINVAL;
6164 
6165 	if (kvm_state->hdr.vmx.smm.flags &
6166 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6167 		return -EINVAL;
6168 
6169 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6170 		return -EINVAL;
6171 
6172 	/*
6173 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6174 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6175 	 * must be zero.
6176 	 */
6177 	if (is_smm(vcpu) ?
6178 		(kvm_state->flags &
6179 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6180 		: kvm_state->hdr.vmx.smm.flags)
6181 		return -EINVAL;
6182 
6183 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6184 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6185 		return -EINVAL;
6186 
6187 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6188 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6189 			return -EINVAL;
6190 
6191 	vmx_leave_nested(vcpu);
6192 
6193 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6194 		return 0;
6195 
6196 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6197 	ret = enter_vmx_operation(vcpu);
6198 	if (ret)
6199 		return ret;
6200 
6201 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6202 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6203 		/* See vmx_has_valid_vmcs12.  */
6204 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6205 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6206 		    (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6207 			return -EINVAL;
6208 		else
6209 			return 0;
6210 	}
6211 
6212 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6213 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6214 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6215 			return -EINVAL;
6216 
6217 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6218 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6219 		/*
6220 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6221 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6222 		 * restored yet. EVMCS will be mapped from
6223 		 * nested_get_vmcs12_pages().
6224 		 */
6225 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6226 	} else {
6227 		return -EINVAL;
6228 	}
6229 
6230 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6231 		vmx->nested.smm.vmxon = true;
6232 		vmx->nested.vmxon = false;
6233 
6234 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6235 			vmx->nested.smm.guest_mode = true;
6236 	}
6237 
6238 	vmcs12 = get_vmcs12(vcpu);
6239 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6240 		return -EFAULT;
6241 
6242 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6243 		return -EINVAL;
6244 
6245 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6246 		return 0;
6247 
6248 	vmx->nested.nested_run_pending =
6249 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6250 
6251 	vmx->nested.mtf_pending =
6252 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6253 
6254 	ret = -EINVAL;
6255 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6256 	    vmcs12->vmcs_link_pointer != -1ull) {
6257 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6258 
6259 		if (kvm_state->size <
6260 		    sizeof(*kvm_state) +
6261 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6262 			goto error_guest_mode;
6263 
6264 		if (copy_from_user(shadow_vmcs12,
6265 				   user_vmx_nested_state->shadow_vmcs12,
6266 				   sizeof(*shadow_vmcs12))) {
6267 			ret = -EFAULT;
6268 			goto error_guest_mode;
6269 		}
6270 
6271 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6272 		    !shadow_vmcs12->hdr.shadow_vmcs)
6273 			goto error_guest_mode;
6274 	}
6275 
6276 	vmx->nested.has_preemption_timer_deadline = false;
6277 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6278 		vmx->nested.has_preemption_timer_deadline = true;
6279 		vmx->nested.preemption_timer_deadline =
6280 			kvm_state->hdr.vmx.preemption_timer_deadline;
6281 	}
6282 
6283 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6284 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6285 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6286 		goto error_guest_mode;
6287 
6288 	vmx->nested.dirty_vmcs12 = true;
6289 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6290 	if (ret)
6291 		goto error_guest_mode;
6292 
6293 	return 0;
6294 
6295 error_guest_mode:
6296 	vmx->nested.nested_run_pending = 0;
6297 	return ret;
6298 }
6299 
nested_vmx_set_vmcs_shadowing_bitmap(void)6300 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6301 {
6302 	if (enable_shadow_vmcs) {
6303 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6304 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6305 	}
6306 }
6307 
6308 /*
6309  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6310  * returned for the various VMX controls MSRs when nested VMX is enabled.
6311  * The same values should also be used to verify that vmcs12 control fields are
6312  * valid during nested entry from L1 to L2.
6313  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6314  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6315  * bit in the high half is on if the corresponding bit in the control field
6316  * may be on. See also vmx_control_verify().
6317  */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)6318 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6319 {
6320 	/*
6321 	 * Note that as a general rule, the high half of the MSRs (bits in
6322 	 * the control fields which may be 1) should be initialized by the
6323 	 * intersection of the underlying hardware's MSR (i.e., features which
6324 	 * can be supported) and the list of features we want to expose -
6325 	 * because they are known to be properly supported in our code.
6326 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6327 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6328 	 * reason is that if one of these bits is necessary, it will appear
6329 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6330 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6331 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6332 	 * These rules have exceptions below.
6333 	 */
6334 
6335 	/* pin-based controls */
6336 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6337 		msrs->pinbased_ctls_low,
6338 		msrs->pinbased_ctls_high);
6339 	msrs->pinbased_ctls_low |=
6340 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6341 	msrs->pinbased_ctls_high &=
6342 		PIN_BASED_EXT_INTR_MASK |
6343 		PIN_BASED_NMI_EXITING |
6344 		PIN_BASED_VIRTUAL_NMIS |
6345 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6346 	msrs->pinbased_ctls_high |=
6347 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6348 		PIN_BASED_VMX_PREEMPTION_TIMER;
6349 
6350 	/* exit controls */
6351 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6352 		msrs->exit_ctls_low,
6353 		msrs->exit_ctls_high);
6354 	msrs->exit_ctls_low =
6355 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6356 
6357 	msrs->exit_ctls_high &=
6358 #ifdef CONFIG_X86_64
6359 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6360 #endif
6361 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6362 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6363 	msrs->exit_ctls_high |=
6364 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6365 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6366 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6367 
6368 	/* We support free control of debug control saving. */
6369 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6370 
6371 	/* entry controls */
6372 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6373 		msrs->entry_ctls_low,
6374 		msrs->entry_ctls_high);
6375 	msrs->entry_ctls_low =
6376 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6377 	msrs->entry_ctls_high &=
6378 #ifdef CONFIG_X86_64
6379 		VM_ENTRY_IA32E_MODE |
6380 #endif
6381 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6382 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6383 	msrs->entry_ctls_high |=
6384 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6385 
6386 	/* We support free control of debug control loading. */
6387 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6388 
6389 	/* cpu-based controls */
6390 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6391 		msrs->procbased_ctls_low,
6392 		msrs->procbased_ctls_high);
6393 	msrs->procbased_ctls_low =
6394 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6395 	msrs->procbased_ctls_high &=
6396 		CPU_BASED_INTR_WINDOW_EXITING |
6397 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6398 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6399 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6400 		CPU_BASED_CR3_STORE_EXITING |
6401 #ifdef CONFIG_X86_64
6402 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6403 #endif
6404 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6405 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6406 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6407 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6408 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6409 	/*
6410 	 * We can allow some features even when not supported by the
6411 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6412 	 * can use it to avoid exits to L1 - even when L0 runs L2
6413 	 * without MSR bitmaps.
6414 	 */
6415 	msrs->procbased_ctls_high |=
6416 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6417 		CPU_BASED_USE_MSR_BITMAPS;
6418 
6419 	/* We support free control of CR3 access interception. */
6420 	msrs->procbased_ctls_low &=
6421 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6422 
6423 	/*
6424 	 * secondary cpu-based controls.  Do not include those that
6425 	 * depend on CPUID bits, they are added later by
6426 	 * vmx_vcpu_after_set_cpuid.
6427 	 */
6428 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6429 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6430 		      msrs->secondary_ctls_low,
6431 		      msrs->secondary_ctls_high);
6432 
6433 	msrs->secondary_ctls_low = 0;
6434 	msrs->secondary_ctls_high &=
6435 		SECONDARY_EXEC_DESC |
6436 		SECONDARY_EXEC_ENABLE_RDTSCP |
6437 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6438 		SECONDARY_EXEC_WBINVD_EXITING |
6439 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6440 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6441 		SECONDARY_EXEC_RDRAND_EXITING |
6442 		SECONDARY_EXEC_ENABLE_INVPCID |
6443 		SECONDARY_EXEC_RDSEED_EXITING |
6444 		SECONDARY_EXEC_XSAVES;
6445 
6446 	/*
6447 	 * We can emulate "VMCS shadowing," even if the hardware
6448 	 * doesn't support it.
6449 	 */
6450 	msrs->secondary_ctls_high |=
6451 		SECONDARY_EXEC_SHADOW_VMCS;
6452 
6453 	if (enable_ept) {
6454 		/* nested EPT: emulate EPT also to L1 */
6455 		msrs->secondary_ctls_high |=
6456 			SECONDARY_EXEC_ENABLE_EPT;
6457 		msrs->ept_caps =
6458 			VMX_EPT_PAGE_WALK_4_BIT |
6459 			VMX_EPT_PAGE_WALK_5_BIT |
6460 			VMX_EPTP_WB_BIT |
6461 			VMX_EPT_INVEPT_BIT |
6462 			VMX_EPT_EXECUTE_ONLY_BIT;
6463 
6464 		msrs->ept_caps &= ept_caps;
6465 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6466 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6467 			VMX_EPT_1GB_PAGE_BIT;
6468 		if (enable_ept_ad_bits) {
6469 			msrs->secondary_ctls_high |=
6470 				SECONDARY_EXEC_ENABLE_PML;
6471 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6472 		}
6473 	}
6474 
6475 	if (cpu_has_vmx_vmfunc()) {
6476 		msrs->secondary_ctls_high |=
6477 			SECONDARY_EXEC_ENABLE_VMFUNC;
6478 		/*
6479 		 * Advertise EPTP switching unconditionally
6480 		 * since we emulate it
6481 		 */
6482 		if (enable_ept)
6483 			msrs->vmfunc_controls =
6484 				VMX_VMFUNC_EPTP_SWITCHING;
6485 	}
6486 
6487 	/*
6488 	 * Old versions of KVM use the single-context version without
6489 	 * checking for support, so declare that it is supported even
6490 	 * though it is treated as global context.  The alternative is
6491 	 * not failing the single-context invvpid, and it is worse.
6492 	 */
6493 	if (enable_vpid) {
6494 		msrs->secondary_ctls_high |=
6495 			SECONDARY_EXEC_ENABLE_VPID;
6496 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6497 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6498 	}
6499 
6500 	if (enable_unrestricted_guest)
6501 		msrs->secondary_ctls_high |=
6502 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6503 
6504 	if (flexpriority_enabled)
6505 		msrs->secondary_ctls_high |=
6506 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6507 
6508 	/* miscellaneous data */
6509 	rdmsr(MSR_IA32_VMX_MISC,
6510 		msrs->misc_low,
6511 		msrs->misc_high);
6512 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6513 	msrs->misc_low |=
6514 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6515 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6516 		VMX_MISC_ACTIVITY_HLT;
6517 	msrs->misc_high = 0;
6518 
6519 	/*
6520 	 * This MSR reports some information about VMX support. We
6521 	 * should return information about the VMX we emulate for the
6522 	 * guest, and the VMCS structure we give it - not about the
6523 	 * VMX support of the underlying hardware.
6524 	 */
6525 	msrs->basic =
6526 		VMCS12_REVISION |
6527 		VMX_BASIC_TRUE_CTLS |
6528 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6529 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6530 
6531 	if (cpu_has_vmx_basic_inout())
6532 		msrs->basic |= VMX_BASIC_INOUT;
6533 
6534 	/*
6535 	 * These MSRs specify bits which the guest must keep fixed on
6536 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6537 	 * We picked the standard core2 setting.
6538 	 */
6539 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6540 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6541 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6542 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6543 
6544 	/* These MSRs specify bits which the guest must keep fixed off. */
6545 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6546 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6547 
6548 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
6549 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6550 }
6551 
nested_vmx_hardware_unsetup(void)6552 void nested_vmx_hardware_unsetup(void)
6553 {
6554 	int i;
6555 
6556 	if (enable_shadow_vmcs) {
6557 		for (i = 0; i < VMX_BITMAP_NR; i++)
6558 			free_page((unsigned long)vmx_bitmap[i]);
6559 	}
6560 }
6561 
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6562 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6563 {
6564 	int i;
6565 
6566 	if (!cpu_has_vmx_shadow_vmcs())
6567 		enable_shadow_vmcs = 0;
6568 	if (enable_shadow_vmcs) {
6569 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6570 			/*
6571 			 * The vmx_bitmap is not tied to a VM and so should
6572 			 * not be charged to a memcg.
6573 			 */
6574 			vmx_bitmap[i] = (unsigned long *)
6575 				__get_free_page(GFP_KERNEL);
6576 			if (!vmx_bitmap[i]) {
6577 				nested_vmx_hardware_unsetup();
6578 				return -ENOMEM;
6579 			}
6580 		}
6581 
6582 		init_vmcs_shadow_fields();
6583 	}
6584 
6585 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6586 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6587 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6588 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6589 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6590 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6591 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6592 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6593 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6594 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6595 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6596 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6597 
6598 	return 0;
6599 }
6600 
6601 struct kvm_x86_nested_ops vmx_nested_ops = {
6602 	.check_events = vmx_check_nested_events,
6603 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6604 	.get_state = vmx_get_nested_state,
6605 	.set_state = vmx_set_nested_state,
6606 	.get_nested_state_pages = vmx_get_nested_state_pages,
6607 	.write_log_dirty = nested_vmx_write_pml_buffer,
6608 	.enable_evmcs = nested_enable_evmcs,
6609 	.get_evmcs_version = nested_get_evmcs_version,
6610 };
6611