• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38 
39 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
40 
41 struct redist_region {
42 	void __iomem		*redist_base;
43 	phys_addr_t		phys_base;
44 	bool			single_redist;
45 };
46 
47 struct gic_chip_data {
48 	struct fwnode_handle	*fwnode;
49 	void __iomem		*dist_base;
50 	struct redist_region	*redist_regions;
51 	struct rdists		rdists;
52 	struct irq_domain	*domain;
53 	u64			redist_stride;
54 	u32			nr_redist_regions;
55 	u64			flags;
56 	bool			has_rss;
57 	unsigned int		ppi_nr;
58 	struct partition_desc	**ppi_descs;
59 };
60 
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63 
64 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67 
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanched by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90 
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99 
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102 
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)					\
116 	({								\
117 		u32 __priority = (priority);				\
118 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
119 			__priority = 0x80 | (__priority >> 1);		\
120 									\
121 		__priority;						\
122 	})
123 
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126 
127 static struct gic_kvm_info gic_v3_kvm_info;
128 static DEFINE_PER_CPU(bool, has_rss);
129 
130 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
134 
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE	0xf0
137 
138 enum gic_intid_range {
139 	SGI_RANGE,
140 	PPI_RANGE,
141 	SPI_RANGE,
142 	EPPI_RANGE,
143 	ESPI_RANGE,
144 	LPI_RANGE,
145 	__INVALID_RANGE__
146 };
147 
__get_intid_range(irq_hw_number_t hwirq)148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150 	switch (hwirq) {
151 	case 0 ... 15:
152 		return SGI_RANGE;
153 	case 16 ... 31:
154 		return PPI_RANGE;
155 	case 32 ... 1019:
156 		return SPI_RANGE;
157 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158 		return EPPI_RANGE;
159 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160 		return ESPI_RANGE;
161 	case 8192 ... GENMASK(23, 0):
162 		return LPI_RANGE;
163 	default:
164 		return __INVALID_RANGE__;
165 	}
166 }
167 
get_intid_range(struct irq_data * d)168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170 	return __get_intid_range(d->hwirq);
171 }
172 
gic_irq(struct irq_data * d)173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175 	return d->hwirq;
176 }
177 
gic_irq_in_rdist(struct irq_data * d)178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180 	switch (get_intid_range(d)) {
181 	case SGI_RANGE:
182 	case PPI_RANGE:
183 	case EPPI_RANGE:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
gic_dist_base(struct irq_data * d)190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192 	switch (get_intid_range(d)) {
193 	case SGI_RANGE:
194 	case PPI_RANGE:
195 	case EPPI_RANGE:
196 		/* SGI+PPI -> SGI_base for this CPU */
197 		return gic_data_rdist_sgi_base();
198 
199 	case SPI_RANGE:
200 	case ESPI_RANGE:
201 		/* SPI -> dist_base */
202 		return gic_data.dist_base;
203 
204 	default:
205 		return NULL;
206 	}
207 }
208 
gic_do_wait_for_rwp(void __iomem * base)209 static void gic_do_wait_for_rwp(void __iomem *base)
210 {
211 	u32 count = 1000000;	/* 1s! */
212 
213 	while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
214 		count--;
215 		if (!count) {
216 			pr_err_ratelimited("RWP timeout, gone fishing\n");
217 			return;
218 		}
219 		cpu_relax();
220 		udelay(1);
221 	}
222 }
223 
224 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)225 static void gic_dist_wait_for_rwp(void)
226 {
227 	gic_do_wait_for_rwp(gic_data.dist_base);
228 }
229 
230 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)231 static void gic_redist_wait_for_rwp(void)
232 {
233 	gic_do_wait_for_rwp(gic_data_rdist_rd_base());
234 }
235 
236 #ifdef CONFIG_ARM64
237 
gic_read_iar(void)238 static u64 __maybe_unused gic_read_iar(void)
239 {
240 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241 		return gic_read_iar_cavium_thunderx();
242 	else
243 		return gic_read_iar_common();
244 }
245 #endif
246 
gic_enable_redist(bool enable)247 static void gic_enable_redist(bool enable)
248 {
249 	void __iomem *rbase;
250 	u32 count = 1000000;	/* 1s! */
251 	u32 val;
252 
253 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254 		return;
255 
256 	rbase = gic_data_rdist_rd_base();
257 
258 	val = readl_relaxed(rbase + GICR_WAKER);
259 	if (enable)
260 		/* Wake up this CPU redistributor */
261 		val &= ~GICR_WAKER_ProcessorSleep;
262 	else
263 		val |= GICR_WAKER_ProcessorSleep;
264 	writel_relaxed(val, rbase + GICR_WAKER);
265 
266 	if (!enable) {		/* Check that GICR_WAKER is writeable */
267 		val = readl_relaxed(rbase + GICR_WAKER);
268 		if (!(val & GICR_WAKER_ProcessorSleep))
269 			return;	/* No PM support in this redistributor */
270 	}
271 
272 	while (--count) {
273 		val = readl_relaxed(rbase + GICR_WAKER);
274 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275 			break;
276 		cpu_relax();
277 		udelay(1);
278 	}
279 	if (!count)
280 		pr_err_ratelimited("redistributor failed to %s...\n",
281 				   enable ? "wakeup" : "sleep");
282 }
283 
284 /*
285  * Routines to disable, enable, EOI and route interrupts
286  */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289 	switch (get_intid_range(d)) {
290 	case SGI_RANGE:
291 	case PPI_RANGE:
292 	case SPI_RANGE:
293 		*index = d->hwirq;
294 		return offset;
295 	case EPPI_RANGE:
296 		/*
297 		 * Contrary to the ESPI range, the EPPI range is contiguous
298 		 * to the PPI range in the registers, so let's adjust the
299 		 * displacement accordingly. Consistency is overrated.
300 		 */
301 		*index = d->hwirq - EPPI_BASE_INTID + 32;
302 		return offset;
303 	case ESPI_RANGE:
304 		*index = d->hwirq - ESPI_BASE_INTID;
305 		switch (offset) {
306 		case GICD_ISENABLER:
307 			return GICD_ISENABLERnE;
308 		case GICD_ICENABLER:
309 			return GICD_ICENABLERnE;
310 		case GICD_ISPENDR:
311 			return GICD_ISPENDRnE;
312 		case GICD_ICPENDR:
313 			return GICD_ICPENDRnE;
314 		case GICD_ISACTIVER:
315 			return GICD_ISACTIVERnE;
316 		case GICD_ICACTIVER:
317 			return GICD_ICACTIVERnE;
318 		case GICD_IPRIORITYR:
319 			return GICD_IPRIORITYRnE;
320 		case GICD_ICFGR:
321 			return GICD_ICFGRnE;
322 		case GICD_IROUTER:
323 			return GICD_IROUTERnE;
324 		default:
325 			break;
326 		}
327 		break;
328 	default:
329 		break;
330 	}
331 
332 	WARN_ON(1);
333 	*index = d->hwirq;
334 	return offset;
335 }
336 
gic_peek_irq(struct irq_data * d,u32 offset)337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339 	void __iomem *base;
340 	u32 index, mask;
341 
342 	offset = convert_offset_index(d, offset, &index);
343 	mask = 1 << (index % 32);
344 
345 	if (gic_irq_in_rdist(d))
346 		base = gic_data_rdist_sgi_base();
347 	else
348 		base = gic_data.dist_base;
349 
350 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352 
gic_poke_irq(struct irq_data * d,u32 offset)353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355 	void (*rwp_wait)(void);
356 	void __iomem *base;
357 	u32 index, mask;
358 
359 	offset = convert_offset_index(d, offset, &index);
360 	mask = 1 << (index % 32);
361 
362 	if (gic_irq_in_rdist(d)) {
363 		base = gic_data_rdist_sgi_base();
364 		rwp_wait = gic_redist_wait_for_rwp;
365 	} else {
366 		base = gic_data.dist_base;
367 		rwp_wait = gic_dist_wait_for_rwp;
368 	}
369 
370 	writel_relaxed(mask, base + offset + (index / 32) * 4);
371 	rwp_wait();
372 }
373 
gic_mask_irq(struct irq_data * d)374 static void gic_mask_irq(struct irq_data *d)
375 {
376 	gic_poke_irq(d, GICD_ICENABLER);
377 }
378 
gic_eoimode1_mask_irq(struct irq_data * d)379 static void gic_eoimode1_mask_irq(struct irq_data *d)
380 {
381 	gic_mask_irq(d);
382 	/*
383 	 * When masking a forwarded interrupt, make sure it is
384 	 * deactivated as well.
385 	 *
386 	 * This ensures that an interrupt that is getting
387 	 * disabled/masked will not get "stuck", because there is
388 	 * noone to deactivate it (guest is being terminated).
389 	 */
390 	if (irqd_is_forwarded_to_vcpu(d))
391 		gic_poke_irq(d, GICD_ICACTIVER);
392 }
393 
gic_unmask_irq(struct irq_data * d)394 static void gic_unmask_irq(struct irq_data *d)
395 {
396 	gic_poke_irq(d, GICD_ISENABLER);
397 }
398 
gic_supports_nmi(void)399 static inline bool gic_supports_nmi(void)
400 {
401 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402 	       static_branch_likely(&supports_pseudo_nmis);
403 }
404 
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406 				     enum irqchip_irq_state which, bool val)
407 {
408 	u32 reg;
409 
410 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
411 		return -EINVAL;
412 
413 	switch (which) {
414 	case IRQCHIP_STATE_PENDING:
415 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
416 		break;
417 
418 	case IRQCHIP_STATE_ACTIVE:
419 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
420 		break;
421 
422 	case IRQCHIP_STATE_MASKED:
423 		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
424 		break;
425 
426 	default:
427 		return -EINVAL;
428 	}
429 
430 	gic_poke_irq(d, reg);
431 	return 0;
432 }
433 
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435 				     enum irqchip_irq_state which, bool *val)
436 {
437 	if (d->hwirq >= 8192) /* PPI/SPI only */
438 		return -EINVAL;
439 
440 	switch (which) {
441 	case IRQCHIP_STATE_PENDING:
442 		*val = gic_peek_irq(d, GICD_ISPENDR);
443 		break;
444 
445 	case IRQCHIP_STATE_ACTIVE:
446 		*val = gic_peek_irq(d, GICD_ISACTIVER);
447 		break;
448 
449 	case IRQCHIP_STATE_MASKED:
450 		*val = !gic_peek_irq(d, GICD_ISENABLER);
451 		break;
452 
453 	default:
454 		return -EINVAL;
455 	}
456 
457 	return 0;
458 }
459 
gic_irq_set_prio(struct irq_data * d,u8 prio)460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
461 {
462 	void __iomem *base = gic_dist_base(d);
463 	u32 offset, index;
464 
465 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
466 
467 	writeb_relaxed(prio, base + offset + index);
468 }
469 
gic_get_ppi_index(struct irq_data * d)470 static u32 gic_get_ppi_index(struct irq_data *d)
471 {
472 	switch (get_intid_range(d)) {
473 	case PPI_RANGE:
474 		return d->hwirq - 16;
475 	case EPPI_RANGE:
476 		return d->hwirq - EPPI_BASE_INTID + 16;
477 	default:
478 		unreachable();
479 	}
480 }
481 
gic_irq_nmi_setup(struct irq_data * d)482 static int gic_irq_nmi_setup(struct irq_data *d)
483 {
484 	struct irq_desc *desc = irq_to_desc(d->irq);
485 
486 	if (!gic_supports_nmi())
487 		return -EINVAL;
488 
489 	if (gic_peek_irq(d, GICD_ISENABLER)) {
490 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
491 		return -EINVAL;
492 	}
493 
494 	/*
495 	 * A secondary irq_chip should be in charge of LPI request,
496 	 * it should not be possible to get there
497 	 */
498 	if (WARN_ON(gic_irq(d) >= 8192))
499 		return -EINVAL;
500 
501 	/* desc lock should already be held */
502 	if (gic_irq_in_rdist(d)) {
503 		u32 idx = gic_get_ppi_index(d);
504 
505 		/* Setting up PPI as NMI, only switch handler for first NMI */
506 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
507 			refcount_set(&ppi_nmi_refs[idx], 1);
508 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
509 		}
510 	} else {
511 		desc->handle_irq = handle_fasteoi_nmi;
512 	}
513 
514 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
515 
516 	return 0;
517 }
518 
gic_irq_nmi_teardown(struct irq_data * d)519 static void gic_irq_nmi_teardown(struct irq_data *d)
520 {
521 	struct irq_desc *desc = irq_to_desc(d->irq);
522 
523 	if (WARN_ON(!gic_supports_nmi()))
524 		return;
525 
526 	if (gic_peek_irq(d, GICD_ISENABLER)) {
527 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
528 		return;
529 	}
530 
531 	/*
532 	 * A secondary irq_chip should be in charge of LPI request,
533 	 * it should not be possible to get there
534 	 */
535 	if (WARN_ON(gic_irq(d) >= 8192))
536 		return;
537 
538 	/* desc lock should already be held */
539 	if (gic_irq_in_rdist(d)) {
540 		u32 idx = gic_get_ppi_index(d);
541 
542 		/* Tearing down NMI, only switch handler for last NMI */
543 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
544 			desc->handle_irq = handle_percpu_devid_irq;
545 	} else {
546 		desc->handle_irq = handle_fasteoi_irq;
547 	}
548 
549 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
550 }
551 
gic_eoi_irq(struct irq_data * d)552 static void gic_eoi_irq(struct irq_data *d)
553 {
554 	gic_write_eoir(gic_irq(d));
555 }
556 
gic_eoimode1_eoi_irq(struct irq_data * d)557 static void gic_eoimode1_eoi_irq(struct irq_data *d)
558 {
559 	/*
560 	 * No need to deactivate an LPI, or an interrupt that
561 	 * is is getting forwarded to a vcpu.
562 	 */
563 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
564 		return;
565 	gic_write_dir(gic_irq(d));
566 }
567 
gic_set_type(struct irq_data * d,unsigned int type)568 static int gic_set_type(struct irq_data *d, unsigned int type)
569 {
570 	enum gic_intid_range range;
571 	unsigned int irq = gic_irq(d);
572 	void (*rwp_wait)(void);
573 	void __iomem *base;
574 	u32 offset, index;
575 	int ret;
576 
577 	range = get_intid_range(d);
578 
579 	/* Interrupt configuration for SGIs can't be changed */
580 	if (range == SGI_RANGE)
581 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
582 
583 	/* SPIs have restrictions on the supported types */
584 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
585 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
586 		return -EINVAL;
587 
588 	if (gic_irq_in_rdist(d)) {
589 		base = gic_data_rdist_sgi_base();
590 		rwp_wait = gic_redist_wait_for_rwp;
591 	} else {
592 		base = gic_data.dist_base;
593 		rwp_wait = gic_dist_wait_for_rwp;
594 	}
595 
596 	offset = convert_offset_index(d, GICD_ICFGR, &index);
597 
598 	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
599 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
600 		/* Misconfigured PPIs are usually not fatal */
601 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
602 		ret = 0;
603 	}
604 
605 	return ret;
606 }
607 
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)608 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
609 {
610 	if (get_intid_range(d) == SGI_RANGE)
611 		return -EINVAL;
612 
613 	if (vcpu)
614 		irqd_set_forwarded_to_vcpu(d);
615 	else
616 		irqd_clr_forwarded_to_vcpu(d);
617 	return 0;
618 }
619 
gic_mpidr_to_affinity(unsigned long mpidr)620 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
621 {
622 	u64 aff;
623 
624 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
625 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
626 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
627 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
628 
629 	return aff;
630 }
631 
gic_deactivate_unhandled(u32 irqnr)632 static void gic_deactivate_unhandled(u32 irqnr)
633 {
634 	if (static_branch_likely(&supports_deactivate_key)) {
635 		if (irqnr < 8192)
636 			gic_write_dir(irqnr);
637 	} else {
638 		gic_write_eoir(irqnr);
639 	}
640 }
641 
gic_handle_nmi(u32 irqnr,struct pt_regs * regs)642 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
643 {
644 	bool irqs_enabled = interrupts_enabled(regs);
645 	int err;
646 
647 	if (irqs_enabled)
648 		nmi_enter();
649 
650 	if (static_branch_likely(&supports_deactivate_key))
651 		gic_write_eoir(irqnr);
652 	/*
653 	 * Leave the PSR.I bit set to prevent other NMIs to be
654 	 * received while handling this one.
655 	 * PSR.I will be restored when we ERET to the
656 	 * interrupted context.
657 	 */
658 	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
659 	if (err)
660 		gic_deactivate_unhandled(irqnr);
661 
662 	if (irqs_enabled)
663 		nmi_exit();
664 }
665 
do_read_iar(struct pt_regs * regs)666 static u32 do_read_iar(struct pt_regs *regs)
667 {
668 	u32 iar;
669 
670 	if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
671 		u64 pmr;
672 
673 		/*
674 		 * We were in a context with IRQs disabled. However, the
675 		 * entry code has set PMR to a value that allows any
676 		 * interrupt to be acknowledged, and not just NMIs. This can
677 		 * lead to surprising effects if the NMI has been retired in
678 		 * the meantime, and that there is an IRQ pending. The IRQ
679 		 * would then be taken in NMI context, something that nobody
680 		 * wants to debug twice.
681 		 *
682 		 * Until we sort this, drop PMR again to a level that will
683 		 * actually only allow NMIs before reading IAR, and then
684 		 * restore it to what it was.
685 		 */
686 		pmr = gic_read_pmr();
687 		gic_pmr_mask_irqs();
688 		isb();
689 
690 		iar = gic_read_iar();
691 
692 		gic_write_pmr(pmr);
693 	} else {
694 		iar = gic_read_iar();
695 	}
696 
697 	return iar;
698 }
699 
gic_handle_irq(struct pt_regs * regs)700 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
701 {
702 	u32 irqnr;
703 
704 	irqnr = do_read_iar(regs);
705 
706 	/* Check for special IDs first */
707 	if ((irqnr >= 1020 && irqnr <= 1023))
708 		return;
709 
710 	if (gic_supports_nmi() &&
711 	    unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
712 		gic_handle_nmi(irqnr, regs);
713 		return;
714 	}
715 
716 	if (gic_prio_masking_enabled()) {
717 		gic_pmr_mask_irqs();
718 		gic_arch_enable_irqs();
719 	}
720 
721 	if (static_branch_likely(&supports_deactivate_key))
722 		gic_write_eoir(irqnr);
723 	else
724 		isb();
725 
726 	if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
727 		WARN_ONCE(true, "Unexpected interrupt received!\n");
728 		gic_deactivate_unhandled(irqnr);
729 	}
730 }
731 
gic_get_pribits(void)732 static u32 gic_get_pribits(void)
733 {
734 	u32 pribits;
735 
736 	pribits = gic_read_ctlr();
737 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
738 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
739 	pribits++;
740 
741 	return pribits;
742 }
743 
gic_has_group0(void)744 static bool gic_has_group0(void)
745 {
746 	u32 val;
747 	u32 old_pmr;
748 
749 	old_pmr = gic_read_pmr();
750 
751 	/*
752 	 * Let's find out if Group0 is under control of EL3 or not by
753 	 * setting the highest possible, non-zero priority in PMR.
754 	 *
755 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
756 	 * order for the CPU interface to set bit 7, and keep the
757 	 * actual priority in the non-secure range. In the process, it
758 	 * looses the least significant bit and the actual priority
759 	 * becomes 0x80. Reading it back returns 0, indicating that
760 	 * we're don't have access to Group0.
761 	 */
762 	gic_write_pmr(BIT(8 - gic_get_pribits()));
763 	val = gic_read_pmr();
764 
765 	gic_write_pmr(old_pmr);
766 
767 	return val != 0;
768 }
769 
gic_dist_init(void)770 static void __init gic_dist_init(void)
771 {
772 	unsigned int i;
773 	u64 affinity;
774 	void __iomem *base = gic_data.dist_base;
775 	u32 val;
776 
777 	/* Disable the distributor */
778 	writel_relaxed(0, base + GICD_CTLR);
779 	gic_dist_wait_for_rwp();
780 
781 	/*
782 	 * Configure SPIs as non-secure Group-1. This will only matter
783 	 * if the GIC only has a single security state. This will not
784 	 * do the right thing if the kernel is running in secure mode,
785 	 * but that's not the intended use case anyway.
786 	 */
787 	for (i = 32; i < GIC_LINE_NR; i += 32)
788 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
789 
790 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
791 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
792 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
793 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
794 	}
795 
796 	for (i = 0; i < GIC_ESPI_NR; i += 32)
797 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
798 
799 	for (i = 0; i < GIC_ESPI_NR; i += 16)
800 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
801 
802 	for (i = 0; i < GIC_ESPI_NR; i += 4)
803 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
804 
805 	/* Now do the common stuff, and wait for the distributor to drain */
806 	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
807 
808 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
809 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
810 		pr_info("Enabling SGIs without active state\n");
811 		val |= GICD_CTLR_nASSGIreq;
812 	}
813 
814 	/* Enable distributor with ARE, Group1 */
815 	writel_relaxed(val, base + GICD_CTLR);
816 
817 	/*
818 	 * Set all global interrupts to the boot CPU only. ARE must be
819 	 * enabled.
820 	 */
821 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
822 	for (i = 32; i < GIC_LINE_NR; i++)
823 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
824 
825 	for (i = 0; i < GIC_ESPI_NR; i++)
826 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
827 }
828 
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))829 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
830 {
831 	int ret = -ENODEV;
832 	int i;
833 
834 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
835 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
836 		u64 typer;
837 		u32 reg;
838 
839 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
840 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
841 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
842 			pr_warn("No redistributor present @%p\n", ptr);
843 			break;
844 		}
845 
846 		do {
847 			typer = gic_read_typer(ptr + GICR_TYPER);
848 			ret = fn(gic_data.redist_regions + i, ptr);
849 			if (!ret)
850 				return 0;
851 
852 			if (gic_data.redist_regions[i].single_redist)
853 				break;
854 
855 			if (gic_data.redist_stride) {
856 				ptr += gic_data.redist_stride;
857 			} else {
858 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
859 				if (typer & GICR_TYPER_VLPIS)
860 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
861 			}
862 		} while (!(typer & GICR_TYPER_LAST));
863 	}
864 
865 	return ret ? -ENODEV : 0;
866 }
867 
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)868 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
869 {
870 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
871 	u64 typer;
872 	u32 aff;
873 
874 	/*
875 	 * Convert affinity to a 32bit value that can be matched to
876 	 * GICR_TYPER bits [63:32].
877 	 */
878 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
879 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
880 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
881 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
882 
883 	typer = gic_read_typer(ptr + GICR_TYPER);
884 	if ((typer >> 32) == aff) {
885 		u64 offset = ptr - region->redist_base;
886 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
887 		gic_data_rdist_rd_base() = ptr;
888 		gic_data_rdist()->phys_base = region->phys_base + offset;
889 
890 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
891 			smp_processor_id(), mpidr,
892 			(int)(region - gic_data.redist_regions),
893 			&gic_data_rdist()->phys_base);
894 		return 0;
895 	}
896 
897 	/* Try next one */
898 	return 1;
899 }
900 
gic_populate_rdist(void)901 static int gic_populate_rdist(void)
902 {
903 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
904 		return 0;
905 
906 	/* We couldn't even deal with ourselves... */
907 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
908 	     smp_processor_id(),
909 	     (unsigned long)cpu_logical_map(smp_processor_id()));
910 	return -ENODEV;
911 }
912 
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)913 static int __gic_update_rdist_properties(struct redist_region *region,
914 					 void __iomem *ptr)
915 {
916 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
917 
918 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
919 
920 	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
921 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
922 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
923 					   gic_data.rdists.has_rvpeid);
924 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
925 
926 	/* Detect non-sensical configurations */
927 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
928 		gic_data.rdists.has_direct_lpi = false;
929 		gic_data.rdists.has_vlpis = false;
930 		gic_data.rdists.has_rvpeid = false;
931 	}
932 
933 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
934 
935 	return 1;
936 }
937 
gic_update_rdist_properties(void)938 static void gic_update_rdist_properties(void)
939 {
940 	gic_data.ppi_nr = UINT_MAX;
941 	gic_iterate_rdists(__gic_update_rdist_properties);
942 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
943 		gic_data.ppi_nr = 0;
944 	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
945 	if (gic_data.rdists.has_vlpis)
946 		pr_info("GICv4 features: %s%s%s\n",
947 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
948 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
949 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
950 }
951 
952 /* Check whether it's single security state view */
gic_dist_security_disabled(void)953 static inline bool gic_dist_security_disabled(void)
954 {
955 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
956 }
957 
gic_cpu_sys_reg_init(void)958 static void gic_cpu_sys_reg_init(void)
959 {
960 	int i, cpu = smp_processor_id();
961 	u64 mpidr = cpu_logical_map(cpu);
962 	u64 need_rss = MPIDR_RS(mpidr);
963 	bool group0;
964 	u32 pribits;
965 
966 	/*
967 	 * Need to check that the SRE bit has actually been set. If
968 	 * not, it means that SRE is disabled at EL2. We're going to
969 	 * die painfully, and there is nothing we can do about it.
970 	 *
971 	 * Kindly inform the luser.
972 	 */
973 	if (!gic_enable_sre())
974 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
975 
976 	pribits = gic_get_pribits();
977 
978 	group0 = gic_has_group0();
979 
980 	/* Set priority mask register */
981 	if (!gic_prio_masking_enabled()) {
982 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
983 	} else if (gic_supports_nmi()) {
984 		/*
985 		 * Mismatch configuration with boot CPU, the system is likely
986 		 * to die as interrupt masking will not work properly on all
987 		 * CPUs
988 		 *
989 		 * The boot CPU calls this function before enabling NMI support,
990 		 * and as a result we'll never see this warning in the boot path
991 		 * for that CPU.
992 		 */
993 		if (static_branch_unlikely(&gic_nonsecure_priorities))
994 			WARN_ON(!group0 || gic_dist_security_disabled());
995 		else
996 			WARN_ON(group0 && !gic_dist_security_disabled());
997 	}
998 
999 	/*
1000 	 * Some firmwares hand over to the kernel with the BPR changed from
1001 	 * its reset value (and with a value large enough to prevent
1002 	 * any pre-emptive interrupts from working at all). Writing a zero
1003 	 * to BPR restores is reset value.
1004 	 */
1005 	gic_write_bpr1(0);
1006 
1007 	if (static_branch_likely(&supports_deactivate_key)) {
1008 		/* EOI drops priority only (mode 1) */
1009 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1010 	} else {
1011 		/* EOI deactivates interrupt too (mode 0) */
1012 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1013 	}
1014 
1015 	/* Always whack Group0 before Group1 */
1016 	if (group0) {
1017 		switch(pribits) {
1018 		case 8:
1019 		case 7:
1020 			write_gicreg(0, ICC_AP0R3_EL1);
1021 			write_gicreg(0, ICC_AP0R2_EL1);
1022 			fallthrough;
1023 		case 6:
1024 			write_gicreg(0, ICC_AP0R1_EL1);
1025 			fallthrough;
1026 		case 5:
1027 		case 4:
1028 			write_gicreg(0, ICC_AP0R0_EL1);
1029 		}
1030 
1031 		isb();
1032 	}
1033 
1034 	switch(pribits) {
1035 	case 8:
1036 	case 7:
1037 		write_gicreg(0, ICC_AP1R3_EL1);
1038 		write_gicreg(0, ICC_AP1R2_EL1);
1039 		fallthrough;
1040 	case 6:
1041 		write_gicreg(0, ICC_AP1R1_EL1);
1042 		fallthrough;
1043 	case 5:
1044 	case 4:
1045 		write_gicreg(0, ICC_AP1R0_EL1);
1046 	}
1047 
1048 	isb();
1049 
1050 	/* ... and let's hit the road... */
1051 	gic_write_grpen1(1);
1052 
1053 	/* Keep the RSS capability status in per_cpu variable */
1054 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1055 
1056 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1057 	for_each_online_cpu(i) {
1058 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1059 
1060 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1061 		if (need_rss && (!have_rss))
1062 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1063 				cpu, (unsigned long)mpidr,
1064 				i, (unsigned long)cpu_logical_map(i));
1065 	}
1066 
1067 	/**
1068 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1069 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1070 	 * UNPREDICTABLE choice of :
1071 	 *   - The write is ignored.
1072 	 *   - The RS field is treated as 0.
1073 	 */
1074 	if (need_rss && (!gic_data.has_rss))
1075 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1076 }
1077 
1078 static bool gicv3_nolpi;
1079 
gicv3_nolpi_cfg(char * buf)1080 static int __init gicv3_nolpi_cfg(char *buf)
1081 {
1082 	return strtobool(buf, &gicv3_nolpi);
1083 }
1084 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1085 
gic_dist_supports_lpis(void)1086 static int gic_dist_supports_lpis(void)
1087 {
1088 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1089 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1090 		!gicv3_nolpi);
1091 }
1092 
gic_cpu_init(void)1093 static void gic_cpu_init(void)
1094 {
1095 	void __iomem *rbase;
1096 	int i;
1097 
1098 	/* Register ourselves with the rest of the world */
1099 	if (gic_populate_rdist())
1100 		return;
1101 
1102 	gic_enable_redist(true);
1103 
1104 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1105 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1106 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1107 	     smp_processor_id());
1108 
1109 	rbase = gic_data_rdist_sgi_base();
1110 
1111 	/* Configure SGIs/PPIs as non-secure Group-1 */
1112 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1113 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1114 
1115 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1116 
1117 	/* initialise system registers */
1118 	gic_cpu_sys_reg_init();
1119 }
1120 
1121 #ifdef CONFIG_SMP
1122 
1123 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1124 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1125 
gic_starting_cpu(unsigned int cpu)1126 static int gic_starting_cpu(unsigned int cpu)
1127 {
1128 	gic_cpu_init();
1129 
1130 	if (gic_dist_supports_lpis())
1131 		its_cpu_init();
1132 
1133 	return 0;
1134 }
1135 
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1136 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1137 				   unsigned long cluster_id)
1138 {
1139 	int next_cpu, cpu = *base_cpu;
1140 	unsigned long mpidr = cpu_logical_map(cpu);
1141 	u16 tlist = 0;
1142 
1143 	while (cpu < nr_cpu_ids) {
1144 		tlist |= 1 << (mpidr & 0xf);
1145 
1146 		next_cpu = cpumask_next(cpu, mask);
1147 		if (next_cpu >= nr_cpu_ids)
1148 			goto out;
1149 		cpu = next_cpu;
1150 
1151 		mpidr = cpu_logical_map(cpu);
1152 
1153 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1154 			cpu--;
1155 			goto out;
1156 		}
1157 	}
1158 out:
1159 	*base_cpu = cpu;
1160 	return tlist;
1161 }
1162 
1163 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1164 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1165 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1166 
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1167 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1168 {
1169 	u64 val;
1170 
1171 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1172 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1173 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1174 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1175 	       MPIDR_TO_SGI_RS(cluster_id)		|
1176 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1177 
1178 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1179 	gic_write_sgi1r(val);
1180 }
1181 
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1182 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1183 {
1184 	int cpu;
1185 
1186 	if (WARN_ON(d->hwirq >= 16))
1187 		return;
1188 
1189 	/*
1190 	 * Ensure that stores to Normal memory are visible to the
1191 	 * other CPUs before issuing the IPI.
1192 	 */
1193 	wmb();
1194 
1195 	for_each_cpu(cpu, mask) {
1196 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1197 		u16 tlist;
1198 
1199 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1200 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1201 	}
1202 
1203 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1204 	isb();
1205 }
1206 
gic_smp_init(void)1207 static void __init gic_smp_init(void)
1208 {
1209 	struct irq_fwspec sgi_fwspec = {
1210 		.fwnode		= gic_data.fwnode,
1211 		.param_count	= 1,
1212 	};
1213 	int base_sgi;
1214 
1215 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1216 				  "irqchip/arm/gicv3:starting",
1217 				  gic_starting_cpu, NULL);
1218 
1219 	/* Register all 8 non-secure SGIs */
1220 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1221 					   NUMA_NO_NODE, &sgi_fwspec,
1222 					   false, NULL);
1223 	if (WARN_ON(base_sgi <= 0))
1224 		return;
1225 
1226 	set_smp_ipi_range(base_sgi, 8);
1227 }
1228 
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1229 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1230 			    bool force)
1231 {
1232 	unsigned int cpu;
1233 	u32 offset, index;
1234 	void __iomem *reg;
1235 	int enabled;
1236 	u64 val;
1237 
1238 	if (force)
1239 		cpu = cpumask_first(mask_val);
1240 	else
1241 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1242 
1243 	if (cpu >= nr_cpu_ids)
1244 		return -EINVAL;
1245 
1246 	if (gic_irq_in_rdist(d))
1247 		return -EINVAL;
1248 
1249 	/* If interrupt was enabled, disable it first */
1250 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1251 	if (enabled)
1252 		gic_mask_irq(d);
1253 
1254 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1255 	reg = gic_dist_base(d) + offset + (index * 8);
1256 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1257 
1258 	gic_write_irouter(val, reg);
1259 
1260 	/*
1261 	 * If the interrupt was enabled, enabled it again. Otherwise,
1262 	 * just wait for the distributor to have digested our changes.
1263 	 */
1264 	if (enabled)
1265 		gic_unmask_irq(d);
1266 	else
1267 		gic_dist_wait_for_rwp();
1268 
1269 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1270 
1271 	return IRQ_SET_MASK_OK_DONE;
1272 }
1273 #else
1274 #define gic_set_affinity	NULL
1275 #define gic_ipi_send_mask	NULL
1276 #define gic_smp_init()		do { } while(0)
1277 #endif
1278 
gic_retrigger(struct irq_data * data)1279 static int gic_retrigger(struct irq_data *data)
1280 {
1281 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1282 }
1283 
1284 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1285 static int gic_cpu_pm_notifier(struct notifier_block *self,
1286 			       unsigned long cmd, void *v)
1287 {
1288 	if (cmd == CPU_PM_EXIT) {
1289 		if (gic_dist_security_disabled())
1290 			gic_enable_redist(true);
1291 		gic_cpu_sys_reg_init();
1292 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1293 		gic_write_grpen1(0);
1294 		gic_enable_redist(false);
1295 	}
1296 	return NOTIFY_OK;
1297 }
1298 
1299 static struct notifier_block gic_cpu_pm_notifier_block = {
1300 	.notifier_call = gic_cpu_pm_notifier,
1301 };
1302 
gic_cpu_pm_init(void)1303 static void gic_cpu_pm_init(void)
1304 {
1305 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1306 }
1307 
1308 #else
gic_cpu_pm_init(void)1309 static inline void gic_cpu_pm_init(void) { }
1310 #endif /* CONFIG_CPU_PM */
1311 
1312 static struct irq_chip gic_chip = {
1313 	.name			= "GICv3",
1314 	.irq_mask		= gic_mask_irq,
1315 	.irq_unmask		= gic_unmask_irq,
1316 	.irq_eoi		= gic_eoi_irq,
1317 	.irq_set_type		= gic_set_type,
1318 	.irq_set_affinity	= gic_set_affinity,
1319 	.irq_retrigger          = gic_retrigger,
1320 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1321 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1322 	.irq_nmi_setup		= gic_irq_nmi_setup,
1323 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1324 	.ipi_send_mask		= gic_ipi_send_mask,
1325 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1326 				  IRQCHIP_SKIP_SET_WAKE |
1327 				  IRQCHIP_MASK_ON_SUSPEND,
1328 };
1329 
1330 static struct irq_chip gic_eoimode1_chip = {
1331 	.name			= "GICv3",
1332 	.irq_mask		= gic_eoimode1_mask_irq,
1333 	.irq_unmask		= gic_unmask_irq,
1334 	.irq_eoi		= gic_eoimode1_eoi_irq,
1335 	.irq_set_type		= gic_set_type,
1336 	.irq_set_affinity	= gic_set_affinity,
1337 	.irq_retrigger          = gic_retrigger,
1338 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1339 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1340 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1341 	.irq_nmi_setup		= gic_irq_nmi_setup,
1342 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1343 	.ipi_send_mask		= gic_ipi_send_mask,
1344 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1345 				  IRQCHIP_SKIP_SET_WAKE |
1346 				  IRQCHIP_MASK_ON_SUSPEND,
1347 };
1348 
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1349 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1350 			      irq_hw_number_t hw)
1351 {
1352 	struct irq_chip *chip = &gic_chip;
1353 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1354 
1355 	if (static_branch_likely(&supports_deactivate_key))
1356 		chip = &gic_eoimode1_chip;
1357 
1358 	switch (__get_intid_range(hw)) {
1359 	case SGI_RANGE:
1360 		irq_set_percpu_devid(irq);
1361 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1362 				    handle_percpu_devid_fasteoi_ipi,
1363 				    NULL, NULL);
1364 		break;
1365 
1366 	case PPI_RANGE:
1367 	case EPPI_RANGE:
1368 		irq_set_percpu_devid(irq);
1369 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1370 				    handle_percpu_devid_irq, NULL, NULL);
1371 		break;
1372 
1373 	case SPI_RANGE:
1374 	case ESPI_RANGE:
1375 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1376 				    handle_fasteoi_irq, NULL, NULL);
1377 		irq_set_probe(irq);
1378 		irqd_set_single_target(irqd);
1379 		break;
1380 
1381 	case LPI_RANGE:
1382 		if (!gic_dist_supports_lpis())
1383 			return -EPERM;
1384 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1385 				    handle_fasteoi_irq, NULL, NULL);
1386 		break;
1387 
1388 	default:
1389 		return -EPERM;
1390 	}
1391 
1392 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1393 	irqd_set_handle_enforce_irqctx(irqd);
1394 	return 0;
1395 }
1396 
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1397 static int gic_irq_domain_translate(struct irq_domain *d,
1398 				    struct irq_fwspec *fwspec,
1399 				    unsigned long *hwirq,
1400 				    unsigned int *type)
1401 {
1402 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1403 		*hwirq = fwspec->param[0];
1404 		*type = IRQ_TYPE_EDGE_RISING;
1405 		return 0;
1406 	}
1407 
1408 	if (is_of_node(fwspec->fwnode)) {
1409 		if (fwspec->param_count < 3)
1410 			return -EINVAL;
1411 
1412 		switch (fwspec->param[0]) {
1413 		case 0:			/* SPI */
1414 			*hwirq = fwspec->param[1] + 32;
1415 			break;
1416 		case 1:			/* PPI */
1417 			*hwirq = fwspec->param[1] + 16;
1418 			break;
1419 		case 2:			/* ESPI */
1420 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1421 			break;
1422 		case 3:			/* EPPI */
1423 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1424 			break;
1425 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1426 			*hwirq = fwspec->param[1];
1427 			break;
1428 		case GIC_IRQ_TYPE_PARTITION:
1429 			*hwirq = fwspec->param[1];
1430 			if (fwspec->param[1] >= 16)
1431 				*hwirq += EPPI_BASE_INTID - 16;
1432 			else
1433 				*hwirq += 16;
1434 			break;
1435 		default:
1436 			return -EINVAL;
1437 		}
1438 
1439 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1440 
1441 		/*
1442 		 * Make it clear that broken DTs are... broken.
1443 		 * Partitionned PPIs are an unfortunate exception.
1444 		 */
1445 		WARN_ON(*type == IRQ_TYPE_NONE &&
1446 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1447 		return 0;
1448 	}
1449 
1450 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1451 		if(fwspec->param_count != 2)
1452 			return -EINVAL;
1453 
1454 		*hwirq = fwspec->param[0];
1455 		*type = fwspec->param[1];
1456 
1457 		WARN_ON(*type == IRQ_TYPE_NONE);
1458 		return 0;
1459 	}
1460 
1461 	return -EINVAL;
1462 }
1463 
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1464 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1465 				unsigned int nr_irqs, void *arg)
1466 {
1467 	int i, ret;
1468 	irq_hw_number_t hwirq;
1469 	unsigned int type = IRQ_TYPE_NONE;
1470 	struct irq_fwspec *fwspec = arg;
1471 
1472 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1473 	if (ret)
1474 		return ret;
1475 
1476 	for (i = 0; i < nr_irqs; i++) {
1477 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1478 		if (ret)
1479 			return ret;
1480 	}
1481 
1482 	return 0;
1483 }
1484 
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1485 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1486 				unsigned int nr_irqs)
1487 {
1488 	int i;
1489 
1490 	for (i = 0; i < nr_irqs; i++) {
1491 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1492 		irq_set_handler(virq + i, NULL);
1493 		irq_domain_reset_irq_data(d);
1494 	}
1495 }
1496 
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1497 static int gic_irq_domain_select(struct irq_domain *d,
1498 				 struct irq_fwspec *fwspec,
1499 				 enum irq_domain_bus_token bus_token)
1500 {
1501 	/* Not for us */
1502         if (fwspec->fwnode != d->fwnode)
1503 		return 0;
1504 
1505 	/* If this is not DT, then we have a single domain */
1506 	if (!is_of_node(fwspec->fwnode))
1507 		return 1;
1508 
1509 	/*
1510 	 * If this is a PPI and we have a 4th (non-null) parameter,
1511 	 * then we need to match the partition domain.
1512 	 */
1513 	if (fwspec->param_count >= 4 &&
1514 	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
1515 	    gic_data.ppi_descs)
1516 		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);
1517 
1518 	return d == gic_data.domain;
1519 }
1520 
1521 static const struct irq_domain_ops gic_irq_domain_ops = {
1522 	.translate = gic_irq_domain_translate,
1523 	.alloc = gic_irq_domain_alloc,
1524 	.free = gic_irq_domain_free,
1525 	.select = gic_irq_domain_select,
1526 };
1527 
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1528 static int partition_domain_translate(struct irq_domain *d,
1529 				      struct irq_fwspec *fwspec,
1530 				      unsigned long *hwirq,
1531 				      unsigned int *type)
1532 {
1533 	struct device_node *np;
1534 	int ret;
1535 
1536 	if (!gic_data.ppi_descs)
1537 		return -ENOMEM;
1538 
1539 	np = of_find_node_by_phandle(fwspec->param[3]);
1540 	if (WARN_ON(!np))
1541 		return -EINVAL;
1542 
1543 	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
1544 				     of_node_to_fwnode(np));
1545 	if (ret < 0)
1546 		return ret;
1547 
1548 	*hwirq = ret;
1549 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1550 
1551 	return 0;
1552 }
1553 
1554 static const struct irq_domain_ops partition_domain_ops = {
1555 	.translate = partition_domain_translate,
1556 	.select = gic_irq_domain_select,
1557 };
1558 
gic_enable_quirk_msm8996(void * data)1559 static bool gic_enable_quirk_msm8996(void *data)
1560 {
1561 	struct gic_chip_data *d = data;
1562 
1563 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1564 
1565 	return true;
1566 }
1567 
gic_enable_quirk_cavium_38539(void * data)1568 static bool gic_enable_quirk_cavium_38539(void *data)
1569 {
1570 	struct gic_chip_data *d = data;
1571 
1572 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1573 
1574 	return true;
1575 }
1576 
gic_enable_quirk_hip06_07(void * data)1577 static bool gic_enable_quirk_hip06_07(void *data)
1578 {
1579 	struct gic_chip_data *d = data;
1580 
1581 	/*
1582 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1583 	 * not being an actual ARM implementation). The saving grace is
1584 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1585 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1586 	 * have ESPI. In both cases, put them right.
1587 	 */
1588 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1589 		/* Zero both ESPI and the RES0 field next to it... */
1590 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1591 		return true;
1592 	}
1593 
1594 	return false;
1595 }
1596 
1597 static const struct gic_quirk gic_quirks[] = {
1598 	{
1599 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1600 		.compatible = "qcom,msm8996-gic-v3",
1601 		.init	= gic_enable_quirk_msm8996,
1602 	},
1603 	{
1604 		.desc	= "GICv3: HIP06 erratum 161010803",
1605 		.iidr	= 0x0204043b,
1606 		.mask	= 0xffffffff,
1607 		.init	= gic_enable_quirk_hip06_07,
1608 	},
1609 	{
1610 		.desc	= "GICv3: HIP07 erratum 161010803",
1611 		.iidr	= 0x00000000,
1612 		.mask	= 0xffffffff,
1613 		.init	= gic_enable_quirk_hip06_07,
1614 	},
1615 	{
1616 		/*
1617 		 * Reserved register accesses generate a Synchronous
1618 		 * External Abort. This erratum applies to:
1619 		 * - ThunderX: CN88xx
1620 		 * - OCTEON TX: CN83xx, CN81xx
1621 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1622 		 */
1623 		.desc	= "GICv3: Cavium erratum 38539",
1624 		.iidr	= 0xa000034c,
1625 		.mask	= 0xe8f00fff,
1626 		.init	= gic_enable_quirk_cavium_38539,
1627 	},
1628 	{
1629 	}
1630 };
1631 
gic_enable_nmi_support(void)1632 static void gic_enable_nmi_support(void)
1633 {
1634 	int i;
1635 
1636 	if (!gic_prio_masking_enabled())
1637 		return;
1638 
1639 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1640 	if (!ppi_nmi_refs)
1641 		return;
1642 
1643 	for (i = 0; i < gic_data.ppi_nr; i++)
1644 		refcount_set(&ppi_nmi_refs[i], 0);
1645 
1646 	/*
1647 	 * Linux itself doesn't use 1:N distribution, so has no need to
1648 	 * set PMHE. The only reason to have it set is if EL3 requires it
1649 	 * (and we can't change it).
1650 	 */
1651 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1652 		static_branch_enable(&gic_pmr_sync);
1653 
1654 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1655 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1656 
1657 	/*
1658 	 * How priority values are used by the GIC depends on two things:
1659 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1660 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1661 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1662 	 * the ICC_PMR_EL1 register and the priority that software assigns to
1663 	 * interrupts:
1664 	 *
1665 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1666 	 * -----------------------------------------------------------
1667 	 *      1       |      -      |  unchanged  |    unchanged
1668 	 * -----------------------------------------------------------
1669 	 *      0       |      1      |  non-secure |    non-secure
1670 	 * -----------------------------------------------------------
1671 	 *      0       |      0      |  unchanged  |    non-secure
1672 	 *
1673 	 * where non-secure means that the value is right-shifted by one and the
1674 	 * MSB bit set, to make it fit in the non-secure priority range.
1675 	 *
1676 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1677 	 * are both either modified or unchanged, we can use the same set of
1678 	 * priorities.
1679 	 *
1680 	 * In the last case, where only the interrupt priorities are modified to
1681 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1682 	 * and the rest of the values that we use remain unchanged.
1683 	 */
1684 	if (gic_has_group0() && !gic_dist_security_disabled())
1685 		static_branch_enable(&gic_nonsecure_priorities);
1686 
1687 	static_branch_enable(&supports_pseudo_nmis);
1688 
1689 	if (static_branch_likely(&supports_deactivate_key))
1690 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1691 	else
1692 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1693 }
1694 
gic_init_bases(void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)1695 static int __init gic_init_bases(void __iomem *dist_base,
1696 				 struct redist_region *rdist_regs,
1697 				 u32 nr_redist_regions,
1698 				 u64 redist_stride,
1699 				 struct fwnode_handle *handle)
1700 {
1701 	u32 typer;
1702 	int err;
1703 
1704 	if (!is_hyp_mode_available())
1705 		static_branch_disable(&supports_deactivate_key);
1706 
1707 	if (static_branch_likely(&supports_deactivate_key))
1708 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1709 
1710 	gic_data.fwnode = handle;
1711 	gic_data.dist_base = dist_base;
1712 	gic_data.redist_regions = rdist_regs;
1713 	gic_data.nr_redist_regions = nr_redist_regions;
1714 	gic_data.redist_stride = redist_stride;
1715 
1716 	/*
1717 	 * Find out how many interrupts are supported.
1718 	 */
1719 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1720 	gic_data.rdists.gicd_typer = typer;
1721 
1722 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1723 			  gic_quirks, &gic_data);
1724 
1725 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1726 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1727 
1728 	/*
1729 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1730 	 * architecture spec (which says that reserved registers are RES0).
1731 	 */
1732 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1733 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1734 
1735 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1736 						 &gic_data);
1737 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1738 	gic_data.rdists.has_rvpeid = true;
1739 	gic_data.rdists.has_vlpis = true;
1740 	gic_data.rdists.has_direct_lpi = true;
1741 	gic_data.rdists.has_vpend_valid_dirty = true;
1742 
1743 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1744 		err = -ENOMEM;
1745 		goto out_free;
1746 	}
1747 
1748 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1749 
1750 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1751 	pr_info("Distributor has %sRange Selector support\n",
1752 		gic_data.has_rss ? "" : "no ");
1753 
1754 	if (typer & GICD_TYPER_MBIS) {
1755 		err = mbi_init(handle, gic_data.domain);
1756 		if (err)
1757 			pr_err("Failed to initialize MBIs\n");
1758 	}
1759 
1760 	set_handle_irq(gic_handle_irq);
1761 
1762 	gic_update_rdist_properties();
1763 
1764 	gic_dist_init();
1765 	gic_cpu_init();
1766 	gic_smp_init();
1767 	gic_cpu_pm_init();
1768 
1769 	if (gic_dist_supports_lpis()) {
1770 		its_init(handle, &gic_data.rdists, gic_data.domain);
1771 		its_cpu_init();
1772 	} else {
1773 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1774 			gicv2m_init(handle, gic_data.domain);
1775 	}
1776 
1777 	gic_enable_nmi_support();
1778 
1779 	return 0;
1780 
1781 out_free:
1782 	if (gic_data.domain)
1783 		irq_domain_remove(gic_data.domain);
1784 	free_percpu(gic_data.rdists.rdist);
1785 	return err;
1786 }
1787 
gic_validate_dist_version(void __iomem * dist_base)1788 static int __init gic_validate_dist_version(void __iomem *dist_base)
1789 {
1790 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1791 
1792 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1793 		return -ENODEV;
1794 
1795 	return 0;
1796 }
1797 
1798 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)1799 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1800 {
1801 	struct device_node *parts_node, *child_part;
1802 	int part_idx = 0, i;
1803 	int nr_parts;
1804 	struct partition_affinity *parts;
1805 
1806 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1807 	if (!parts_node)
1808 		return;
1809 
1810 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1811 	if (!gic_data.ppi_descs)
1812 		return;
1813 
1814 	nr_parts = of_get_child_count(parts_node);
1815 
1816 	if (!nr_parts)
1817 		goto out_put_node;
1818 
1819 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1820 	if (WARN_ON(!parts))
1821 		goto out_put_node;
1822 
1823 	for_each_child_of_node(parts_node, child_part) {
1824 		struct partition_affinity *part;
1825 		int n;
1826 
1827 		part = &parts[part_idx];
1828 
1829 		part->partition_id = of_node_to_fwnode(child_part);
1830 
1831 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1832 			child_part, part_idx);
1833 
1834 		n = of_property_count_elems_of_size(child_part, "affinity",
1835 						    sizeof(u32));
1836 		WARN_ON(n <= 0);
1837 
1838 		for (i = 0; i < n; i++) {
1839 			int err, cpu;
1840 			u32 cpu_phandle;
1841 			struct device_node *cpu_node;
1842 
1843 			err = of_property_read_u32_index(child_part, "affinity",
1844 							 i, &cpu_phandle);
1845 			if (WARN_ON(err))
1846 				continue;
1847 
1848 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1849 			if (WARN_ON(!cpu_node))
1850 				continue;
1851 
1852 			cpu = of_cpu_node_to_id(cpu_node);
1853 			if (WARN_ON(cpu < 0))
1854 				continue;
1855 
1856 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1857 
1858 			cpumask_set_cpu(cpu, &part->mask);
1859 		}
1860 
1861 		pr_cont("}\n");
1862 		part_idx++;
1863 	}
1864 
1865 	for (i = 0; i < gic_data.ppi_nr; i++) {
1866 		unsigned int irq;
1867 		struct partition_desc *desc;
1868 		struct irq_fwspec ppi_fwspec = {
1869 			.fwnode		= gic_data.fwnode,
1870 			.param_count	= 3,
1871 			.param		= {
1872 				[0]	= GIC_IRQ_TYPE_PARTITION,
1873 				[1]	= i,
1874 				[2]	= IRQ_TYPE_NONE,
1875 			},
1876 		};
1877 
1878 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1879 		if (WARN_ON(!irq))
1880 			continue;
1881 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1882 					     irq, &partition_domain_ops);
1883 		if (WARN_ON(!desc))
1884 			continue;
1885 
1886 		gic_data.ppi_descs[i] = desc;
1887 	}
1888 
1889 out_put_node:
1890 	of_node_put(parts_node);
1891 }
1892 
gic_of_setup_kvm_info(struct device_node * node)1893 static void __init gic_of_setup_kvm_info(struct device_node *node)
1894 {
1895 	int ret;
1896 	struct resource r;
1897 	u32 gicv_idx;
1898 
1899 	gic_v3_kvm_info.type = GIC_V3;
1900 
1901 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1902 	if (!gic_v3_kvm_info.maint_irq)
1903 		return;
1904 
1905 	if (of_property_read_u32(node, "#redistributor-regions",
1906 				 &gicv_idx))
1907 		gicv_idx = 1;
1908 
1909 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
1910 	ret = of_address_to_resource(node, gicv_idx, &r);
1911 	if (!ret)
1912 		gic_v3_kvm_info.vcpu = r;
1913 
1914 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1915 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1916 	gic_set_kvm_info(&gic_v3_kvm_info);
1917 }
1918 
gic_of_init(struct device_node * node,struct device_node * parent)1919 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1920 {
1921 	void __iomem *dist_base;
1922 	struct redist_region *rdist_regs;
1923 	u64 redist_stride;
1924 	u32 nr_redist_regions;
1925 	int err, i;
1926 
1927 	dist_base = of_iomap(node, 0);
1928 	if (!dist_base) {
1929 		pr_err("%pOF: unable to map gic dist registers\n", node);
1930 		return -ENXIO;
1931 	}
1932 
1933 	err = gic_validate_dist_version(dist_base);
1934 	if (err) {
1935 		pr_err("%pOF: no distributor detected, giving up\n", node);
1936 		goto out_unmap_dist;
1937 	}
1938 
1939 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1940 		nr_redist_regions = 1;
1941 
1942 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1943 			     GFP_KERNEL);
1944 	if (!rdist_regs) {
1945 		err = -ENOMEM;
1946 		goto out_unmap_dist;
1947 	}
1948 
1949 	for (i = 0; i < nr_redist_regions; i++) {
1950 		struct resource res;
1951 		int ret;
1952 
1953 		ret = of_address_to_resource(node, 1 + i, &res);
1954 		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1955 		if (ret || !rdist_regs[i].redist_base) {
1956 			pr_err("%pOF: couldn't map region %d\n", node, i);
1957 			err = -ENODEV;
1958 			goto out_unmap_rdist;
1959 		}
1960 		rdist_regs[i].phys_base = res.start;
1961 	}
1962 
1963 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1964 		redist_stride = 0;
1965 
1966 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
1967 
1968 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
1969 			     redist_stride, &node->fwnode);
1970 	if (err)
1971 		goto out_unmap_rdist;
1972 
1973 	gic_populate_ppi_partitions(node);
1974 
1975 	if (static_branch_likely(&supports_deactivate_key))
1976 		gic_of_setup_kvm_info(node);
1977 	return 0;
1978 
1979 out_unmap_rdist:
1980 	for (i = 0; i < nr_redist_regions; i++)
1981 		if (rdist_regs[i].redist_base)
1982 			iounmap(rdist_regs[i].redist_base);
1983 	kfree(rdist_regs);
1984 out_unmap_dist:
1985 	iounmap(dist_base);
1986 	return err;
1987 }
1988 
1989 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
1990 
1991 #ifdef CONFIG_ACPI
1992 static struct
1993 {
1994 	void __iomem *dist_base;
1995 	struct redist_region *redist_regs;
1996 	u32 nr_redist_regions;
1997 	bool single_redist;
1998 	int enabled_rdists;
1999 	u32 maint_irq;
2000 	int maint_irq_mode;
2001 	phys_addr_t vcpu_base;
2002 } acpi_data __initdata;
2003 
2004 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2005 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2006 {
2007 	static int count = 0;
2008 
2009 	acpi_data.redist_regs[count].phys_base = phys_base;
2010 	acpi_data.redist_regs[count].redist_base = redist_base;
2011 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2012 	count++;
2013 }
2014 
2015 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2016 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2017 			   const unsigned long end)
2018 {
2019 	struct acpi_madt_generic_redistributor *redist =
2020 			(struct acpi_madt_generic_redistributor *)header;
2021 	void __iomem *redist_base;
2022 
2023 	redist_base = ioremap(redist->base_address, redist->length);
2024 	if (!redist_base) {
2025 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2026 		return -ENOMEM;
2027 	}
2028 
2029 	gic_acpi_register_redist(redist->base_address, redist_base);
2030 	return 0;
2031 }
2032 
2033 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2034 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2035 			 const unsigned long end)
2036 {
2037 	struct acpi_madt_generic_interrupt *gicc =
2038 				(struct acpi_madt_generic_interrupt *)header;
2039 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2040 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2041 	void __iomem *redist_base;
2042 
2043 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2044 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2045 		return 0;
2046 
2047 	redist_base = ioremap(gicc->gicr_base_address, size);
2048 	if (!redist_base)
2049 		return -ENOMEM;
2050 
2051 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2052 	return 0;
2053 }
2054 
gic_acpi_collect_gicr_base(void)2055 static int __init gic_acpi_collect_gicr_base(void)
2056 {
2057 	acpi_tbl_entry_handler redist_parser;
2058 	enum acpi_madt_type type;
2059 
2060 	if (acpi_data.single_redist) {
2061 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2062 		redist_parser = gic_acpi_parse_madt_gicc;
2063 	} else {
2064 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2065 		redist_parser = gic_acpi_parse_madt_redist;
2066 	}
2067 
2068 	/* Collect redistributor base addresses in GICR entries */
2069 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2070 		return 0;
2071 
2072 	pr_info("No valid GICR entries exist\n");
2073 	return -ENODEV;
2074 }
2075 
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2076 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2077 				  const unsigned long end)
2078 {
2079 	/* Subtable presence means that redist exists, that's it */
2080 	return 0;
2081 }
2082 
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2083 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2084 				      const unsigned long end)
2085 {
2086 	struct acpi_madt_generic_interrupt *gicc =
2087 				(struct acpi_madt_generic_interrupt *)header;
2088 
2089 	/*
2090 	 * If GICC is enabled and has valid gicr base address, then it means
2091 	 * GICR base is presented via GICC
2092 	 */
2093 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2094 		acpi_data.enabled_rdists++;
2095 		return 0;
2096 	}
2097 
2098 	/*
2099 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2100 	 * should not treat as errors, skip the entry instead of probe fail.
2101 	 */
2102 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2103 		return 0;
2104 
2105 	return -ENODEV;
2106 }
2107 
gic_acpi_count_gicr_regions(void)2108 static int __init gic_acpi_count_gicr_regions(void)
2109 {
2110 	int count;
2111 
2112 	/*
2113 	 * Count how many redistributor regions we have. It is not allowed
2114 	 * to mix redistributor description, GICR and GICC subtables have to be
2115 	 * mutually exclusive.
2116 	 */
2117 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2118 				      gic_acpi_match_gicr, 0);
2119 	if (count > 0) {
2120 		acpi_data.single_redist = false;
2121 		return count;
2122 	}
2123 
2124 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2125 				      gic_acpi_match_gicc, 0);
2126 	if (count > 0) {
2127 		acpi_data.single_redist = true;
2128 		count = acpi_data.enabled_rdists;
2129 	}
2130 
2131 	return count;
2132 }
2133 
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2134 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2135 					   struct acpi_probe_entry *ape)
2136 {
2137 	struct acpi_madt_generic_distributor *dist;
2138 	int count;
2139 
2140 	dist = (struct acpi_madt_generic_distributor *)header;
2141 	if (dist->version != ape->driver_data)
2142 		return false;
2143 
2144 	/* We need to do that exercise anyway, the sooner the better */
2145 	count = gic_acpi_count_gicr_regions();
2146 	if (count <= 0)
2147 		return false;
2148 
2149 	acpi_data.nr_redist_regions = count;
2150 	return true;
2151 }
2152 
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2153 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2154 						const unsigned long end)
2155 {
2156 	struct acpi_madt_generic_interrupt *gicc =
2157 		(struct acpi_madt_generic_interrupt *)header;
2158 	int maint_irq_mode;
2159 	static int first_madt = true;
2160 
2161 	/* Skip unusable CPUs */
2162 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2163 		return 0;
2164 
2165 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2166 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2167 
2168 	if (first_madt) {
2169 		first_madt = false;
2170 
2171 		acpi_data.maint_irq = gicc->vgic_interrupt;
2172 		acpi_data.maint_irq_mode = maint_irq_mode;
2173 		acpi_data.vcpu_base = gicc->gicv_base_address;
2174 
2175 		return 0;
2176 	}
2177 
2178 	/*
2179 	 * The maintenance interrupt and GICV should be the same for every CPU
2180 	 */
2181 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2182 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2183 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2184 		return -EINVAL;
2185 
2186 	return 0;
2187 }
2188 
gic_acpi_collect_virt_info(void)2189 static bool __init gic_acpi_collect_virt_info(void)
2190 {
2191 	int count;
2192 
2193 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2194 				      gic_acpi_parse_virt_madt_gicc, 0);
2195 
2196 	return (count > 0);
2197 }
2198 
2199 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2200 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2201 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2202 
gic_acpi_setup_kvm_info(void)2203 static void __init gic_acpi_setup_kvm_info(void)
2204 {
2205 	int irq;
2206 
2207 	if (!gic_acpi_collect_virt_info()) {
2208 		pr_warn("Unable to get hardware information used for virtualization\n");
2209 		return;
2210 	}
2211 
2212 	gic_v3_kvm_info.type = GIC_V3;
2213 
2214 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2215 				acpi_data.maint_irq_mode,
2216 				ACPI_ACTIVE_HIGH);
2217 	if (irq <= 0)
2218 		return;
2219 
2220 	gic_v3_kvm_info.maint_irq = irq;
2221 
2222 	if (acpi_data.vcpu_base) {
2223 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2224 
2225 		vcpu->flags = IORESOURCE_MEM;
2226 		vcpu->start = acpi_data.vcpu_base;
2227 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2228 	}
2229 
2230 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2231 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2232 	gic_set_kvm_info(&gic_v3_kvm_info);
2233 }
2234 
2235 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2236 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2237 {
2238 	struct acpi_madt_generic_distributor *dist;
2239 	struct fwnode_handle *domain_handle;
2240 	size_t size;
2241 	int i, err;
2242 
2243 	/* Get distributor base address */
2244 	dist = (struct acpi_madt_generic_distributor *)header;
2245 	acpi_data.dist_base = ioremap(dist->base_address,
2246 				      ACPI_GICV3_DIST_MEM_SIZE);
2247 	if (!acpi_data.dist_base) {
2248 		pr_err("Unable to map GICD registers\n");
2249 		return -ENOMEM;
2250 	}
2251 
2252 	err = gic_validate_dist_version(acpi_data.dist_base);
2253 	if (err) {
2254 		pr_err("No distributor detected at @%p, giving up\n",
2255 		       acpi_data.dist_base);
2256 		goto out_dist_unmap;
2257 	}
2258 
2259 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2260 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2261 	if (!acpi_data.redist_regs) {
2262 		err = -ENOMEM;
2263 		goto out_dist_unmap;
2264 	}
2265 
2266 	err = gic_acpi_collect_gicr_base();
2267 	if (err)
2268 		goto out_redist_unmap;
2269 
2270 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2271 	if (!domain_handle) {
2272 		err = -ENOMEM;
2273 		goto out_redist_unmap;
2274 	}
2275 
2276 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2277 			     acpi_data.nr_redist_regions, 0, domain_handle);
2278 	if (err)
2279 		goto out_fwhandle_free;
2280 
2281 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2282 
2283 	if (static_branch_likely(&supports_deactivate_key))
2284 		gic_acpi_setup_kvm_info();
2285 
2286 	return 0;
2287 
2288 out_fwhandle_free:
2289 	irq_domain_free_fwnode(domain_handle);
2290 out_redist_unmap:
2291 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2292 		if (acpi_data.redist_regs[i].redist_base)
2293 			iounmap(acpi_data.redist_regs[i].redist_base);
2294 	kfree(acpi_data.redist_regs);
2295 out_dist_unmap:
2296 	iounmap(acpi_data.dist_base);
2297 	return err;
2298 }
2299 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2300 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2301 		     gic_acpi_init);
2302 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2303 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2304 		     gic_acpi_init);
2305 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2306 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2307 		     gic_acpi_init);
2308 #endif
2309