1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98 }
99
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108 }
109
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142 }
143
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157 }
158
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt[TOTAL_NAT]++;
181 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 return ne;
183 }
184
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 struct nat_entry *ne;
188
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197 }
198
199 return ne;
200 }
201
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt[TOTAL_NAT]--;
212 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 __free_nat_entry(e);
214 }
215
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
218 {
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
221
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 }
232 return head;
233 }
234
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
237 {
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
243
244 /*
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
248 */
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
252
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
257
258 nm_i->nat_cnt[DIRTY_NAT]++;
259 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 spin_lock(&nm_i->nat_list_lock);
263 if (new_ne)
264 list_del_init(&ne->list);
265 else
266 list_move_tail(&ne->list, &head->entry_list);
267 spin_unlock(&nm_i->nat_list_lock);
268 }
269
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 spin_lock(&nm_i->nat_list_lock);
274 list_move_tail(&ne->list, &nm_i->nat_entries);
275 spin_unlock(&nm_i->nat_list_lock);
276
277 set_nat_flag(ne, IS_DIRTY, false);
278 set->entry_cnt--;
279 nm_i->nat_cnt[DIRTY_NAT]--;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 start, nr);
288 }
289
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 return NODE_MAPPING(sbi) == page->mapping &&
293 IS_DNODE(page) && is_cold_node(page);
294 }
295
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 spin_lock_init(&sbi->fsync_node_lock);
299 INIT_LIST_HEAD(&sbi->fsync_node_list);
300 sbi->fsync_seg_id = 0;
301 sbi->fsync_node_num = 0;
302 }
303
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 struct page *page)
306 {
307 struct fsync_node_entry *fn;
308 unsigned long flags;
309 unsigned int seq_id;
310
311 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313 get_page(page);
314 fn->page = page;
315 INIT_LIST_HEAD(&fn->list);
316
317 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 list_add_tail(&fn->list, &sbi->fsync_node_list);
319 fn->seq_id = sbi->fsync_seg_id++;
320 seq_id = fn->seq_id;
321 sbi->fsync_node_num++;
322 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324 return seq_id;
325 }
326
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331
332 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 if (fn->page == page) {
335 list_del(&fn->list);
336 sbi->fsync_node_num--;
337 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 kmem_cache_free(fsync_node_entry_slab, fn);
339 put_page(page);
340 return;
341 }
342 }
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 f2fs_bug_on(sbi, 1);
345 }
346
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 unsigned long flags;
350
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 sbi->fsync_seg_id = 0;
353 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 struct f2fs_nm_info *nm_i = NM_I(sbi);
359 struct nat_entry *e;
360 bool need = false;
361
362 down_read(&nm_i->nat_tree_lock);
363 e = __lookup_nat_cache(nm_i, nid);
364 if (e) {
365 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 !get_nat_flag(e, HAS_FSYNCED_INODE))
367 need = true;
368 }
369 up_read(&nm_i->nat_tree_lock);
370 return need;
371 }
372
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 struct f2fs_nm_info *nm_i = NM_I(sbi);
376 struct nat_entry *e;
377 bool is_cp = true;
378
379 down_read(&nm_i->nat_tree_lock);
380 e = __lookup_nat_cache(nm_i, nid);
381 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 is_cp = false;
383 up_read(&nm_i->nat_tree_lock);
384 return is_cp;
385 }
386
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 struct f2fs_nm_info *nm_i = NM_I(sbi);
390 struct nat_entry *e;
391 bool need_update = true;
392
393 down_read(&nm_i->nat_tree_lock);
394 e = __lookup_nat_cache(nm_i, ino);
395 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 (get_nat_flag(e, IS_CHECKPOINTED) ||
397 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 need_update = false;
399 up_read(&nm_i->nat_tree_lock);
400 return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 struct f2fs_nat_entry *ne)
406 {
407 struct f2fs_nm_info *nm_i = NM_I(sbi);
408 struct nat_entry *new, *e;
409
410 new = __alloc_nat_entry(nid, false);
411 if (!new)
412 return;
413
414 down_write(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, nid);
416 if (!e)
417 e = __init_nat_entry(nm_i, new, ne, false);
418 else
419 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 nat_get_blkaddr(e) !=
421 le32_to_cpu(ne->block_addr) ||
422 nat_get_version(e) != ne->version);
423 up_write(&nm_i->nat_tree_lock);
424 if (e != new)
425 __free_nat_entry(new);
426 }
427
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 block_t new_blkaddr, bool fsync_done)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *e;
433 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, ni->nid);
437 if (!e) {
438 e = __init_nat_entry(nm_i, new, NULL, true);
439 copy_node_info(&e->ni, ni);
440 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 } else if (new_blkaddr == NEW_ADDR) {
442 /*
443 * when nid is reallocated,
444 * previous nat entry can be remained in nat cache.
445 * So, reinitialize it with new information.
446 */
447 copy_node_info(&e->ni, ni);
448 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 }
450 /* let's free early to reduce memory consumption */
451 if (e != new)
452 __free_nat_entry(new);
453
454 /* sanity check */
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 new_blkaddr == NULL_ADDR);
458 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 new_blkaddr == NEW_ADDR);
460 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 new_blkaddr == NEW_ADDR);
462
463 /* increment version no as node is removed */
464 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 unsigned char version = nat_get_version(e);
466 nat_set_version(e, inc_node_version(version));
467 }
468
469 /* change address */
470 nat_set_blkaddr(e, new_blkaddr);
471 if (!__is_valid_data_blkaddr(new_blkaddr))
472 set_nat_flag(e, IS_CHECKPOINTED, false);
473 __set_nat_cache_dirty(nm_i, e);
474
475 /* update fsync_mark if its inode nat entry is still alive */
476 if (ni->nid != ni->ino)
477 e = __lookup_nat_cache(nm_i, ni->ino);
478 if (e) {
479 if (fsync_done && ni->nid == ni->ino)
480 set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 }
483 up_write(&nm_i->nat_tree_lock);
484 }
485
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 struct f2fs_nm_info *nm_i = NM_I(sbi);
489 int nr = nr_shrink;
490
491 if (!down_write_trylock(&nm_i->nat_tree_lock))
492 return 0;
493
494 spin_lock(&nm_i->nat_list_lock);
495 while (nr_shrink) {
496 struct nat_entry *ne;
497
498 if (list_empty(&nm_i->nat_entries))
499 break;
500
501 ne = list_first_entry(&nm_i->nat_entries,
502 struct nat_entry, list);
503 list_del(&ne->list);
504 spin_unlock(&nm_i->nat_list_lock);
505
506 __del_from_nat_cache(nm_i, ne);
507 nr_shrink--;
508
509 spin_lock(&nm_i->nat_list_lock);
510 }
511 spin_unlock(&nm_i->nat_list_lock);
512
513 up_write(&nm_i->nat_tree_lock);
514 return nr - nr_shrink;
515 }
516
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
519 {
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 block_t blkaddr;
530 int i;
531
532 ni->nid = nid;
533
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
543 }
544
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
553 }
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
558 }
559
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
563
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
567
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572 cache:
573 blkaddr = le32_to_cpu(ne.block_addr);
574 if (__is_valid_data_blkaddr(blkaddr) &&
575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 return -EFAULT;
577
578 /* cache nat entry */
579 cache_nat_entry(sbi, nid, &ne);
580 return 0;
581 }
582
583 /*
584 * readahead MAX_RA_NODE number of node pages.
585 */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 struct blk_plug plug;
590 int i, end;
591 nid_t nid;
592
593 blk_start_plug(&plug);
594
595 /* Then, try readahead for siblings of the desired node */
596 end = start + n;
597 end = min(end, NIDS_PER_BLOCK);
598 for (i = start; i < end; i++) {
599 nid = get_nid(parent, i, false);
600 f2fs_ra_node_page(sbi, nid);
601 }
602
603 blk_finish_plug(&plug);
604 }
605
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 const long direct_index = ADDRS_PER_INODE(dn->inode);
609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 int cur_level = dn->cur_level;
613 int max_level = dn->max_level;
614 pgoff_t base = 0;
615
616 if (!dn->max_level)
617 return pgofs + 1;
618
619 while (max_level-- > cur_level)
620 skipped_unit *= NIDS_PER_BLOCK;
621
622 switch (dn->max_level) {
623 case 3:
624 base += 2 * indirect_blks;
625 fallthrough;
626 case 2:
627 base += 2 * direct_blks;
628 fallthrough;
629 case 1:
630 base += direct_index;
631 break;
632 default:
633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 }
635
636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640 * The maximum depth is four.
641 * Offset[0] will have raw inode offset.
642 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 int offset[4], unsigned int noffset[4])
645 {
646 const long direct_index = ADDRS_PER_INODE(inode);
647 const long direct_blks = ADDRS_PER_BLOCK(inode);
648 const long dptrs_per_blk = NIDS_PER_BLOCK;
649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 int n = 0;
652 int level = 0;
653
654 noffset[0] = 0;
655
656 if (block < direct_index) {
657 offset[n] = block;
658 goto got;
659 }
660 block -= direct_index;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR1_BLOCK;
663 noffset[n] = 1;
664 offset[n] = block;
665 level = 1;
666 goto got;
667 }
668 block -= direct_blks;
669 if (block < direct_blks) {
670 offset[n++] = NODE_DIR2_BLOCK;
671 noffset[n] = 2;
672 offset[n] = block;
673 level = 1;
674 goto got;
675 }
676 block -= direct_blks;
677 if (block < indirect_blks) {
678 offset[n++] = NODE_IND1_BLOCK;
679 noffset[n] = 3;
680 offset[n++] = block / direct_blks;
681 noffset[n] = 4 + offset[n - 1];
682 offset[n] = block % direct_blks;
683 level = 2;
684 goto got;
685 }
686 block -= indirect_blks;
687 if (block < indirect_blks) {
688 offset[n++] = NODE_IND2_BLOCK;
689 noffset[n] = 4 + dptrs_per_blk;
690 offset[n++] = block / direct_blks;
691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 offset[n] = block % direct_blks;
693 level = 2;
694 goto got;
695 }
696 block -= indirect_blks;
697 if (block < dindirect_blks) {
698 offset[n++] = NODE_DIND_BLOCK;
699 noffset[n] = 5 + (dptrs_per_blk * 2);
700 offset[n++] = block / indirect_blks;
701 noffset[n] = 6 + (dptrs_per_blk * 2) +
702 offset[n - 1] * (dptrs_per_blk + 1);
703 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 noffset[n] = 7 + (dptrs_per_blk * 2) +
705 offset[n - 2] * (dptrs_per_blk + 1) +
706 offset[n - 1];
707 offset[n] = block % direct_blks;
708 level = 3;
709 goto got;
710 } else {
711 return -E2BIG;
712 }
713 got:
714 return level;
715 }
716
717 /*
718 * Caller should call f2fs_put_dnode(dn).
719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
732
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
736
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
739
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
744 }
745
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
751 }
752
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
758
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
762
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
768 }
769
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
776 }
777
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
786 }
787 done = true;
788 }
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
794 }
795
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
802 }
803 }
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
807 }
808 }
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 return 0;
814
815 release_pages:
816 f2fs_put_page(parent, 1);
817 if (i > 1)
818 f2fs_put_page(npage[0], 0);
819 release_out:
820 dn->inode_page = NULL;
821 dn->node_page = NULL;
822 if (err == -ENOENT) {
823 dn->cur_level = i;
824 dn->max_level = level;
825 dn->ofs_in_node = offset[level];
826 }
827 return err;
828 }
829
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 struct node_info ni;
834 int err;
835 pgoff_t index;
836
837 err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 if (err)
839 return err;
840
841 /* Deallocate node address */
842 f2fs_invalidate_blocks(sbi, ni.blk_addr);
843 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844 set_node_addr(sbi, &ni, NULL_ADDR, false);
845
846 if (dn->nid == dn->inode->i_ino) {
847 f2fs_remove_orphan_inode(sbi, dn->nid);
848 dec_valid_inode_count(sbi);
849 f2fs_inode_synced(dn->inode);
850 }
851
852 clear_node_page_dirty(dn->node_page);
853 set_sbi_flag(sbi, SBI_IS_DIRTY);
854
855 index = dn->node_page->index;
856 f2fs_put_page(dn->node_page, 1);
857
858 invalidate_mapping_pages(NODE_MAPPING(sbi),
859 index, index);
860
861 dn->node_page = NULL;
862 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863
864 return 0;
865 }
866
truncate_dnode(struct dnode_of_data * dn)867 static int truncate_dnode(struct dnode_of_data *dn)
868 {
869 struct page *page;
870 int err;
871
872 if (dn->nid == 0)
873 return 1;
874
875 /* get direct node */
876 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877 if (PTR_ERR(page) == -ENOENT)
878 return 1;
879 else if (IS_ERR(page))
880 return PTR_ERR(page);
881
882 /* Make dnode_of_data for parameter */
883 dn->node_page = page;
884 dn->ofs_in_node = 0;
885 f2fs_truncate_data_blocks(dn);
886 err = truncate_node(dn);
887 if (err)
888 return err;
889
890 return 1;
891 }
892
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)893 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
894 int ofs, int depth)
895 {
896 struct dnode_of_data rdn = *dn;
897 struct page *page;
898 struct f2fs_node *rn;
899 nid_t child_nid;
900 unsigned int child_nofs;
901 int freed = 0;
902 int i, ret;
903
904 if (dn->nid == 0)
905 return NIDS_PER_BLOCK + 1;
906
907 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
908
909 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
910 if (IS_ERR(page)) {
911 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
912 return PTR_ERR(page);
913 }
914
915 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
916
917 rn = F2FS_NODE(page);
918 if (depth < 3) {
919 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
920 child_nid = le32_to_cpu(rn->in.nid[i]);
921 if (child_nid == 0)
922 continue;
923 rdn.nid = child_nid;
924 ret = truncate_dnode(&rdn);
925 if (ret < 0)
926 goto out_err;
927 if (set_nid(page, i, 0, false))
928 dn->node_changed = true;
929 }
930 } else {
931 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
932 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
933 child_nid = le32_to_cpu(rn->in.nid[i]);
934 if (child_nid == 0) {
935 child_nofs += NIDS_PER_BLOCK + 1;
936 continue;
937 }
938 rdn.nid = child_nid;
939 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
940 if (ret == (NIDS_PER_BLOCK + 1)) {
941 if (set_nid(page, i, 0, false))
942 dn->node_changed = true;
943 child_nofs += ret;
944 } else if (ret < 0 && ret != -ENOENT) {
945 goto out_err;
946 }
947 }
948 freed = child_nofs;
949 }
950
951 if (!ofs) {
952 /* remove current indirect node */
953 dn->node_page = page;
954 ret = truncate_node(dn);
955 if (ret)
956 goto out_err;
957 freed++;
958 } else {
959 f2fs_put_page(page, 1);
960 }
961 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
962 return freed;
963
964 out_err:
965 f2fs_put_page(page, 1);
966 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
967 return ret;
968 }
969
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)970 static int truncate_partial_nodes(struct dnode_of_data *dn,
971 struct f2fs_inode *ri, int *offset, int depth)
972 {
973 struct page *pages[2];
974 nid_t nid[3];
975 nid_t child_nid;
976 int err = 0;
977 int i;
978 int idx = depth - 2;
979
980 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
981 if (!nid[0])
982 return 0;
983
984 /* get indirect nodes in the path */
985 for (i = 0; i < idx + 1; i++) {
986 /* reference count'll be increased */
987 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
988 if (IS_ERR(pages[i])) {
989 err = PTR_ERR(pages[i]);
990 idx = i - 1;
991 goto fail;
992 }
993 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
994 }
995
996 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
997
998 /* free direct nodes linked to a partial indirect node */
999 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1000 child_nid = get_nid(pages[idx], i, false);
1001 if (!child_nid)
1002 continue;
1003 dn->nid = child_nid;
1004 err = truncate_dnode(dn);
1005 if (err < 0)
1006 goto fail;
1007 if (set_nid(pages[idx], i, 0, false))
1008 dn->node_changed = true;
1009 }
1010
1011 if (offset[idx + 1] == 0) {
1012 dn->node_page = pages[idx];
1013 dn->nid = nid[idx];
1014 err = truncate_node(dn);
1015 if (err)
1016 goto fail;
1017 } else {
1018 f2fs_put_page(pages[idx], 1);
1019 }
1020 offset[idx]++;
1021 offset[idx + 1] = 0;
1022 idx--;
1023 fail:
1024 for (i = idx; i >= 0; i--)
1025 f2fs_put_page(pages[i], 1);
1026
1027 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1028
1029 return err;
1030 }
1031
1032 /*
1033 * All the block addresses of data and nodes should be nullified.
1034 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1035 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1036 {
1037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038 int err = 0, cont = 1;
1039 int level, offset[4], noffset[4];
1040 unsigned int nofs = 0;
1041 struct f2fs_inode *ri;
1042 struct dnode_of_data dn;
1043 struct page *page;
1044
1045 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1046
1047 level = get_node_path(inode, from, offset, noffset);
1048 if (level < 0) {
1049 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1050 return level;
1051 }
1052
1053 page = f2fs_get_node_page(sbi, inode->i_ino);
1054 if (IS_ERR(page)) {
1055 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1056 return PTR_ERR(page);
1057 }
1058
1059 set_new_dnode(&dn, inode, page, NULL, 0);
1060 unlock_page(page);
1061
1062 ri = F2FS_INODE(page);
1063 switch (level) {
1064 case 0:
1065 case 1:
1066 nofs = noffset[1];
1067 break;
1068 case 2:
1069 nofs = noffset[1];
1070 if (!offset[level - 1])
1071 goto skip_partial;
1072 err = truncate_partial_nodes(&dn, ri, offset, level);
1073 if (err < 0 && err != -ENOENT)
1074 goto fail;
1075 nofs += 1 + NIDS_PER_BLOCK;
1076 break;
1077 case 3:
1078 nofs = 5 + 2 * NIDS_PER_BLOCK;
1079 if (!offset[level - 1])
1080 goto skip_partial;
1081 err = truncate_partial_nodes(&dn, ri, offset, level);
1082 if (err < 0 && err != -ENOENT)
1083 goto fail;
1084 break;
1085 default:
1086 BUG();
1087 }
1088
1089 skip_partial:
1090 while (cont) {
1091 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1092 switch (offset[0]) {
1093 case NODE_DIR1_BLOCK:
1094 case NODE_DIR2_BLOCK:
1095 err = truncate_dnode(&dn);
1096 break;
1097
1098 case NODE_IND1_BLOCK:
1099 case NODE_IND2_BLOCK:
1100 err = truncate_nodes(&dn, nofs, offset[1], 2);
1101 break;
1102
1103 case NODE_DIND_BLOCK:
1104 err = truncate_nodes(&dn, nofs, offset[1], 3);
1105 cont = 0;
1106 break;
1107
1108 default:
1109 BUG();
1110 }
1111 if (err < 0 && err != -ENOENT)
1112 goto fail;
1113 if (offset[1] == 0 &&
1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1115 lock_page(page);
1116 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1117 f2fs_wait_on_page_writeback(page, NODE, true, true);
1118 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1119 set_page_dirty(page);
1120 unlock_page(page);
1121 }
1122 offset[1] = 0;
1123 offset[0]++;
1124 nofs += err;
1125 }
1126 fail:
1127 f2fs_put_page(page, 0);
1128 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1129 return err > 0 ? 0 : err;
1130 }
1131
1132 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1133 int f2fs_truncate_xattr_node(struct inode *inode)
1134 {
1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1137 struct dnode_of_data dn;
1138 struct page *npage;
1139 int err;
1140
1141 if (!nid)
1142 return 0;
1143
1144 npage = f2fs_get_node_page(sbi, nid);
1145 if (IS_ERR(npage))
1146 return PTR_ERR(npage);
1147
1148 set_new_dnode(&dn, inode, NULL, npage, nid);
1149 err = truncate_node(&dn);
1150 if (err) {
1151 f2fs_put_page(npage, 1);
1152 return err;
1153 }
1154
1155 f2fs_i_xnid_write(inode, 0);
1156
1157 return 0;
1158 }
1159
1160 /*
1161 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1162 * f2fs_unlock_op().
1163 */
f2fs_remove_inode_page(struct inode * inode)1164 int f2fs_remove_inode_page(struct inode *inode)
1165 {
1166 struct dnode_of_data dn;
1167 int err;
1168
1169 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1170 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1171 if (err)
1172 return err;
1173
1174 err = f2fs_truncate_xattr_node(inode);
1175 if (err) {
1176 f2fs_put_dnode(&dn);
1177 return err;
1178 }
1179
1180 /* remove potential inline_data blocks */
1181 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182 S_ISLNK(inode->i_mode))
1183 f2fs_truncate_data_blocks_range(&dn, 1);
1184
1185 /* 0 is possible, after f2fs_new_inode() has failed */
1186 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1187 f2fs_put_dnode(&dn);
1188 return -EIO;
1189 }
1190
1191 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1192 f2fs_warn(F2FS_I_SB(inode),
1193 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1194 inode->i_ino, (unsigned long long)inode->i_blocks);
1195 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1196 }
1197
1198 /* will put inode & node pages */
1199 err = truncate_node(&dn);
1200 if (err) {
1201 f2fs_put_dnode(&dn);
1202 return err;
1203 }
1204 return 0;
1205 }
1206
f2fs_new_inode_page(struct inode * inode)1207 struct page *f2fs_new_inode_page(struct inode *inode)
1208 {
1209 struct dnode_of_data dn;
1210
1211 /* allocate inode page for new inode */
1212 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1213
1214 /* caller should f2fs_put_page(page, 1); */
1215 return f2fs_new_node_page(&dn, 0);
1216 }
1217
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1218 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1219 {
1220 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221 struct node_info new_ni;
1222 struct page *page;
1223 int err;
1224
1225 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1226 return ERR_PTR(-EPERM);
1227
1228 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1229 if (!page)
1230 return ERR_PTR(-ENOMEM);
1231
1232 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1233 goto fail;
1234
1235 #ifdef CONFIG_F2FS_CHECK_FS
1236 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1237 if (err) {
1238 dec_valid_node_count(sbi, dn->inode, !ofs);
1239 goto fail;
1240 }
1241 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1242 #endif
1243 new_ni.nid = dn->nid;
1244 new_ni.ino = dn->inode->i_ino;
1245 new_ni.blk_addr = NULL_ADDR;
1246 new_ni.flag = 0;
1247 new_ni.version = 0;
1248 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1249
1250 f2fs_wait_on_page_writeback(page, NODE, true, true);
1251 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1252 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1253 if (!PageUptodate(page))
1254 SetPageUptodate(page);
1255 if (set_page_dirty(page))
1256 dn->node_changed = true;
1257
1258 if (f2fs_has_xattr_block(ofs))
1259 f2fs_i_xnid_write(dn->inode, dn->nid);
1260
1261 if (ofs == 0)
1262 inc_valid_inode_count(sbi);
1263 return page;
1264
1265 fail:
1266 clear_node_page_dirty(page);
1267 f2fs_put_page(page, 1);
1268 return ERR_PTR(err);
1269 }
1270
1271 /*
1272 * Caller should do after getting the following values.
1273 * 0: f2fs_put_page(page, 0)
1274 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1275 */
read_node_page(struct page * page,int op_flags)1276 static int read_node_page(struct page *page, int op_flags)
1277 {
1278 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1279 struct node_info ni;
1280 struct f2fs_io_info fio = {
1281 .sbi = sbi,
1282 .type = NODE,
1283 .op = REQ_OP_READ,
1284 .op_flags = op_flags,
1285 .page = page,
1286 .encrypted_page = NULL,
1287 };
1288 int err;
1289
1290 if (PageUptodate(page)) {
1291 if (!f2fs_inode_chksum_verify(sbi, page)) {
1292 ClearPageUptodate(page);
1293 return -EFSBADCRC;
1294 }
1295 return LOCKED_PAGE;
1296 }
1297
1298 err = f2fs_get_node_info(sbi, page->index, &ni);
1299 if (err)
1300 return err;
1301
1302 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1303 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1304 ClearPageUptodate(page);
1305 return -ENOENT;
1306 }
1307
1308 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1309
1310 err = f2fs_submit_page_bio(&fio);
1311
1312 if (!err)
1313 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1314
1315 return err;
1316 }
1317
1318 /*
1319 * Readahead a node page
1320 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1321 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1322 {
1323 struct page *apage;
1324 int err;
1325
1326 if (!nid)
1327 return;
1328 if (f2fs_check_nid_range(sbi, nid))
1329 return;
1330
1331 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1332 if (apage)
1333 return;
1334
1335 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336 if (!apage)
1337 return;
1338
1339 err = read_node_page(apage, REQ_RAHEAD);
1340 f2fs_put_page(apage, err ? 1 : 0);
1341 }
1342
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1343 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1344 struct page *parent, int start)
1345 {
1346 struct page *page;
1347 int err;
1348
1349 if (!nid)
1350 return ERR_PTR(-ENOENT);
1351 if (f2fs_check_nid_range(sbi, nid))
1352 return ERR_PTR(-EINVAL);
1353 repeat:
1354 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1355 if (!page)
1356 return ERR_PTR(-ENOMEM);
1357
1358 err = read_node_page(page, 0);
1359 if (err < 0) {
1360 f2fs_put_page(page, 1);
1361 return ERR_PTR(err);
1362 } else if (err == LOCKED_PAGE) {
1363 err = 0;
1364 goto page_hit;
1365 }
1366
1367 if (parent)
1368 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1369
1370 lock_page(page);
1371
1372 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1373 f2fs_put_page(page, 1);
1374 goto repeat;
1375 }
1376
1377 if (unlikely(!PageUptodate(page))) {
1378 err = -EIO;
1379 goto out_err;
1380 }
1381
1382 if (!f2fs_inode_chksum_verify(sbi, page)) {
1383 err = -EFSBADCRC;
1384 goto out_err;
1385 }
1386 page_hit:
1387 if(unlikely(nid != nid_of_node(page))) {
1388 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1389 nid, nid_of_node(page), ino_of_node(page),
1390 ofs_of_node(page), cpver_of_node(page),
1391 next_blkaddr_of_node(page));
1392 err = -EINVAL;
1393 out_err:
1394 ClearPageUptodate(page);
1395 f2fs_put_page(page, 1);
1396 return ERR_PTR(err);
1397 }
1398 return page;
1399 }
1400
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1401 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1402 {
1403 return __get_node_page(sbi, nid, NULL, 0);
1404 }
1405
f2fs_get_node_page_ra(struct page * parent,int start)1406 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1407 {
1408 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1409 nid_t nid = get_nid(parent, start, false);
1410
1411 return __get_node_page(sbi, nid, parent, start);
1412 }
1413
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1414 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1415 {
1416 struct inode *inode;
1417 struct page *page;
1418 int ret;
1419
1420 /* should flush inline_data before evict_inode */
1421 inode = ilookup(sbi->sb, ino);
1422 if (!inode)
1423 return;
1424
1425 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1426 FGP_LOCK|FGP_NOWAIT, 0);
1427 if (!page)
1428 goto iput_out;
1429
1430 if (!PageUptodate(page))
1431 goto page_out;
1432
1433 if (!PageDirty(page))
1434 goto page_out;
1435
1436 if (!clear_page_dirty_for_io(page))
1437 goto page_out;
1438
1439 ret = f2fs_write_inline_data(inode, page);
1440 inode_dec_dirty_pages(inode);
1441 f2fs_remove_dirty_inode(inode);
1442 if (ret)
1443 set_page_dirty(page);
1444 page_out:
1445 f2fs_put_page(page, 1);
1446 iput_out:
1447 iput(inode);
1448 }
1449
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1450 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1451 {
1452 pgoff_t index;
1453 struct pagevec pvec;
1454 struct page *last_page = NULL;
1455 int nr_pages;
1456
1457 pagevec_init(&pvec);
1458 index = 0;
1459
1460 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1461 PAGECACHE_TAG_DIRTY))) {
1462 int i;
1463
1464 for (i = 0; i < nr_pages; i++) {
1465 struct page *page = pvec.pages[i];
1466
1467 if (unlikely(f2fs_cp_error(sbi))) {
1468 f2fs_put_page(last_page, 0);
1469 pagevec_release(&pvec);
1470 return ERR_PTR(-EIO);
1471 }
1472
1473 if (!IS_DNODE(page) || !is_cold_node(page))
1474 continue;
1475 if (ino_of_node(page) != ino)
1476 continue;
1477
1478 lock_page(page);
1479
1480 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1481 continue_unlock:
1482 unlock_page(page);
1483 continue;
1484 }
1485 if (ino_of_node(page) != ino)
1486 goto continue_unlock;
1487
1488 if (!PageDirty(page)) {
1489 /* someone wrote it for us */
1490 goto continue_unlock;
1491 }
1492
1493 if (last_page)
1494 f2fs_put_page(last_page, 0);
1495
1496 get_page(page);
1497 last_page = page;
1498 unlock_page(page);
1499 }
1500 pagevec_release(&pvec);
1501 cond_resched();
1502 }
1503 return last_page;
1504 }
1505
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1506 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1507 struct writeback_control *wbc, bool do_balance,
1508 enum iostat_type io_type, unsigned int *seq_id)
1509 {
1510 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1511 nid_t nid;
1512 struct node_info ni;
1513 struct f2fs_io_info fio = {
1514 .sbi = sbi,
1515 .ino = ino_of_node(page),
1516 .type = NODE,
1517 .op = REQ_OP_WRITE,
1518 .op_flags = wbc_to_write_flags(wbc),
1519 .page = page,
1520 .encrypted_page = NULL,
1521 .submitted = false,
1522 .io_type = io_type,
1523 .io_wbc = wbc,
1524 };
1525 unsigned int seq;
1526
1527 trace_f2fs_writepage(page, NODE);
1528
1529 if (unlikely(f2fs_cp_error(sbi))) {
1530 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1531 ClearPageUptodate(page);
1532 dec_page_count(sbi, F2FS_DIRTY_NODES);
1533 unlock_page(page);
1534 return 0;
1535 }
1536 goto redirty_out;
1537 }
1538
1539 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1540 goto redirty_out;
1541
1542 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1543 wbc->sync_mode == WB_SYNC_NONE &&
1544 IS_DNODE(page) && is_cold_node(page))
1545 goto redirty_out;
1546
1547 /* get old block addr of this node page */
1548 nid = nid_of_node(page);
1549 f2fs_bug_on(sbi, page->index != nid);
1550
1551 if (f2fs_get_node_info(sbi, nid, &ni))
1552 goto redirty_out;
1553
1554 if (wbc->for_reclaim) {
1555 if (!down_read_trylock(&sbi->node_write))
1556 goto redirty_out;
1557 } else {
1558 down_read(&sbi->node_write);
1559 }
1560
1561 /* This page is already truncated */
1562 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1563 ClearPageUptodate(page);
1564 dec_page_count(sbi, F2FS_DIRTY_NODES);
1565 up_read(&sbi->node_write);
1566 unlock_page(page);
1567 return 0;
1568 }
1569
1570 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1571 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1572 DATA_GENERIC_ENHANCE)) {
1573 up_read(&sbi->node_write);
1574 goto redirty_out;
1575 }
1576
1577 if (atomic && !test_opt(sbi, NOBARRIER))
1578 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1579
1580 /* should add to global list before clearing PAGECACHE status */
1581 if (f2fs_in_warm_node_list(sbi, page)) {
1582 seq = f2fs_add_fsync_node_entry(sbi, page);
1583 if (seq_id)
1584 *seq_id = seq;
1585 }
1586
1587 set_page_writeback(page);
1588 ClearPageError(page);
1589
1590 fio.old_blkaddr = ni.blk_addr;
1591 f2fs_do_write_node_page(nid, &fio);
1592 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1593 dec_page_count(sbi, F2FS_DIRTY_NODES);
1594 up_read(&sbi->node_write);
1595
1596 if (wbc->for_reclaim) {
1597 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1598 submitted = NULL;
1599 }
1600
1601 unlock_page(page);
1602
1603 if (unlikely(f2fs_cp_error(sbi))) {
1604 f2fs_submit_merged_write(sbi, NODE);
1605 submitted = NULL;
1606 }
1607 if (submitted)
1608 *submitted = fio.submitted;
1609
1610 if (do_balance)
1611 f2fs_balance_fs(sbi, false);
1612 return 0;
1613
1614 redirty_out:
1615 redirty_page_for_writepage(wbc, page);
1616 return AOP_WRITEPAGE_ACTIVATE;
1617 }
1618
f2fs_move_node_page(struct page * node_page,int gc_type)1619 int f2fs_move_node_page(struct page *node_page, int gc_type)
1620 {
1621 int err = 0;
1622
1623 if (gc_type == FG_GC) {
1624 struct writeback_control wbc = {
1625 .sync_mode = WB_SYNC_ALL,
1626 .nr_to_write = 1,
1627 .for_reclaim = 0,
1628 };
1629
1630 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1631
1632 set_page_dirty(node_page);
1633
1634 if (!clear_page_dirty_for_io(node_page)) {
1635 err = -EAGAIN;
1636 goto out_page;
1637 }
1638
1639 if (__write_node_page(node_page, false, NULL,
1640 &wbc, false, FS_GC_NODE_IO, NULL)) {
1641 err = -EAGAIN;
1642 unlock_page(node_page);
1643 }
1644 goto release_page;
1645 } else {
1646 /* set page dirty and write it */
1647 if (!PageWriteback(node_page))
1648 set_page_dirty(node_page);
1649 }
1650 out_page:
1651 unlock_page(node_page);
1652 release_page:
1653 f2fs_put_page(node_page, 0);
1654 return err;
1655 }
1656
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1657 static int f2fs_write_node_page(struct page *page,
1658 struct writeback_control *wbc)
1659 {
1660 return __write_node_page(page, false, NULL, wbc, false,
1661 FS_NODE_IO, NULL);
1662 }
1663
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1664 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1665 struct writeback_control *wbc, bool atomic,
1666 unsigned int *seq_id)
1667 {
1668 pgoff_t index;
1669 struct pagevec pvec;
1670 int ret = 0;
1671 struct page *last_page = NULL;
1672 bool marked = false;
1673 nid_t ino = inode->i_ino;
1674 int nr_pages;
1675 int nwritten = 0;
1676
1677 if (atomic) {
1678 last_page = last_fsync_dnode(sbi, ino);
1679 if (IS_ERR_OR_NULL(last_page))
1680 return PTR_ERR_OR_ZERO(last_page);
1681 }
1682 retry:
1683 pagevec_init(&pvec);
1684 index = 0;
1685
1686 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1687 PAGECACHE_TAG_DIRTY))) {
1688 int i;
1689
1690 for (i = 0; i < nr_pages; i++) {
1691 struct page *page = pvec.pages[i];
1692 bool submitted = false;
1693
1694 if (unlikely(f2fs_cp_error(sbi))) {
1695 f2fs_put_page(last_page, 0);
1696 pagevec_release(&pvec);
1697 ret = -EIO;
1698 goto out;
1699 }
1700
1701 if (!IS_DNODE(page) || !is_cold_node(page))
1702 continue;
1703 if (ino_of_node(page) != ino)
1704 continue;
1705
1706 lock_page(page);
1707
1708 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1709 continue_unlock:
1710 unlock_page(page);
1711 continue;
1712 }
1713 if (ino_of_node(page) != ino)
1714 goto continue_unlock;
1715
1716 if (!PageDirty(page) && page != last_page) {
1717 /* someone wrote it for us */
1718 goto continue_unlock;
1719 }
1720
1721 f2fs_wait_on_page_writeback(page, NODE, true, true);
1722
1723 set_fsync_mark(page, 0);
1724 set_dentry_mark(page, 0);
1725
1726 if (!atomic || page == last_page) {
1727 set_fsync_mark(page, 1);
1728 if (IS_INODE(page)) {
1729 if (is_inode_flag_set(inode,
1730 FI_DIRTY_INODE))
1731 f2fs_update_inode(inode, page);
1732 set_dentry_mark(page,
1733 f2fs_need_dentry_mark(sbi, ino));
1734 }
1735 /* may be written by other thread */
1736 if (!PageDirty(page))
1737 set_page_dirty(page);
1738 }
1739
1740 if (!clear_page_dirty_for_io(page))
1741 goto continue_unlock;
1742
1743 ret = __write_node_page(page, atomic &&
1744 page == last_page,
1745 &submitted, wbc, true,
1746 FS_NODE_IO, seq_id);
1747 if (ret) {
1748 unlock_page(page);
1749 f2fs_put_page(last_page, 0);
1750 break;
1751 } else if (submitted) {
1752 nwritten++;
1753 }
1754
1755 if (page == last_page) {
1756 f2fs_put_page(page, 0);
1757 marked = true;
1758 break;
1759 }
1760 }
1761 pagevec_release(&pvec);
1762 cond_resched();
1763
1764 if (ret || marked)
1765 break;
1766 }
1767 if (!ret && atomic && !marked) {
1768 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1769 ino, last_page->index);
1770 lock_page(last_page);
1771 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1772 set_page_dirty(last_page);
1773 unlock_page(last_page);
1774 goto retry;
1775 }
1776 out:
1777 if (nwritten)
1778 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1779 return ret ? -EIO: 0;
1780 }
1781
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1782 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1783 {
1784 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1785 bool clean;
1786
1787 if (inode->i_ino != ino)
1788 return 0;
1789
1790 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1791 return 0;
1792
1793 spin_lock(&sbi->inode_lock[DIRTY_META]);
1794 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1795 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1796
1797 if (clean)
1798 return 0;
1799
1800 inode = igrab(inode);
1801 if (!inode)
1802 return 0;
1803 return 1;
1804 }
1805
flush_dirty_inode(struct page * page)1806 static bool flush_dirty_inode(struct page *page)
1807 {
1808 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1809 struct inode *inode;
1810 nid_t ino = ino_of_node(page);
1811
1812 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1813 if (!inode)
1814 return false;
1815
1816 f2fs_update_inode(inode, page);
1817 unlock_page(page);
1818
1819 iput(inode);
1820 return true;
1821 }
1822
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1823 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1824 {
1825 pgoff_t index = 0;
1826 struct pagevec pvec;
1827 int nr_pages;
1828
1829 pagevec_init(&pvec);
1830
1831 while ((nr_pages = pagevec_lookup_tag(&pvec,
1832 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1833 int i;
1834
1835 for (i = 0; i < nr_pages; i++) {
1836 struct page *page = pvec.pages[i];
1837
1838 if (!IS_DNODE(page))
1839 continue;
1840
1841 lock_page(page);
1842
1843 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1844 continue_unlock:
1845 unlock_page(page);
1846 continue;
1847 }
1848
1849 if (!PageDirty(page)) {
1850 /* someone wrote it for us */
1851 goto continue_unlock;
1852 }
1853
1854 /* flush inline_data, if it's async context. */
1855 if (is_inline_node(page)) {
1856 clear_inline_node(page);
1857 unlock_page(page);
1858 flush_inline_data(sbi, ino_of_node(page));
1859 continue;
1860 }
1861 unlock_page(page);
1862 }
1863 pagevec_release(&pvec);
1864 cond_resched();
1865 }
1866 }
1867
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1868 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1869 struct writeback_control *wbc,
1870 bool do_balance, enum iostat_type io_type)
1871 {
1872 pgoff_t index;
1873 struct pagevec pvec;
1874 int step = 0;
1875 int nwritten = 0;
1876 int ret = 0;
1877 int nr_pages, done = 0;
1878
1879 pagevec_init(&pvec);
1880
1881 next_step:
1882 index = 0;
1883
1884 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1885 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1886 int i;
1887
1888 for (i = 0; i < nr_pages; i++) {
1889 struct page *page = pvec.pages[i];
1890 bool submitted = false;
1891 bool may_dirty = true;
1892
1893 /* give a priority to WB_SYNC threads */
1894 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1895 wbc->sync_mode == WB_SYNC_NONE) {
1896 done = 1;
1897 break;
1898 }
1899
1900 /*
1901 * flushing sequence with step:
1902 * 0. indirect nodes
1903 * 1. dentry dnodes
1904 * 2. file dnodes
1905 */
1906 if (step == 0 && IS_DNODE(page))
1907 continue;
1908 if (step == 1 && (!IS_DNODE(page) ||
1909 is_cold_node(page)))
1910 continue;
1911 if (step == 2 && (!IS_DNODE(page) ||
1912 !is_cold_node(page)))
1913 continue;
1914 lock_node:
1915 if (wbc->sync_mode == WB_SYNC_ALL)
1916 lock_page(page);
1917 else if (!trylock_page(page))
1918 continue;
1919
1920 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1921 continue_unlock:
1922 unlock_page(page);
1923 continue;
1924 }
1925
1926 if (!PageDirty(page)) {
1927 /* someone wrote it for us */
1928 goto continue_unlock;
1929 }
1930
1931 /* flush inline_data/inode, if it's async context. */
1932 if (!do_balance)
1933 goto write_node;
1934
1935 /* flush inline_data */
1936 if (is_inline_node(page)) {
1937 clear_inline_node(page);
1938 unlock_page(page);
1939 flush_inline_data(sbi, ino_of_node(page));
1940 goto lock_node;
1941 }
1942
1943 /* flush dirty inode */
1944 if (IS_INODE(page) && may_dirty) {
1945 may_dirty = false;
1946 if (flush_dirty_inode(page))
1947 goto lock_node;
1948 }
1949 write_node:
1950 f2fs_wait_on_page_writeback(page, NODE, true, true);
1951
1952 if (!clear_page_dirty_for_io(page))
1953 goto continue_unlock;
1954
1955 set_fsync_mark(page, 0);
1956 set_dentry_mark(page, 0);
1957
1958 ret = __write_node_page(page, false, &submitted,
1959 wbc, do_balance, io_type, NULL);
1960 if (ret)
1961 unlock_page(page);
1962 else if (submitted)
1963 nwritten++;
1964
1965 if (--wbc->nr_to_write == 0)
1966 break;
1967 }
1968 pagevec_release(&pvec);
1969 cond_resched();
1970
1971 if (wbc->nr_to_write == 0) {
1972 step = 2;
1973 break;
1974 }
1975 }
1976
1977 if (step < 2) {
1978 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1979 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1980 goto out;
1981 step++;
1982 goto next_step;
1983 }
1984 out:
1985 if (nwritten)
1986 f2fs_submit_merged_write(sbi, NODE);
1987
1988 if (unlikely(f2fs_cp_error(sbi)))
1989 return -EIO;
1990 return ret;
1991 }
1992
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)1993 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1994 unsigned int seq_id)
1995 {
1996 struct fsync_node_entry *fn;
1997 struct page *page;
1998 struct list_head *head = &sbi->fsync_node_list;
1999 unsigned long flags;
2000 unsigned int cur_seq_id = 0;
2001 int ret2, ret = 0;
2002
2003 while (seq_id && cur_seq_id < seq_id) {
2004 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2005 if (list_empty(head)) {
2006 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2007 break;
2008 }
2009 fn = list_first_entry(head, struct fsync_node_entry, list);
2010 if (fn->seq_id > seq_id) {
2011 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2012 break;
2013 }
2014 cur_seq_id = fn->seq_id;
2015 page = fn->page;
2016 get_page(page);
2017 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2018
2019 f2fs_wait_on_page_writeback(page, NODE, true, false);
2020 if (TestClearPageError(page))
2021 ret = -EIO;
2022
2023 put_page(page);
2024
2025 if (ret)
2026 break;
2027 }
2028
2029 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2030 if (!ret)
2031 ret = ret2;
2032
2033 return ret;
2034 }
2035
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2036 static int f2fs_write_node_pages(struct address_space *mapping,
2037 struct writeback_control *wbc)
2038 {
2039 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2040 struct blk_plug plug;
2041 long diff;
2042
2043 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2044 goto skip_write;
2045
2046 /* balancing f2fs's metadata in background */
2047 f2fs_balance_fs_bg(sbi, true);
2048
2049 /* collect a number of dirty node pages and write together */
2050 if (wbc->sync_mode != WB_SYNC_ALL &&
2051 get_pages(sbi, F2FS_DIRTY_NODES) <
2052 nr_pages_to_skip(sbi, NODE))
2053 goto skip_write;
2054
2055 if (wbc->sync_mode == WB_SYNC_ALL)
2056 atomic_inc(&sbi->wb_sync_req[NODE]);
2057 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2058 goto skip_write;
2059
2060 trace_f2fs_writepages(mapping->host, wbc, NODE);
2061
2062 diff = nr_pages_to_write(sbi, NODE, wbc);
2063 blk_start_plug(&plug);
2064 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2065 blk_finish_plug(&plug);
2066 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2067
2068 if (wbc->sync_mode == WB_SYNC_ALL)
2069 atomic_dec(&sbi->wb_sync_req[NODE]);
2070 return 0;
2071
2072 skip_write:
2073 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2074 trace_f2fs_writepages(mapping->host, wbc, NODE);
2075 return 0;
2076 }
2077
f2fs_set_node_page_dirty(struct page * page)2078 static int f2fs_set_node_page_dirty(struct page *page)
2079 {
2080 trace_f2fs_set_page_dirty(page, NODE);
2081
2082 if (!PageUptodate(page))
2083 SetPageUptodate(page);
2084 #ifdef CONFIG_F2FS_CHECK_FS
2085 if (IS_INODE(page))
2086 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2087 #endif
2088 if (!PageDirty(page)) {
2089 __set_page_dirty_nobuffers(page);
2090 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2091 f2fs_set_page_private(page, 0);
2092 f2fs_trace_pid(page);
2093 return 1;
2094 }
2095 return 0;
2096 }
2097
2098 /*
2099 * Structure of the f2fs node operations
2100 */
2101 const struct address_space_operations f2fs_node_aops = {
2102 .writepage = f2fs_write_node_page,
2103 .writepages = f2fs_write_node_pages,
2104 .set_page_dirty = f2fs_set_node_page_dirty,
2105 .invalidatepage = f2fs_invalidate_page,
2106 .releasepage = f2fs_release_page,
2107 #ifdef CONFIG_MIGRATION
2108 .migratepage = f2fs_migrate_page,
2109 #endif
2110 };
2111
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2112 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2113 nid_t n)
2114 {
2115 return radix_tree_lookup(&nm_i->free_nid_root, n);
2116 }
2117
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2118 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2119 struct free_nid *i)
2120 {
2121 struct f2fs_nm_info *nm_i = NM_I(sbi);
2122
2123 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2124 if (err)
2125 return err;
2126
2127 nm_i->nid_cnt[FREE_NID]++;
2128 list_add_tail(&i->list, &nm_i->free_nid_list);
2129 return 0;
2130 }
2131
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2132 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2133 struct free_nid *i, enum nid_state state)
2134 {
2135 struct f2fs_nm_info *nm_i = NM_I(sbi);
2136
2137 f2fs_bug_on(sbi, state != i->state);
2138 nm_i->nid_cnt[state]--;
2139 if (state == FREE_NID)
2140 list_del(&i->list);
2141 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2142 }
2143
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2144 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2145 enum nid_state org_state, enum nid_state dst_state)
2146 {
2147 struct f2fs_nm_info *nm_i = NM_I(sbi);
2148
2149 f2fs_bug_on(sbi, org_state != i->state);
2150 i->state = dst_state;
2151 nm_i->nid_cnt[org_state]--;
2152 nm_i->nid_cnt[dst_state]++;
2153
2154 switch (dst_state) {
2155 case PREALLOC_NID:
2156 list_del(&i->list);
2157 break;
2158 case FREE_NID:
2159 list_add_tail(&i->list, &nm_i->free_nid_list);
2160 break;
2161 default:
2162 BUG_ON(1);
2163 }
2164 }
2165
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2166 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2167 bool set, bool build)
2168 {
2169 struct f2fs_nm_info *nm_i = NM_I(sbi);
2170 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2171 unsigned int nid_ofs = nid - START_NID(nid);
2172
2173 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2174 return;
2175
2176 if (set) {
2177 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2178 return;
2179 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2180 nm_i->free_nid_count[nat_ofs]++;
2181 } else {
2182 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2183 return;
2184 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2185 if (!build)
2186 nm_i->free_nid_count[nat_ofs]--;
2187 }
2188 }
2189
2190 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2191 static bool add_free_nid(struct f2fs_sb_info *sbi,
2192 nid_t nid, bool build, bool update)
2193 {
2194 struct f2fs_nm_info *nm_i = NM_I(sbi);
2195 struct free_nid *i, *e;
2196 struct nat_entry *ne;
2197 int err = -EINVAL;
2198 bool ret = false;
2199
2200 /* 0 nid should not be used */
2201 if (unlikely(nid == 0))
2202 return false;
2203
2204 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2205 return false;
2206
2207 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2208 i->nid = nid;
2209 i->state = FREE_NID;
2210
2211 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2212
2213 spin_lock(&nm_i->nid_list_lock);
2214
2215 if (build) {
2216 /*
2217 * Thread A Thread B
2218 * - f2fs_create
2219 * - f2fs_new_inode
2220 * - f2fs_alloc_nid
2221 * - __insert_nid_to_list(PREALLOC_NID)
2222 * - f2fs_balance_fs_bg
2223 * - f2fs_build_free_nids
2224 * - __f2fs_build_free_nids
2225 * - scan_nat_page
2226 * - add_free_nid
2227 * - __lookup_nat_cache
2228 * - f2fs_add_link
2229 * - f2fs_init_inode_metadata
2230 * - f2fs_new_inode_page
2231 * - f2fs_new_node_page
2232 * - set_node_addr
2233 * - f2fs_alloc_nid_done
2234 * - __remove_nid_from_list(PREALLOC_NID)
2235 * - __insert_nid_to_list(FREE_NID)
2236 */
2237 ne = __lookup_nat_cache(nm_i, nid);
2238 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2239 nat_get_blkaddr(ne) != NULL_ADDR))
2240 goto err_out;
2241
2242 e = __lookup_free_nid_list(nm_i, nid);
2243 if (e) {
2244 if (e->state == FREE_NID)
2245 ret = true;
2246 goto err_out;
2247 }
2248 }
2249 ret = true;
2250 err = __insert_free_nid(sbi, i);
2251 err_out:
2252 if (update) {
2253 update_free_nid_bitmap(sbi, nid, ret, build);
2254 if (!build)
2255 nm_i->available_nids++;
2256 }
2257 spin_unlock(&nm_i->nid_list_lock);
2258 radix_tree_preload_end();
2259
2260 if (err)
2261 kmem_cache_free(free_nid_slab, i);
2262 return ret;
2263 }
2264
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2265 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2266 {
2267 struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 struct free_nid *i;
2269 bool need_free = false;
2270
2271 spin_lock(&nm_i->nid_list_lock);
2272 i = __lookup_free_nid_list(nm_i, nid);
2273 if (i && i->state == FREE_NID) {
2274 __remove_free_nid(sbi, i, FREE_NID);
2275 need_free = true;
2276 }
2277 spin_unlock(&nm_i->nid_list_lock);
2278
2279 if (need_free)
2280 kmem_cache_free(free_nid_slab, i);
2281 }
2282
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2283 static int scan_nat_page(struct f2fs_sb_info *sbi,
2284 struct page *nat_page, nid_t start_nid)
2285 {
2286 struct f2fs_nm_info *nm_i = NM_I(sbi);
2287 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2288 block_t blk_addr;
2289 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2290 int i;
2291
2292 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2293
2294 i = start_nid % NAT_ENTRY_PER_BLOCK;
2295
2296 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2297 if (unlikely(start_nid >= nm_i->max_nid))
2298 break;
2299
2300 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2301
2302 if (blk_addr == NEW_ADDR)
2303 return -EINVAL;
2304
2305 if (blk_addr == NULL_ADDR) {
2306 add_free_nid(sbi, start_nid, true, true);
2307 } else {
2308 spin_lock(&NM_I(sbi)->nid_list_lock);
2309 update_free_nid_bitmap(sbi, start_nid, false, true);
2310 spin_unlock(&NM_I(sbi)->nid_list_lock);
2311 }
2312 }
2313
2314 return 0;
2315 }
2316
scan_curseg_cache(struct f2fs_sb_info * sbi)2317 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2318 {
2319 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2320 struct f2fs_journal *journal = curseg->journal;
2321 int i;
2322
2323 down_read(&curseg->journal_rwsem);
2324 for (i = 0; i < nats_in_cursum(journal); i++) {
2325 block_t addr;
2326 nid_t nid;
2327
2328 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2329 nid = le32_to_cpu(nid_in_journal(journal, i));
2330 if (addr == NULL_ADDR)
2331 add_free_nid(sbi, nid, true, false);
2332 else
2333 remove_free_nid(sbi, nid);
2334 }
2335 up_read(&curseg->journal_rwsem);
2336 }
2337
scan_free_nid_bits(struct f2fs_sb_info * sbi)2338 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2339 {
2340 struct f2fs_nm_info *nm_i = NM_I(sbi);
2341 unsigned int i, idx;
2342 nid_t nid;
2343
2344 down_read(&nm_i->nat_tree_lock);
2345
2346 for (i = 0; i < nm_i->nat_blocks; i++) {
2347 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2348 continue;
2349 if (!nm_i->free_nid_count[i])
2350 continue;
2351 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2352 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2353 NAT_ENTRY_PER_BLOCK, idx);
2354 if (idx >= NAT_ENTRY_PER_BLOCK)
2355 break;
2356
2357 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2358 add_free_nid(sbi, nid, true, false);
2359
2360 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2361 goto out;
2362 }
2363 }
2364 out:
2365 scan_curseg_cache(sbi);
2366
2367 up_read(&nm_i->nat_tree_lock);
2368 }
2369
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2370 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2371 bool sync, bool mount)
2372 {
2373 struct f2fs_nm_info *nm_i = NM_I(sbi);
2374 int i = 0, ret;
2375 nid_t nid = nm_i->next_scan_nid;
2376
2377 if (unlikely(nid >= nm_i->max_nid))
2378 nid = 0;
2379
2380 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2381 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2382
2383 /* Enough entries */
2384 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2385 return 0;
2386
2387 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2388 return 0;
2389
2390 if (!mount) {
2391 /* try to find free nids in free_nid_bitmap */
2392 scan_free_nid_bits(sbi);
2393
2394 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2395 return 0;
2396 }
2397
2398 /* readahead nat pages to be scanned */
2399 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2400 META_NAT, true);
2401
2402 down_read(&nm_i->nat_tree_lock);
2403
2404 while (1) {
2405 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2406 nm_i->nat_block_bitmap)) {
2407 struct page *page = get_current_nat_page(sbi, nid);
2408
2409 if (IS_ERR(page)) {
2410 ret = PTR_ERR(page);
2411 } else {
2412 ret = scan_nat_page(sbi, page, nid);
2413 f2fs_put_page(page, 1);
2414 }
2415
2416 if (ret) {
2417 up_read(&nm_i->nat_tree_lock);
2418 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2419 return ret;
2420 }
2421 }
2422
2423 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2424 if (unlikely(nid >= nm_i->max_nid))
2425 nid = 0;
2426
2427 if (++i >= FREE_NID_PAGES)
2428 break;
2429 }
2430
2431 /* go to the next free nat pages to find free nids abundantly */
2432 nm_i->next_scan_nid = nid;
2433
2434 /* find free nids from current sum_pages */
2435 scan_curseg_cache(sbi);
2436
2437 up_read(&nm_i->nat_tree_lock);
2438
2439 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2440 nm_i->ra_nid_pages, META_NAT, false);
2441
2442 return 0;
2443 }
2444
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2445 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2446 {
2447 int ret;
2448
2449 mutex_lock(&NM_I(sbi)->build_lock);
2450 ret = __f2fs_build_free_nids(sbi, sync, mount);
2451 mutex_unlock(&NM_I(sbi)->build_lock);
2452
2453 return ret;
2454 }
2455
2456 /*
2457 * If this function returns success, caller can obtain a new nid
2458 * from second parameter of this function.
2459 * The returned nid could be used ino as well as nid when inode is created.
2460 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2461 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2462 {
2463 struct f2fs_nm_info *nm_i = NM_I(sbi);
2464 struct free_nid *i = NULL;
2465 retry:
2466 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2467 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2468 return false;
2469 }
2470
2471 spin_lock(&nm_i->nid_list_lock);
2472
2473 if (unlikely(nm_i->available_nids == 0)) {
2474 spin_unlock(&nm_i->nid_list_lock);
2475 return false;
2476 }
2477
2478 /* We should not use stale free nids created by f2fs_build_free_nids */
2479 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2480 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2481 i = list_first_entry(&nm_i->free_nid_list,
2482 struct free_nid, list);
2483 *nid = i->nid;
2484
2485 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2486 nm_i->available_nids--;
2487
2488 update_free_nid_bitmap(sbi, *nid, false, false);
2489
2490 spin_unlock(&nm_i->nid_list_lock);
2491 return true;
2492 }
2493 spin_unlock(&nm_i->nid_list_lock);
2494
2495 /* Let's scan nat pages and its caches to get free nids */
2496 if (!f2fs_build_free_nids(sbi, true, false))
2497 goto retry;
2498 return false;
2499 }
2500
2501 /*
2502 * f2fs_alloc_nid() should be called prior to this function.
2503 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2504 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2505 {
2506 struct f2fs_nm_info *nm_i = NM_I(sbi);
2507 struct free_nid *i;
2508
2509 spin_lock(&nm_i->nid_list_lock);
2510 i = __lookup_free_nid_list(nm_i, nid);
2511 f2fs_bug_on(sbi, !i);
2512 __remove_free_nid(sbi, i, PREALLOC_NID);
2513 spin_unlock(&nm_i->nid_list_lock);
2514
2515 kmem_cache_free(free_nid_slab, i);
2516 }
2517
2518 /*
2519 * f2fs_alloc_nid() should be called prior to this function.
2520 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2521 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2522 {
2523 struct f2fs_nm_info *nm_i = NM_I(sbi);
2524 struct free_nid *i;
2525 bool need_free = false;
2526
2527 if (!nid)
2528 return;
2529
2530 spin_lock(&nm_i->nid_list_lock);
2531 i = __lookup_free_nid_list(nm_i, nid);
2532 f2fs_bug_on(sbi, !i);
2533
2534 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2535 __remove_free_nid(sbi, i, PREALLOC_NID);
2536 need_free = true;
2537 } else {
2538 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2539 }
2540
2541 nm_i->available_nids++;
2542
2543 update_free_nid_bitmap(sbi, nid, true, false);
2544
2545 spin_unlock(&nm_i->nid_list_lock);
2546
2547 if (need_free)
2548 kmem_cache_free(free_nid_slab, i);
2549 }
2550
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2551 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2552 {
2553 struct f2fs_nm_info *nm_i = NM_I(sbi);
2554 int nr = nr_shrink;
2555
2556 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2557 return 0;
2558
2559 if (!mutex_trylock(&nm_i->build_lock))
2560 return 0;
2561
2562 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2563 struct free_nid *i, *next;
2564 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2565
2566 spin_lock(&nm_i->nid_list_lock);
2567 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2568 if (!nr_shrink || !batch ||
2569 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2570 break;
2571 __remove_free_nid(sbi, i, FREE_NID);
2572 kmem_cache_free(free_nid_slab, i);
2573 nr_shrink--;
2574 batch--;
2575 }
2576 spin_unlock(&nm_i->nid_list_lock);
2577 }
2578
2579 mutex_unlock(&nm_i->build_lock);
2580
2581 return nr - nr_shrink;
2582 }
2583
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2584 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2585 {
2586 void *src_addr, *dst_addr;
2587 size_t inline_size;
2588 struct page *ipage;
2589 struct f2fs_inode *ri;
2590
2591 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2592 if (IS_ERR(ipage))
2593 return PTR_ERR(ipage);
2594
2595 ri = F2FS_INODE(page);
2596 if (ri->i_inline & F2FS_INLINE_XATTR) {
2597 set_inode_flag(inode, FI_INLINE_XATTR);
2598 } else {
2599 clear_inode_flag(inode, FI_INLINE_XATTR);
2600 goto update_inode;
2601 }
2602
2603 dst_addr = inline_xattr_addr(inode, ipage);
2604 src_addr = inline_xattr_addr(inode, page);
2605 inline_size = inline_xattr_size(inode);
2606
2607 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2608 memcpy(dst_addr, src_addr, inline_size);
2609 update_inode:
2610 f2fs_update_inode(inode, ipage);
2611 f2fs_put_page(ipage, 1);
2612 return 0;
2613 }
2614
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2615 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2616 {
2617 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2618 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2619 nid_t new_xnid;
2620 struct dnode_of_data dn;
2621 struct node_info ni;
2622 struct page *xpage;
2623 int err;
2624
2625 if (!prev_xnid)
2626 goto recover_xnid;
2627
2628 /* 1: invalidate the previous xattr nid */
2629 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2630 if (err)
2631 return err;
2632
2633 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2634 dec_valid_node_count(sbi, inode, false);
2635 set_node_addr(sbi, &ni, NULL_ADDR, false);
2636
2637 recover_xnid:
2638 /* 2: update xattr nid in inode */
2639 if (!f2fs_alloc_nid(sbi, &new_xnid))
2640 return -ENOSPC;
2641
2642 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2643 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2644 if (IS_ERR(xpage)) {
2645 f2fs_alloc_nid_failed(sbi, new_xnid);
2646 return PTR_ERR(xpage);
2647 }
2648
2649 f2fs_alloc_nid_done(sbi, new_xnid);
2650 f2fs_update_inode_page(inode);
2651
2652 /* 3: update and set xattr node page dirty */
2653 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2654
2655 set_page_dirty(xpage);
2656 f2fs_put_page(xpage, 1);
2657
2658 return 0;
2659 }
2660
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2661 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2662 {
2663 struct f2fs_inode *src, *dst;
2664 nid_t ino = ino_of_node(page);
2665 struct node_info old_ni, new_ni;
2666 struct page *ipage;
2667 int err;
2668
2669 err = f2fs_get_node_info(sbi, ino, &old_ni);
2670 if (err)
2671 return err;
2672
2673 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2674 return -EINVAL;
2675 retry:
2676 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2677 if (!ipage) {
2678 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2679 goto retry;
2680 }
2681
2682 /* Should not use this inode from free nid list */
2683 remove_free_nid(sbi, ino);
2684
2685 if (!PageUptodate(ipage))
2686 SetPageUptodate(ipage);
2687 fill_node_footer(ipage, ino, ino, 0, true);
2688 set_cold_node(ipage, false);
2689
2690 src = F2FS_INODE(page);
2691 dst = F2FS_INODE(ipage);
2692
2693 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2694 dst->i_size = 0;
2695 dst->i_blocks = cpu_to_le64(1);
2696 dst->i_links = cpu_to_le32(1);
2697 dst->i_xattr_nid = 0;
2698 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2699 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2700 dst->i_extra_isize = src->i_extra_isize;
2701
2702 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2703 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2704 i_inline_xattr_size))
2705 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2706
2707 if (f2fs_sb_has_project_quota(sbi) &&
2708 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2709 i_projid))
2710 dst->i_projid = src->i_projid;
2711
2712 if (f2fs_sb_has_inode_crtime(sbi) &&
2713 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2714 i_crtime_nsec)) {
2715 dst->i_crtime = src->i_crtime;
2716 dst->i_crtime_nsec = src->i_crtime_nsec;
2717 }
2718 }
2719
2720 new_ni = old_ni;
2721 new_ni.ino = ino;
2722
2723 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2724 WARN_ON(1);
2725 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2726 inc_valid_inode_count(sbi);
2727 set_page_dirty(ipage);
2728 f2fs_put_page(ipage, 1);
2729 return 0;
2730 }
2731
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2732 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2733 unsigned int segno, struct f2fs_summary_block *sum)
2734 {
2735 struct f2fs_node *rn;
2736 struct f2fs_summary *sum_entry;
2737 block_t addr;
2738 int i, idx, last_offset, nrpages;
2739
2740 /* scan the node segment */
2741 last_offset = sbi->blocks_per_seg;
2742 addr = START_BLOCK(sbi, segno);
2743 sum_entry = &sum->entries[0];
2744
2745 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2746 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2747
2748 /* readahead node pages */
2749 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2750
2751 for (idx = addr; idx < addr + nrpages; idx++) {
2752 struct page *page = f2fs_get_tmp_page(sbi, idx);
2753
2754 if (IS_ERR(page))
2755 return PTR_ERR(page);
2756
2757 rn = F2FS_NODE(page);
2758 sum_entry->nid = rn->footer.nid;
2759 sum_entry->version = 0;
2760 sum_entry->ofs_in_node = 0;
2761 sum_entry++;
2762 f2fs_put_page(page, 1);
2763 }
2764
2765 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2766 addr + nrpages);
2767 }
2768 return 0;
2769 }
2770
remove_nats_in_journal(struct f2fs_sb_info * sbi)2771 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2772 {
2773 struct f2fs_nm_info *nm_i = NM_I(sbi);
2774 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2775 struct f2fs_journal *journal = curseg->journal;
2776 int i;
2777
2778 down_write(&curseg->journal_rwsem);
2779 for (i = 0; i < nats_in_cursum(journal); i++) {
2780 struct nat_entry *ne;
2781 struct f2fs_nat_entry raw_ne;
2782 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2783
2784 if (f2fs_check_nid_range(sbi, nid))
2785 continue;
2786
2787 raw_ne = nat_in_journal(journal, i);
2788
2789 ne = __lookup_nat_cache(nm_i, nid);
2790 if (!ne) {
2791 ne = __alloc_nat_entry(nid, true);
2792 __init_nat_entry(nm_i, ne, &raw_ne, true);
2793 }
2794
2795 /*
2796 * if a free nat in journal has not been used after last
2797 * checkpoint, we should remove it from available nids,
2798 * since later we will add it again.
2799 */
2800 if (!get_nat_flag(ne, IS_DIRTY) &&
2801 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2802 spin_lock(&nm_i->nid_list_lock);
2803 nm_i->available_nids--;
2804 spin_unlock(&nm_i->nid_list_lock);
2805 }
2806
2807 __set_nat_cache_dirty(nm_i, ne);
2808 }
2809 update_nats_in_cursum(journal, -i);
2810 up_write(&curseg->journal_rwsem);
2811 }
2812
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2813 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2814 struct list_head *head, int max)
2815 {
2816 struct nat_entry_set *cur;
2817
2818 if (nes->entry_cnt >= max)
2819 goto add_out;
2820
2821 list_for_each_entry(cur, head, set_list) {
2822 if (cur->entry_cnt >= nes->entry_cnt) {
2823 list_add(&nes->set_list, cur->set_list.prev);
2824 return;
2825 }
2826 }
2827 add_out:
2828 list_add_tail(&nes->set_list, head);
2829 }
2830
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2831 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2832 struct page *page)
2833 {
2834 struct f2fs_nm_info *nm_i = NM_I(sbi);
2835 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2836 struct f2fs_nat_block *nat_blk = page_address(page);
2837 int valid = 0;
2838 int i = 0;
2839
2840 if (!enabled_nat_bits(sbi, NULL))
2841 return;
2842
2843 if (nat_index == 0) {
2844 valid = 1;
2845 i = 1;
2846 }
2847 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2848 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2849 valid++;
2850 }
2851 if (valid == 0) {
2852 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2853 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2854 return;
2855 }
2856
2857 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2858 if (valid == NAT_ENTRY_PER_BLOCK)
2859 __set_bit_le(nat_index, nm_i->full_nat_bits);
2860 else
2861 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2862 }
2863
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2864 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2865 struct nat_entry_set *set, struct cp_control *cpc)
2866 {
2867 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2868 struct f2fs_journal *journal = curseg->journal;
2869 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2870 bool to_journal = true;
2871 struct f2fs_nat_block *nat_blk;
2872 struct nat_entry *ne, *cur;
2873 struct page *page = NULL;
2874
2875 /*
2876 * there are two steps to flush nat entries:
2877 * #1, flush nat entries to journal in current hot data summary block.
2878 * #2, flush nat entries to nat page.
2879 */
2880 if (enabled_nat_bits(sbi, cpc) ||
2881 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2882 to_journal = false;
2883
2884 if (to_journal) {
2885 down_write(&curseg->journal_rwsem);
2886 } else {
2887 page = get_next_nat_page(sbi, start_nid);
2888 if (IS_ERR(page))
2889 return PTR_ERR(page);
2890
2891 nat_blk = page_address(page);
2892 f2fs_bug_on(sbi, !nat_blk);
2893 }
2894
2895 /* flush dirty nats in nat entry set */
2896 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2897 struct f2fs_nat_entry *raw_ne;
2898 nid_t nid = nat_get_nid(ne);
2899 int offset;
2900
2901 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2902
2903 if (to_journal) {
2904 offset = f2fs_lookup_journal_in_cursum(journal,
2905 NAT_JOURNAL, nid, 1);
2906 f2fs_bug_on(sbi, offset < 0);
2907 raw_ne = &nat_in_journal(journal, offset);
2908 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2909 } else {
2910 raw_ne = &nat_blk->entries[nid - start_nid];
2911 }
2912 raw_nat_from_node_info(raw_ne, &ne->ni);
2913 nat_reset_flag(ne);
2914 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2915 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2916 add_free_nid(sbi, nid, false, true);
2917 } else {
2918 spin_lock(&NM_I(sbi)->nid_list_lock);
2919 update_free_nid_bitmap(sbi, nid, false, false);
2920 spin_unlock(&NM_I(sbi)->nid_list_lock);
2921 }
2922 }
2923
2924 if (to_journal) {
2925 up_write(&curseg->journal_rwsem);
2926 } else {
2927 __update_nat_bits(sbi, start_nid, page);
2928 f2fs_put_page(page, 1);
2929 }
2930
2931 /* Allow dirty nats by node block allocation in write_begin */
2932 if (!set->entry_cnt) {
2933 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2934 kmem_cache_free(nat_entry_set_slab, set);
2935 }
2936 return 0;
2937 }
2938
2939 /*
2940 * This function is called during the checkpointing process.
2941 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2942 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2943 {
2944 struct f2fs_nm_info *nm_i = NM_I(sbi);
2945 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2946 struct f2fs_journal *journal = curseg->journal;
2947 struct nat_entry_set *setvec[SETVEC_SIZE];
2948 struct nat_entry_set *set, *tmp;
2949 unsigned int found;
2950 nid_t set_idx = 0;
2951 LIST_HEAD(sets);
2952 int err = 0;
2953
2954 /*
2955 * during unmount, let's flush nat_bits before checking
2956 * nat_cnt[DIRTY_NAT].
2957 */
2958 if (enabled_nat_bits(sbi, cpc)) {
2959 down_write(&nm_i->nat_tree_lock);
2960 remove_nats_in_journal(sbi);
2961 up_write(&nm_i->nat_tree_lock);
2962 }
2963
2964 if (!nm_i->nat_cnt[DIRTY_NAT])
2965 return 0;
2966
2967 down_write(&nm_i->nat_tree_lock);
2968
2969 /*
2970 * if there are no enough space in journal to store dirty nat
2971 * entries, remove all entries from journal and merge them
2972 * into nat entry set.
2973 */
2974 if (enabled_nat_bits(sbi, cpc) ||
2975 !__has_cursum_space(journal,
2976 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2977 remove_nats_in_journal(sbi);
2978
2979 while ((found = __gang_lookup_nat_set(nm_i,
2980 set_idx, SETVEC_SIZE, setvec))) {
2981 unsigned idx;
2982 set_idx = setvec[found - 1]->set + 1;
2983 for (idx = 0; idx < found; idx++)
2984 __adjust_nat_entry_set(setvec[idx], &sets,
2985 MAX_NAT_JENTRIES(journal));
2986 }
2987
2988 /* flush dirty nats in nat entry set */
2989 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2990 err = __flush_nat_entry_set(sbi, set, cpc);
2991 if (err)
2992 break;
2993 }
2994
2995 up_write(&nm_i->nat_tree_lock);
2996 /* Allow dirty nats by node block allocation in write_begin */
2997
2998 return err;
2999 }
3000
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3001 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3002 {
3003 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3004 struct f2fs_nm_info *nm_i = NM_I(sbi);
3005 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3006 unsigned int i;
3007 __u64 cp_ver = cur_cp_version(ckpt);
3008 block_t nat_bits_addr;
3009
3010 if (!enabled_nat_bits(sbi, NULL))
3011 return 0;
3012
3013 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3014 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3015 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3016 if (!nm_i->nat_bits)
3017 return -ENOMEM;
3018
3019 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3020 nm_i->nat_bits_blocks;
3021 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3022 struct page *page;
3023
3024 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3025 if (IS_ERR(page))
3026 return PTR_ERR(page);
3027
3028 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3029 page_address(page), F2FS_BLKSIZE);
3030 f2fs_put_page(page, 1);
3031 }
3032
3033 cp_ver |= (cur_cp_crc(ckpt) << 32);
3034 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3035 disable_nat_bits(sbi, true);
3036 return 0;
3037 }
3038
3039 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3040 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3041
3042 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3043 return 0;
3044 }
3045
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3046 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3047 {
3048 struct f2fs_nm_info *nm_i = NM_I(sbi);
3049 unsigned int i = 0;
3050 nid_t nid, last_nid;
3051
3052 if (!enabled_nat_bits(sbi, NULL))
3053 return;
3054
3055 for (i = 0; i < nm_i->nat_blocks; i++) {
3056 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3057 if (i >= nm_i->nat_blocks)
3058 break;
3059
3060 __set_bit_le(i, nm_i->nat_block_bitmap);
3061
3062 nid = i * NAT_ENTRY_PER_BLOCK;
3063 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3064
3065 spin_lock(&NM_I(sbi)->nid_list_lock);
3066 for (; nid < last_nid; nid++)
3067 update_free_nid_bitmap(sbi, nid, true, true);
3068 spin_unlock(&NM_I(sbi)->nid_list_lock);
3069 }
3070
3071 for (i = 0; i < nm_i->nat_blocks; i++) {
3072 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3073 if (i >= nm_i->nat_blocks)
3074 break;
3075
3076 __set_bit_le(i, nm_i->nat_block_bitmap);
3077 }
3078 }
3079
init_node_manager(struct f2fs_sb_info * sbi)3080 static int init_node_manager(struct f2fs_sb_info *sbi)
3081 {
3082 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3083 struct f2fs_nm_info *nm_i = NM_I(sbi);
3084 unsigned char *version_bitmap;
3085 unsigned int nat_segs;
3086 int err;
3087
3088 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3089
3090 /* segment_count_nat includes pair segment so divide to 2. */
3091 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3092 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3093 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3094
3095 /* not used nids: 0, node, meta, (and root counted as valid node) */
3096 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3097 F2FS_RESERVED_NODE_NUM;
3098 nm_i->nid_cnt[FREE_NID] = 0;
3099 nm_i->nid_cnt[PREALLOC_NID] = 0;
3100 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3101 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3102 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3103
3104 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3105 INIT_LIST_HEAD(&nm_i->free_nid_list);
3106 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3107 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3108 INIT_LIST_HEAD(&nm_i->nat_entries);
3109 spin_lock_init(&nm_i->nat_list_lock);
3110
3111 mutex_init(&nm_i->build_lock);
3112 spin_lock_init(&nm_i->nid_list_lock);
3113 init_rwsem(&nm_i->nat_tree_lock);
3114
3115 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3116 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3117 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3118 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3119 GFP_KERNEL);
3120 if (!nm_i->nat_bitmap)
3121 return -ENOMEM;
3122
3123 err = __get_nat_bitmaps(sbi);
3124 if (err)
3125 return err;
3126
3127 #ifdef CONFIG_F2FS_CHECK_FS
3128 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3129 GFP_KERNEL);
3130 if (!nm_i->nat_bitmap_mir)
3131 return -ENOMEM;
3132 #endif
3133
3134 return 0;
3135 }
3136
init_free_nid_cache(struct f2fs_sb_info * sbi)3137 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3138 {
3139 struct f2fs_nm_info *nm_i = NM_I(sbi);
3140 int i;
3141
3142 nm_i->free_nid_bitmap =
3143 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3144 nm_i->nat_blocks),
3145 GFP_KERNEL);
3146 if (!nm_i->free_nid_bitmap)
3147 return -ENOMEM;
3148
3149 for (i = 0; i < nm_i->nat_blocks; i++) {
3150 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3151 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3152 if (!nm_i->free_nid_bitmap[i])
3153 return -ENOMEM;
3154 }
3155
3156 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3157 GFP_KERNEL);
3158 if (!nm_i->nat_block_bitmap)
3159 return -ENOMEM;
3160
3161 nm_i->free_nid_count =
3162 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3163 nm_i->nat_blocks),
3164 GFP_KERNEL);
3165 if (!nm_i->free_nid_count)
3166 return -ENOMEM;
3167 return 0;
3168 }
3169
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3170 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3171 {
3172 int err;
3173
3174 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3175 GFP_KERNEL);
3176 if (!sbi->nm_info)
3177 return -ENOMEM;
3178
3179 err = init_node_manager(sbi);
3180 if (err)
3181 return err;
3182
3183 err = init_free_nid_cache(sbi);
3184 if (err)
3185 return err;
3186
3187 /* load free nid status from nat_bits table */
3188 load_free_nid_bitmap(sbi);
3189
3190 return f2fs_build_free_nids(sbi, true, true);
3191 }
3192
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3193 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3194 {
3195 struct f2fs_nm_info *nm_i = NM_I(sbi);
3196 struct free_nid *i, *next_i;
3197 struct nat_entry *natvec[NATVEC_SIZE];
3198 struct nat_entry_set *setvec[SETVEC_SIZE];
3199 nid_t nid = 0;
3200 unsigned int found;
3201
3202 if (!nm_i)
3203 return;
3204
3205 /* destroy free nid list */
3206 spin_lock(&nm_i->nid_list_lock);
3207 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3208 __remove_free_nid(sbi, i, FREE_NID);
3209 spin_unlock(&nm_i->nid_list_lock);
3210 kmem_cache_free(free_nid_slab, i);
3211 spin_lock(&nm_i->nid_list_lock);
3212 }
3213 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3214 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3215 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3216 spin_unlock(&nm_i->nid_list_lock);
3217
3218 /* destroy nat cache */
3219 down_write(&nm_i->nat_tree_lock);
3220 while ((found = __gang_lookup_nat_cache(nm_i,
3221 nid, NATVEC_SIZE, natvec))) {
3222 unsigned idx;
3223
3224 nid = nat_get_nid(natvec[found - 1]) + 1;
3225 for (idx = 0; idx < found; idx++) {
3226 spin_lock(&nm_i->nat_list_lock);
3227 list_del(&natvec[idx]->list);
3228 spin_unlock(&nm_i->nat_list_lock);
3229
3230 __del_from_nat_cache(nm_i, natvec[idx]);
3231 }
3232 }
3233 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3234
3235 /* destroy nat set cache */
3236 nid = 0;
3237 while ((found = __gang_lookup_nat_set(nm_i,
3238 nid, SETVEC_SIZE, setvec))) {
3239 unsigned idx;
3240
3241 nid = setvec[found - 1]->set + 1;
3242 for (idx = 0; idx < found; idx++) {
3243 /* entry_cnt is not zero, when cp_error was occurred */
3244 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3245 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3246 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3247 }
3248 }
3249 up_write(&nm_i->nat_tree_lock);
3250
3251 kvfree(nm_i->nat_block_bitmap);
3252 if (nm_i->free_nid_bitmap) {
3253 int i;
3254
3255 for (i = 0; i < nm_i->nat_blocks; i++)
3256 kvfree(nm_i->free_nid_bitmap[i]);
3257 kvfree(nm_i->free_nid_bitmap);
3258 }
3259 kvfree(nm_i->free_nid_count);
3260
3261 kvfree(nm_i->nat_bitmap);
3262 kvfree(nm_i->nat_bits);
3263 #ifdef CONFIG_F2FS_CHECK_FS
3264 kvfree(nm_i->nat_bitmap_mir);
3265 #endif
3266 sbi->nm_info = NULL;
3267 kfree(nm_i);
3268 }
3269
f2fs_create_node_manager_caches(void)3270 int __init f2fs_create_node_manager_caches(void)
3271 {
3272 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3273 sizeof(struct nat_entry));
3274 if (!nat_entry_slab)
3275 goto fail;
3276
3277 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3278 sizeof(struct free_nid));
3279 if (!free_nid_slab)
3280 goto destroy_nat_entry;
3281
3282 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3283 sizeof(struct nat_entry_set));
3284 if (!nat_entry_set_slab)
3285 goto destroy_free_nid;
3286
3287 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3288 sizeof(struct fsync_node_entry));
3289 if (!fsync_node_entry_slab)
3290 goto destroy_nat_entry_set;
3291 return 0;
3292
3293 destroy_nat_entry_set:
3294 kmem_cache_destroy(nat_entry_set_slab);
3295 destroy_free_nid:
3296 kmem_cache_destroy(free_nid_slab);
3297 destroy_nat_entry:
3298 kmem_cache_destroy(nat_entry_slab);
3299 fail:
3300 return -ENOMEM;
3301 }
3302
f2fs_destroy_node_manager_caches(void)3303 void f2fs_destroy_node_manager_caches(void)
3304 {
3305 kmem_cache_destroy(fsync_node_entry_slab);
3306 kmem_cache_destroy(nat_entry_set_slab);
3307 kmem_cache_destroy(free_nid_slab);
3308 kmem_cache_destroy(nat_entry_slab);
3309 }
3310