1 /*
2 * Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
3 * Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without modification,
6 * are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice, this list of
9 * conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
12 * of conditions and the following disclaimer in the documentation and/or other materials
13 * provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its contributors may be used
16 * to endorse or promote products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
29 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include "time.h"
33 #include "stdint.h"
34 #include "stdio.h"
35 #include "sys/times.h"
36 #include "time_posix.h"
37 #include "unistd.h"
38 #ifdef LOSCFG_SECURITY_CAPABILITY
39 #include "capability_api.h"
40 #endif
41 #include "los_signal.h"
42 #ifdef LOSCFG_KERNEL_VDSO
43 #include "los_vdso.h"
44 #endif
45 #ifdef LOSCFG_SECURITY_VID
46 #include "vid_api.h"
47 #endif
48 #include "user_copy.h"
49 #include "los_process_pri.h"
50 #include "los_swtmr_pri.h"
51 #include "los_sys_pri.h"
52
53 #define CPUCLOCK_PERTHREAD_MASK 4
54 #define CPUCLOCK_ID_OFFSET 3
55
56 /*
57 * Do a time package defined return. This requires the error code
58 * to be placed in errno, and if it is non-zero, -1 returned as the
59 * result of the function. This also gives us a place to put any
60 * generic tidyup handling needed for things like signal delivery and
61 * cancellation.
62 */
63 #define TIME_RETURN(err) do { \
64 INT32 retVal = 0; \
65 if ((err) != 0) { \
66 retVal = -1; \
67 errno = (err); \
68 } \
69 return retVal; \
70 } while (0)
71
72 #ifdef LOSCFG_AARCH64
73 /*
74 * This two structures originally did't exit,
75 * they added by liteos to support 64bit interfaces on 32bit platform,
76 * in 64bit platform, timeval64 define to timeval which is platform adaptive.
77 */
78 #define timeval64 timeval
79 #define timespec64 timespec
80 #endif
81
ValidTimeval(const struct timeval * tv)82 STATIC INLINE BOOL ValidTimeval(const struct timeval *tv)
83 {
84 /* Fail a NULL pointer */
85 if (tv == NULL) {
86 return FALSE;
87 }
88
89 /* Fail illegal microseconds values */
90 if ((tv->tv_usec < 0) || (tv->tv_usec >= OS_SYS_US_PER_SECOND) || (tv->tv_sec < 0)) {
91 return FALSE;
92 }
93
94 return TRUE;
95 }
96
ValidTimeval64(const struct timeval64 * tv)97 STATIC INLINE BOOL ValidTimeval64(const struct timeval64 *tv)
98 {
99 /* Fail a NULL pointer */
100 if (tv == NULL) {
101 return FALSE;
102 }
103
104 /* Fail illegal microseconds values */
105 if ((tv->tv_usec < 0) || (tv->tv_usec >= OS_SYS_US_PER_SECOND) || (tv->tv_sec < 0)) {
106 return FALSE;
107 }
108
109 return TRUE;
110 }
111
ValidTimerID(UINT16 swtmrID)112 STATIC INLINE BOOL ValidTimerID(UINT16 swtmrID)
113 {
114 /* check timer id */
115 if (swtmrID >= OS_SWTMR_MAX_TIMERID) {
116 return FALSE;
117 }
118
119 /* check owner of this timer */
120 if (OS_SWT_FROM_SID(swtmrID)->uwOwnerPid != LOS_GetCurrProcessID()) {
121 return FALSE;
122 }
123
124 return TRUE;
125 }
126
127 STATIC SPIN_LOCK_INIT(g_timeSpin);
128 STATIC long long g_adjTimeLeft; /* absolute value of adjtime */
129 STATIC INT32 g_adjDirection; /* 1, speed up; 0, slow down; */
130
131 /* Adjust pacement, nanoseconds per SCHED_CLOCK_INTETRVAL_TICKS ticks */
132 STATIC const long long g_adjPacement = (((LOSCFG_BASE_CORE_ADJ_PER_SECOND * SCHED_CLOCK_INTETRVAL_TICKS) /
133 LOSCFG_BASE_CORE_TICK_PER_SECOND) * OS_SYS_NS_PER_US);
134
135 /* accumulative time delta from continuous modify, such as adjtime */
136 STATIC struct timespec64 g_accDeltaFromAdj;
137 /* accumulative time delta from discontinuous modify, such as settimeofday */
138 STATIC struct timespec64 g_accDeltaFromSet;
139
OsAdjTime(VOID)140 VOID OsAdjTime(VOID)
141 {
142 UINT32 intSave;
143
144 LOS_SpinLockSave(&g_timeSpin, &intSave);
145 if (!g_adjTimeLeft) {
146 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
147 return;
148 }
149
150 if (g_adjTimeLeft > g_adjPacement) {
151 if (g_adjDirection) {
152 if ((g_accDeltaFromAdj.tv_nsec + g_adjPacement) >= OS_SYS_NS_PER_SECOND) {
153 g_accDeltaFromAdj.tv_sec++;
154 g_accDeltaFromAdj.tv_nsec = (g_accDeltaFromAdj.tv_nsec + g_adjPacement) % OS_SYS_NS_PER_SECOND;
155 } else {
156 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec + g_adjPacement;
157 }
158 } else {
159 if ((g_accDeltaFromAdj.tv_nsec - g_adjPacement) < 0) {
160 g_accDeltaFromAdj.tv_sec--;
161 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjPacement + OS_SYS_NS_PER_SECOND;
162 } else {
163 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjPacement;
164 }
165 }
166
167 g_adjTimeLeft -= g_adjPacement;
168 } else {
169 if (g_adjDirection) {
170 if ((g_accDeltaFromAdj.tv_nsec + g_adjTimeLeft) >= OS_SYS_NS_PER_SECOND) {
171 g_accDeltaFromAdj.tv_sec++;
172 g_accDeltaFromAdj.tv_nsec = (g_accDeltaFromAdj.tv_nsec + g_adjTimeLeft) % OS_SYS_NS_PER_SECOND;
173 } else {
174 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec + g_adjTimeLeft;
175 }
176 } else {
177 if ((g_accDeltaFromAdj.tv_nsec - g_adjTimeLeft) < 0) {
178 g_accDeltaFromAdj.tv_sec--;
179 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjTimeLeft + OS_SYS_NS_PER_SECOND;
180 } else {
181 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjTimeLeft;
182 }
183 }
184
185 g_adjTimeLeft = 0;
186 }
187 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
188 return;
189 }
190
191 /*
192 * Function: adjtime
193 * Description: correct the time to synchronize the system clock.
194 * Input: delta - The amount of time by which the clock is to be adjusted.
195 * Output: oldDelta - the amount of time remaining from any previous adjustment that has not yet been completed.
196 * Return: On success, returns 0. On failure, -1 is returned, and errno is set to indicate the error.
197 */
adjtime(const struct timeval * delta,struct timeval * oldDelta)198 int adjtime(const struct timeval *delta, struct timeval *oldDelta)
199 {
200 UINT32 intSave;
201 LOS_SpinLockSave(&g_timeSpin, &intSave);
202 /* return the amount of time remaining from any previous adjustment that has not yet been completed. */
203 if (oldDelta != NULL) {
204 if (g_adjDirection == 1) {
205 oldDelta->tv_sec = g_adjTimeLeft / OS_SYS_NS_PER_SECOND;
206 oldDelta->tv_usec = (g_adjTimeLeft % OS_SYS_NS_PER_SECOND) / OS_SYS_NS_PER_US;
207 } else {
208 oldDelta->tv_sec = -(g_adjTimeLeft / OS_SYS_NS_PER_SECOND);
209 oldDelta->tv_usec = -((g_adjTimeLeft % OS_SYS_NS_PER_SECOND) / OS_SYS_NS_PER_US);
210 }
211 }
212
213 if ((delta == NULL) || ((delta->tv_sec == 0) && (delta->tv_usec == 0))) {
214 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
215 return 0;
216 }
217
218 if ((delta->tv_usec > OS_SYS_US_PER_SECOND) || (delta->tv_usec < -OS_SYS_US_PER_SECOND)) {
219 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
220 TIME_RETURN(EINVAL);
221 }
222
223 /*
224 * 2: in the glibc implementation, delta must be less than or equal to (INT_MAX / 1000000 - 2) and
225 * greater than or equal to (INT_MIN / 1000000 + 2)
226 */
227 if ((delta->tv_sec < (INT_MIN / OS_SYS_US_PER_SECOND + 2)) ||
228 (delta->tv_sec > (INT_MAX / OS_SYS_US_PER_SECOND + 2))) {
229 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
230 TIME_RETURN(EINVAL);
231 }
232
233 g_adjTimeLeft = (INT64)delta->tv_sec * OS_SYS_NS_PER_SECOND + delta->tv_usec * OS_SYS_NS_PER_US;
234 if (g_adjTimeLeft > 0) {
235 g_adjDirection = 1;
236 } else {
237 g_adjDirection = 0;
238 g_adjTimeLeft = -g_adjTimeLeft;
239 }
240
241 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
242 return 0;
243 }
244
OsTimeSpecAdd(const struct timespec64 t1,const struct timespec64 t2)245 STATIC INLINE struct timespec64 OsTimeSpecAdd(const struct timespec64 t1, const struct timespec64 t2)
246 {
247 struct timespec64 ret = {0};
248
249 ret.tv_sec = t1.tv_sec + t2.tv_sec;
250 ret.tv_nsec = t1.tv_nsec + t2.tv_nsec;
251 if (ret.tv_nsec >= OS_SYS_NS_PER_SECOND) {
252 ret.tv_sec += 1;
253 ret.tv_nsec -= OS_SYS_NS_PER_SECOND;
254 } else if (ret.tv_nsec < 0L) {
255 ret.tv_sec -= 1;
256 ret.tv_nsec += OS_SYS_NS_PER_SECOND;
257 }
258
259 return ret;
260 }
261
OsTimeSpecSub(const struct timespec64 t1,const struct timespec64 t2)262 STATIC INLINE struct timespec64 OsTimeSpecSub(const struct timespec64 t1, const struct timespec64 t2)
263 {
264 struct timespec64 ret = {0};
265
266 ret.tv_sec = t1.tv_sec - t2.tv_sec;
267 ret.tv_nsec = t1.tv_nsec - t2.tv_nsec;
268 if (ret.tv_nsec < 0) {
269 ret.tv_sec -= 1;
270 ret.tv_nsec += OS_SYS_NS_PER_SECOND;
271 }
272
273 return ret;
274 }
275
OsGetHwTime(struct timespec64 * hwTime)276 STATIC VOID OsGetHwTime(struct timespec64 *hwTime)
277 {
278 UINT64 nowNsec;
279
280 nowNsec = LOS_CurrNanosec();
281 hwTime->tv_sec = nowNsec / OS_SYS_NS_PER_SECOND;
282 hwTime->tv_nsec = nowNsec - hwTime->tv_sec * OS_SYS_NS_PER_SECOND;
283 }
284
OsSetTimeOfDay(const struct timeval64 * tv,const struct timezone * tz)285 STATIC INT32 OsSetTimeOfDay(const struct timeval64 *tv, const struct timezone *tz)
286 {
287 UINT32 intSave;
288 struct timespec64 setTime = {0};
289 struct timespec64 hwTime = {0};
290 struct timespec64 realTime = {0};
291 struct timespec64 tmp = {0};
292
293 #ifdef LOSCFG_SECURITY_CAPABILITY
294 if (!IsCapPermit(CAP_SET_TIMEOFDAY)) {
295 TIME_RETURN(EPERM);
296 }
297 #endif
298
299 (VOID)tz;
300 OsGetHwTime(&hwTime);
301 setTime.tv_sec = tv->tv_sec;
302 setTime.tv_nsec = tv->tv_usec * OS_SYS_NS_PER_US;
303
304 LOS_SpinLockSave(&g_timeSpin, &intSave);
305 /* stop on-going continuous adjusement */
306 if (g_adjTimeLeft) {
307 g_adjTimeLeft = 0;
308 }
309 realTime = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
310 realTime = OsTimeSpecAdd(realTime, g_accDeltaFromSet);
311
312 tmp = OsTimeSpecSub(setTime, realTime);
313 g_accDeltaFromSet = OsTimeSpecAdd(g_accDeltaFromSet, tmp);
314
315 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
316
317 return 0;
318 }
319
settimeofday(const struct timeval * tv,const struct timezone * tz)320 int settimeofday(const struct timeval *tv, const struct timezone *tz)
321 {
322 struct timeval64 stTimeVal64 = {0};
323
324 if (!ValidTimeval(tv)) {
325 TIME_RETURN(EINVAL);
326 }
327
328 stTimeVal64.tv_sec = tv->tv_sec;
329 stTimeVal64.tv_usec = tv->tv_usec;
330
331 return OsSetTimeOfDay(&stTimeVal64, tz);
332 }
333
334 #ifndef LOSCFG_AARCH64
settimeofday64(const struct timeval64 * tv,const struct timezone * tz)335 int settimeofday64(const struct timeval64 *tv, const struct timezone *tz)
336 {
337 if (!ValidTimeval64(tv)) {
338 TIME_RETURN(EINVAL);
339 }
340
341 return OsSetTimeOfDay(tv, tz);
342 }
343 #endif
344
setlocalseconds(int seconds)345 int setlocalseconds(int seconds)
346 {
347 struct timeval tv = {0};
348
349 tv.tv_sec = seconds;
350 tv.tv_usec = 0;
351
352 return settimeofday(&tv, NULL);
353 }
354
OsGetTimeOfDay(struct timeval64 * tv,struct timezone * tz)355 STATIC INT32 OsGetTimeOfDay(struct timeval64 *tv, struct timezone *tz)
356 {
357 UINT32 intSave;
358
359 (VOID)tz;
360 struct timespec64 hwTime = {0};
361 struct timespec64 realTime = {0};
362
363 OsGetHwTime(&hwTime);
364
365 LOS_SpinLockSave(&g_timeSpin, &intSave);
366 realTime = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
367 realTime = OsTimeSpecAdd(realTime, g_accDeltaFromSet);
368 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
369
370 tv->tv_sec = realTime.tv_sec;
371 tv->tv_usec = realTime.tv_nsec / OS_SYS_NS_PER_US;
372
373 if (tv->tv_sec < 0) {
374 TIME_RETURN(EINVAL);
375 }
376 return 0;
377 }
378
379 #ifndef LOSCFG_AARCH64
gettimeofday64(struct timeval64 * tv,struct timezone * tz)380 int gettimeofday64(struct timeval64 *tv, struct timezone *tz)
381 {
382 if (tv == NULL) {
383 TIME_RETURN(EINVAL);
384 }
385
386 return OsGetTimeOfDay(tv, tz);
387 }
388 #endif
389
gettimeofday(struct timeval * tv,struct timezone * tz)390 int gettimeofday(struct timeval *tv, struct timezone *tz)
391 {
392 struct timeval64 stTimeVal64 = {0};
393
394 if (tv == NULL) {
395 TIME_RETURN(EINVAL);
396 }
397
398 if (OsGetTimeOfDay(&stTimeVal64, tz) == -1) {
399 return -1;
400 }
401
402 #ifdef LOSCFG_AARCH64
403 tv->tv_sec = stTimeVal64.tv_sec;
404 tv->tv_usec = stTimeVal64.tv_usec;
405 #else
406 if (stTimeVal64.tv_sec > (long long)LONG_MAX) {
407 return -1;
408 }
409 tv->tv_sec = (time_t)stTimeVal64.tv_sec;
410 tv->tv_usec = (suseconds_t)stTimeVal64.tv_usec;
411 #endif
412
413 return 0;
414 }
415
clock_settime(clockid_t clockID,const struct timespec * tp)416 int clock_settime(clockid_t clockID, const struct timespec *tp)
417 {
418 struct timeval tv = {0};
419
420 switch (clockID) {
421 case CLOCK_REALTIME:
422 /* we only support the realtime clock currently */
423 break;
424 case CLOCK_MONOTONIC_COARSE:
425 case CLOCK_REALTIME_COARSE:
426 case CLOCK_MONOTONIC_RAW:
427 case CLOCK_PROCESS_CPUTIME_ID:
428 case CLOCK_BOOTTIME:
429 case CLOCK_REALTIME_ALARM:
430 case CLOCK_BOOTTIME_ALARM:
431 case CLOCK_TAI:
432 case CLOCK_THREAD_CPUTIME_ID:
433 TIME_RETURN(ENOTSUP);
434 case CLOCK_MONOTONIC:
435 default:
436 TIME_RETURN(EINVAL);
437 }
438
439 if (!ValidTimeSpec(tp)) {
440 TIME_RETURN(EINVAL);
441 }
442
443 #ifdef LOSCFG_SECURITY_CAPABILITY
444 if (!IsCapPermit(CAP_CLOCK_SETTIME)) {
445 TIME_RETURN(EPERM);
446 }
447 #endif
448
449 tv.tv_sec = tp->tv_sec;
450 tv.tv_usec = tp->tv_nsec / OS_SYS_NS_PER_US;
451 return settimeofday(&tv, NULL);
452 }
453
454 #ifdef LOSCFG_KERNEL_CPUP
GetTidFromClockID(clockid_t clockID)455 inline UINT32 GetTidFromClockID(clockid_t clockID)
456 {
457 // In musl/src/thread/pthread_getcpuclockid.c, we know 'clockid = (-tid - 1) * 8 + 6'
458 UINT32 tid = -(clockID - 6) / 8 - 1; // 6 8 1 inverse operation from clockID to tid
459 return tid;
460 }
461
GetPidFromClockID(clockid_t clockID)462 inline const pid_t GetPidFromClockID(clockid_t clockID)
463 {
464 // In musl/src/time/clock_getcpuclockid.c, we know 'clockid = (-pid - 1) * 8 + 2'
465 const pid_t pid = -(clockID - 2) / 8 - 1; // 2 8 1 inverse operation from clockID to pid
466 return pid;
467 }
468
PthreadGetCputime(clockid_t clockID,struct timespec * ats)469 static int PthreadGetCputime(clockid_t clockID, struct timespec *ats)
470 {
471 uint64_t runtime;
472 UINT32 intSave;
473 UINT32 tid = GetTidFromClockID(clockID);
474
475 if (OS_TID_CHECK_INVALID(tid)) {
476 return -EINVAL;
477 }
478
479 LosTaskCB *task = OsGetTaskCB(tid);
480
481 if (OsCurrTaskGet()->processID != task->processID) {
482 return -EINVAL;
483 }
484
485 SCHEDULER_LOCK(intSave);
486 runtime = task->taskCpup.allTime;
487 SCHEDULER_UNLOCK(intSave);
488
489 ats->tv_sec = runtime / OS_SYS_NS_PER_SECOND;
490 ats->tv_nsec = runtime % OS_SYS_NS_PER_SECOND;
491
492 return 0;
493 }
494
ProcessGetCputime(clockid_t clockID,struct timespec * ats)495 static int ProcessGetCputime(clockid_t clockID, struct timespec *ats)
496 {
497 UINT64 runtime;
498 UINT32 intSave;
499 const pid_t pid = GetPidFromClockID(clockID);
500 LosProcessCB *spcb = NULL;
501
502 if (OsProcessIDUserCheckInvalid(pid) || pid < 0) {
503 return -EINVAL;
504 }
505
506 spcb = OS_PCB_FROM_PID(pid);
507 if (OsProcessIsUnused(spcb)) {
508 return -EINVAL;
509 }
510
511 SCHEDULER_LOCK(intSave);
512 if (spcb->processCpup == NULL) {
513 SCHEDULER_UNLOCK(intSave);
514 return -EINVAL;
515 }
516 runtime = spcb->processCpup->allTime;
517 SCHEDULER_UNLOCK(intSave);
518
519 ats->tv_sec = runtime / OS_SYS_NS_PER_SECOND;
520 ats->tv_nsec = runtime % OS_SYS_NS_PER_SECOND;
521
522 return 0;
523 }
524
GetCputime(clockid_t clockID,struct timespec * tp)525 static int GetCputime(clockid_t clockID, struct timespec *tp)
526 {
527 int ret;
528
529 if (clockID >= 0) {
530 return -EINVAL;
531 }
532
533 if ((UINT32)clockID & CPUCLOCK_PERTHREAD_MASK) {
534 ret = PthreadGetCputime(clockID, tp);
535 } else {
536 ret = ProcessGetCputime(clockID, tp);
537 }
538
539 return ret;
540 }
541
CheckClock(const clockid_t clockID)542 static int CheckClock(const clockid_t clockID)
543 {
544 int error = 0;
545 const pid_t pid = GetPidFromClockID(clockID);
546
547 if (!((UINT32)clockID & CPUCLOCK_PERTHREAD_MASK)) {
548 LosProcessCB *spcb = NULL;
549 if (OsProcessIDUserCheckInvalid(pid) || pid < 0) {
550 return -EINVAL;
551 }
552 spcb = OS_PCB_FROM_PID(pid);
553 if (OsProcessIsUnused(spcb)) {
554 error = -EINVAL;
555 }
556 } else {
557 error = -EINVAL;
558 }
559
560 return error;
561 }
562
CpuClockGetres(const clockid_t clockID,struct timespec * tp)563 static int CpuClockGetres(const clockid_t clockID, struct timespec *tp)
564 {
565 if (clockID > 0) {
566 return -EINVAL;
567 }
568
569 int error = CheckClock(clockID);
570 if (!error) {
571 error = ProcessGetCputime(clockID, tp);
572 }
573
574 return error;
575 }
576 #endif
577
clock_gettime(clockid_t clockID,struct timespec * tp)578 int clock_gettime(clockid_t clockID, struct timespec *tp)
579 {
580 UINT32 intSave;
581 struct timespec64 tmp = {0};
582 struct timespec64 hwTime = {0};
583
584 if (clockID > MAX_CLOCKS) {
585 goto ERROUT;
586 }
587
588 if (tp == NULL) {
589 goto ERROUT;
590 }
591
592 OsGetHwTime(&hwTime);
593
594 switch (clockID) {
595 case CLOCK_MONOTONIC_RAW:
596 tp->tv_sec = hwTime.tv_sec;
597 tp->tv_nsec = hwTime.tv_nsec;
598 break;
599 case CLOCK_MONOTONIC:
600 LOS_SpinLockSave(&g_timeSpin, &intSave);
601 tmp = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
602 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
603 tp->tv_sec = tmp.tv_sec;
604 tp->tv_nsec = tmp.tv_nsec;
605 break;
606 case CLOCK_REALTIME:
607 LOS_SpinLockSave(&g_timeSpin, &intSave);
608 tmp = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
609 tmp = OsTimeSpecAdd(tmp, g_accDeltaFromSet);
610 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
611 tp->tv_sec = tmp.tv_sec;
612 tp->tv_nsec = tmp.tv_nsec;
613 break;
614 case CLOCK_MONOTONIC_COARSE:
615 case CLOCK_REALTIME_COARSE:
616 case CLOCK_THREAD_CPUTIME_ID:
617 case CLOCK_PROCESS_CPUTIME_ID:
618 case CLOCK_BOOTTIME:
619 case CLOCK_REALTIME_ALARM:
620 case CLOCK_BOOTTIME_ALARM:
621 case CLOCK_TAI:
622 TIME_RETURN(ENOTSUP);
623 default:
624 {
625 #ifdef LOSCFG_KERNEL_CPUP
626 int ret = GetCputime(clockID, tp);
627 TIME_RETURN(-ret);
628 #else
629 TIME_RETURN(EINVAL);
630 #endif
631 }
632 }
633
634 return 0;
635
636 ERROUT:
637 TIME_RETURN(EINVAL);
638 }
639
clock_getres(clockid_t clockID,struct timespec * tp)640 int clock_getres(clockid_t clockID, struct timespec *tp)
641 {
642 if (tp == NULL) {
643 TIME_RETURN(EINVAL);
644 }
645
646 switch (clockID) {
647 case CLOCK_MONOTONIC_RAW:
648 case CLOCK_MONOTONIC:
649 case CLOCK_REALTIME:
650 /* the accessible rtc resolution */
651 tp->tv_nsec = OS_SYS_NS_PER_US; /* the precision of clock_gettime is 1us */
652 tp->tv_sec = 0;
653 break;
654 case CLOCK_MONOTONIC_COARSE:
655 case CLOCK_REALTIME_COARSE:
656 /* the clock coarse resolution, supported by vdso.
657 * the precision of clock_gettime is 1tick */
658 tp->tv_nsec = OS_SYS_NS_PER_SECOND / LOSCFG_BASE_CORE_TICK_PER_SECOND;
659 tp->tv_sec = 0;
660 break;
661 case CLOCK_THREAD_CPUTIME_ID:
662 case CLOCK_PROCESS_CPUTIME_ID:
663 case CLOCK_BOOTTIME:
664 case CLOCK_REALTIME_ALARM:
665 case CLOCK_BOOTTIME_ALARM:
666 case CLOCK_TAI:
667 TIME_RETURN(ENOTSUP);
668 default:
669 #ifdef LOSCFG_KERNEL_CPUP
670 {
671 int ret = CpuClockGetres(clockID, tp);
672 TIME_RETURN(-ret);
673 }
674 #else
675 TIME_RETURN(EINVAL);
676 #endif
677 }
678
679 TIME_RETURN(0);
680 }
681
clock_nanosleep(clockid_t clk,int flags,const struct timespec * req,struct timespec * rem)682 int clock_nanosleep(clockid_t clk, int flags, const struct timespec *req, struct timespec *rem)
683 {
684 switch (clk) {
685 case CLOCK_REALTIME:
686 if (flags == 0) {
687 /* we only support the realtime clock currently */
688 return nanosleep(req, rem);
689 }
690 /* fallthrough */
691 case CLOCK_MONOTONIC_COARSE:
692 case CLOCK_REALTIME_COARSE:
693 case CLOCK_MONOTONIC_RAW:
694 case CLOCK_MONOTONIC:
695 case CLOCK_PROCESS_CPUTIME_ID:
696 case CLOCK_BOOTTIME:
697 case CLOCK_REALTIME_ALARM:
698 case CLOCK_BOOTTIME_ALARM:
699 case CLOCK_TAI:
700 if (flags == 0 || flags == TIMER_ABSTIME) {
701 TIME_RETURN(ENOTSUP);
702 }
703 /* fallthrough */
704 case CLOCK_THREAD_CPUTIME_ID:
705 default:
706 TIME_RETURN(EINVAL);
707 }
708
709 TIME_RETURN(0);
710 }
711
712 typedef struct {
713 int sigev_signo;
714 pid_t pid;
715 unsigned int tid;
716 union sigval sigev_value;
717 } swtmr_proc_arg;
718
SwtmrProc(UINTPTR tmrArg)719 static VOID SwtmrProc(UINTPTR tmrArg)
720 {
721 INT32 sig, ret;
722 UINT32 intSave;
723 pid_t pid;
724 siginfo_t info;
725 LosTaskCB *stcb = NULL;
726
727 swtmr_proc_arg *arg = (swtmr_proc_arg *)tmrArg;
728 OS_GOTO_EXIT_IF(arg == NULL, EINVAL);
729
730 sig = arg->sigev_signo;
731 pid = arg->pid;
732 OS_GOTO_EXIT_IF(!GOOD_SIGNO(sig), EINVAL);
733
734 /* Create the siginfo structure */
735 info.si_signo = sig;
736 info.si_code = SI_TIMER;
737 info.si_value.sival_ptr = arg->sigev_value.sival_ptr;
738
739 /* Send signals to threads or processes */
740 if (arg->tid > 0) {
741 /* Make sure that the para is valid */
742 OS_GOTO_EXIT_IF(OS_TID_CHECK_INVALID(arg->tid), EINVAL);
743 stcb = OsGetTaskCB(arg->tid);
744 ret = OsUserProcessOperatePermissionsCheck(stcb, stcb->processID);
745 OS_GOTO_EXIT_IF(ret != LOS_OK, -ret);
746
747 /* Dispatch the signal to thread, bypassing normal task group thread
748 * dispatch rules. */
749 SCHEDULER_LOCK(intSave);
750 ret = OsTcbDispatch(stcb, &info);
751 SCHEDULER_UNLOCK(intSave);
752 OS_GOTO_EXIT_IF(ret != LOS_OK, -ret);
753 } else {
754 /* Make sure that the para is valid */
755 OS_GOTO_EXIT_IF(pid <= 0 || OS_PID_CHECK_INVALID(pid), EINVAL);
756 /* Dispatch the signal to process */
757 SCHEDULER_LOCK(intSave);
758 OsDispatch(pid, &info, OS_USER_KILL_PERMISSION);
759 SCHEDULER_UNLOCK(intSave);
760 }
761 return;
762 EXIT:
763 PRINT_ERR("Dispatch signals failed!, ret: %d\r\n", ret);
764 return;
765 }
766
OsTimerCreate(clockid_t clockID,struct ksigevent * evp,timer_t * timerID)767 int OsTimerCreate(clockid_t clockID, struct ksigevent *evp, timer_t *timerID)
768 {
769 UINT32 ret;
770 UINT16 swtmrID;
771 swtmr_proc_arg *arg = NULL;
772 int signo;
773 #ifdef LOSCFG_SECURITY_VID
774 UINT16 vid;
775 #endif
776
777 if ((clockID != CLOCK_REALTIME) || (timerID == NULL)) {
778 errno = EINVAL;
779 return -1;
780 }
781
782 signo = evp ? evp->sigev_signo : SIGALRM;
783 if (signo > SIGRTMAX || signo < 1) {
784 errno = EINVAL;
785 return -1;
786 }
787 if (evp && (evp->sigev_notify != SIGEV_SIGNAL && evp->sigev_notify != SIGEV_THREAD_ID)) {
788 errno = ENOTSUP;
789 return -1;
790 }
791
792 arg = (swtmr_proc_arg *)malloc(sizeof(swtmr_proc_arg));
793 if (arg == NULL) {
794 errno = ENOMEM;
795 return -1;
796 }
797
798 arg->tid = evp ? evp->sigev_tid : 0;
799 arg->sigev_signo = signo;
800 arg->pid = LOS_GetCurrProcessID();
801 arg->sigev_value.sival_ptr = evp ? evp->sigev_value.sival_ptr : NULL;
802 ret = LOS_SwtmrCreate(1, LOS_SWTMR_MODE_ONCE, SwtmrProc, &swtmrID, (UINTPTR)arg);
803 if (ret != LOS_OK) {
804 errno = (ret == LOS_ERRNO_SWTMR_MAXSIZE) ? EAGAIN : EINVAL;
805 free(arg);
806 return -1;
807 }
808
809 #ifdef LOSCFG_SECURITY_VID
810 vid = AddNodeByRid(swtmrID);
811 if (vid == MAX_INVALID_TIMER_VID) {
812 free(arg);
813 (VOID)LOS_SwtmrDelete(swtmrID);
814 return -1;
815 }
816 swtmrID = vid;
817 #endif
818 *timerID = (timer_t)(UINTPTR)swtmrID;
819 return 0;
820 }
821
timer_delete(timer_t timerID)822 int timer_delete(timer_t timerID)
823 {
824 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
825 VOID *arg = NULL;
826
827 #ifdef LOSCFG_SECURITY_VID
828 swtmrID = GetRidByVid(swtmrID);
829 #endif
830 if (OS_INT_ACTIVE || !ValidTimerID(swtmrID)) {
831 goto ERROUT;
832 }
833
834 arg = (VOID *)OS_SWT_FROM_SID(swtmrID)->uwArg;
835 if (LOS_SwtmrDelete(swtmrID)) {
836 goto ERROUT;
837 }
838 if (arg != NULL) {
839 free(arg);
840 }
841
842 #ifdef LOSCFG_SECURITY_VID
843 RemoveNodeByVid((UINT16)(UINTPTR)timerID);
844 #endif
845 return 0;
846
847 ERROUT:
848 errno = EINVAL;
849 return -1;
850 }
851
timer_settime(timer_t timerID,int flags,const struct itimerspec * value,struct itimerspec * oldValue)852 int timer_settime(timer_t timerID, int flags,
853 const struct itimerspec *value, /* new value */
854 struct itimerspec *oldValue) /* old value to return, always 0 */
855 {
856 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
857 SWTMR_CTRL_S *swtmr = NULL;
858 UINT32 interval, expiry, ret;
859 UINT32 intSave;
860
861 if (flags != 0) {
862 /* flags not supported currently */
863 errno = ENOSYS;
864 return -1;
865 }
866
867 #ifdef LOSCFG_SECURITY_VID
868 swtmrID = GetRidByVid(swtmrID);
869 #endif
870 if ((value == NULL) || OS_INT_ACTIVE || !ValidTimerID(swtmrID)) {
871 errno = EINVAL;
872 return -1;
873 }
874
875 if (!ValidTimeSpec(&value->it_value) || !ValidTimeSpec(&value->it_interval)) {
876 errno = EINVAL;
877 return -1;
878 }
879
880 if (oldValue) {
881 (VOID)timer_gettime(timerID, oldValue);
882 }
883
884 swtmr = OS_SWT_FROM_SID(swtmrID);
885 ret = LOS_SwtmrStop(swtmr->usTimerID);
886 if ((ret != LOS_OK) && (ret != LOS_ERRNO_SWTMR_NOT_STARTED)) {
887 errno = EINVAL;
888 return -1;
889 }
890
891 expiry = OsTimeSpec2Tick(&value->it_value);
892 interval = OsTimeSpec2Tick(&value->it_interval);
893
894 LOS_SpinLockSave(&g_swtmrSpin, &intSave);
895 swtmr->ucMode = interval ? LOS_SWTMR_MODE_OPP : LOS_SWTMR_MODE_NO_SELFDELETE;
896 swtmr->uwExpiry = expiry + !!expiry; // PS: skip the first tick because it is NOT a full tick.
897 swtmr->uwInterval = interval;
898 swtmr->uwOverrun = 0;
899 LOS_SpinUnlockRestore(&g_swtmrSpin, intSave);
900
901 if ((value->it_value.tv_sec == 0) && (value->it_value.tv_nsec == 0)) {
902 /*
903 * 1) when expiry is 0, means timer should be stopped.
904 * 2) If timer is ticking, stopping timer is already done before.
905 * 3) If timer is created but not ticking, return 0 as well.
906 */
907 return 0;
908 }
909
910 if (LOS_SwtmrStart(swtmr->usTimerID)) {
911 errno = EINVAL;
912 return -1;
913 }
914
915 return 0;
916 }
917
timer_gettime(timer_t timerID,struct itimerspec * value)918 int timer_gettime(timer_t timerID, struct itimerspec *value)
919 {
920 UINT32 tick = 0;
921 SWTMR_CTRL_S *swtmr = NULL;
922 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
923 UINT32 ret;
924
925 #ifdef LOSCFG_SECURITY_VID
926 swtmrID = GetRidByVid(swtmrID);
927 #endif
928 if ((value == NULL) || !ValidTimerID(swtmrID)) {
929 errno = EINVAL;
930 return -1;
931 }
932
933 swtmr = OS_SWT_FROM_SID(swtmrID);
934
935 /* get expire time */
936 ret = LOS_SwtmrTimeGet(swtmr->usTimerID, &tick);
937 if ((ret != LOS_OK) && (ret != LOS_ERRNO_SWTMR_NOT_STARTED)) {
938 errno = EINVAL;
939 return -1;
940 }
941
942 OsTick2TimeSpec(&value->it_value, tick);
943 OsTick2TimeSpec(&value->it_interval, (swtmr->ucMode == LOS_SWTMR_MODE_ONCE) ? 0 : swtmr->uwInterval);
944 return 0;
945 }
946
timer_getoverrun(timer_t timerID)947 int timer_getoverrun(timer_t timerID)
948 {
949 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
950 SWTMR_CTRL_S *swtmr = NULL;
951 INT32 overRun;
952
953 #ifdef LOSCFG_SECURITY_VID
954 swtmrID = GetRidByVid(swtmrID);
955 #endif
956 if (!ValidTimerID(swtmrID)) {
957 errno = EINVAL;
958 return -1;
959 }
960
961 swtmr = OS_SWT_FROM_SID(swtmrID);
962 if (swtmr->usTimerID >= OS_SWTMR_MAX_TIMERID) {
963 errno = EINVAL;
964 return -1;
965 }
966
967 overRun = (INT32)(swtmr->uwOverrun);
968 return (overRun > DELAYTIMER_MAX) ? DELAYTIMER_MAX : overRun;
969 }
970
DoNanoSleep(UINT64 nanoseconds)971 STATIC INT32 DoNanoSleep(UINT64 nanoseconds)
972 {
973 UINT32 ret;
974
975 ret = LOS_TaskDelay(OsNS2Tick(nanoseconds));
976 if (ret == LOS_OK || ret == LOS_ERRNO_TSK_YIELD_NOT_ENOUGH_TASK) {
977 return 0;
978 }
979 return -1;
980 }
981
usleep(unsigned useconds)982 int usleep(unsigned useconds)
983 {
984 return DoNanoSleep((UINT64)useconds * OS_SYS_NS_PER_US);
985 }
986
nanosleep(const struct timespec * rqtp,struct timespec * rmtp)987 int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
988 {
989 UINT64 nanoseconds;
990 INT32 ret = -1;
991
992 (VOID)rmtp;
993 /* expire time */
994
995 if (!ValidTimeSpec(rqtp)) {
996 errno = EINVAL;
997 return ret;
998 }
999
1000 nanoseconds = (UINT64)rqtp->tv_sec * OS_SYS_NS_PER_SECOND + rqtp->tv_nsec;
1001
1002 return DoNanoSleep(nanoseconds);
1003 }
1004
sleep(unsigned int seconds)1005 unsigned int sleep(unsigned int seconds)
1006 {
1007 return DoNanoSleep((UINT64)seconds * OS_SYS_NS_PER_SECOND);
1008 }
1009
difftime(time_t time2,time_t time1)1010 double difftime(time_t time2, time_t time1)
1011 {
1012 return (double)(time2 - time1);
1013 }
1014
clock(VOID)1015 clock_t clock(VOID)
1016 {
1017 clock_t clockMsec;
1018 UINT64 nowNsec;
1019
1020 nowNsec = LOS_CurrNanosec();
1021 clockMsec = (clock_t)(nowNsec / (OS_SYS_NS_PER_SECOND / CLOCKS_PER_SEC));
1022
1023 return clockMsec;
1024 }
1025
times(struct tms * buf)1026 clock_t times(struct tms *buf)
1027 {
1028 clock_t clockTick = -1;
1029
1030 (void)buf;
1031 set_errno(ENOSYS);
1032
1033 return clockTick;
1034 }
1035
setitimer(int which,const struct itimerval * value,struct itimerval * ovalue)1036 int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue)
1037 {
1038 UINT32 intSave;
1039 LosTaskCB *taskCB = OS_TCB_FROM_TID(LOS_CurTaskIDGet());
1040 LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID);
1041 timer_t timerID = 0;
1042 struct itimerspec spec;
1043 struct itimerspec ospec;
1044 int ret = LOS_OK;
1045
1046 /* we only support the realtime clock timer currently */
1047 if (which != ITIMER_REAL || !value) {
1048 set_errno(EINVAL);
1049 return -1;
1050 }
1051
1052 /* To avoid creating an invalid timer after the timer has already been create */
1053 if (processCB->timerID == (timer_t)(UINTPTR)MAX_INVALID_TIMER_VID) {
1054 ret = OsTimerCreate(CLOCK_REALTIME, NULL, &timerID);
1055 if (ret != LOS_OK) {
1056 return ret;
1057 }
1058 }
1059
1060 /* The initialization of this global timer must be in spinlock
1061 * OsTimerCreate cannot be located in spinlock.
1062 */
1063 SCHEDULER_LOCK(intSave);
1064 if (processCB->timerID == (timer_t)(UINTPTR)MAX_INVALID_TIMER_VID) {
1065 processCB->timerID = timerID;
1066 SCHEDULER_UNLOCK(intSave);
1067 } else {
1068 SCHEDULER_UNLOCK(intSave);
1069 if (timerID) {
1070 timer_delete(timerID);
1071 }
1072 }
1073
1074 if (!ValidTimeval(&value->it_value) || !ValidTimeval(&value->it_interval)) {
1075 set_errno(EINVAL);
1076 return -1;
1077 }
1078
1079 TIMEVAL_TO_TIMESPEC(&value->it_value, &spec.it_value);
1080 TIMEVAL_TO_TIMESPEC(&value->it_interval, &spec.it_interval);
1081
1082 ret = timer_settime(processCB->timerID, 0, &spec, ovalue ? &ospec : NULL);
1083 if (ret == LOS_OK && ovalue) {
1084 TIMESPEC_TO_TIMEVAL(&ovalue->it_value, &ospec.it_value);
1085 TIMESPEC_TO_TIMEVAL(&ovalue->it_interval, &ospec.it_interval);
1086 }
1087
1088 return ret;
1089 }
1090
getitimer(int which,struct itimerval * value)1091 int getitimer(int which, struct itimerval *value)
1092 {
1093 LosTaskCB *taskCB = OS_TCB_FROM_TID(LOS_CurTaskIDGet());
1094 LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID);
1095 struct itimerspec spec = {};
1096
1097 int ret = LOS_OK;
1098
1099 /* we only support the realtime clock timer currently */
1100 if (which != ITIMER_REAL || !value) {
1101 set_errno(EINVAL);
1102 return -1;
1103 }
1104
1105 if (processCB->timerID != (timer_t)(UINTPTR)MAX_INVALID_TIMER_VID) {
1106 ret = timer_gettime(processCB->timerID, &spec);
1107 }
1108
1109 if (ret == LOS_OK) {
1110 TIMESPEC_TO_TIMEVAL(&value->it_value, &spec.it_value);
1111 TIMESPEC_TO_TIMEVAL(&value->it_interval, &spec.it_interval);
1112 }
1113
1114 return ret;
1115 }
1116
1117 #ifdef LOSCFG_KERNEL_VDSO
OsVdsoTimeGet(VdsoDataPage * vdsoDataPage)1118 VOID OsVdsoTimeGet(VdsoDataPage *vdsoDataPage)
1119 {
1120 UINT32 intSave;
1121 struct timespec64 tmp = {0};
1122 struct timespec64 hwTime = {0};
1123
1124 if (vdsoDataPage == NULL) {
1125 return;
1126 }
1127
1128 OsGetHwTime(&hwTime);
1129
1130 LOS_SpinLockSave(&g_timeSpin, &intSave);
1131 tmp = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
1132 vdsoDataPage->monoTimeSec = tmp.tv_sec;
1133 vdsoDataPage->monoTimeNsec = tmp.tv_nsec;
1134
1135 tmp = OsTimeSpecAdd(tmp, g_accDeltaFromSet);
1136 vdsoDataPage->realTimeSec = tmp.tv_sec;
1137 vdsoDataPage->realTimeNsec = tmp.tv_nsec;
1138 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
1139 }
1140 #endif
1141
time(time_t * t)1142 time_t time(time_t *t)
1143 {
1144 struct timeval tp;
1145 int ret;
1146
1147 /* Get the current time from the system */
1148 ret = gettimeofday(&tp, (struct timezone *)NULL);
1149 if (ret == LOS_OK) {
1150 /* Return the seconds since the epoch */
1151 if (t) {
1152 *t = tp.tv_sec;
1153 }
1154 return tp.tv_sec;
1155 }
1156 return (time_t)OS_ERROR;
1157 }
1158