README.md
1# Benchmark
2
3[![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark)
4[![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master)
5[![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark)
6
7A library to benchmark code snippets, similar to unit tests. Example:
8
9```c++
10#include <benchmark/benchmark.h>
11
12static void BM_SomeFunction(benchmark::State& state) {
13 // Perform setup here
14 for (auto _ : state) {
15 // This code gets timed
16 SomeFunction();
17 }
18}
19// Register the function as a benchmark
20BENCHMARK(BM_SomeFunction);
21// Run the benchmark
22BENCHMARK_MAIN();
23```
24
25To get started, see [Requirements](#requirements) and
26[Installation](#installation). See [Usage](#usage) for a full example and the
27[User Guide](#user-guide) for a more comprehensive feature overview.
28
29It may also help to read the [Google Test documentation](https://github.com/google/googletest/blob/master/googletest/docs/primer.md)
30as some of the structural aspects of the APIs are similar.
31
32### Resources
33
34[Discussion group](https://groups.google.com/d/forum/benchmark-discuss)
35
36IRC channel: [freenode](https://freenode.net) #googlebenchmark
37
38[Additional Tooling Documentation](docs/tools.md)
39
40[Assembly Testing Documentation](docs/AssemblyTests.md)
41
42## Requirements
43
44The library can be used with C++03. However, it requires C++11 to build,
45including compiler and standard library support.
46
47The following minimum versions are required to build the library:
48
49* GCC 4.8
50* Clang 3.4
51* Visual Studio 14 2015
52* Intel 2015 Update 1
53
54See [Platform-Specific Build Instructions](#platform-specific-build-instructions).
55
56## Installation
57
58This describes the installation process using cmake. As pre-requisites, you'll
59need git and cmake installed.
60
61_See [dependencies.md](dependencies.md) for more details regarding supported
62versions of build tools._
63
64```bash
65# Check out the library.
66$ git clone https://github.com/google/benchmark.git
67# Benchmark requires Google Test as a dependency. Add the source tree as a subdirectory.
68$ git clone https://github.com/google/googletest.git benchmark/googletest
69# Go to the library root directory
70$ cd benchmark
71# Make a build directory to place the build output.
72$ cmake -E make_directory "build"
73# Generate build system files with cmake.
74$ cmake -E chdir "build" cmake -DCMAKE_BUILD_TYPE=Release ../
75# or, starting with CMake 3.13, use a simpler form:
76# cmake -DCMAKE_BUILD_TYPE=Release -S . -B "build"
77# Build the library.
78$ cmake --build "build" --config Release
79```
80This builds the `benchmark` and `benchmark_main` libraries and tests.
81On a unix system, the build directory should now look something like this:
82
83```
84/benchmark
85 /build
86 /src
87 /libbenchmark.a
88 /libbenchmark_main.a
89 /test
90 ...
91```
92
93Next, you can run the tests to check the build.
94
95```bash
96$ cmake -E chdir "build" ctest --build-config Release
97```
98
99If you want to install the library globally, also run:
100
101```
102sudo cmake --build "build" --config Release --target install
103```
104
105Note that Google Benchmark requires Google Test to build and run the tests. This
106dependency can be provided two ways:
107
108* Checkout the Google Test sources into `benchmark/googletest` as above.
109* Otherwise, if `-DBENCHMARK_DOWNLOAD_DEPENDENCIES=ON` is specified during
110 configuration, the library will automatically download and build any required
111 dependencies.
112
113If you do not wish to build and run the tests, add `-DBENCHMARK_ENABLE_GTEST_TESTS=OFF`
114to `CMAKE_ARGS`.
115
116### Debug vs Release
117
118By default, benchmark builds as a debug library. You will see a warning in the
119output when this is the case. To build it as a release library instead, add
120`-DCMAKE_BUILD_TYPE=Release` when generating the build system files, as shown
121above. The use of `--config Release` in build commands is needed to properly
122support multi-configuration tools (like Visual Studio for example) and can be
123skipped for other build systems (like Makefile).
124
125To enable link-time optimisation, also add `-DBENCHMARK_ENABLE_LTO=true` when
126generating the build system files.
127
128If you are using gcc, you might need to set `GCC_AR` and `GCC_RANLIB` cmake
129cache variables, if autodetection fails.
130
131If you are using clang, you may need to set `LLVMAR_EXECUTABLE`,
132`LLVMNM_EXECUTABLE` and `LLVMRANLIB_EXECUTABLE` cmake cache variables.
133
134### Stable and Experimental Library Versions
135
136The main branch contains the latest stable version of the benchmarking library;
137the API of which can be considered largely stable, with source breaking changes
138being made only upon the release of a new major version.
139
140Newer, experimental, features are implemented and tested on the
141[`v2` branch](https://github.com/google/benchmark/tree/v2). Users who wish
142to use, test, and provide feedback on the new features are encouraged to try
143this branch. However, this branch provides no stability guarantees and reserves
144the right to change and break the API at any time.
145
146## Usage
147
148### Basic usage
149
150Define a function that executes the code to measure, register it as a benchmark
151function using the `BENCHMARK` macro, and ensure an appropriate `main` function
152is available:
153
154```c++
155#include <benchmark/benchmark.h>
156
157static void BM_StringCreation(benchmark::State& state) {
158 for (auto _ : state)
159 std::string empty_string;
160}
161// Register the function as a benchmark
162BENCHMARK(BM_StringCreation);
163
164// Define another benchmark
165static void BM_StringCopy(benchmark::State& state) {
166 std::string x = "hello";
167 for (auto _ : state)
168 std::string copy(x);
169}
170BENCHMARK(BM_StringCopy);
171
172BENCHMARK_MAIN();
173```
174
175To run the benchmark, compile and link against the `benchmark` library
176(libbenchmark.a/.so). If you followed the build steps above, this library will
177be under the build directory you created.
178
179```bash
180# Example on linux after running the build steps above. Assumes the
181# `benchmark` and `build` directories are under the current directory.
182$ g++ mybenchmark.cc -std=c++11 -isystem benchmark/include \
183 -Lbenchmark/build/src -lbenchmark -lpthread -o mybenchmark
184```
185
186Alternatively, link against the `benchmark_main` library and remove
187`BENCHMARK_MAIN();` above to get the same behavior.
188
189The compiled executable will run all benchmarks by default. Pass the `--help`
190flag for option information or see the guide below.
191
192### Usage with CMake
193
194If using CMake, it is recommended to link against the project-provided
195`benchmark::benchmark` and `benchmark::benchmark_main` targets using
196`target_link_libraries`.
197It is possible to use ```find_package``` to import an installed version of the
198library.
199```cmake
200find_package(benchmark REQUIRED)
201```
202Alternatively, ```add_subdirectory``` will incorporate the library directly in
203to one's CMake project.
204```cmake
205add_subdirectory(benchmark)
206```
207Either way, link to the library as follows.
208```cmake
209target_link_libraries(MyTarget benchmark::benchmark)
210```
211
212## Platform Specific Build Instructions
213
214### Building with GCC
215
216When the library is built using GCC it is necessary to link with the pthread
217library due to how GCC implements `std::thread`. Failing to link to pthread will
218lead to runtime exceptions (unless you're using libc++), not linker errors. See
219[issue #67](https://github.com/google/benchmark/issues/67) for more details. You
220can link to pthread by adding `-pthread` to your linker command. Note, you can
221also use `-lpthread`, but there are potential issues with ordering of command
222line parameters if you use that.
223
224### Building with Visual Studio 2015 or 2017
225
226The `shlwapi` library (`-lshlwapi`) is required to support a call to `CPUInfo` which reads the registry. Either add `shlwapi.lib` under `[ Configuration Properties > Linker > Input ]`, or use the following:
227
228```
229// Alternatively, can add libraries using linker options.
230#ifdef _WIN32
231#pragma comment ( lib, "Shlwapi.lib" )
232#ifdef _DEBUG
233#pragma comment ( lib, "benchmarkd.lib" )
234#else
235#pragma comment ( lib, "benchmark.lib" )
236#endif
237#endif
238```
239
240Can also use the graphical version of CMake:
241* Open `CMake GUI`.
242* Under `Where to build the binaries`, same path as source plus `build`.
243* Under `CMAKE_INSTALL_PREFIX`, same path as source plus `install`.
244* Click `Configure`, `Generate`, `Open Project`.
245* If build fails, try deleting entire directory and starting again, or unticking options to build less.
246
247### Building with Intel 2015 Update 1 or Intel System Studio Update 4
248
249See instructions for building with Visual Studio. Once built, right click on the solution and change the build to Intel.
250
251### Building on Solaris
252
253If you're running benchmarks on solaris, you'll want the kstat library linked in
254too (`-lkstat`).
255
256## User Guide
257
258### Command Line
259
260[Output Formats](#output-formats)
261
262[Output Files](#output-files)
263
264[Running Benchmarks](#running-benchmarks)
265
266[Running a Subset of Benchmarks](#running-a-subset-of-benchmarks)
267
268[Result Comparison](#result-comparison)
269
270### Library
271
272[Runtime and Reporting Considerations](#runtime-and-reporting-considerations)
273
274[Passing Arguments](#passing-arguments)
275
276[Calculating Asymptotic Complexity](#asymptotic-complexity)
277
278[Templated Benchmarks](#templated-benchmarks)
279
280[Fixtures](#fixtures)
281
282[Custom Counters](#custom-counters)
283
284[Multithreaded Benchmarks](#multithreaded-benchmarks)
285
286[CPU Timers](#cpu-timers)
287
288[Manual Timing](#manual-timing)
289
290[Setting the Time Unit](#setting-the-time-unit)
291
292[Preventing Optimization](#preventing-optimization)
293
294[Reporting Statistics](#reporting-statistics)
295
296[Custom Statistics](#custom-statistics)
297
298[Using RegisterBenchmark](#using-register-benchmark)
299
300[Exiting with an Error](#exiting-with-an-error)
301
302[A Faster KeepRunning Loop](#a-faster-keep-running-loop)
303
304[Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling)
305
306
307<a name="output-formats" />
308
309### Output Formats
310
311The library supports multiple output formats. Use the
312`--benchmark_format=<console|json|csv>` flag (or set the
313`BENCHMARK_FORMAT=<console|json|csv>` environment variable) to set
314the format type. `console` is the default format.
315
316The Console format is intended to be a human readable format. By default
317the format generates color output. Context is output on stderr and the
318tabular data on stdout. Example tabular output looks like:
319
320```
321Benchmark Time(ns) CPU(ns) Iterations
322----------------------------------------------------------------------
323BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
324BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
325BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
326```
327
328The JSON format outputs human readable json split into two top level attributes.
329The `context` attribute contains information about the run in general, including
330information about the CPU and the date.
331The `benchmarks` attribute contains a list of every benchmark run. Example json
332output looks like:
333
334```json
335{
336 "context": {
337 "date": "2015/03/17-18:40:25",
338 "num_cpus": 40,
339 "mhz_per_cpu": 2801,
340 "cpu_scaling_enabled": false,
341 "build_type": "debug"
342 },
343 "benchmarks": [
344 {
345 "name": "BM_SetInsert/1024/1",
346 "iterations": 94877,
347 "real_time": 29275,
348 "cpu_time": 29836,
349 "bytes_per_second": 134066,
350 "items_per_second": 33516
351 },
352 {
353 "name": "BM_SetInsert/1024/8",
354 "iterations": 21609,
355 "real_time": 32317,
356 "cpu_time": 32429,
357 "bytes_per_second": 986770,
358 "items_per_second": 246693
359 },
360 {
361 "name": "BM_SetInsert/1024/10",
362 "iterations": 21393,
363 "real_time": 32724,
364 "cpu_time": 33355,
365 "bytes_per_second": 1199226,
366 "items_per_second": 299807
367 }
368 ]
369}
370```
371
372The CSV format outputs comma-separated values. The `context` is output on stderr
373and the CSV itself on stdout. Example CSV output looks like:
374
375```
376name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
377"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
378"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
379"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
380```
381
382<a name="output-files" />
383
384### Output Files
385
386Write benchmark results to a file with the `--benchmark_out=<filename>` option
387(or set `BENCHMARK_OUT`). Specify the output format with
388`--benchmark_out_format={json|console|csv}` (or set
389`BENCHMARK_OUT_FORMAT={json|console|csv}`). Note that specifying
390`--benchmark_out` does not suppress the console output.
391
392<a name="running-benchmarks" />
393
394### Running Benchmarks
395
396Benchmarks are executed by running the produced binaries. Benchmarks binaries,
397by default, accept options that may be specified either through their command
398line interface or by setting environment variables before execution. For every
399`--option_flag=<value>` CLI switch, a corresponding environment variable
400`OPTION_FLAG=<value>` exist and is used as default if set (CLI switches always
401 prevails). A complete list of CLI options is available running benchmarks
402 with the `--help` switch.
403
404<a name="running-a-subset-of-benchmarks" />
405
406### Running a Subset of Benchmarks
407
408The `--benchmark_filter=<regex>` option (or `BENCHMARK_FILTER=<regex>`
409environment variable) can be used to only run the benchmarks that match
410the specified `<regex>`. For example:
411
412```bash
413$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
414Run on (1 X 2300 MHz CPU )
4152016-06-25 19:34:24
416Benchmark Time CPU Iterations
417----------------------------------------------------
418BM_memcpy/32 11 ns 11 ns 79545455
419BM_memcpy/32k 2181 ns 2185 ns 324074
420BM_memcpy/32 12 ns 12 ns 54687500
421BM_memcpy/32k 1834 ns 1837 ns 357143
422```
423
424<a name="result-comparison" />
425
426### Result comparison
427
428It is possible to compare the benchmarking results.
429See [Additional Tooling Documentation](docs/tools.md)
430
431<a name="runtime-and-reporting-considerations" />
432
433### Runtime and Reporting Considerations
434
435When the benchmark binary is executed, each benchmark function is run serially.
436The number of iterations to run is determined dynamically by running the
437benchmark a few times and measuring the time taken and ensuring that the
438ultimate result will be statistically stable. As such, faster benchmark
439functions will be run for more iterations than slower benchmark functions, and
440the number of iterations is thus reported.
441
442In all cases, the number of iterations for which the benchmark is run is
443governed by the amount of time the benchmark takes. Concretely, the number of
444iterations is at least one, not more than 1e9, until CPU time is greater than
445the minimum time, or the wallclock time is 5x minimum time. The minimum time is
446set per benchmark by calling `MinTime` on the registered benchmark object.
447
448Average timings are then reported over the iterations run. If multiple
449repetitions are requested using the `--benchmark_repetitions` command-line
450option, or at registration time, the benchmark function will be run several
451times and statistical results across these repetitions will also be reported.
452
453As well as the per-benchmark entries, a preamble in the report will include
454information about the machine on which the benchmarks are run.
455
456<a name="passing-arguments" />
457
458### Passing Arguments
459
460Sometimes a family of benchmarks can be implemented with just one routine that
461takes an extra argument to specify which one of the family of benchmarks to
462run. For example, the following code defines a family of benchmarks for
463measuring the speed of `memcpy()` calls of different lengths:
464
465```c++
466static void BM_memcpy(benchmark::State& state) {
467 char* src = new char[state.range(0)];
468 char* dst = new char[state.range(0)];
469 memset(src, 'x', state.range(0));
470 for (auto _ : state)
471 memcpy(dst, src, state.range(0));
472 state.SetBytesProcessed(int64_t(state.iterations()) *
473 int64_t(state.range(0)));
474 delete[] src;
475 delete[] dst;
476}
477BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
478```
479
480The preceding code is quite repetitive, and can be replaced with the following
481short-hand. The following invocation will pick a few appropriate arguments in
482the specified range and will generate a benchmark for each such argument.
483
484```c++
485BENCHMARK(BM_memcpy)->Range(8, 8<<10);
486```
487
488By default the arguments in the range are generated in multiples of eight and
489the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
490range multiplier is changed to multiples of two.
491
492```c++
493BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
494```
495
496Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
497
498The preceding code shows a method of defining a sparse range. The following
499example shows a method of defining a dense range. It is then used to benchmark
500the performance of `std::vector` initialization for uniformly increasing sizes.
501
502```c++
503static void BM_DenseRange(benchmark::State& state) {
504 for(auto _ : state) {
505 std::vector<int> v(state.range(0), state.range(0));
506 benchmark::DoNotOptimize(v.data());
507 benchmark::ClobberMemory();
508 }
509}
510BENCHMARK(BM_DenseRange)->DenseRange(0, 1024, 128);
511```
512
513Now arguments generated are [ 0, 128, 256, 384, 512, 640, 768, 896, 1024 ].
514
515You might have a benchmark that depends on two or more inputs. For example, the
516following code defines a family of benchmarks for measuring the speed of set
517insertion.
518
519```c++
520static void BM_SetInsert(benchmark::State& state) {
521 std::set<int> data;
522 for (auto _ : state) {
523 state.PauseTiming();
524 data = ConstructRandomSet(state.range(0));
525 state.ResumeTiming();
526 for (int j = 0; j < state.range(1); ++j)
527 data.insert(RandomNumber());
528 }
529}
530BENCHMARK(BM_SetInsert)
531 ->Args({1<<10, 128})
532 ->Args({2<<10, 128})
533 ->Args({4<<10, 128})
534 ->Args({8<<10, 128})
535 ->Args({1<<10, 512})
536 ->Args({2<<10, 512})
537 ->Args({4<<10, 512})
538 ->Args({8<<10, 512});
539```
540
541The preceding code is quite repetitive, and can be replaced with the following
542short-hand. The following macro will pick a few appropriate arguments in the
543product of the two specified ranges and will generate a benchmark for each such
544pair.
545
546```c++
547BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
548```
549
550Some benchmarks may require specific argument values that cannot be expressed
551with `Ranges`. In this case, `ArgsProduct` offers the ability to generate a
552benchmark input for each combination in the product of the supplied vectors.
553
554```c++
555BENCHMARK(BM_SetInsert)
556 ->ArgsProduct({{1<<10, 3<<10, 8<<10}, {20, 40, 60, 80}})
557// would generate the same benchmark arguments as
558BENCHMARK(BM_SetInsert)
559 ->Args({1<<10, 20})
560 ->Args({3<<10, 20})
561 ->Args({8<<10, 20})
562 ->Args({3<<10, 40})
563 ->Args({8<<10, 40})
564 ->Args({1<<10, 40})
565 ->Args({1<<10, 60})
566 ->Args({3<<10, 60})
567 ->Args({8<<10, 60})
568 ->Args({1<<10, 80})
569 ->Args({3<<10, 80})
570 ->Args({8<<10, 80});
571```
572
573For more complex patterns of inputs, passing a custom function to `Apply` allows
574programmatic specification of an arbitrary set of arguments on which to run the
575benchmark. The following example enumerates a dense range on one parameter,
576and a sparse range on the second.
577
578```c++
579static void CustomArguments(benchmark::internal::Benchmark* b) {
580 for (int i = 0; i <= 10; ++i)
581 for (int j = 32; j <= 1024*1024; j *= 8)
582 b->Args({i, j});
583}
584BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
585```
586
587#### Passing Arbitrary Arguments to a Benchmark
588
589In C++11 it is possible to define a benchmark that takes an arbitrary number
590of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
591macro creates a benchmark that invokes `func` with the `benchmark::State` as
592the first argument followed by the specified `args...`.
593The `test_case_name` is appended to the name of the benchmark and
594should describe the values passed.
595
596```c++
597template <class ...ExtraArgs>
598void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
599 [...]
600}
601// Registers a benchmark named "BM_takes_args/int_string_test" that passes
602// the specified values to `extra_args`.
603BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
604```
605
606Note that elements of `...args` may refer to global variables. Users should
607avoid modifying global state inside of a benchmark.
608
609<a name="asymptotic-complexity" />
610
611### Calculating Asymptotic Complexity (Big O)
612
613Asymptotic complexity might be calculated for a family of benchmarks. The
614following code will calculate the coefficient for the high-order term in the
615running time and the normalized root-mean square error of string comparison.
616
617```c++
618static void BM_StringCompare(benchmark::State& state) {
619 std::string s1(state.range(0), '-');
620 std::string s2(state.range(0), '-');
621 for (auto _ : state) {
622 benchmark::DoNotOptimize(s1.compare(s2));
623 }
624 state.SetComplexityN(state.range(0));
625}
626BENCHMARK(BM_StringCompare)
627 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
628```
629
630As shown in the following invocation, asymptotic complexity might also be
631calculated automatically.
632
633```c++
634BENCHMARK(BM_StringCompare)
635 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
636```
637
638The following code will specify asymptotic complexity with a lambda function,
639that might be used to customize high-order term calculation.
640
641```c++
642BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
643 ->Range(1<<10, 1<<18)->Complexity([](benchmark::IterationCount n)->double{return n; });
644```
645
646<a name="templated-benchmarks" />
647
648### Templated Benchmarks
649
650This example produces and consumes messages of size `sizeof(v)` `range_x`
651times. It also outputs throughput in the absence of multiprogramming.
652
653```c++
654template <class Q> void BM_Sequential(benchmark::State& state) {
655 Q q;
656 typename Q::value_type v;
657 for (auto _ : state) {
658 for (int i = state.range(0); i--; )
659 q.push(v);
660 for (int e = state.range(0); e--; )
661 q.Wait(&v);
662 }
663 // actually messages, not bytes:
664 state.SetBytesProcessed(
665 static_cast<int64_t>(state.iterations())*state.range(0));
666}
667BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
668```
669
670Three macros are provided for adding benchmark templates.
671
672```c++
673#ifdef BENCHMARK_HAS_CXX11
674#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters.
675#else // C++ < C++11
676#define BENCHMARK_TEMPLATE(func, arg1)
677#endif
678#define BENCHMARK_TEMPLATE1(func, arg1)
679#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
680```
681
682<a name="fixtures" />
683
684### Fixtures
685
686Fixture tests are created by first defining a type that derives from
687`::benchmark::Fixture` and then creating/registering the tests using the
688following macros:
689
690* `BENCHMARK_F(ClassName, Method)`
691* `BENCHMARK_DEFINE_F(ClassName, Method)`
692* `BENCHMARK_REGISTER_F(ClassName, Method)`
693
694For Example:
695
696```c++
697class MyFixture : public benchmark::Fixture {
698public:
699 void SetUp(const ::benchmark::State& state) {
700 }
701
702 void TearDown(const ::benchmark::State& state) {
703 }
704};
705
706BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
707 for (auto _ : st) {
708 ...
709 }
710}
711
712BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
713 for (auto _ : st) {
714 ...
715 }
716}
717/* BarTest is NOT registered */
718BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
719/* BarTest is now registered */
720```
721
722#### Templated Fixtures
723
724Also you can create templated fixture by using the following macros:
725
726* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
727* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
728
729For example:
730
731```c++
732template<typename T>
733class MyFixture : public benchmark::Fixture {};
734
735BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
736 for (auto _ : st) {
737 ...
738 }
739}
740
741BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
742 for (auto _ : st) {
743 ...
744 }
745}
746
747BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
748```
749
750<a name="custom-counters" />
751
752### Custom Counters
753
754You can add your own counters with user-defined names. The example below
755will add columns "Foo", "Bar" and "Baz" in its output:
756
757```c++
758static void UserCountersExample1(benchmark::State& state) {
759 double numFoos = 0, numBars = 0, numBazs = 0;
760 for (auto _ : state) {
761 // ... count Foo,Bar,Baz events
762 }
763 state.counters["Foo"] = numFoos;
764 state.counters["Bar"] = numBars;
765 state.counters["Baz"] = numBazs;
766}
767```
768
769The `state.counters` object is a `std::map` with `std::string` keys
770and `Counter` values. The latter is a `double`-like class, via an implicit
771conversion to `double&`. Thus you can use all of the standard arithmetic
772assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
773
774In multithreaded benchmarks, each counter is set on the calling thread only.
775When the benchmark finishes, the counters from each thread will be summed;
776the resulting sum is the value which will be shown for the benchmark.
777
778The `Counter` constructor accepts three parameters: the value as a `double`
779; a bit flag which allows you to show counters as rates, and/or as per-thread
780iteration, and/or as per-thread averages, and/or iteration invariants,
781and/or finally inverting the result; and a flag specifying the 'unit' - i.e.
782is 1k a 1000 (default, `benchmark::Counter::OneK::kIs1000`), or 1024
783(`benchmark::Counter::OneK::kIs1024`)?
784
785```c++
786 // sets a simple counter
787 state.counters["Foo"] = numFoos;
788
789 // Set the counter as a rate. It will be presented divided
790 // by the duration of the benchmark.
791 // Meaning: per one second, how many 'foo's are processed?
792 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
793
794 // Set the counter as a rate. It will be presented divided
795 // by the duration of the benchmark, and the result inverted.
796 // Meaning: how many seconds it takes to process one 'foo'?
797 state.counters["FooInvRate"] = Counter(numFoos, benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
798
799 // Set the counter as a thread-average quantity. It will
800 // be presented divided by the number of threads.
801 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
802
803 // There's also a combined flag:
804 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
805
806 // This says that we process with the rate of state.range(0) bytes every iteration:
807 state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024);
808```
809
810When you're compiling in C++11 mode or later you can use `insert()` with
811`std::initializer_list`:
812
813```c++
814 // With C++11, this can be done:
815 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
816 // ... instead of:
817 state.counters["Foo"] = numFoos;
818 state.counters["Bar"] = numBars;
819 state.counters["Baz"] = numBazs;
820```
821
822#### Counter Reporting
823
824When using the console reporter, by default, user counters are printed at
825the end after the table, the same way as ``bytes_processed`` and
826``items_processed``. This is best for cases in which there are few counters,
827or where there are only a couple of lines per benchmark. Here's an example of
828the default output:
829
830```
831------------------------------------------------------------------------------
832Benchmark Time CPU Iterations UserCounters...
833------------------------------------------------------------------------------
834BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8
835BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m
836BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2
837BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4
838BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8
839BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16
840BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32
841BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4
842BM_Factorial 26 ns 26 ns 26608979 40320
843BM_Factorial/real_time 26 ns 26 ns 26587936 40320
844BM_CalculatePiRange/1 16 ns 16 ns 45704255 0
845BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374
846BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746
847BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355
848```
849
850If this doesn't suit you, you can print each counter as a table column by
851passing the flag `--benchmark_counters_tabular=true` to the benchmark
852application. This is best for cases in which there are a lot of counters, or
853a lot of lines per individual benchmark. Note that this will trigger a
854reprinting of the table header any time the counter set changes between
855individual benchmarks. Here's an example of corresponding output when
856`--benchmark_counters_tabular=true` is passed:
857
858```
859---------------------------------------------------------------------------------------
860Benchmark Time CPU Iterations Bar Bat Baz Foo
861---------------------------------------------------------------------------------------
862BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8
863BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1
864BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2
865BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4
866BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8
867BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16
868BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32
869BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4
870--------------------------------------------------------------
871Benchmark Time CPU Iterations
872--------------------------------------------------------------
873BM_Factorial 26 ns 26 ns 26392245 40320
874BM_Factorial/real_time 26 ns 26 ns 26494107 40320
875BM_CalculatePiRange/1 15 ns 15 ns 45571597 0
876BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374
877BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746
878BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355
879BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184
880BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162
881BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416
882BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159
883BM_CalculatePi/threads:8 2255 ns 9943 ns 70936
884```
885
886Note above the additional header printed when the benchmark changes from
887``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
888not have the same counter set as ``BM_UserCounter``.
889
890<a name="multithreaded-benchmarks"/>
891
892### Multithreaded Benchmarks
893
894In a multithreaded test (benchmark invoked by multiple threads simultaneously),
895it is guaranteed that none of the threads will start until all have reached
896the start of the benchmark loop, and all will have finished before any thread
897exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
898API) As such, any global setup or teardown can be wrapped in a check against the thread
899index:
900
901```c++
902static void BM_MultiThreaded(benchmark::State& state) {
903 if (state.thread_index == 0) {
904 // Setup code here.
905 }
906 for (auto _ : state) {
907 // Run the test as normal.
908 }
909 if (state.thread_index == 0) {
910 // Teardown code here.
911 }
912}
913BENCHMARK(BM_MultiThreaded)->Threads(2);
914```
915
916If the benchmarked code itself uses threads and you want to compare it to
917single-threaded code, you may want to use real-time ("wallclock") measurements
918for latency comparisons:
919
920```c++
921BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
922```
923
924Without `UseRealTime`, CPU time is used by default.
925
926<a name="cpu-timers" />
927
928### CPU Timers
929
930By default, the CPU timer only measures the time spent by the main thread.
931If the benchmark itself uses threads internally, this measurement may not
932be what you are looking for. Instead, there is a way to measure the total
933CPU usage of the process, by all the threads.
934
935```c++
936void callee(int i);
937
938static void MyMain(int size) {
939#pragma omp parallel for
940 for(int i = 0; i < size; i++)
941 callee(i);
942}
943
944static void BM_OpenMP(benchmark::State& state) {
945 for (auto _ : state)
946 MyMain(state.range(0));
947}
948
949// Measure the time spent by the main thread, use it to decide for how long to
950// run the benchmark loop. Depending on the internal implementation detail may
951// measure to anywhere from near-zero (the overhead spent before/after work
952// handoff to worker thread[s]) to the whole single-thread time.
953BENCHMARK(BM_OpenMP)->Range(8, 8<<10);
954
955// Measure the user-visible time, the wall clock (literally, the time that
956// has passed on the clock on the wall), use it to decide for how long to
957// run the benchmark loop. This will always be meaningful, an will match the
958// time spent by the main thread in single-threaded case, in general decreasing
959// with the number of internal threads doing the work.
960BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime();
961
962// Measure the total CPU consumption, use it to decide for how long to
963// run the benchmark loop. This will always measure to no less than the
964// time spent by the main thread in single-threaded case.
965BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime();
966
967// A mixture of the last two. Measure the total CPU consumption, but use the
968// wall clock to decide for how long to run the benchmark loop.
969BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime();
970```
971
972#### Controlling Timers
973
974Normally, the entire duration of the work loop (`for (auto _ : state) {}`)
975is measured. But sometimes, it is necessary to do some work inside of
976that loop, every iteration, but without counting that time to the benchmark time.
977That is possible, although it is not recommended, since it has high overhead.
978
979```c++
980static void BM_SetInsert_With_Timer_Control(benchmark::State& state) {
981 std::set<int> data;
982 for (auto _ : state) {
983 state.PauseTiming(); // Stop timers. They will not count until they are resumed.
984 data = ConstructRandomSet(state.range(0)); // Do something that should not be measured
985 state.ResumeTiming(); // And resume timers. They are now counting again.
986 // The rest will be measured.
987 for (int j = 0; j < state.range(1); ++j)
988 data.insert(RandomNumber());
989 }
990}
991BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}});
992```
993
994<a name="manual-timing" />
995
996### Manual Timing
997
998For benchmarking something for which neither CPU time nor real-time are
999correct or accurate enough, completely manual timing is supported using
1000the `UseManualTime` function.
1001
1002When `UseManualTime` is used, the benchmarked code must call
1003`SetIterationTime` once per iteration of the benchmark loop to
1004report the manually measured time.
1005
1006An example use case for this is benchmarking GPU execution (e.g. OpenCL
1007or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
1008be accurately measured using CPU time or real-time. Instead, they can be
1009measured accurately using a dedicated API, and these measurement results
1010can be reported back with `SetIterationTime`.
1011
1012```c++
1013static void BM_ManualTiming(benchmark::State& state) {
1014 int microseconds = state.range(0);
1015 std::chrono::duration<double, std::micro> sleep_duration {
1016 static_cast<double>(microseconds)
1017 };
1018
1019 for (auto _ : state) {
1020 auto start = std::chrono::high_resolution_clock::now();
1021 // Simulate some useful workload with a sleep
1022 std::this_thread::sleep_for(sleep_duration);
1023 auto end = std::chrono::high_resolution_clock::now();
1024
1025 auto elapsed_seconds =
1026 std::chrono::duration_cast<std::chrono::duration<double>>(
1027 end - start);
1028
1029 state.SetIterationTime(elapsed_seconds.count());
1030 }
1031}
1032BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
1033```
1034
1035<a name="setting-the-time-unit" />
1036
1037### Setting the Time Unit
1038
1039If a benchmark runs a few milliseconds it may be hard to visually compare the
1040measured times, since the output data is given in nanoseconds per default. In
1041order to manually set the time unit, you can specify it manually:
1042
1043```c++
1044BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
1045```
1046
1047<a name="preventing-optimization" />
1048
1049### Preventing Optimization
1050
1051To prevent a value or expression from being optimized away by the compiler
1052the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
1053functions can be used.
1054
1055```c++
1056static void BM_test(benchmark::State& state) {
1057 for (auto _ : state) {
1058 int x = 0;
1059 for (int i=0; i < 64; ++i) {
1060 benchmark::DoNotOptimize(x += i);
1061 }
1062 }
1063}
1064```
1065
1066`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either
1067memory or a register. For GNU based compilers it acts as read/write barrier
1068for global memory. More specifically it forces the compiler to flush pending
1069writes to memory and reload any other values as necessary.
1070
1071Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
1072in any way. `<expr>` may even be removed entirely when the result is already
1073known. For example:
1074
1075```c++
1076 /* Example 1: `<expr>` is removed entirely. */
1077 int foo(int x) { return x + 42; }
1078 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
1079
1080 /* Example 2: Result of '<expr>' is only reused */
1081 int bar(int) __attribute__((const));
1082 while (...) DoNotOptimize(bar(0)); // Optimized to:
1083 // int __result__ = bar(0);
1084 // while (...) DoNotOptimize(__result__);
1085```
1086
1087The second tool for preventing optimizations is `ClobberMemory()`. In essence
1088`ClobberMemory()` forces the compiler to perform all pending writes to global
1089memory. Memory managed by block scope objects must be "escaped" using
1090`DoNotOptimize(...)` before it can be clobbered. In the below example
1091`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
1092away.
1093
1094```c++
1095static void BM_vector_push_back(benchmark::State& state) {
1096 for (auto _ : state) {
1097 std::vector<int> v;
1098 v.reserve(1);
1099 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
1100 v.push_back(42);
1101 benchmark::ClobberMemory(); // Force 42 to be written to memory.
1102 }
1103}
1104```
1105
1106Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
1107
1108<a name="reporting-statistics" />
1109
1110### Statistics: Reporting the Mean, Median and Standard Deviation of Repeated Benchmarks
1111
1112By default each benchmark is run once and that single result is reported.
1113However benchmarks are often noisy and a single result may not be representative
1114of the overall behavior. For this reason it's possible to repeatedly rerun the
1115benchmark.
1116
1117The number of runs of each benchmark is specified globally by the
1118`--benchmark_repetitions` flag or on a per benchmark basis by calling
1119`Repetitions` on the registered benchmark object. When a benchmark is run more
1120than once the mean, median and standard deviation of the runs will be reported.
1121
1122Additionally the `--benchmark_report_aggregates_only={true|false}`,
1123`--benchmark_display_aggregates_only={true|false}` flags or
1124`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be
1125used to change how repeated tests are reported. By default the result of each
1126repeated run is reported. When `report aggregates only` option is `true`,
1127only the aggregates (i.e. mean, median and standard deviation, maybe complexity
1128measurements if they were requested) of the runs is reported, to both the
1129reporters - standard output (console), and the file.
1130However when only the `display aggregates only` option is `true`,
1131only the aggregates are displayed in the standard output, while the file
1132output still contains everything.
1133Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a
1134registered benchmark object overrides the value of the appropriate flag for that
1135benchmark.
1136
1137<a name="custom-statistics" />
1138
1139### Custom Statistics
1140
1141While having mean, median and standard deviation is nice, this may not be
1142enough for everyone. For example you may want to know what the largest
1143observation is, e.g. because you have some real-time constraints. This is easy.
1144The following code will specify a custom statistic to be calculated, defined
1145by a lambda function.
1146
1147```c++
1148void BM_spin_empty(benchmark::State& state) {
1149 for (auto _ : state) {
1150 for (int x = 0; x < state.range(0); ++x) {
1151 benchmark::DoNotOptimize(x);
1152 }
1153 }
1154}
1155
1156BENCHMARK(BM_spin_empty)
1157 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
1158 return *(std::max_element(std::begin(v), std::end(v)));
1159 })
1160 ->Arg(512);
1161```
1162
1163<a name="using-register-benchmark" />
1164
1165### Using RegisterBenchmark(name, fn, args...)
1166
1167The `RegisterBenchmark(name, func, args...)` function provides an alternative
1168way to create and register benchmarks.
1169`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
1170pointer to a new benchmark with the specified `name` that invokes
1171`func(st, args...)` where `st` is a `benchmark::State` object.
1172
1173Unlike the `BENCHMARK` registration macros, which can only be used at the global
1174scope, the `RegisterBenchmark` can be called anywhere. This allows for
1175benchmark tests to be registered programmatically.
1176
1177Additionally `RegisterBenchmark` allows any callable object to be registered
1178as a benchmark. Including capturing lambdas and function objects.
1179
1180For Example:
1181```c++
1182auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
1183
1184int main(int argc, char** argv) {
1185 for (auto& test_input : { /* ... */ })
1186 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
1187 benchmark::Initialize(&argc, argv);
1188 benchmark::RunSpecifiedBenchmarks();
1189}
1190```
1191
1192<a name="exiting-with-an-error" />
1193
1194### Exiting with an Error
1195
1196When errors caused by external influences, such as file I/O and network
1197communication, occur within a benchmark the
1198`State::SkipWithError(const char* msg)` function can be used to skip that run
1199of benchmark and report the error. Note that only future iterations of the
1200`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
1201Users must explicitly exit the loop, otherwise all iterations will be performed.
1202Users may explicitly return to exit the benchmark immediately.
1203
1204The `SkipWithError(...)` function may be used at any point within the benchmark,
1205including before and after the benchmark loop. Moreover, if `SkipWithError(...)`
1206has been used, it is not required to reach the benchmark loop and one may return
1207from the benchmark function early.
1208
1209For example:
1210
1211```c++
1212static void BM_test(benchmark::State& state) {
1213 auto resource = GetResource();
1214 if (!resource.good()) {
1215 state.SkipWithError("Resource is not good!");
1216 // KeepRunning() loop will not be entered.
1217 }
1218 while (state.KeepRunning()) {
1219 auto data = resource.read_data();
1220 if (!resource.good()) {
1221 state.SkipWithError("Failed to read data!");
1222 break; // Needed to skip the rest of the iteration.
1223 }
1224 do_stuff(data);
1225 }
1226}
1227
1228static void BM_test_ranged_fo(benchmark::State & state) {
1229 auto resource = GetResource();
1230 if (!resource.good()) {
1231 state.SkipWithError("Resource is not good!");
1232 return; // Early return is allowed when SkipWithError() has been used.
1233 }
1234 for (auto _ : state) {
1235 auto data = resource.read_data();
1236 if (!resource.good()) {
1237 state.SkipWithError("Failed to read data!");
1238 break; // REQUIRED to prevent all further iterations.
1239 }
1240 do_stuff(data);
1241 }
1242}
1243```
1244<a name="a-faster-keep-running-loop" />
1245
1246### A Faster KeepRunning Loop
1247
1248In C++11 mode, a ranged-based for loop should be used in preference to
1249the `KeepRunning` loop for running the benchmarks. For example:
1250
1251```c++
1252static void BM_Fast(benchmark::State &state) {
1253 for (auto _ : state) {
1254 FastOperation();
1255 }
1256}
1257BENCHMARK(BM_Fast);
1258```
1259
1260The reason the ranged-for loop is faster than using `KeepRunning`, is
1261because `KeepRunning` requires a memory load and store of the iteration count
1262ever iteration, whereas the ranged-for variant is able to keep the iteration count
1263in a register.
1264
1265For example, an empty inner loop of using the ranged-based for method looks like:
1266
1267```asm
1268# Loop Init
1269 mov rbx, qword ptr [r14 + 104]
1270 call benchmark::State::StartKeepRunning()
1271 test rbx, rbx
1272 je .LoopEnd
1273.LoopHeader: # =>This Inner Loop Header: Depth=1
1274 add rbx, -1
1275 jne .LoopHeader
1276.LoopEnd:
1277```
1278
1279Compared to an empty `KeepRunning` loop, which looks like:
1280
1281```asm
1282.LoopHeader: # in Loop: Header=BB0_3 Depth=1
1283 cmp byte ptr [rbx], 1
1284 jne .LoopInit
1285.LoopBody: # =>This Inner Loop Header: Depth=1
1286 mov rax, qword ptr [rbx + 8]
1287 lea rcx, [rax + 1]
1288 mov qword ptr [rbx + 8], rcx
1289 cmp rax, qword ptr [rbx + 104]
1290 jb .LoopHeader
1291 jmp .LoopEnd
1292.LoopInit:
1293 mov rdi, rbx
1294 call benchmark::State::StartKeepRunning()
1295 jmp .LoopBody
1296.LoopEnd:
1297```
1298
1299Unless C++03 compatibility is required, the ranged-for variant of writing
1300the benchmark loop should be preferred.
1301
1302<a name="disabling-cpu-frequency-scaling" />
1303
1304### Disabling CPU Frequency Scaling
1305
1306If you see this error:
1307
1308```
1309***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
1310```
1311
1312you might want to disable the CPU frequency scaling while running the benchmark:
1313
1314```bash
1315sudo cpupower frequency-set --governor performance
1316./mybench
1317sudo cpupower frequency-set --governor powersave
1318```
1319