1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/GrTessellator.h"
9
10 #include "src/gpu/GrDefaultGeoProcFactory.h"
11 #include "src/gpu/GrVertexWriter.h"
12 #include "src/gpu/geometry/GrPathUtils.h"
13
14 #include "include/core/SkPath.h"
15 #include "src/core/SkArenaAlloc.h"
16 #include "src/core/SkGeometry.h"
17 #include "src/core/SkPointPriv.h"
18
19 #include <algorithm>
20 #include <cstdio>
21 #include <queue>
22 #include <unordered_map>
23 #include <utility>
24
25 /*
26 * There are six stages to the basic algorithm:
27 *
28 * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
29 * 2) Build a mesh of edges connecting the vertices (build_edges()).
30 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
31 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
32 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
33 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
34 *
35 * For screenspace antialiasing, the algorithm is modified as follows:
36 *
37 * Run steps 1-5 above to produce polygons.
38 * 5b) Apply fill rules to extract boundary contours from the polygons (extract_boundaries()).
39 * 5c) Simplify boundaries to remove "pointy" vertices that cause inversions (simplify_boundary()).
40 * 5d) Displace edges by half a pixel inward and outward along their normals. Intersect to find
41 * new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a new
42 * antialiased mesh from those vertices (stroke_boundary()).
43 * Run steps 3-6 above on the new mesh, and produce antialiased triangles.
44 *
45 * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
46 * of vertices (and the necessity of inserting new vertices on intersection).
47 *
48 * Stages (4) and (5) use an active edge list -- a list of all edges for which the
49 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted
50 * left-to-right based on the point where both edges are active (when both top vertices
51 * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
52 * (shared), it's sorted based on the last point where both edges are active, so the
53 * "upper" bottom vertex.
54 *
55 * The most complex step is the simplification (4). It's based on the Bentley-Ottman
56 * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
57 * not exact and may violate the mesh topology or active edge list ordering. We
58 * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
59 * points. This occurs in two ways:
60 *
61 * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
62 * neighbouring edges at the top or bottom vertex. This is handled by merging the
63 * edges (merge_collinear_edges()).
64 * B) Intersections may cause an edge to violate the left-to-right ordering of the
65 * active edge list. This is handled during merging or splitting by rewind()ing the
66 * active edge list to the vertex before potential violations occur.
67 *
68 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
69 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
70 * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
71 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
72 * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
73 * insertions and removals was greater than the cost of infrequent O(N) lookups with the
74 * linked list implementation. With the latter, all removals are O(1), and most insertions
75 * are O(1), since we know the adjacent edge in the active edge list based on the topology.
76 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
77 * frequent. There may be other data structures worth investigating, however.
78 *
79 * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
80 * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
81 * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
82 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
83 * that the "left" and "right" orientation in the code remains correct (edges to the left are
84 * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
85 * degrees counterclockwise, rather that transposing.
86 */
87
88 #define LOGGING_ENABLED 0
89
90 #if LOGGING_ENABLED
91 #define LOG printf
92 #else
93 #define LOG(...)
94 #endif
95
96 namespace {
97
98 const int kArenaChunkSize = 16 * 1024;
99 const float kCosMiterAngle = 0.97f; // Corresponds to an angle of ~14 degrees.
100
101 struct Vertex;
102 struct Edge;
103 struct Event;
104 struct Poly;
105
106 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)107 void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
108 t->*Prev = prev;
109 t->*Next = next;
110 if (prev) {
111 prev->*Next = t;
112 } else if (head) {
113 *head = t;
114 }
115 if (next) {
116 next->*Prev = t;
117 } else if (tail) {
118 *tail = t;
119 }
120 }
121
122 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)123 void list_remove(T* t, T** head, T** tail) {
124 if (t->*Prev) {
125 t->*Prev->*Next = t->*Next;
126 } else if (head) {
127 *head = t->*Next;
128 }
129 if (t->*Next) {
130 t->*Next->*Prev = t->*Prev;
131 } else if (tail) {
132 *tail = t->*Prev;
133 }
134 t->*Prev = t->*Next = nullptr;
135 }
136
137 /**
138 * Vertices are used in three ways: first, the path contours are converted into a
139 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
140 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
141 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
142 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
143 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
144 * an individual Vertex from the path mesh may belong to multiple
145 * MonotonePolys, so the original Vertices cannot be re-used.
146 */
147
148 struct Vertex {
Vertex__anonbcd5ee210111::Vertex149 Vertex(const SkPoint& point, uint8_t alpha)
150 : fPoint(point), fPrev(nullptr), fNext(nullptr)
151 , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
152 , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
153 , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr)
154 , fPartner(nullptr)
155 , fAlpha(alpha)
156 , fSynthetic(false)
157 #if LOGGING_ENABLED
158 , fID (-1.0f)
159 #endif
160 {}
161 SkPoint fPoint; // Vertex position
162 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
163 Vertex* fNext; // "
164 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
165 Edge* fLastEdgeAbove; // "
166 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
167 Edge* fLastEdgeBelow; // "
168 Edge* fLeftEnclosingEdge; // Nearest edge in the AEL left of this vertex.
169 Edge* fRightEnclosingEdge; // Nearest edge in the AEL right of this vertex.
170 Vertex* fPartner; // Corresponding inner or outer vertex (for AA).
171 uint8_t fAlpha;
172 bool fSynthetic; // Is this a synthetic vertex?
173 #if LOGGING_ENABLED
174 float fID; // Identifier used for logging.
175 #endif
176 };
177
178 /***************************************************************************************/
179
180 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
181
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)182 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
183 return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
184 }
185
sweep_lt_vert(const SkPoint & a,const SkPoint & b)186 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
187 return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
188 }
189
190 struct Comparator {
191 enum class Direction { kVertical, kHorizontal };
Comparator__anonbcd5ee210111::Comparator192 Comparator(Direction direction) : fDirection(direction) {}
sweep_lt__anonbcd5ee210111::Comparator193 bool sweep_lt(const SkPoint& a, const SkPoint& b) const {
194 return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
195 }
196 Direction fDirection;
197 };
198
emit_vertex(Vertex * v,bool emitCoverage,void * data)199 inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) {
200 GrVertexWriter verts{data};
201 verts.write(v->fPoint);
202
203 if (emitCoverage) {
204 verts.write(GrNormalizeByteToFloat(v->fAlpha));
205 }
206
207 return verts.fPtr;
208 }
209
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,void * data)210 void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) {
211 LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
212 LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
213 LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
214 #if TESSELLATOR_WIREFRAME
215 data = emit_vertex(v0, emitCoverage, data);
216 data = emit_vertex(v1, emitCoverage, data);
217 data = emit_vertex(v1, emitCoverage, data);
218 data = emit_vertex(v2, emitCoverage, data);
219 data = emit_vertex(v2, emitCoverage, data);
220 data = emit_vertex(v0, emitCoverage, data);
221 #else
222 data = emit_vertex(v0, emitCoverage, data);
223 data = emit_vertex(v1, emitCoverage, data);
224 data = emit_vertex(v2, emitCoverage, data);
225 #endif
226 return data;
227 }
228
229 struct VertexList {
VertexList__anonbcd5ee210111::VertexList230 VertexList() : fHead(nullptr), fTail(nullptr) {}
VertexList__anonbcd5ee210111::VertexList231 VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
232 Vertex* fHead;
233 Vertex* fTail;
insert__anonbcd5ee210111::VertexList234 void insert(Vertex* v, Vertex* prev, Vertex* next) {
235 list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
236 }
append__anonbcd5ee210111::VertexList237 void append(Vertex* v) {
238 insert(v, fTail, nullptr);
239 }
append__anonbcd5ee210111::VertexList240 void append(const VertexList& list) {
241 if (!list.fHead) {
242 return;
243 }
244 if (fTail) {
245 fTail->fNext = list.fHead;
246 list.fHead->fPrev = fTail;
247 } else {
248 fHead = list.fHead;
249 }
250 fTail = list.fTail;
251 }
prepend__anonbcd5ee210111::VertexList252 void prepend(Vertex* v) {
253 insert(v, nullptr, fHead);
254 }
remove__anonbcd5ee210111::VertexList255 void remove(Vertex* v) {
256 list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
257 }
close__anonbcd5ee210111::VertexList258 void close() {
259 if (fHead && fTail) {
260 fTail->fNext = fHead;
261 fHead->fPrev = fTail;
262 }
263 }
264 };
265
266 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
267
round(SkPoint * p)268 inline void round(SkPoint* p) {
269 p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
270 p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
271 }
272
double_to_clamped_scalar(double d)273 inline SkScalar double_to_clamped_scalar(double d) {
274 return SkDoubleToScalar(std::min((double) SK_ScalarMax, std::max(d, (double) -SK_ScalarMax)));
275 }
276
277 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
278 struct Line {
Line__anonbcd5ee210111::Line279 Line(double a, double b, double c) : fA(a), fB(b), fC(c) {}
Line__anonbcd5ee210111::Line280 Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
Line__anonbcd5ee210111::Line281 Line(const SkPoint& p, const SkPoint& q)
282 : fA(static_cast<double>(q.fY) - p.fY) // a = dY
283 , fB(static_cast<double>(p.fX) - q.fX) // b = -dX
284 , fC(static_cast<double>(p.fY) * q.fX - // c = cross(q, p)
285 static_cast<double>(p.fX) * q.fY) {}
dist__anonbcd5ee210111::Line286 double dist(const SkPoint& p) const {
287 return fA * p.fX + fB * p.fY + fC;
288 }
operator *__anonbcd5ee210111::Line289 Line operator*(double v) const {
290 return Line(fA * v, fB * v, fC * v);
291 }
magSq__anonbcd5ee210111::Line292 double magSq() const {
293 return fA * fA + fB * fB;
294 }
normalize__anonbcd5ee210111::Line295 void normalize() {
296 double len = sqrt(this->magSq());
297 if (len == 0.0) {
298 return;
299 }
300 double scale = 1.0f / len;
301 fA *= scale;
302 fB *= scale;
303 fC *= scale;
304 }
nearParallel__anonbcd5ee210111::Line305 bool nearParallel(const Line& o) const {
306 return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001;
307 }
308
309 // Compute the intersection of two (infinite) Lines.
intersect__anonbcd5ee210111::Line310 bool intersect(const Line& other, SkPoint* point) const {
311 double denom = fA * other.fB - fB * other.fA;
312 if (denom == 0.0) {
313 return false;
314 }
315 double scale = 1.0 / denom;
316 point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
317 point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
318 round(point);
319 return point->isFinite();
320 }
321 double fA, fB, fC;
322 };
323
324 /**
325 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
326 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
327 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
328 * point). For speed, that case is only tested by the callers that require it. Edges also handle
329 * checking for intersection with other edges. Currently, this converts the edges to the
330 * parametric form, in order to avoid doing a division until an intersection has been confirmed.
331 * This is slightly slower in the "found" case, but a lot faster in the "not found" case.
332 *
333 * The coefficients of the line equation stored in double precision to avoid catastrphic
334 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
335 * correct in float, since it's a polynomial of degree 2. The intersect() function, being
336 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
337 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
338 * this file).
339 */
340
341 struct Edge {
342 enum class Type { kInner, kOuter, kConnector };
Edge__anonbcd5ee210111::Edge343 Edge(Vertex* top, Vertex* bottom, int winding, Type type)
344 : fWinding(winding)
345 , fTop(top)
346 , fBottom(bottom)
347 , fType(type)
348 , fLeft(nullptr)
349 , fRight(nullptr)
350 , fPrevEdgeAbove(nullptr)
351 , fNextEdgeAbove(nullptr)
352 , fPrevEdgeBelow(nullptr)
353 , fNextEdgeBelow(nullptr)
354 , fLeftPoly(nullptr)
355 , fRightPoly(nullptr)
356 , fLeftPolyPrev(nullptr)
357 , fLeftPolyNext(nullptr)
358 , fRightPolyPrev(nullptr)
359 , fRightPolyNext(nullptr)
360 , fUsedInLeftPoly(false)
361 , fUsedInRightPoly(false)
362 , fLine(top, bottom) {
363 }
364 int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
365 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
366 Vertex* fBottom; // The bottom vertex in vertex-sort-order.
367 Type fType;
368 Edge* fLeft; // The linked list of edges in the active edge list.
369 Edge* fRight; // "
370 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
371 Edge* fNextEdgeAbove; // "
372 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
373 Edge* fNextEdgeBelow; // "
374 Poly* fLeftPoly; // The Poly to the left of this edge, if any.
375 Poly* fRightPoly; // The Poly to the right of this edge, if any.
376 Edge* fLeftPolyPrev;
377 Edge* fLeftPolyNext;
378 Edge* fRightPolyPrev;
379 Edge* fRightPolyNext;
380 bool fUsedInLeftPoly;
381 bool fUsedInRightPoly;
382 Line fLine;
dist__anonbcd5ee210111::Edge383 double dist(const SkPoint& p) const {
384 return fLine.dist(p);
385 }
isRightOf__anonbcd5ee210111::Edge386 bool isRightOf(Vertex* v) const {
387 return fLine.dist(v->fPoint) < 0.0;
388 }
isLeftOf__anonbcd5ee210111::Edge389 bool isLeftOf(Vertex* v) const {
390 return fLine.dist(v->fPoint) > 0.0;
391 }
recompute__anonbcd5ee210111::Edge392 void recompute() {
393 fLine = Line(fTop, fBottom);
394 }
intersect__anonbcd5ee210111::Edge395 bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const {
396 LOG("intersecting %g -> %g with %g -> %g\n",
397 fTop->fID, fBottom->fID,
398 other.fTop->fID, other.fBottom->fID);
399 if (fTop == other.fTop || fBottom == other.fBottom) {
400 return false;
401 }
402 double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
403 if (denom == 0.0) {
404 return false;
405 }
406 double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX;
407 double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY;
408 double sNumer = dy * other.fLine.fB + dx * other.fLine.fA;
409 double tNumer = dy * fLine.fB + dx * fLine.fA;
410 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
411 // This saves us doing the divide below unless absolutely necessary.
412 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
413 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
414 return false;
415 }
416 double s = sNumer / denom;
417 SkASSERT(s >= 0.0 && s <= 1.0);
418 p->fX = SkDoubleToScalar(fTop->fPoint.fX - s * fLine.fB);
419 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fLine.fA);
420 if (alpha) {
421 if (fType == Type::kConnector) {
422 *alpha = (1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha;
423 } else if (other.fType == Type::kConnector) {
424 double t = tNumer / denom;
425 *alpha = (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha;
426 } else if (fType == Type::kOuter && other.fType == Type::kOuter) {
427 *alpha = 0;
428 } else {
429 *alpha = 255;
430 }
431 }
432 return true;
433 }
434 };
435
436 struct SSEdge;
437
438 struct SSVertex {
SSVertex__anonbcd5ee210111::SSVertex439 SSVertex(Vertex* v) : fVertex(v), fPrev(nullptr), fNext(nullptr) {}
440 Vertex* fVertex;
441 SSEdge* fPrev;
442 SSEdge* fNext;
443 };
444
445 struct SSEdge {
SSEdge__anonbcd5ee210111::SSEdge446 SSEdge(Edge* edge, SSVertex* prev, SSVertex* next)
447 : fEdge(edge), fEvent(nullptr), fPrev(prev), fNext(next) {
448 }
449 Edge* fEdge;
450 Event* fEvent;
451 SSVertex* fPrev;
452 SSVertex* fNext;
453 };
454
455 typedef std::unordered_map<Vertex*, SSVertex*> SSVertexMap;
456 typedef std::vector<SSEdge*> SSEdgeList;
457
458 struct EdgeList {
EdgeList__anonbcd5ee210111::EdgeList459 EdgeList() : fHead(nullptr), fTail(nullptr) {}
460 Edge* fHead;
461 Edge* fTail;
insert__anonbcd5ee210111::EdgeList462 void insert(Edge* edge, Edge* prev, Edge* next) {
463 list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
464 }
append__anonbcd5ee210111::EdgeList465 void append(Edge* e) {
466 insert(e, fTail, nullptr);
467 }
remove__anonbcd5ee210111::EdgeList468 void remove(Edge* edge) {
469 list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
470 }
removeAll__anonbcd5ee210111::EdgeList471 void removeAll() {
472 while (fHead) {
473 this->remove(fHead);
474 }
475 }
close__anonbcd5ee210111::EdgeList476 void close() {
477 if (fHead && fTail) {
478 fTail->fRight = fHead;
479 fHead->fLeft = fTail;
480 }
481 }
contains__anonbcd5ee210111::EdgeList482 bool contains(Edge* edge) const {
483 return edge->fLeft || edge->fRight || fHead == edge;
484 }
485 };
486
487 struct EventList;
488
489 struct Event {
Event__anonbcd5ee210111::Event490 Event(SSEdge* edge, const SkPoint& point, uint8_t alpha)
491 : fEdge(edge), fPoint(point), fAlpha(alpha) {
492 }
493 SSEdge* fEdge;
494 SkPoint fPoint;
495 uint8_t fAlpha;
496 void apply(VertexList* mesh, Comparator& c, EventList* events, SkArenaAlloc& alloc);
497 };
498
499 struct EventComparator {
500 enum class Op { kLessThan, kGreaterThan };
EventComparator__anonbcd5ee210111::EventComparator501 EventComparator(Op op) : fOp(op) {}
operator ()__anonbcd5ee210111::EventComparator502 bool operator() (Event* const &e1, Event* const &e2) {
503 return fOp == Op::kLessThan ? e1->fAlpha < e2->fAlpha
504 : e1->fAlpha > e2->fAlpha;
505 }
506 Op fOp;
507 };
508
509 typedef std::priority_queue<Event*, std::vector<Event*>, EventComparator> EventPQ;
510
511 struct EventList : EventPQ {
EventList__anonbcd5ee210111::EventList512 EventList(EventComparator comparison) : EventPQ(comparison) {
513 }
514 };
515
create_event(SSEdge * e,EventList * events,SkArenaAlloc & alloc)516 void create_event(SSEdge* e, EventList* events, SkArenaAlloc& alloc) {
517 Vertex* prev = e->fPrev->fVertex;
518 Vertex* next = e->fNext->fVertex;
519 if (prev == next || !prev->fPartner || !next->fPartner) {
520 return;
521 }
522 Edge bisector1(prev, prev->fPartner, 1, Edge::Type::kConnector);
523 Edge bisector2(next, next->fPartner, 1, Edge::Type::kConnector);
524 SkPoint p;
525 uint8_t alpha;
526 if (bisector1.intersect(bisector2, &p, &alpha)) {
527 LOG("found edge event for %g, %g (original %g -> %g), will collapse to %g,%g alpha %d\n",
528 prev->fID, next->fID, e->fEdge->fTop->fID, e->fEdge->fBottom->fID, p.fX, p.fY, alpha);
529 e->fEvent = alloc.make<Event>(e, p, alpha);
530 events->push(e->fEvent);
531 }
532 }
533
create_event(SSEdge * edge,Vertex * v,SSEdge * other,Vertex * dest,EventList * events,Comparator & c,SkArenaAlloc & alloc)534 void create_event(SSEdge* edge, Vertex* v, SSEdge* other, Vertex* dest, EventList* events,
535 Comparator& c, SkArenaAlloc& alloc) {
536 if (!v->fPartner) {
537 return;
538 }
539 Vertex* top = edge->fEdge->fTop;
540 Vertex* bottom = edge->fEdge->fBottom;
541 if (!top || !bottom ) {
542 return;
543 }
544 Line line = edge->fEdge->fLine;
545 line.fC = -(dest->fPoint.fX * line.fA + dest->fPoint.fY * line.fB);
546 Edge bisector(v, v->fPartner, 1, Edge::Type::kConnector);
547 SkPoint p;
548 uint8_t alpha = dest->fAlpha;
549 if (line.intersect(bisector.fLine, &p) && !c.sweep_lt(p, top->fPoint) &&
550 c.sweep_lt(p, bottom->fPoint)) {
551 LOG("found p edge event for %g, %g (original %g -> %g), will collapse to %g,%g alpha %d\n",
552 dest->fID, v->fID, top->fID, bottom->fID, p.fX, p.fY, alpha);
553 edge->fEvent = alloc.make<Event>(edge, p, alpha);
554 events->push(edge->fEvent);
555 }
556 }
557
558 /***************************************************************************************/
559
560 struct Poly {
Poly__anonbcd5ee210111::Poly561 Poly(Vertex* v, int winding)
562 : fFirstVertex(v)
563 , fWinding(winding)
564 , fHead(nullptr)
565 , fTail(nullptr)
566 , fNext(nullptr)
567 , fPartner(nullptr)
568 , fCount(0)
569 {
570 #if LOGGING_ENABLED
571 static int gID = 0;
572 fID = gID++;
573 LOG("*** created Poly %d\n", fID);
574 #endif
575 }
576 typedef enum { kLeft_Side, kRight_Side } Side;
577 struct MonotonePoly {
MonotonePoly__anonbcd5ee210111::Poly::MonotonePoly578 MonotonePoly(Edge* edge, Side side)
579 : fSide(side)
580 , fFirstEdge(nullptr)
581 , fLastEdge(nullptr)
582 , fPrev(nullptr)
583 , fNext(nullptr) {
584 this->addEdge(edge);
585 }
586 Side fSide;
587 Edge* fFirstEdge;
588 Edge* fLastEdge;
589 MonotonePoly* fPrev;
590 MonotonePoly* fNext;
addEdge__anonbcd5ee210111::Poly::MonotonePoly591 void addEdge(Edge* edge) {
592 if (fSide == kRight_Side) {
593 SkASSERT(!edge->fUsedInRightPoly);
594 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
595 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
596 edge->fUsedInRightPoly = true;
597 } else {
598 SkASSERT(!edge->fUsedInLeftPoly);
599 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
600 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
601 edge->fUsedInLeftPoly = true;
602 }
603 }
604
emit__anonbcd5ee210111::Poly::MonotonePoly605 void* emit(bool emitCoverage, void* data) {
606 Edge* e = fFirstEdge;
607 VertexList vertices;
608 vertices.append(e->fTop);
609 int count = 1;
610 while (e != nullptr) {
611 if (kRight_Side == fSide) {
612 vertices.append(e->fBottom);
613 e = e->fRightPolyNext;
614 } else {
615 vertices.prepend(e->fBottom);
616 e = e->fLeftPolyNext;
617 }
618 count++;
619 }
620 Vertex* first = vertices.fHead;
621 Vertex* v = first->fNext;
622 while (v != vertices.fTail) {
623 SkASSERT(v && v->fPrev && v->fNext);
624 Vertex* prev = v->fPrev;
625 Vertex* curr = v;
626 Vertex* next = v->fNext;
627 if (count == 3) {
628 return emit_triangle(prev, curr, next, emitCoverage, data);
629 }
630 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
631 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
632 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
633 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
634 if (ax * by - ay * bx >= 0.0) {
635 data = emit_triangle(prev, curr, next, emitCoverage, data);
636 v->fPrev->fNext = v->fNext;
637 v->fNext->fPrev = v->fPrev;
638 count--;
639 if (v->fPrev == first) {
640 v = v->fNext;
641 } else {
642 v = v->fPrev;
643 }
644 } else {
645 v = v->fNext;
646 }
647 }
648 return data;
649 }
650 };
addEdge__anonbcd5ee210111::Poly651 Poly* addEdge(Edge* e, Side side, SkArenaAlloc& alloc) {
652 LOG("addEdge (%g -> %g) to poly %d, %s side\n",
653 e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
654 Poly* partner = fPartner;
655 Poly* poly = this;
656 if (side == kRight_Side) {
657 if (e->fUsedInRightPoly) {
658 return this;
659 }
660 } else {
661 if (e->fUsedInLeftPoly) {
662 return this;
663 }
664 }
665 if (partner) {
666 fPartner = partner->fPartner = nullptr;
667 }
668 if (!fTail) {
669 fHead = fTail = alloc.make<MonotonePoly>(e, side);
670 fCount += 2;
671 } else if (e->fBottom == fTail->fLastEdge->fBottom) {
672 return poly;
673 } else if (side == fTail->fSide) {
674 fTail->addEdge(e);
675 fCount++;
676 } else {
677 e = alloc.make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, Edge::Type::kInner);
678 fTail->addEdge(e);
679 fCount++;
680 if (partner) {
681 partner->addEdge(e, side, alloc);
682 poly = partner;
683 } else {
684 MonotonePoly* m = alloc.make<MonotonePoly>(e, side);
685 m->fPrev = fTail;
686 fTail->fNext = m;
687 fTail = m;
688 }
689 }
690 return poly;
691 }
emit__anonbcd5ee210111::Poly692 void* emit(bool emitCoverage, void *data) {
693 if (fCount < 3) {
694 return data;
695 }
696 LOG("emit() %d, size %d\n", fID, fCount);
697 for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
698 data = m->emit(emitCoverage, data);
699 }
700 return data;
701 }
lastVertex__anonbcd5ee210111::Poly702 Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
703 Vertex* fFirstVertex;
704 int fWinding;
705 MonotonePoly* fHead;
706 MonotonePoly* fTail;
707 Poly* fNext;
708 Poly* fPartner;
709 int fCount;
710 #if LOGGING_ENABLED
711 int fID;
712 #endif
713 };
714
715 /***************************************************************************************/
716
coincident(const SkPoint & a,const SkPoint & b)717 bool coincident(const SkPoint& a, const SkPoint& b) {
718 return a == b;
719 }
720
new_poly(Poly ** head,Vertex * v,int winding,SkArenaAlloc & alloc)721 Poly* new_poly(Poly** head, Vertex* v, int winding, SkArenaAlloc& alloc) {
722 Poly* poly = alloc.make<Poly>(v, winding);
723 poly->fNext = *head;
724 *head = poly;
725 return poly;
726 }
727
append_point_to_contour(const SkPoint & p,VertexList * contour,SkArenaAlloc & alloc)728 void append_point_to_contour(const SkPoint& p, VertexList* contour, SkArenaAlloc& alloc) {
729 Vertex* v = alloc.make<Vertex>(p, 255);
730 #if LOGGING_ENABLED
731 static float gID = 0.0f;
732 v->fID = gID++;
733 #endif
734 contour->append(v);
735 }
736
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)737 SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
738 SkQuadCoeff quad(pts);
739 SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
740 SkPoint mid = to_point(quad.eval(t));
741 SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
742 if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
743 return 0;
744 }
745 return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
746 }
747
append_quadratic_to_contour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour,SkArenaAlloc & alloc)748 void append_quadratic_to_contour(const SkPoint pts[3], SkScalar toleranceSqd, VertexList* contour,
749 SkArenaAlloc& alloc) {
750 SkQuadCoeff quad(pts);
751 Sk2s aa = quad.fA * quad.fA;
752 SkScalar denom = 2.0f * (aa[0] + aa[1]);
753 Sk2s ab = quad.fA * quad.fB;
754 SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
755 int nPoints = 1;
756 SkScalar u = 1.0f;
757 // Test possible subdivision values only at the point of maximum curvature.
758 // If it passes the flatness metric there, it'll pass everywhere.
759 while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
760 u = 1.0f / nPoints;
761 if (quad_error_at(pts, t, u) < toleranceSqd) {
762 break;
763 }
764 nPoints++;
765 }
766 for (int j = 1; j <= nPoints; j++) {
767 append_point_to_contour(to_point(quad.eval(j * u)), contour, alloc);
768 }
769 }
770
generate_cubic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft,SkArenaAlloc & alloc)771 void generate_cubic_points(const SkPoint& p0,
772 const SkPoint& p1,
773 const SkPoint& p2,
774 const SkPoint& p3,
775 SkScalar tolSqd,
776 VertexList* contour,
777 int pointsLeft,
778 SkArenaAlloc& alloc) {
779 SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
780 SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
781 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
782 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
783 append_point_to_contour(p3, contour, alloc);
784 return;
785 }
786 const SkPoint q[] = {
787 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
788 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
789 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
790 };
791 const SkPoint r[] = {
792 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
793 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
794 };
795 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
796 pointsLeft >>= 1;
797 generate_cubic_points(p0, q[0], r[0], s, tolSqd, contour, pointsLeft, alloc);
798 generate_cubic_points(s, r[1], q[2], p3, tolSqd, contour, pointsLeft, alloc);
799 }
800
801 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
802
path_to_contours(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,VertexList * contours,SkArenaAlloc & alloc,bool * isLinear)803 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
804 VertexList* contours, SkArenaAlloc& alloc, bool *isLinear) {
805 SkScalar toleranceSqd = tolerance * tolerance;
806
807 SkPoint pts[4];
808 *isLinear = true;
809 VertexList* contour = contours;
810 SkPath::Iter iter(path, false);
811 if (path.isInverseFillType()) {
812 SkPoint quad[4];
813 clipBounds.toQuad(quad);
814 for (int i = 3; i >= 0; i--) {
815 append_point_to_contour(quad[i], contours, alloc);
816 }
817 contour++;
818 }
819 SkAutoConicToQuads converter;
820 SkPath::Verb verb;
821 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
822 switch (verb) {
823 case SkPath::kConic_Verb: {
824 SkScalar weight = iter.conicWeight();
825 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
826 for (int i = 0; i < converter.countQuads(); ++i) {
827 append_quadratic_to_contour(quadPts, toleranceSqd, contour, alloc);
828 quadPts += 2;
829 }
830 *isLinear = false;
831 break;
832 }
833 case SkPath::kMove_Verb:
834 if (contour->fHead) {
835 contour++;
836 }
837 append_point_to_contour(pts[0], contour, alloc);
838 break;
839 case SkPath::kLine_Verb: {
840 append_point_to_contour(pts[1], contour, alloc);
841 break;
842 }
843 case SkPath::kQuad_Verb: {
844 append_quadratic_to_contour(pts, toleranceSqd, contour, alloc);
845 *isLinear = false;
846 break;
847 }
848 case SkPath::kCubic_Verb: {
849 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
850 generate_cubic_points(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
851 pointsLeft, alloc);
852 *isLinear = false;
853 break;
854 }
855 case SkPath::kClose_Verb:
856 case SkPath::kDone_Verb:
857 break;
858 }
859 }
860 }
861
apply_fill_type(SkPath::FillType fillType,int winding)862 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
863 switch (fillType) {
864 case SkPath::kWinding_FillType:
865 return winding != 0;
866 case SkPath::kEvenOdd_FillType:
867 return (winding & 1) != 0;
868 case SkPath::kInverseWinding_FillType:
869 return winding == 1;
870 case SkPath::kInverseEvenOdd_FillType:
871 return (winding & 1) == 1;
872 default:
873 SkASSERT(false);
874 return false;
875 }
876 }
877
apply_fill_type(SkPath::FillType fillType,Poly * poly)878 inline bool apply_fill_type(SkPath::FillType fillType, Poly* poly) {
879 return poly && apply_fill_type(fillType, poly->fWinding);
880 }
881
new_edge(Vertex * prev,Vertex * next,Edge::Type type,Comparator & c,SkArenaAlloc & alloc)882 Edge* new_edge(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc) {
883 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
884 Vertex* top = winding < 0 ? next : prev;
885 Vertex* bottom = winding < 0 ? prev : next;
886 return alloc.make<Edge>(top, bottom, winding, type);
887 }
888
remove_edge(Edge * edge,EdgeList * edges)889 void remove_edge(Edge* edge, EdgeList* edges) {
890 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
891 SkASSERT(edges->contains(edge));
892 edges->remove(edge);
893 }
894
insert_edge(Edge * edge,Edge * prev,EdgeList * edges)895 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
896 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
897 SkASSERT(!edges->contains(edge));
898 Edge* next = prev ? prev->fRight : edges->fHead;
899 edges->insert(edge, prev, next);
900 }
901
find_enclosing_edges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)902 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
903 if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
904 *left = v->fFirstEdgeAbove->fLeft;
905 *right = v->fLastEdgeAbove->fRight;
906 return;
907 }
908 Edge* next = nullptr;
909 Edge* prev;
910 for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
911 if (prev->isLeftOf(v)) {
912 break;
913 }
914 next = prev;
915 }
916 *left = prev;
917 *right = next;
918 }
919
insert_edge_above(Edge * edge,Vertex * v,Comparator & c)920 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
921 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
922 c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
923 return;
924 }
925 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
926 Edge* prev = nullptr;
927 Edge* next;
928 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
929 if (next->isRightOf(edge->fTop)) {
930 break;
931 }
932 prev = next;
933 }
934 list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
935 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
936 }
937
insert_edge_below(Edge * edge,Vertex * v,Comparator & c)938 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
939 if (edge->fTop->fPoint == edge->fBottom->fPoint ||
940 c.sweep_lt(edge->fBottom->fPoint, edge->fTop->fPoint)) {
941 return;
942 }
943 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
944 Edge* prev = nullptr;
945 Edge* next;
946 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
947 if (next->isRightOf(edge->fBottom)) {
948 break;
949 }
950 prev = next;
951 }
952 list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
953 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
954 }
955
remove_edge_above(Edge * edge)956 void remove_edge_above(Edge* edge) {
957 SkASSERT(edge->fTop && edge->fBottom);
958 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
959 edge->fBottom->fID);
960 list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
961 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
962 }
963
remove_edge_below(Edge * edge)964 void remove_edge_below(Edge* edge) {
965 SkASSERT(edge->fTop && edge->fBottom);
966 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
967 edge->fTop->fID);
968 list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
969 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
970 }
971
disconnect(Edge * edge)972 void disconnect(Edge* edge)
973 {
974 remove_edge_above(edge);
975 remove_edge_below(edge);
976 }
977
978 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c);
979
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,Comparator & c)980 void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, Comparator& c) {
981 if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
982 return;
983 }
984 Vertex* v = *current;
985 LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
986 while (v != dst) {
987 v = v->fPrev;
988 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
989 remove_edge(e, activeEdges);
990 }
991 Edge* leftEdge = v->fLeftEnclosingEdge;
992 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
993 insert_edge(e, leftEdge, activeEdges);
994 leftEdge = e;
995 }
996 }
997 *current = v;
998 }
999
set_top(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,Comparator & c)1000 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) {
1001 remove_edge_below(edge);
1002 edge->fTop = v;
1003 edge->recompute();
1004 insert_edge_below(edge, v, c);
1005 rewind(activeEdges, current, edge->fTop, c);
1006 merge_collinear_edges(edge, activeEdges, current, c);
1007 }
1008
set_bottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,Comparator & c)1009 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c) {
1010 remove_edge_above(edge);
1011 edge->fBottom = v;
1012 edge->recompute();
1013 insert_edge_above(edge, v, c);
1014 rewind(activeEdges, current, edge->fTop, c);
1015 merge_collinear_edges(edge, activeEdges, current, c);
1016 }
1017
merge_edges_above(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,Comparator & c)1018 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
1019 Comparator& c) {
1020 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
1021 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
1022 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
1023 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
1024 rewind(activeEdges, current, edge->fTop, c);
1025 other->fWinding += edge->fWinding;
1026 disconnect(edge);
1027 edge->fTop = edge->fBottom = nullptr;
1028 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
1029 rewind(activeEdges, current, edge->fTop, c);
1030 other->fWinding += edge->fWinding;
1031 set_bottom(edge, other->fTop, activeEdges, current, c);
1032 } else {
1033 rewind(activeEdges, current, other->fTop, c);
1034 edge->fWinding += other->fWinding;
1035 set_bottom(other, edge->fTop, activeEdges, current, c);
1036 }
1037 }
1038
merge_edges_below(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,Comparator & c)1039 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
1040 Comparator& c) {
1041 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
1042 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
1043 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
1044 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
1045 rewind(activeEdges, current, edge->fTop, c);
1046 other->fWinding += edge->fWinding;
1047 disconnect(edge);
1048 edge->fTop = edge->fBottom = nullptr;
1049 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
1050 rewind(activeEdges, current, other->fTop, c);
1051 edge->fWinding += other->fWinding;
1052 set_top(other, edge->fBottom, activeEdges, current, c);
1053 } else {
1054 rewind(activeEdges, current, edge->fTop, c);
1055 other->fWinding += edge->fWinding;
1056 set_top(edge, other->fBottom, activeEdges, current, c);
1057 }
1058 }
1059
top_collinear(Edge * left,Edge * right)1060 bool top_collinear(Edge* left, Edge* right) {
1061 if (!left || !right) {
1062 return false;
1063 }
1064 return left->fTop->fPoint == right->fTop->fPoint ||
1065 !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
1066 }
1067
bottom_collinear(Edge * left,Edge * right)1068 bool bottom_collinear(Edge* left, Edge* right) {
1069 if (!left || !right) {
1070 return false;
1071 }
1072 return left->fBottom->fPoint == right->fBottom->fPoint ||
1073 !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
1074 }
1075
merge_collinear_edges(Edge * edge,EdgeList * activeEdges,Vertex ** current,Comparator & c)1076 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Vertex** current, Comparator& c) {
1077 for (;;) {
1078 if (top_collinear(edge->fPrevEdgeAbove, edge)) {
1079 merge_edges_above(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
1080 } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
1081 merge_edges_above(edge->fNextEdgeAbove, edge, activeEdges, current, c);
1082 } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
1083 merge_edges_below(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
1084 } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
1085 merge_edges_below(edge->fNextEdgeBelow, edge, activeEdges, current, c);
1086 } else {
1087 break;
1088 }
1089 }
1090 SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
1091 SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
1092 SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
1093 SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
1094 }
1095
split_edge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,Comparator & c,SkArenaAlloc & alloc)1096 bool split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, Comparator& c,
1097 SkArenaAlloc& alloc) {
1098 if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
1099 return false;
1100 }
1101 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
1102 edge->fTop->fID, edge->fBottom->fID,
1103 v->fID, v->fPoint.fX, v->fPoint.fY);
1104 Vertex* top;
1105 Vertex* bottom;
1106 int winding = edge->fWinding;
1107 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
1108 top = v;
1109 bottom = edge->fTop;
1110 set_top(edge, v, activeEdges, current, c);
1111 } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
1112 top = edge->fBottom;
1113 bottom = v;
1114 set_bottom(edge, v, activeEdges, current, c);
1115 } else {
1116 top = v;
1117 bottom = edge->fBottom;
1118 set_bottom(edge, v, activeEdges, current, c);
1119 }
1120 Edge* newEdge = alloc.make<Edge>(top, bottom, winding, edge->fType);
1121 insert_edge_below(newEdge, top, c);
1122 insert_edge_above(newEdge, bottom, c);
1123 merge_collinear_edges(newEdge, activeEdges, current, c);
1124 return true;
1125 }
1126
intersect_edge_pair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,Comparator & c,SkArenaAlloc & alloc)1127 bool intersect_edge_pair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, Comparator& c, SkArenaAlloc& alloc) {
1128 if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
1129 return false;
1130 }
1131 if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
1132 return false;
1133 }
1134 if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1135 if (!left->isLeftOf(right->fTop)) {
1136 rewind(activeEdges, current, right->fTop, c);
1137 return split_edge(left, right->fTop, activeEdges, current, c, alloc);
1138 }
1139 } else {
1140 if (!right->isRightOf(left->fTop)) {
1141 rewind(activeEdges, current, left->fTop, c);
1142 return split_edge(right, left->fTop, activeEdges, current, c, alloc);
1143 }
1144 }
1145 if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1146 if (!left->isLeftOf(right->fBottom)) {
1147 rewind(activeEdges, current, right->fBottom, c);
1148 return split_edge(left, right->fBottom, activeEdges, current, c, alloc);
1149 }
1150 } else {
1151 if (!right->isRightOf(left->fBottom)) {
1152 rewind(activeEdges, current, left->fBottom, c);
1153 return split_edge(right, left->fBottom, activeEdges, current, c, alloc);
1154 }
1155 }
1156 return false;
1157 }
1158
connect(Vertex * prev,Vertex * next,Edge::Type type,Comparator & c,SkArenaAlloc & alloc,int winding_scale=1)1159 Edge* connect(Vertex* prev, Vertex* next, Edge::Type type, Comparator& c, SkArenaAlloc& alloc,
1160 int winding_scale = 1) {
1161 if (!prev || !next || prev->fPoint == next->fPoint) {
1162 return nullptr;
1163 }
1164 Edge* edge = new_edge(prev, next, type, c, alloc);
1165 insert_edge_below(edge, edge->fTop, c);
1166 insert_edge_above(edge, edge->fBottom, c);
1167 edge->fWinding *= winding_scale;
1168 merge_collinear_edges(edge, nullptr, nullptr, c);
1169 return edge;
1170 }
1171
merge_vertices(Vertex * src,Vertex * dst,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1172 void merge_vertices(Vertex* src, Vertex* dst, VertexList* mesh, Comparator& c,
1173 SkArenaAlloc& alloc) {
1174 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
1175 src->fID, dst->fID);
1176 dst->fAlpha = SkTMax(src->fAlpha, dst->fAlpha);
1177 if (src->fPartner) {
1178 src->fPartner->fPartner = dst;
1179 }
1180 while (Edge* edge = src->fFirstEdgeAbove) {
1181 set_bottom(edge, dst, nullptr, nullptr, c);
1182 }
1183 while (Edge* edge = src->fFirstEdgeBelow) {
1184 set_top(edge, dst, nullptr, nullptr, c);
1185 }
1186 mesh->remove(src);
1187 dst->fSynthetic = true;
1188 }
1189
create_sorted_vertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,Comparator & c,SkArenaAlloc & alloc)1190 Vertex* create_sorted_vertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
1191 Vertex* reference, Comparator& c, SkArenaAlloc& alloc) {
1192 Vertex* prevV = reference;
1193 while (prevV && c.sweep_lt(p, prevV->fPoint)) {
1194 prevV = prevV->fPrev;
1195 }
1196 Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
1197 while (nextV && c.sweep_lt(nextV->fPoint, p)) {
1198 prevV = nextV;
1199 nextV = nextV->fNext;
1200 }
1201 Vertex* v;
1202 if (prevV && coincident(prevV->fPoint, p)) {
1203 v = prevV;
1204 } else if (nextV && coincident(nextV->fPoint, p)) {
1205 v = nextV;
1206 } else {
1207 v = alloc.make<Vertex>(p, alpha);
1208 #if LOGGING_ENABLED
1209 if (!prevV) {
1210 v->fID = mesh->fHead->fID - 1.0f;
1211 } else if (!nextV) {
1212 v->fID = mesh->fTail->fID + 1.0f;
1213 } else {
1214 v->fID = (prevV->fID + nextV->fID) * 0.5f;
1215 }
1216 #endif
1217 mesh->insert(v, prevV, nextV);
1218 }
1219 return v;
1220 }
1221
1222 // If an edge's top and bottom points differ only by 1/2 machine epsilon in the primary
1223 // sort criterion, it may not be possible to split correctly, since there is no point which is
1224 // below the top and above the bottom. This function detects that case.
nearly_flat(Comparator & c,Edge * edge)1225 bool nearly_flat(Comparator& c, Edge* edge) {
1226 SkPoint diff = edge->fBottom->fPoint - edge->fTop->fPoint;
1227 float primaryDiff = c.fDirection == Comparator::Direction::kHorizontal ? diff.fX : diff.fY;
1228 return fabs(primaryDiff) < std::numeric_limits<float>::epsilon() && primaryDiff != 0.0f;
1229 }
1230
clamp(SkPoint p,SkPoint min,SkPoint max,Comparator & c)1231 SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, Comparator& c) {
1232 if (c.sweep_lt(p, min)) {
1233 return min;
1234 } else if (c.sweep_lt(max, p)) {
1235 return max;
1236 } else {
1237 return p;
1238 }
1239 }
1240
compute_bisector(Edge * edge1,Edge * edge2,Vertex * v,SkArenaAlloc & alloc)1241 void compute_bisector(Edge* edge1, Edge* edge2, Vertex* v, SkArenaAlloc& alloc) {
1242 Line line1 = edge1->fLine;
1243 Line line2 = edge2->fLine;
1244 line1.normalize();
1245 line2.normalize();
1246 double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
1247 if (cosAngle > 0.999) {
1248 return;
1249 }
1250 line1.fC += edge1->fWinding > 0 ? -1 : 1;
1251 line2.fC += edge2->fWinding > 0 ? -1 : 1;
1252 SkPoint p;
1253 if (line1.intersect(line2, &p)) {
1254 uint8_t alpha = edge1->fType == Edge::Type::kOuter ? 255 : 0;
1255 v->fPartner = alloc.make<Vertex>(p, alpha);
1256 LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
1257 }
1258 }
1259
check_for_intersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1260 bool check_for_intersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current,
1261 VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1262 if (!left || !right) {
1263 return false;
1264 }
1265 SkPoint p;
1266 uint8_t alpha;
1267 if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
1268 Vertex* v;
1269 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1270 Vertex* top = *current;
1271 // If the intersection point is above the current vertex, rewind to the vertex above the
1272 // intersection.
1273 while (top && c.sweep_lt(p, top->fPoint)) {
1274 top = top->fPrev;
1275 }
1276 if (!nearly_flat(c, left)) {
1277 p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
1278 }
1279 if (!nearly_flat(c, right)) {
1280 p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
1281 }
1282 if (p == left->fTop->fPoint) {
1283 v = left->fTop;
1284 } else if (p == left->fBottom->fPoint) {
1285 v = left->fBottom;
1286 } else if (p == right->fTop->fPoint) {
1287 v = right->fTop;
1288 } else if (p == right->fBottom->fPoint) {
1289 v = right->fBottom;
1290 } else {
1291 v = create_sorted_vertex(p, alpha, mesh, top, c, alloc);
1292 if (left->fTop->fPartner) {
1293 v->fSynthetic = true;
1294 compute_bisector(left, right, v, alloc);
1295 }
1296 }
1297 rewind(activeEdges, current, top ? top : v, c);
1298 split_edge(left, v, activeEdges, current, c, alloc);
1299 split_edge(right, v, activeEdges, current, c, alloc);
1300 v->fAlpha = SkTMax(v->fAlpha, alpha);
1301 return true;
1302 }
1303 return intersect_edge_pair(left, right, activeEdges, current, c, alloc);
1304 }
1305
sanitize_contours(VertexList * contours,int contourCnt,bool approximate)1306 void sanitize_contours(VertexList* contours, int contourCnt, bool approximate) {
1307 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1308 SkASSERT(contour->fHead);
1309 Vertex* prev = contour->fTail;
1310 if (approximate) {
1311 round(&prev->fPoint);
1312 }
1313 for (Vertex* v = contour->fHead; v;) {
1314 if (approximate) {
1315 round(&v->fPoint);
1316 }
1317 Vertex* next = v->fNext;
1318 Vertex* nextWrap = next ? next : contour->fHead;
1319 if (coincident(prev->fPoint, v->fPoint)) {
1320 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1321 contour->remove(v);
1322 } else if (!v->fPoint.isFinite()) {
1323 LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1324 contour->remove(v);
1325 } else if (Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1326 LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1327 contour->remove(v);
1328 } else {
1329 prev = v;
1330 }
1331 v = next;
1332 }
1333 }
1334 }
1335
merge_coincident_vertices(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1336 bool merge_coincident_vertices(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1337 if (!mesh->fHead) {
1338 return false;
1339 }
1340 bool merged = false;
1341 for (Vertex* v = mesh->fHead->fNext; v;) {
1342 Vertex* next = v->fNext;
1343 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1344 v->fPoint = v->fPrev->fPoint;
1345 }
1346 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1347 merge_vertices(v, v->fPrev, mesh, c, alloc);
1348 merged = true;
1349 }
1350 v = next;
1351 }
1352 return merged;
1353 }
1354
1355 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1356
build_edges(VertexList * contours,int contourCnt,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1357 void build_edges(VertexList* contours, int contourCnt, VertexList* mesh, Comparator& c,
1358 SkArenaAlloc& alloc) {
1359 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1360 Vertex* prev = contour->fTail;
1361 for (Vertex* v = contour->fHead; v;) {
1362 Vertex* next = v->fNext;
1363 connect(prev, v, Edge::Type::kInner, c, alloc);
1364 mesh->append(v);
1365 prev = v;
1366 v = next;
1367 }
1368 }
1369 }
1370
connect_partners(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1371 void connect_partners(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1372 for (Vertex* outer = mesh->fHead; outer; outer = outer->fNext) {
1373 if (Vertex* inner = outer->fPartner) {
1374 if ((inner->fPrev || inner->fNext) && (outer->fPrev || outer->fNext)) {
1375 // Connector edges get zero winding, since they're only structural (i.e., to ensure
1376 // no 0-0-0 alpha triangles are produced), and shouldn't affect the poly winding
1377 // number.
1378 connect(outer, inner, Edge::Type::kConnector, c, alloc, 0);
1379 inner->fPartner = outer->fPartner = nullptr;
1380 }
1381 }
1382 }
1383 }
1384
1385 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1386 void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1387 Vertex* a = front->fHead;
1388 Vertex* b = back->fHead;
1389 while (a && b) {
1390 if (sweep_lt(a->fPoint, b->fPoint)) {
1391 front->remove(a);
1392 result->append(a);
1393 a = front->fHead;
1394 } else {
1395 back->remove(b);
1396 result->append(b);
1397 b = back->fHead;
1398 }
1399 }
1400 result->append(*front);
1401 result->append(*back);
1402 }
1403
sorted_merge(VertexList * front,VertexList * back,VertexList * result,Comparator & c)1404 void sorted_merge(VertexList* front, VertexList* back, VertexList* result, Comparator& c) {
1405 if (c.fDirection == Comparator::Direction::kHorizontal) {
1406 sorted_merge<sweep_lt_horiz>(front, back, result);
1407 } else {
1408 sorted_merge<sweep_lt_vert>(front, back, result);
1409 }
1410 #if LOGGING_ENABLED
1411 float id = 0.0f;
1412 for (Vertex* v = result->fHead; v; v = v->fNext) {
1413 v->fID = id++;
1414 }
1415 #endif
1416 }
1417
1418 // Stage 3: sort the vertices by increasing sweep direction.
1419
1420 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1421 void merge_sort(VertexList* vertices) {
1422 Vertex* slow = vertices->fHead;
1423 if (!slow) {
1424 return;
1425 }
1426 Vertex* fast = slow->fNext;
1427 if (!fast) {
1428 return;
1429 }
1430 do {
1431 fast = fast->fNext;
1432 if (fast) {
1433 fast = fast->fNext;
1434 slow = slow->fNext;
1435 }
1436 } while (fast);
1437 VertexList front(vertices->fHead, slow);
1438 VertexList back(slow->fNext, vertices->fTail);
1439 front.fTail->fNext = back.fHead->fPrev = nullptr;
1440
1441 merge_sort<sweep_lt>(&front);
1442 merge_sort<sweep_lt>(&back);
1443
1444 vertices->fHead = vertices->fTail = nullptr;
1445 sorted_merge<sweep_lt>(&front, &back, vertices);
1446 }
1447
dump_mesh(const VertexList & mesh)1448 void dump_mesh(const VertexList& mesh) {
1449 #if LOGGING_ENABLED
1450 for (Vertex* v = mesh.fHead; v; v = v->fNext) {
1451 LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1452 if (Vertex* p = v->fPartner) {
1453 LOG(", partner %g (%g, %g) alpha %d\n", p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1454 } else {
1455 LOG(", null partner\n");
1456 }
1457 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1458 LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1459 }
1460 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1461 LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1462 }
1463 }
1464 #endif
1465 }
1466
dump_skel(const SSEdgeList & ssEdges)1467 void dump_skel(const SSEdgeList& ssEdges) {
1468 #if LOGGING_ENABLED
1469 for (SSEdge* edge : ssEdges) {
1470 if (edge->fEdge) {
1471 LOG("skel edge %g -> %g",
1472 edge->fPrev->fVertex->fID,
1473 edge->fNext->fVertex->fID);
1474 if (edge->fEdge->fTop && edge->fEdge->fBottom) {
1475 LOG(" (original %g -> %g)\n",
1476 edge->fEdge->fTop->fID,
1477 edge->fEdge->fBottom->fID);
1478 } else {
1479 LOG("\n");
1480 }
1481 }
1482 }
1483 #endif
1484 }
1485
1486 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,Comparator & c)1487 void validate_edge_pair(Edge* left, Edge* right, Comparator& c) {
1488 if (!left || !right) {
1489 return;
1490 }
1491 if (left->fTop == right->fTop) {
1492 SkASSERT(left->isLeftOf(right->fBottom));
1493 SkASSERT(right->isRightOf(left->fBottom));
1494 } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1495 SkASSERT(left->isLeftOf(right->fTop));
1496 } else {
1497 SkASSERT(right->isRightOf(left->fTop));
1498 }
1499 if (left->fBottom == right->fBottom) {
1500 SkASSERT(left->isLeftOf(right->fTop));
1501 SkASSERT(right->isRightOf(left->fTop));
1502 } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1503 SkASSERT(left->isLeftOf(right->fBottom));
1504 } else {
1505 SkASSERT(right->isRightOf(left->fBottom));
1506 }
1507 }
1508
validate_edge_list(EdgeList * edges,Comparator & c)1509 void validate_edge_list(EdgeList* edges, Comparator& c) {
1510 Edge* left = edges->fHead;
1511 if (!left) {
1512 return;
1513 }
1514 for (Edge* right = left->fRight; right; right = right->fRight) {
1515 validate_edge_pair(left, right, c);
1516 left = right;
1517 }
1518 }
1519 #endif
1520
1521 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1522
connected(Vertex * v)1523 bool connected(Vertex* v) {
1524 return v->fFirstEdgeAbove || v->fFirstEdgeBelow;
1525 }
1526
simplify(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)1527 bool simplify(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
1528 LOG("simplifying complex polygons\n");
1529 EdgeList activeEdges;
1530 bool found = false;
1531 for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1532 if (!connected(v)) {
1533 continue;
1534 }
1535 Edge* leftEnclosingEdge;
1536 Edge* rightEnclosingEdge;
1537 bool restartChecks;
1538 do {
1539 LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1540 restartChecks = false;
1541 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1542 v->fLeftEnclosingEdge = leftEnclosingEdge;
1543 v->fRightEnclosingEdge = rightEnclosingEdge;
1544 if (v->fFirstEdgeBelow) {
1545 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1546 if (check_for_intersection(leftEnclosingEdge, edge, &activeEdges, &v, mesh, c,
1547 alloc)) {
1548 restartChecks = true;
1549 break;
1550 }
1551 if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, &v, mesh, c,
1552 alloc)) {
1553 restartChecks = true;
1554 break;
1555 }
1556 }
1557 } else {
1558 if (check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1559 &activeEdges, &v, mesh, c, alloc)) {
1560 restartChecks = true;
1561 }
1562
1563 }
1564 found = found || restartChecks;
1565 } while (restartChecks);
1566 #ifdef SK_DEBUG
1567 validate_edge_list(&activeEdges, c);
1568 #endif
1569 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1570 remove_edge(e, &activeEdges);
1571 }
1572 Edge* leftEdge = leftEnclosingEdge;
1573 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1574 insert_edge(e, leftEdge, &activeEdges);
1575 leftEdge = e;
1576 }
1577 }
1578 SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1579 return found;
1580 }
1581
1582 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1583
tessellate(const VertexList & vertices,SkArenaAlloc & alloc)1584 Poly* tessellate(const VertexList& vertices, SkArenaAlloc& alloc) {
1585 LOG("\ntessellating simple polygons\n");
1586 EdgeList activeEdges;
1587 Poly* polys = nullptr;
1588 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1589 if (!connected(v)) {
1590 continue;
1591 }
1592 #if LOGGING_ENABLED
1593 LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1594 #endif
1595 Edge* leftEnclosingEdge;
1596 Edge* rightEnclosingEdge;
1597 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1598 Poly* leftPoly;
1599 Poly* rightPoly;
1600 if (v->fFirstEdgeAbove) {
1601 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1602 rightPoly = v->fLastEdgeAbove->fRightPoly;
1603 } else {
1604 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1605 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1606 }
1607 #if LOGGING_ENABLED
1608 LOG("edges above:\n");
1609 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1610 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1611 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1612 }
1613 LOG("edges below:\n");
1614 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1615 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1616 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1617 }
1618 #endif
1619 if (v->fFirstEdgeAbove) {
1620 if (leftPoly) {
1621 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, Poly::kRight_Side, alloc);
1622 }
1623 if (rightPoly) {
1624 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, Poly::kLeft_Side, alloc);
1625 }
1626 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1627 Edge* rightEdge = e->fNextEdgeAbove;
1628 remove_edge(e, &activeEdges);
1629 if (e->fRightPoly) {
1630 e->fRightPoly->addEdge(e, Poly::kLeft_Side, alloc);
1631 }
1632 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1633 rightEdge->fLeftPoly->addEdge(e, Poly::kRight_Side, alloc);
1634 }
1635 }
1636 remove_edge(v->fLastEdgeAbove, &activeEdges);
1637 if (!v->fFirstEdgeBelow) {
1638 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1639 SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1640 rightPoly->fPartner = leftPoly;
1641 leftPoly->fPartner = rightPoly;
1642 }
1643 }
1644 }
1645 if (v->fFirstEdgeBelow) {
1646 if (!v->fFirstEdgeAbove) {
1647 if (leftPoly && rightPoly) {
1648 if (leftPoly == rightPoly) {
1649 if (leftPoly->fTail && leftPoly->fTail->fSide == Poly::kLeft_Side) {
1650 leftPoly = new_poly(&polys, leftPoly->lastVertex(),
1651 leftPoly->fWinding, alloc);
1652 leftEnclosingEdge->fRightPoly = leftPoly;
1653 } else {
1654 rightPoly = new_poly(&polys, rightPoly->lastVertex(),
1655 rightPoly->fWinding, alloc);
1656 rightEnclosingEdge->fLeftPoly = rightPoly;
1657 }
1658 }
1659 Edge* join = alloc.make<Edge>(leftPoly->lastVertex(), v, 1, Edge::Type::kInner);
1660 leftPoly = leftPoly->addEdge(join, Poly::kRight_Side, alloc);
1661 rightPoly = rightPoly->addEdge(join, Poly::kLeft_Side, alloc);
1662 }
1663 }
1664 Edge* leftEdge = v->fFirstEdgeBelow;
1665 leftEdge->fLeftPoly = leftPoly;
1666 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1667 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1668 rightEdge = rightEdge->fNextEdgeBelow) {
1669 insert_edge(rightEdge, leftEdge, &activeEdges);
1670 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1671 winding += leftEdge->fWinding;
1672 if (winding != 0) {
1673 Poly* poly = new_poly(&polys, v, winding, alloc);
1674 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1675 }
1676 leftEdge = rightEdge;
1677 }
1678 v->fLastEdgeBelow->fRightPoly = rightPoly;
1679 }
1680 #if LOGGING_ENABLED
1681 LOG("\nactive edges:\n");
1682 for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1683 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1684 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1685 }
1686 #endif
1687 }
1688 return polys;
1689 }
1690
remove_non_boundary_edges(const VertexList & mesh,SkPath::FillType fillType,SkArenaAlloc & alloc)1691 void remove_non_boundary_edges(const VertexList& mesh, SkPath::FillType fillType,
1692 SkArenaAlloc& alloc) {
1693 LOG("removing non-boundary edges\n");
1694 EdgeList activeEdges;
1695 for (Vertex* v = mesh.fHead; v != nullptr; v = v->fNext) {
1696 if (!connected(v)) {
1697 continue;
1698 }
1699 Edge* leftEnclosingEdge;
1700 Edge* rightEnclosingEdge;
1701 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1702 bool prevFilled = leftEnclosingEdge &&
1703 apply_fill_type(fillType, leftEnclosingEdge->fWinding);
1704 for (Edge* e = v->fFirstEdgeAbove; e;) {
1705 Edge* next = e->fNextEdgeAbove;
1706 remove_edge(e, &activeEdges);
1707 bool filled = apply_fill_type(fillType, e->fWinding);
1708 if (filled == prevFilled) {
1709 disconnect(e);
1710 }
1711 prevFilled = filled;
1712 e = next;
1713 }
1714 Edge* prev = leftEnclosingEdge;
1715 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1716 if (prev) {
1717 e->fWinding += prev->fWinding;
1718 }
1719 insert_edge(e, prev, &activeEdges);
1720 prev = e;
1721 }
1722 }
1723 }
1724
1725 // Note: this is the normal to the edge, but not necessarily unit length.
get_edge_normal(const Edge * e,SkVector * normal)1726 void get_edge_normal(const Edge* e, SkVector* normal) {
1727 normal->set(SkDoubleToScalar(e->fLine.fA),
1728 SkDoubleToScalar(e->fLine.fB));
1729 }
1730
1731 // Stage 5c: detect and remove "pointy" vertices whose edge normals point in opposite directions
1732 // and whose adjacent vertices are less than a quarter pixel from an edge. These are guaranteed to
1733 // invert on stroking.
1734
simplify_boundary(EdgeList * boundary,Comparator & c,SkArenaAlloc & alloc)1735 void simplify_boundary(EdgeList* boundary, Comparator& c, SkArenaAlloc& alloc) {
1736 Edge* prevEdge = boundary->fTail;
1737 SkVector prevNormal;
1738 get_edge_normal(prevEdge, &prevNormal);
1739 for (Edge* e = boundary->fHead; e != nullptr;) {
1740 Vertex* prev = prevEdge->fWinding == 1 ? prevEdge->fTop : prevEdge->fBottom;
1741 Vertex* next = e->fWinding == 1 ? e->fBottom : e->fTop;
1742 double distPrev = e->dist(prev->fPoint);
1743 double distNext = prevEdge->dist(next->fPoint);
1744 SkVector normal;
1745 get_edge_normal(e, &normal);
1746 constexpr double kQuarterPixelSq = 0.25f * 0.25f;
1747 if (prev == next) {
1748 remove_edge(prevEdge, boundary);
1749 remove_edge(e, boundary);
1750 prevEdge = boundary->fTail;
1751 e = boundary->fHead;
1752 if (prevEdge) {
1753 get_edge_normal(prevEdge, &prevNormal);
1754 }
1755 } else if (prevNormal.dot(normal) < 0.0 &&
1756 (distPrev * distPrev <= kQuarterPixelSq || distNext * distNext <= kQuarterPixelSq)) {
1757 Edge* join = new_edge(prev, next, Edge::Type::kInner, c, alloc);
1758 if (prev->fPoint != next->fPoint) {
1759 join->fLine.normalize();
1760 join->fLine = join->fLine * join->fWinding;
1761 }
1762 insert_edge(join, e, boundary);
1763 remove_edge(prevEdge, boundary);
1764 remove_edge(e, boundary);
1765 if (join->fLeft && join->fRight) {
1766 prevEdge = join->fLeft;
1767 e = join;
1768 } else {
1769 prevEdge = boundary->fTail;
1770 e = boundary->fHead; // join->fLeft ? join->fLeft : join;
1771 }
1772 get_edge_normal(prevEdge, &prevNormal);
1773 } else {
1774 prevEdge = e;
1775 prevNormal = normal;
1776 e = e->fRight;
1777 }
1778 }
1779 }
1780
ss_connect(Vertex * v,Vertex * dest,Comparator & c,SkArenaAlloc & alloc)1781 void ss_connect(Vertex* v, Vertex* dest, Comparator& c, SkArenaAlloc& alloc) {
1782 if (v == dest) {
1783 return;
1784 }
1785 LOG("ss_connecting vertex %g to vertex %g\n", v->fID, dest->fID);
1786 if (v->fSynthetic) {
1787 connect(v, dest, Edge::Type::kConnector, c, alloc, 0);
1788 } else if (v->fPartner) {
1789 LOG("setting %g's partner to %g ", v->fPartner->fID, dest->fID);
1790 LOG("and %g's partner to null\n", v->fID);
1791 v->fPartner->fPartner = dest;
1792 v->fPartner = nullptr;
1793 }
1794 }
1795
apply(VertexList * mesh,Comparator & c,EventList * events,SkArenaAlloc & alloc)1796 void Event::apply(VertexList* mesh, Comparator& c, EventList* events, SkArenaAlloc& alloc) {
1797 if (!fEdge) {
1798 return;
1799 }
1800 Vertex* prev = fEdge->fPrev->fVertex;
1801 Vertex* next = fEdge->fNext->fVertex;
1802 SSEdge* prevEdge = fEdge->fPrev->fPrev;
1803 SSEdge* nextEdge = fEdge->fNext->fNext;
1804 if (!prevEdge || !nextEdge || !prevEdge->fEdge || !nextEdge->fEdge) {
1805 return;
1806 }
1807 Vertex* dest = create_sorted_vertex(fPoint, fAlpha, mesh, prev, c, alloc);
1808 dest->fSynthetic = true;
1809 SSVertex* ssv = alloc.make<SSVertex>(dest);
1810 LOG("collapsing %g, %g (original edge %g -> %g) to %g (%g, %g) alpha %d\n",
1811 prev->fID, next->fID, fEdge->fEdge->fTop->fID, fEdge->fEdge->fBottom->fID,
1812 dest->fID, fPoint.fX, fPoint.fY, fAlpha);
1813 fEdge->fEdge = nullptr;
1814
1815 ss_connect(prev, dest, c, alloc);
1816 ss_connect(next, dest, c, alloc);
1817
1818 prevEdge->fNext = nextEdge->fPrev = ssv;
1819 ssv->fPrev = prevEdge;
1820 ssv->fNext = nextEdge;
1821 if (!prevEdge->fEdge || !nextEdge->fEdge) {
1822 return;
1823 }
1824 if (prevEdge->fEvent) {
1825 prevEdge->fEvent->fEdge = nullptr;
1826 }
1827 if (nextEdge->fEvent) {
1828 nextEdge->fEvent->fEdge = nullptr;
1829 }
1830 if (prevEdge->fPrev == nextEdge->fNext) {
1831 ss_connect(prevEdge->fPrev->fVertex, dest, c, alloc);
1832 prevEdge->fEdge = nextEdge->fEdge = nullptr;
1833 } else {
1834 compute_bisector(prevEdge->fEdge, nextEdge->fEdge, dest, alloc);
1835 SkASSERT(prevEdge != fEdge && nextEdge != fEdge);
1836 if (dest->fPartner) {
1837 create_event(prevEdge, events, alloc);
1838 create_event(nextEdge, events, alloc);
1839 } else {
1840 create_event(prevEdge, prevEdge->fPrev->fVertex, nextEdge, dest, events, c, alloc);
1841 create_event(nextEdge, nextEdge->fNext->fVertex, prevEdge, dest, events, c, alloc);
1842 }
1843 }
1844 }
1845
is_overlap_edge(Edge * e)1846 bool is_overlap_edge(Edge* e) {
1847 if (e->fType == Edge::Type::kOuter) {
1848 return e->fWinding != 0 && e->fWinding != 1;
1849 } else if (e->fType == Edge::Type::kInner) {
1850 return e->fWinding != 0 && e->fWinding != -2;
1851 } else {
1852 return false;
1853 }
1854 }
1855
1856 // This is a stripped-down version of tessellate() which computes edges which
1857 // join two filled regions, which represent overlap regions, and collapses them.
collapse_overlap_regions(VertexList * mesh,Comparator & c,SkArenaAlloc & alloc,EventComparator comp)1858 bool collapse_overlap_regions(VertexList* mesh, Comparator& c, SkArenaAlloc& alloc,
1859 EventComparator comp) {
1860 LOG("\nfinding overlap regions\n");
1861 EdgeList activeEdges;
1862 EventList events(comp);
1863 SSVertexMap ssVertices;
1864 SSEdgeList ssEdges;
1865 for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1866 if (!connected(v)) {
1867 continue;
1868 }
1869 Edge* leftEnclosingEdge;
1870 Edge* rightEnclosingEdge;
1871 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1872 for (Edge* e = v->fLastEdgeAbove; e && e != leftEnclosingEdge;) {
1873 Edge* prev = e->fPrevEdgeAbove ? e->fPrevEdgeAbove : leftEnclosingEdge;
1874 remove_edge(e, &activeEdges);
1875 bool leftOverlap = prev && is_overlap_edge(prev);
1876 bool rightOverlap = is_overlap_edge(e);
1877 bool isOuterBoundary = e->fType == Edge::Type::kOuter &&
1878 (!prev || prev->fWinding == 0 || e->fWinding == 0);
1879 if (prev) {
1880 e->fWinding -= prev->fWinding;
1881 }
1882 if (leftOverlap && rightOverlap) {
1883 LOG("found interior overlap edge %g -> %g, disconnecting\n",
1884 e->fTop->fID, e->fBottom->fID);
1885 disconnect(e);
1886 } else if (leftOverlap || rightOverlap) {
1887 LOG("found overlap edge %g -> %g%s\n", e->fTop->fID, e->fBottom->fID,
1888 isOuterBoundary ? ", is outer boundary" : "");
1889 Vertex* prevVertex = e->fWinding < 0 ? e->fBottom : e->fTop;
1890 Vertex* nextVertex = e->fWinding < 0 ? e->fTop : e->fBottom;
1891 SSVertex* ssPrev = ssVertices[prevVertex];
1892 if (!ssPrev) {
1893 ssPrev = ssVertices[prevVertex] = alloc.make<SSVertex>(prevVertex);
1894 }
1895 SSVertex* ssNext = ssVertices[nextVertex];
1896 if (!ssNext) {
1897 ssNext = ssVertices[nextVertex] = alloc.make<SSVertex>(nextVertex);
1898 }
1899 SSEdge* ssEdge = alloc.make<SSEdge>(e, ssPrev, ssNext);
1900 ssEdges.push_back(ssEdge);
1901 // SkASSERT(!ssPrev->fNext && !ssNext->fPrev);
1902 ssPrev->fNext = ssNext->fPrev = ssEdge;
1903 create_event(ssEdge, &events, alloc);
1904 if (!isOuterBoundary) {
1905 disconnect(e);
1906 }
1907 }
1908 e = prev;
1909 }
1910 Edge* prev = leftEnclosingEdge;
1911 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1912 if (prev) {
1913 e->fWinding += prev->fWinding;
1914 }
1915 insert_edge(e, prev, &activeEdges);
1916 prev = e;
1917 }
1918 }
1919 bool complex = events.size() > 0;
1920
1921 LOG("\ncollapsing overlap regions\n");
1922 LOG("skeleton before:\n");
1923 dump_skel(ssEdges);
1924 while (events.size() > 0) {
1925 Event* event = events.top();
1926 events.pop();
1927 event->apply(mesh, c, &events, alloc);
1928 }
1929 LOG("skeleton after:\n");
1930 dump_skel(ssEdges);
1931 for (SSEdge* edge : ssEdges) {
1932 if (Edge* e = edge->fEdge) {
1933 connect(edge->fPrev->fVertex, edge->fNext->fVertex, e->fType, c, alloc, 0);
1934 }
1935 }
1936 return complex;
1937 }
1938
inversion(Vertex * prev,Vertex * next,Edge * origEdge,Comparator & c)1939 bool inversion(Vertex* prev, Vertex* next, Edge* origEdge, Comparator& c) {
1940 if (!prev || !next) {
1941 return true;
1942 }
1943 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
1944 return winding != origEdge->fWinding;
1945 }
1946
1947 // Stage 5d: Displace edges by half a pixel inward and outward along their normals. Intersect to
1948 // find new vertices, and set zero alpha on the exterior and one alpha on the interior. Build a
1949 // new antialiased mesh from those vertices.
1950
stroke_boundary(EdgeList * boundary,VertexList * innerMesh,VertexList * outerMesh,Comparator & c,SkArenaAlloc & alloc)1951 void stroke_boundary(EdgeList* boundary, VertexList* innerMesh, VertexList* outerMesh,
1952 Comparator& c, SkArenaAlloc& alloc) {
1953 LOG("\nstroking boundary\n");
1954 // A boundary with fewer than 3 edges is degenerate.
1955 if (!boundary->fHead || !boundary->fHead->fRight || !boundary->fHead->fRight->fRight) {
1956 return;
1957 }
1958 Edge* prevEdge = boundary->fTail;
1959 Vertex* prevV = prevEdge->fWinding > 0 ? prevEdge->fTop : prevEdge->fBottom;
1960 SkVector prevNormal;
1961 get_edge_normal(prevEdge, &prevNormal);
1962 double radius = 0.5;
1963 Line prevInner(prevEdge->fLine);
1964 prevInner.fC -= radius;
1965 Line prevOuter(prevEdge->fLine);
1966 prevOuter.fC += radius;
1967 VertexList innerVertices;
1968 VertexList outerVertices;
1969 bool innerInversion = true;
1970 bool outerInversion = true;
1971 for (Edge* e = boundary->fHead; e != nullptr; e = e->fRight) {
1972 Vertex* v = e->fWinding > 0 ? e->fTop : e->fBottom;
1973 SkVector normal;
1974 get_edge_normal(e, &normal);
1975 Line inner(e->fLine);
1976 inner.fC -= radius;
1977 Line outer(e->fLine);
1978 outer.fC += radius;
1979 SkPoint innerPoint, outerPoint;
1980 LOG("stroking vertex %g (%g, %g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1981 if (!prevEdge->fLine.nearParallel(e->fLine) && prevInner.intersect(inner, &innerPoint) &&
1982 prevOuter.intersect(outer, &outerPoint)) {
1983 float cosAngle = normal.dot(prevNormal);
1984 if (cosAngle < -kCosMiterAngle) {
1985 Vertex* nextV = e->fWinding > 0 ? e->fBottom : e->fTop;
1986
1987 // This is a pointy vertex whose angle is smaller than the threshold; miter it.
1988 Line bisector(innerPoint, outerPoint);
1989 Line tangent(v->fPoint, v->fPoint + SkPoint::Make(bisector.fA, bisector.fB));
1990 if (tangent.fA == 0 && tangent.fB == 0) {
1991 continue;
1992 }
1993 tangent.normalize();
1994 Line innerTangent(tangent);
1995 Line outerTangent(tangent);
1996 innerTangent.fC -= 0.5;
1997 outerTangent.fC += 0.5;
1998 SkPoint innerPoint1, innerPoint2, outerPoint1, outerPoint2;
1999 if (prevNormal.cross(normal) > 0) {
2000 // Miter inner points
2001 if (!innerTangent.intersect(prevInner, &innerPoint1) ||
2002 !innerTangent.intersect(inner, &innerPoint2) ||
2003 !outerTangent.intersect(bisector, &outerPoint)) {
2004 continue;
2005 }
2006 Line prevTangent(prevV->fPoint,
2007 prevV->fPoint + SkVector::Make(prevOuter.fA, prevOuter.fB));
2008 Line nextTangent(nextV->fPoint,
2009 nextV->fPoint + SkVector::Make(outer.fA, outer.fB));
2010 if (prevTangent.dist(outerPoint) > 0) {
2011 bisector.intersect(prevTangent, &outerPoint);
2012 }
2013 if (nextTangent.dist(outerPoint) < 0) {
2014 bisector.intersect(nextTangent, &outerPoint);
2015 }
2016 outerPoint1 = outerPoint2 = outerPoint;
2017 } else {
2018 // Miter outer points
2019 if (!outerTangent.intersect(prevOuter, &outerPoint1) ||
2020 !outerTangent.intersect(outer, &outerPoint2)) {
2021 continue;
2022 }
2023 Line prevTangent(prevV->fPoint,
2024 prevV->fPoint + SkVector::Make(prevInner.fA, prevInner.fB));
2025 Line nextTangent(nextV->fPoint,
2026 nextV->fPoint + SkVector::Make(inner.fA, inner.fB));
2027 if (prevTangent.dist(innerPoint) > 0) {
2028 bisector.intersect(prevTangent, &innerPoint);
2029 }
2030 if (nextTangent.dist(innerPoint) < 0) {
2031 bisector.intersect(nextTangent, &innerPoint);
2032 }
2033 innerPoint1 = innerPoint2 = innerPoint;
2034 }
2035 if (!innerPoint1.isFinite() || !innerPoint2.isFinite() ||
2036 !outerPoint1.isFinite() || !outerPoint2.isFinite()) {
2037 continue;
2038 }
2039 LOG("inner (%g, %g), (%g, %g), ",
2040 innerPoint1.fX, innerPoint1.fY, innerPoint2.fX, innerPoint2.fY);
2041 LOG("outer (%g, %g), (%g, %g)\n",
2042 outerPoint1.fX, outerPoint1.fY, outerPoint2.fX, outerPoint2.fY);
2043 Vertex* innerVertex1 = alloc.make<Vertex>(innerPoint1, 255);
2044 Vertex* innerVertex2 = alloc.make<Vertex>(innerPoint2, 255);
2045 Vertex* outerVertex1 = alloc.make<Vertex>(outerPoint1, 0);
2046 Vertex* outerVertex2 = alloc.make<Vertex>(outerPoint2, 0);
2047 innerVertex1->fPartner = outerVertex1;
2048 innerVertex2->fPartner = outerVertex2;
2049 outerVertex1->fPartner = innerVertex1;
2050 outerVertex2->fPartner = innerVertex2;
2051 if (!inversion(innerVertices.fTail, innerVertex1, prevEdge, c)) {
2052 innerInversion = false;
2053 }
2054 if (!inversion(outerVertices.fTail, outerVertex1, prevEdge, c)) {
2055 outerInversion = false;
2056 }
2057 innerVertices.append(innerVertex1);
2058 innerVertices.append(innerVertex2);
2059 outerVertices.append(outerVertex1);
2060 outerVertices.append(outerVertex2);
2061 } else {
2062 LOG("inner (%g, %g), ", innerPoint.fX, innerPoint.fY);
2063 LOG("outer (%g, %g)\n", outerPoint.fX, outerPoint.fY);
2064 Vertex* innerVertex = alloc.make<Vertex>(innerPoint, 255);
2065 Vertex* outerVertex = alloc.make<Vertex>(outerPoint, 0);
2066 innerVertex->fPartner = outerVertex;
2067 outerVertex->fPartner = innerVertex;
2068 if (!inversion(innerVertices.fTail, innerVertex, prevEdge, c)) {
2069 innerInversion = false;
2070 }
2071 if (!inversion(outerVertices.fTail, outerVertex, prevEdge, c)) {
2072 outerInversion = false;
2073 }
2074 innerVertices.append(innerVertex);
2075 outerVertices.append(outerVertex);
2076 }
2077 }
2078 prevInner = inner;
2079 prevOuter = outer;
2080 prevV = v;
2081 prevEdge = e;
2082 prevNormal = normal;
2083 }
2084 if (!inversion(innerVertices.fTail, innerVertices.fHead, prevEdge, c)) {
2085 innerInversion = false;
2086 }
2087 if (!inversion(outerVertices.fTail, outerVertices.fHead, prevEdge, c)) {
2088 outerInversion = false;
2089 }
2090 // Outer edges get 1 winding, and inner edges get -2 winding. This ensures that the interior
2091 // is always filled (1 + -2 = -1 for normal cases, 1 + 2 = 3 for thin features where the
2092 // interior inverts).
2093 // For total inversion cases, the shape has now reversed handedness, so invert the winding
2094 // so it will be detected during collapse_overlap_regions().
2095 int innerWinding = innerInversion ? 2 : -2;
2096 int outerWinding = outerInversion ? -1 : 1;
2097 for (Vertex* v = innerVertices.fHead; v && v->fNext; v = v->fNext) {
2098 connect(v, v->fNext, Edge::Type::kInner, c, alloc, innerWinding);
2099 }
2100 connect(innerVertices.fTail, innerVertices.fHead, Edge::Type::kInner, c, alloc, innerWinding);
2101 for (Vertex* v = outerVertices.fHead; v && v->fNext; v = v->fNext) {
2102 connect(v, v->fNext, Edge::Type::kOuter, c, alloc, outerWinding);
2103 }
2104 connect(outerVertices.fTail, outerVertices.fHead, Edge::Type::kOuter, c, alloc, outerWinding);
2105 innerMesh->append(innerVertices);
2106 outerMesh->append(outerVertices);
2107 }
2108
extract_boundary(EdgeList * boundary,Edge * e,SkPath::FillType fillType,SkArenaAlloc & alloc)2109 void extract_boundary(EdgeList* boundary, Edge* e, SkPath::FillType fillType, SkArenaAlloc& alloc) {
2110 LOG("\nextracting boundary\n");
2111 bool down = apply_fill_type(fillType, e->fWinding);
2112 Vertex* start = down ? e->fTop : e->fBottom;
2113 do {
2114 e->fWinding = down ? 1 : -1;
2115 Edge* next;
2116 e->fLine.normalize();
2117 e->fLine = e->fLine * e->fWinding;
2118 boundary->append(e);
2119 if (down) {
2120 // Find outgoing edge, in clockwise order.
2121 if ((next = e->fNextEdgeAbove)) {
2122 down = false;
2123 } else if ((next = e->fBottom->fLastEdgeBelow)) {
2124 down = true;
2125 } else if ((next = e->fPrevEdgeAbove)) {
2126 down = false;
2127 }
2128 } else {
2129 // Find outgoing edge, in counter-clockwise order.
2130 if ((next = e->fPrevEdgeBelow)) {
2131 down = true;
2132 } else if ((next = e->fTop->fFirstEdgeAbove)) {
2133 down = false;
2134 } else if ((next = e->fNextEdgeBelow)) {
2135 down = true;
2136 }
2137 }
2138 disconnect(e);
2139 e = next;
2140 } while (e && (down ? e->fTop : e->fBottom) != start);
2141 }
2142
2143 // Stage 5b: Extract boundaries from mesh, simplify and stroke them into a new mesh.
2144
extract_boundaries(const VertexList & inMesh,VertexList * innerVertices,VertexList * outerVertices,SkPath::FillType fillType,Comparator & c,SkArenaAlloc & alloc)2145 void extract_boundaries(const VertexList& inMesh, VertexList* innerVertices,
2146 VertexList* outerVertices, SkPath::FillType fillType,
2147 Comparator& c, SkArenaAlloc& alloc) {
2148 remove_non_boundary_edges(inMesh, fillType, alloc);
2149 for (Vertex* v = inMesh.fHead; v; v = v->fNext) {
2150 while (v->fFirstEdgeBelow) {
2151 EdgeList boundary;
2152 extract_boundary(&boundary, v->fFirstEdgeBelow, fillType, alloc);
2153 simplify_boundary(&boundary, c, alloc);
2154 stroke_boundary(&boundary, innerVertices, outerVertices, c, alloc);
2155 }
2156 }
2157 }
2158
2159 // This is a driver function that calls stages 2-5 in turn.
2160
contours_to_mesh(VertexList * contours,int contourCnt,bool antialias,VertexList * mesh,Comparator & c,SkArenaAlloc & alloc)2161 void contours_to_mesh(VertexList* contours, int contourCnt, bool antialias,
2162 VertexList* mesh, Comparator& c, SkArenaAlloc& alloc) {
2163 #if LOGGING_ENABLED
2164 for (int i = 0; i < contourCnt; ++i) {
2165 Vertex* v = contours[i].fHead;
2166 SkASSERT(v);
2167 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
2168 for (v = v->fNext; v; v = v->fNext) {
2169 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
2170 }
2171 }
2172 #endif
2173 sanitize_contours(contours, contourCnt, antialias);
2174 build_edges(contours, contourCnt, mesh, c, alloc);
2175 }
2176
sort_mesh(VertexList * vertices,Comparator & c,SkArenaAlloc & alloc)2177 void sort_mesh(VertexList* vertices, Comparator& c, SkArenaAlloc& alloc) {
2178 if (!vertices || !vertices->fHead) {
2179 return;
2180 }
2181
2182 // Sort vertices in Y (secondarily in X).
2183 if (c.fDirection == Comparator::Direction::kHorizontal) {
2184 merge_sort<sweep_lt_horiz>(vertices);
2185 } else {
2186 merge_sort<sweep_lt_vert>(vertices);
2187 }
2188 #if LOGGING_ENABLED
2189 for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
2190 static float gID = 0.0f;
2191 v->fID = gID++;
2192 }
2193 #endif
2194 }
2195
contours_to_polys(VertexList * contours,int contourCnt,SkPath::FillType fillType,const SkRect & pathBounds,bool antialias,VertexList * outerMesh,SkArenaAlloc & alloc)2196 Poly* contours_to_polys(VertexList* contours, int contourCnt, SkPath::FillType fillType,
2197 const SkRect& pathBounds, bool antialias, VertexList* outerMesh,
2198 SkArenaAlloc& alloc) {
2199 Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
2200 : Comparator::Direction::kVertical);
2201 VertexList mesh;
2202 contours_to_mesh(contours, contourCnt, antialias, &mesh, c, alloc);
2203 sort_mesh(&mesh, c, alloc);
2204 merge_coincident_vertices(&mesh, c, alloc);
2205 simplify(&mesh, c, alloc);
2206 LOG("\nsimplified mesh:\n");
2207 dump_mesh(mesh);
2208 if (antialias) {
2209 VertexList innerMesh;
2210 extract_boundaries(mesh, &innerMesh, outerMesh, fillType, c, alloc);
2211 sort_mesh(&innerMesh, c, alloc);
2212 sort_mesh(outerMesh, c, alloc);
2213 merge_coincident_vertices(&innerMesh, c, alloc);
2214 bool was_complex = merge_coincident_vertices(outerMesh, c, alloc);
2215 was_complex = simplify(&innerMesh, c, alloc) || was_complex;
2216 was_complex = simplify(outerMesh, c, alloc) || was_complex;
2217 LOG("\ninner mesh before:\n");
2218 dump_mesh(innerMesh);
2219 LOG("\nouter mesh before:\n");
2220 dump_mesh(*outerMesh);
2221 EventComparator eventLT(EventComparator::Op::kLessThan);
2222 EventComparator eventGT(EventComparator::Op::kGreaterThan);
2223 was_complex = collapse_overlap_regions(&innerMesh, c, alloc, eventLT) || was_complex;
2224 was_complex = collapse_overlap_regions(outerMesh, c, alloc, eventGT) || was_complex;
2225 if (was_complex) {
2226 LOG("found complex mesh; taking slow path\n");
2227 VertexList aaMesh;
2228 LOG("\ninner mesh after:\n");
2229 dump_mesh(innerMesh);
2230 LOG("\nouter mesh after:\n");
2231 dump_mesh(*outerMesh);
2232 connect_partners(outerMesh, c, alloc);
2233 connect_partners(&innerMesh, c, alloc);
2234 sorted_merge(&innerMesh, outerMesh, &aaMesh, c);
2235 merge_coincident_vertices(&aaMesh, c, alloc);
2236 simplify(&aaMesh, c, alloc);
2237 LOG("combined and simplified mesh:\n");
2238 dump_mesh(aaMesh);
2239 outerMesh->fHead = outerMesh->fTail = nullptr;
2240 return tessellate(aaMesh, alloc);
2241 } else {
2242 LOG("no complex polygons; taking fast path\n");
2243 return tessellate(innerMesh, alloc);
2244 }
2245 } else {
2246 return tessellate(mesh, alloc);
2247 }
2248 }
2249
2250 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polys_to_triangles(Poly * polys,SkPath::FillType fillType,bool emitCoverage,void * data)2251 void* polys_to_triangles(Poly* polys, SkPath::FillType fillType, bool emitCoverage, void* data) {
2252 for (Poly* poly = polys; poly; poly = poly->fNext) {
2253 if (apply_fill_type(fillType, poly)) {
2254 data = poly->emit(emitCoverage, data);
2255 }
2256 }
2257 return data;
2258 }
2259
path_to_polys(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,int contourCnt,SkArenaAlloc & alloc,bool antialias,bool * isLinear,VertexList * outerMesh)2260 Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
2261 int contourCnt, SkArenaAlloc& alloc, bool antialias, bool* isLinear,
2262 VertexList* outerMesh) {
2263 SkPath::FillType fillType = path.getFillType();
2264 if (SkPath::IsInverseFillType(fillType)) {
2265 contourCnt++;
2266 }
2267 std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
2268
2269 path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
2270 return contours_to_polys(contours.get(), contourCnt, path.getFillType(), path.getBounds(),
2271 antialias, outerMesh, alloc);
2272 }
2273
get_contour_count(const SkPath & path,SkScalar tolerance)2274 int get_contour_count(const SkPath& path, SkScalar tolerance) {
2275 int contourCnt;
2276 int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
2277 if (maxPts <= 0) {
2278 return 0;
2279 }
2280 return contourCnt;
2281 }
2282
count_points(Poly * polys,SkPath::FillType fillType)2283 int64_t count_points(Poly* polys, SkPath::FillType fillType) {
2284 int64_t count = 0;
2285 for (Poly* poly = polys; poly; poly = poly->fNext) {
2286 if (apply_fill_type(fillType, poly) && poly->fCount >= 3) {
2287 count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
2288 }
2289 }
2290 return count;
2291 }
2292
count_outer_mesh_points(const VertexList & outerMesh)2293 int64_t count_outer_mesh_points(const VertexList& outerMesh) {
2294 int64_t count = 0;
2295 for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
2296 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
2297 count += TESSELLATOR_WIREFRAME ? 12 : 6;
2298 }
2299 }
2300 return count;
2301 }
2302
outer_mesh_to_triangles(const VertexList & outerMesh,bool emitCoverage,void * data)2303 void* outer_mesh_to_triangles(const VertexList& outerMesh, bool emitCoverage, void* data) {
2304 for (Vertex* v = outerMesh.fHead; v; v = v->fNext) {
2305 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
2306 Vertex* v0 = e->fTop;
2307 Vertex* v1 = e->fBottom;
2308 Vertex* v2 = e->fBottom->fPartner;
2309 Vertex* v3 = e->fTop->fPartner;
2310 data = emit_triangle(v0, v1, v2, emitCoverage, data);
2311 data = emit_triangle(v0, v2, v3, emitCoverage, data);
2312 }
2313 }
2314 return data;
2315 }
2316
2317 } // namespace
2318
2319 namespace GrTessellator {
2320
2321 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
2322
PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,VertexAllocator * vertexAllocator,bool antialias,bool * isLinear)2323 int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
2324 VertexAllocator* vertexAllocator, bool antialias, bool* isLinear) {
2325 int contourCnt = get_contour_count(path, tolerance);
2326 if (contourCnt <= 0) {
2327 *isLinear = true;
2328 return 0;
2329 }
2330 SkArenaAlloc alloc(kArenaChunkSize);
2331 VertexList outerMesh;
2332 Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, antialias,
2333 isLinear, &outerMesh);
2334 SkPath::FillType fillType = antialias ? SkPath::kWinding_FillType : path.getFillType();
2335 int64_t count64 = count_points(polys, fillType);
2336 if (antialias) {
2337 count64 += count_outer_mesh_points(outerMesh);
2338 }
2339 if (0 == count64 || count64 > SK_MaxS32) {
2340 return 0;
2341 }
2342 int count = count64;
2343
2344 void* verts = vertexAllocator->lock(count);
2345 if (!verts) {
2346 SkDebugf("Could not allocate vertices\n");
2347 return 0;
2348 }
2349
2350 LOG("emitting %d verts\n", count);
2351 void* end = polys_to_triangles(polys, fillType, antialias, verts);
2352 end = outer_mesh_to_triangles(outerMesh, true, end);
2353
2354 int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
2355 / vertexAllocator->stride());
2356 SkASSERT(actualCount <= count);
2357 vertexAllocator->unlock(actualCount);
2358 return actualCount;
2359 }
2360
PathToVertices(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrTessellator::WindingVertex ** verts)2361 int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
2362 GrTessellator::WindingVertex** verts) {
2363 int contourCnt = get_contour_count(path, tolerance);
2364 if (contourCnt <= 0) {
2365 *verts = nullptr;
2366 return 0;
2367 }
2368 SkArenaAlloc alloc(kArenaChunkSize);
2369 bool isLinear;
2370 Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, false, &isLinear,
2371 nullptr);
2372 SkPath::FillType fillType = path.getFillType();
2373 int64_t count64 = count_points(polys, fillType);
2374 if (0 == count64 || count64 > SK_MaxS32) {
2375 *verts = nullptr;
2376 return 0;
2377 }
2378 int count = count64;
2379
2380 *verts = new GrTessellator::WindingVertex[count];
2381 GrTessellator::WindingVertex* vertsEnd = *verts;
2382 SkPoint* points = new SkPoint[count];
2383 SkPoint* pointsEnd = points;
2384 for (Poly* poly = polys; poly; poly = poly->fNext) {
2385 if (apply_fill_type(fillType, poly)) {
2386 SkPoint* start = pointsEnd;
2387 pointsEnd = static_cast<SkPoint*>(poly->emit(false, pointsEnd));
2388 while (start != pointsEnd) {
2389 vertsEnd->fPos = *start;
2390 vertsEnd->fWinding = poly->fWinding;
2391 ++start;
2392 ++vertsEnd;
2393 }
2394 }
2395 }
2396 int actualCount = static_cast<int>(vertsEnd - *verts);
2397 SkASSERT(actualCount <= count);
2398 SkASSERT(pointsEnd - points == actualCount);
2399 delete[] points;
2400 return actualCount;
2401 }
2402
2403 } // namespace
2404