#!/usr/bin/env python3 # Copyright Hans Dembinski 2018 - 2019. # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # https://www.boost.org/LICENSE_1_0.txt) import os import numpy as np import glob import re import json import sys from collections import defaultdict, OrderedDict from matplotlib.patches import Rectangle from matplotlib.lines import Line2D from matplotlib.text import Text from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams.update(mpl.rcParamsDefault) cpu_frequency = 0 data = defaultdict(lambda: []) hostname = None for fn in sys.argv[1:]: d = json.load(open(fn)) cpu_frequency = d["context"]["mhz_per_cpu"] # make sure we don't compare benchmarks from different computers if hostname is None: hostname = d["context"]["host_name"] else: assert hostname == d["context"]["host_name"] for bench in d["benchmarks"]: name = bench["name"] time = min(bench["cpu_time"], bench["real_time"]) m = re.match("fill_(n_)?([0-9])d<([^>]+)>", name) if m.group(1): time /= 1 << 15 tags = m.group(3).split(", ") dim = int(m.group(2)) label = re.search( "fill_([a-z]+)", os.path.splitext(os.path.split(fn)[1])[0] ).group(1) dist = tags[0] if len(tags) > 1 and tags[1] in ("dynamic_tag", "static_tag"): if len(tags) == 3 and "DStore" in tags[2]: continue label += "-" + {"dynamic_tag": "dyn", "static_tag": "sta"}[tags[1]] label += "-fill" if m.group(1) else "-call" data[dim].append((label, dist, time / dim)) time_per_cycle_in_ns = 1.0 / (cpu_frequency * 1e6) / 1e-9 plt.figure(figsize=(7, 6)) i = 0 for dim in sorted(data): v = data[dim] labels = OrderedDict() for label, dist, time in v: if label in labels: labels[label][dist] = time / time_per_cycle_in_ns else: labels[label] = {dist: time / time_per_cycle_in_ns} j = 0 for label, d in labels.items(): t1 = d["uniform"] t2 = d["normal"] i -= 1 z = float(j) / len(labels) col = (1.0 - z) * np.array((1.0, 0.0, 0.0)) + z * np.array((1.0, 1.0, 0.0)) if label == "root": col = "k" label = "ROOT 6" if "numpy" in label: col = "0.6" if "gsl" in label: col = "0.3" label = "GSL" tmin = min(t1, t2) tmax = max(t1, t2) r1 = Rectangle((0, i), tmax, 1, facecolor=col) r2 = Rectangle( (tmin, i), tmax - tmin, 1, facecolor="none", edgecolor="w", hatch="//////" ) plt.gca().add_artist(r1) plt.gca().add_artist(r2) font = FontProperties(size=9) tx = Text( -0.5, i + 0.5, "%s" % label, fontproperties=font, va="center", ha="right", clip_on=False, ) plt.gca().add_artist(tx) j += 1 i -= 1 font = FontProperties() font.set_weight("bold") tx = Text( -0.5, i + 0.6, "%iD" % dim, fontproperties=font, va="center", ha="right", clip_on=False, ) plt.gca().add_artist(tx) plt.ylim(0, i) plt.xlim(0, 80) from matplotlib.ticker import MultipleLocator plt.gca().xaxis.set_major_locator(MultipleLocator(5)) plt.tick_params("y", left=False, labelleft=False) plt.xlabel("average CPU cycles per random input value (smaller is better)") plt.tight_layout() plt.savefig("fill_performance.svg") plt.show()