# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test jvp in graph mode""" import numpy as np import pytest import mindspore.nn as nn import mindspore.context as context from mindspore import Tensor from mindspore.nn.grad import Jvp context.set_context(mode=context.GRAPH_MODE) class SingleInputSingleOutputNet(nn.Cell): def construct(self, x): return x**3 class SingleInputMultipleOutputNet(nn.Cell): def construct(self, x): return x**3, 2*x class MultipleInputSingleOutputNet(nn.Cell): def construct(self, x, y): return 2*x + 3*y class MultipleInputMultipleOutputNet(nn.Cell): def construct(self, x, y): return 2*x, y**3 @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_single_input_single_output_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = SingleInputSingleOutputNet() expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) expect_grad = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32)) primal, grad = Jvp(net)(x, v) assert np.allclose(primal.asnumpy(), expect_primal.asnumpy()) assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_single_input_single_output_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = SingleInputSingleOutputNet() expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) expect_grad = Tensor(np.array([[3, 24], [81, 192]]).astype(np.float32)) primal, grad = Jvp(net)(x, v) assert np.allclose(primal.asnumpy(), expect_primal.asnumpy()) assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_single_input_multiple_outputs_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = SingleInputMultipleOutputNet() expect_primal_0 = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) expect_primal_1 = Tensor(np.array([[2, 4], [6, 8]]).astype(np.float32)) expect_grad_0 = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32)) expect_grad_1 = Tensor(np.array([[2, 2], [2, 2]]).astype(np.float32)) primal, grad = Jvp(net)(x, v) assert isinstance(primal, tuple) assert len(primal) == 2 assert np.allclose(primal[0].asnumpy(), expect_primal_0.asnumpy()) assert np.allclose(primal[1].asnumpy(), expect_primal_1.asnumpy()) assert isinstance(grad, tuple) assert len(grad) == 2 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_single_input_multiple_outputs_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = SingleInputMultipleOutputNet() expect_primal_0 = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) expect_primal_1 = Tensor(np.array([[2, 4], [6, 8]]).astype(np.float32)) expect_grad_0 = Tensor(np.array([[3, 24], [81, 192]]).astype(np.float32)) expect_grad_1 = Tensor(np.array([[2, 4], [6, 8]]).astype(np.float32)) primal, grad = Jvp(net)(x, v) assert isinstance(primal, tuple) assert len(primal) == 2 assert np.allclose(primal[0].asnumpy(), expect_primal_0.asnumpy()) assert np.allclose(primal[1].asnumpy(), expect_primal_1.asnumpy()) assert isinstance(grad, tuple) assert len(grad) == 2 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_multiple_inputs_single_output_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = MultipleInputSingleOutputNet() expect_primal = Tensor(np.array([[5, 10], [15, 20]]).astype(np.float32)) expect_grad = Tensor(np.array([[5, 5], [5, 5]]).astype(np.float32)) primal, grad = Jvp(net)(x, y, (v, v)) assert np.allclose(primal.asnumpy(), expect_primal.asnumpy()) assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_multiple_inputs_single_output_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v1 = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) v2 = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = MultipleInputSingleOutputNet() expect_primal = Tensor(np.array([[5, 10], [15, 20]]).astype(np.float32)) expect_grad = Tensor(np.array([[5, 8], [11, 14]]).astype(np.float32)) primal, grad = Jvp(net)(x, y, (v1, v2)) assert np.allclose(primal.asnumpy(), expect_primal.asnumpy()) assert np.allclose(grad.asnumpy(), expect_grad.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_multiple_inputs_multiple_outputs_default_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) net = MultipleInputMultipleOutputNet() expect_primal_0 = Tensor(np.array([[2, 4], [6, 8]]).astype(np.float32)) expect_primal_1 = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) expect_grad_0 = Tensor(np.array([[2, 2], [2, 2]]).astype(np.float32)) expect_grad_1 = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32)) primal, grad = Jvp(net)(x, y, (v, v)) assert isinstance(primal, tuple) assert len(primal) == 2 assert np.allclose(primal[0].asnumpy(), expect_primal_0.asnumpy()) assert np.allclose(primal[1].asnumpy(), expect_primal_1.asnumpy()) assert isinstance(grad, tuple) assert len(grad) == 2 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy()) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_jvp_multiple_inputs_multiple_outputs_custom_v_graph(): x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) y = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v1 = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) v2 = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) net = MultipleInputMultipleOutputNet() expect_primal_0 = Tensor(np.array([[2, 4], [6, 8]]).astype(np.float32)) expect_primal_1 = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) expect_grad_0 = Tensor(np.array([[2, 2], [2, 2]]).astype(np.float32)) expect_grad_1 = Tensor(np.array([[3, 24], [81, 192]]).astype(np.float32)) primal, grad = Jvp(net)(x, y, (v1, v2)) assert isinstance(primal, tuple) assert len(primal) == 2 assert np.allclose(primal[0].asnumpy(), expect_primal_0.asnumpy()) assert np.allclose(primal[1].asnumpy(), expect_primal_1.asnumpy()) assert isinstance(grad, tuple) assert len(grad) == 2 assert np.allclose(grad[0].asnumpy(), expect_grad_0.asnumpy()) assert np.allclose(grad[1].asnumpy(), expect_grad_1.asnumpy())