# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore import Parameter from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class UpdateCacheNet(nn.Cell): def __init__(self, x): super().__init__() self.ops = P.UpdateCache() self.max_num = 9999 self.x = Parameter(Tensor(x), name='x') def construct(self, indices, update): return self.ops(self.x, indices, update, self.max_num) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_update_cache(): x_np = np.array([[2, 3, 4, 5], [6, 7, 8, 9], [11, 12, 13, 14], [1, 2, 3, 4], [5, 6, 7, 8]], np.int32) indices_np = np.array([[-1, 3, 4]], np.int32) update_np = np.array([[0, 0, 0, 0], [23, 34, 56, 78], [44, 55, 66, 77]], np.int32) indices = Tensor(indices_np) update = Tensor(update_np) expect = np.array([[2, 3, 4, 5], [6, 7, 8, 9], [11, 12, 13, 14], [23, 34, 56, 78], [44, 55, 66, 77]], np.int32) net = UpdateCacheNet(x_np) out = net(indices, update) assert np.allclose(net.x.data.asnumpy(), expect) assert np.allclose(out.asnumpy(), np.array([0], np.int32))