# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class ErfNet(nn.Cell): def __init__(self): super(ErfNet, self).__init__() self.erf = P.Erf() def construct(self, x): return self.erf(x) class ErfcNet(nn.Cell): def __init__(self): super(ErfcNet, self).__init__() self.erfc = P.Erfc() def construct(self, x): return self.erfc(x) def get_output(net, inp, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) output = net()(inp) return output def basic_test(net, datatype): inp = Tensor(np.random.random((2, 3)).astype(datatype)) expect = get_output(net, inp, False) output = get_output(net, inp, True) expect_np = expect.asnumpy().copy() output_np = output.asnumpy().copy() assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7) inp = Tensor(np.random.random((2, 3, 3, 4, 5)).astype(datatype)) expect = get_output(net, inp, False) output = get_output(net, inp, True) expect_np = expect.asnumpy().copy() output_np = output.asnumpy().copy() assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gpu_fp16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") basic_test(ErfNet, np.float16) basic_test(ErfcNet, np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gpu_fp32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") basic_test(ErfNet, np.float32) basic_test(ErfcNet, np.float32)