# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test conv""" import numpy as np import mindspore.nn as nn from mindspore import Tensor from ..ut_filter import non_graph_engine weight = Tensor(np.ones([2, 2])) in_channels = 3 out_channels = 64 class Net(nn.Cell): """Net definition""" def __init__(self, cin, cout, kernel_size, stride=1, pad_mode='pad', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros'): super(Net, self).__init__() Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01) self.conv = nn.Conv2d(cin, cout, kernel_size, stride, pad_mode, padding, dilation, group, has_bias, weight_init, bias_init) def construct(self, input_x): return self.conv(input_x) @non_graph_engine def test_compile(): net = Net(3, 6, (3, 3), bias_init='zeros') input_data = Tensor(np.ones([3, 3, 32, 32]).astype(np.float32) * 0.01) output = net(input_data) print(output.asnumpy()) @non_graph_engine def test_compile2(): net = Net(3, 1, (3, 3), bias_init='zeros') input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01) output = net(input_data) print(output.asnumpy()) @non_graph_engine def test_compile3(): net = Net(3, 1, (3, 3), weight_init='ONES') input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01) output = net(input_data) print(output.asnumpy())