# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test super""" import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore import context context.set_context(mode=context.GRAPH_MODE) class FatherNet(nn.Cell): def __init__(self, x): super(FatherNet, self).__init__(x) self.x = x def construct(self, x, y): return self.x * x def test_father(self, x): return self.x + x class MatherNet(nn.Cell): def __init__(self, y): super(MatherNet, self).__init__() self.y = y def construct(self, x, y): return self.y * y def test_mather(self, y): return self.y + y class SingleSubNet(FatherNet): def __init__(self, x, z): super(SingleSubNet, self).__init__(x) self.z = z def construct(self, x, y): ret_father_construct = super().construct(x, y) ret_father_test = super(SingleSubNet, self).test_father(x) ret_father_x = super(SingleSubNet, self).x ret_sub_z = self.z return ret_father_construct, ret_father_test, ret_father_x, ret_sub_z class MulSubNet(FatherNet, MatherNet): def __init__(self, x, y, z): super(MulSubNet, self).__init__(x) super(FatherNet, self).__init__(y) self.z = z def construct(self, x, y): ret_father_construct = super().construct(x, y) ret_father_test = super(MulSubNet, self).test_father(x) ret_father_x = super(MulSubNet, self).x ret_mather_construct = super(FatherNet, self).construct(x, y) ret_mather_test = super(FatherNet, self).test_mather(y) ret_mather_y = super(FatherNet, self).y ret_sub_z = self.z return ret_father_construct, ret_father_test, ret_father_x, \ ret_mather_construct, ret_mather_test, ret_mather_y, ret_sub_z class Net(nn.Cell): def __init__(self, x): super(Net, self).__init__() self.x = x def construct(self, x, y): ret = super(Net, self).construct(x, y) return ret def test_single_super(): single_net = SingleSubNet(2, 3) x = Tensor(np.ones([1, 2, 3], np.int32)) y = Tensor(np.ones([1, 2, 3], np.int32)) single_net(x, y) def test_mul_super(): mul_net = MulSubNet(2, 3, 4) x = Tensor(np.ones([1, 2, 3], np.int32)) y = Tensor(np.ones([1, 2, 3], np.int32)) mul_net(x, y) def test_super_cell(): net = Net(2) x = Tensor(np.ones([1, 2, 3], np.int32)) y = Tensor(np.ones([1, 2, 3], np.int32)) assert net(x, y) is None def test_single_super_in(): class FatherNetIn(nn.Cell): def __init__(self, x): super(FatherNetIn, self).__init__(x) self.x = x def construct(self, x, y): return self.x * x def test_father(self, x): return self.x + x class SingleSubNetIN(FatherNetIn): def __init__(self, x, z): super(SingleSubNetIN, self).__init__(x) self.z = z def construct(self, x, y): ret_father_construct = super().construct(x, y) ret_father_test = super(SingleSubNetIN, self).test_father(x) ret_father_x = super(SingleSubNetIN, self).x ret_sub_z = self.z return ret_father_construct, ret_father_test, ret_father_x, ret_sub_z single_net_in = SingleSubNetIN(2, 3) x = Tensor(np.ones([1, 2, 3], np.int32)) y = Tensor(np.ones([1, 2, 3], np.int32)) single_net_in(x, y)