/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ecmascript/mem/work_manager.h" #include "ecmascript/js_hclass-inl.h" #include "ecmascript/mem/area.h" #include "ecmascript/mem/full_gc.h" #include "ecmascript/mem/heap.h" #include "ecmascript/mem/heap_region_allocator.h" #include "ecmascript/mem/mark_stack.h" #include "ecmascript/mem/partial_gc.h" #include "ecmascript/mem/region.h" #include "ecmascript/mem/tlab_allocator-inl.h" namespace panda::ecmascript { WorkManager::WorkManager(Heap *heap, uint32_t threadNum) : heap_(heap), threadNum_(threadNum), continuousQueue_ { nullptr }, workSpace_(0), spaceStart_(0), spaceEnd_(0), parallelGCTaskPhase_(UNDEFINED_TASK) { for (uint32_t i = 0; i < threadNum_; i++) { continuousQueue_[i] = new ProcessQueue(heap); } workSpace_ = ToUintPtr(heap_->GetNativeAreaAllocator()->AllocateBuffer(SPACE_SIZE)); } WorkManager::~WorkManager() { Finish(); for (uint32_t i = 0; i < threadNum_; i++) { continuousQueue_[i]->Destroy(); delete continuousQueue_[i]; continuousQueue_[i] = nullptr; } heap_->GetNativeAreaAllocator()->FreeBuffer( reinterpret_cast(workSpace_)); } bool WorkManager::Push(uint32_t threadId, TaggedObject *object) { WorkNode *&inNode = works_[threadId].inNode_; if (!inNode->PushObject(ToUintPtr(object))) { PushWorkNodeToGlobal(threadId); return inNode->PushObject(ToUintPtr(object)); } return true; } bool WorkManager::Push(uint32_t threadId, TaggedObject *object, Region *region) { if (Push(threadId, object)) { auto klass = object->GetClass(); auto size = klass->SizeFromJSHClass(object); region->IncreaseAliveObjectSafe(size); return true; } return false; } void WorkManager::PushWorkNodeToGlobal(uint32_t threadId, bool postTask) { WorkNode *&inNode = works_[threadId].inNode_; if (!inNode->IsEmpty()) { workStack_.Push(inNode); inNode = AllocateWorkNode(); if (postTask && heap_->IsParallelGCEnabled() && heap_->CheckCanDistributeTask()) { heap_->PostParallelGCTask(parallelGCTaskPhase_); } } } bool WorkManager::Pop(uint32_t threadId, TaggedObject **object) { WorkNode *&outNode = works_[threadId].outNode_; WorkNode *&inNode = works_[threadId].inNode_; if (!outNode->PopObject(reinterpret_cast(object))) { if (!inNode->IsEmpty()) { WorkNode *tmp = outNode; outNode = inNode; inNode = tmp; } else if (!PopWorkNodeFromGlobal(threadId)) { return false; } return outNode->PopObject(reinterpret_cast(object)); } return true; } bool WorkManager::PopWorkNodeFromGlobal(uint32_t threadId) { return workStack_.Pop(&works_[threadId].outNode_); } size_t WorkManager::Finish() { size_t aliveSize = 0; for (uint32_t i = 0; i < threadNum_; i++) { WorkNodeHolder &holder = works_[i]; if (holder.weakQueue_ != nullptr) { holder.weakQueue_->FinishMarking(continuousQueue_[i]); delete holder.weakQueue_; holder.weakQueue_ = nullptr; } if (holder.allocator_ != nullptr) { holder.allocator_->Finalize(); delete holder.allocator_; holder.allocator_ = nullptr; } holder.pendingUpdateSlots_.clear(); aliveSize += holder.aliveSize_; } while (!agedSpaces_.empty()) { heap_->GetNativeAreaAllocator()->FreeBuffer(reinterpret_cast( agedSpaces_.back())); agedSpaces_.pop_back(); } return aliveSize; } void WorkManager::Finish(size_t &aliveSize, size_t &promotedSize) { aliveSize = Finish(); for (uint32_t i = 0; i < threadNum_; i++) { WorkNodeHolder &holder = works_[i]; promotedSize += holder.promotedSize_; } } void WorkManager::Initialize(TriggerGCType gcType, ParallelGCTaskPhase taskPhase) { parallelGCTaskPhase_ = taskPhase; spaceStart_ = workSpace_; spaceEnd_ = workSpace_ + SPACE_SIZE; for (uint32_t i = 0; i < threadNum_; i++) { WorkNodeHolder &holder = works_[i]; holder.inNode_ = AllocateWorkNode(); holder.outNode_ = AllocateWorkNode(); holder.weakQueue_ = new ProcessQueue(); holder.weakQueue_->BeginMarking(heap_, continuousQueue_[i]); holder.aliveSize_ = 0; holder.promotedSize_ = 0; if (gcType != TriggerGCType::OLD_GC) { holder.allocator_ = new TlabAllocator(heap_); } } } WorkNode *WorkManager::AllocateWorkNode() { size_t totalSize = sizeof(WorkNode) + sizeof(Stack) + STACK_AREA_SIZE; ASSERT(totalSize < SPACE_SIZE); // CAS volatile auto atomicField = reinterpret_cast *>(&spaceStart_); bool result = false; uintptr_t begin = 0; do { begin = atomicField->load(std::memory_order_acquire); if (begin + totalSize >= spaceEnd_) { os::memory::LockHolder lock(mtx_); begin = atomicField->load(std::memory_order_acquire); if (begin + totalSize >= spaceEnd_) { agedSpaces_.emplace_back(workSpace_); workSpace_ = ToUintPtr( heap_->GetNativeAreaAllocator()->AllocateBuffer(SPACE_SIZE)); spaceStart_ = workSpace_; spaceEnd_ = workSpace_ + SPACE_SIZE; begin = spaceStart_; } } result = std::atomic_compare_exchange_strong_explicit(atomicField, &begin, begin + totalSize, std::memory_order_release, std::memory_order_relaxed); } while (!result); Stack *stack = reinterpret_cast(begin + sizeof(WorkNode)); stack->ResetBegin(begin + sizeof(WorkNode) + sizeof(Stack), begin + totalSize); WorkNode *work = reinterpret_cast(begin); return new (work) WorkNode(stack); } } // namespace panda::ecmascript